

 katana_code

 v2.1.0

 Table of contents

 	katana-code

 	LICENSE

 	Modules

 	ktn_code

 	ktn_dodger

 	ktn_io_string

katana-code

[image: build]
Katana Code is an Erlang library application containinig modules useful for processing Erlang code.
Contact Us
If you find any bugs or have a problem while using this library, please
open an issue in this repo
(or a pull request :)).
And you can check all of our open-source projects at
inaka.github.io

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2016 Erlang Solutions Ltd.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

ktn_code

 Anchor for this section

 Summary

 Types

 beam_lib_beam/0

 Should eventually become beam_lib:beam(), once that's exposed (https://github.com/erlang/otp/pull/7534)

 erl_parse_foo/0

 erl_syntax_annotation_or_location/0

 Should eventually become erl_syntax:annotation_or_location(), once that's exposed (https://github.com/erlang/otp/pull/7535)

 tree_node/0

 tree_node_type/0

 Functions

 attr(Key, Node)

 beam_to_erl(BeamPath, ErlPath)

 If the beam was not compiled with debug_info the code generated by this function will look really ugly

 beam_to_string(BeamPath)

 If the beam was not compiled with debug_info the code generated by this function will look really ugly

 consult(Source)

 Like file:consult/1 but for strings and binaries.

 content(Node)

 eval(Source)

 Evaluates the Erlang expression in the string provided.

 node_attr(Key, Node)

 parse_tree(Source)

 Parses code in a string or binary format and returns the parse tree.

 to_str(Arg)

 type(_)

 Anchor for this section

Types

 Link to this type

 beam_lib_beam/0

 View Source

 -type beam_lib_beam() :: file:filename() | binary().

Should eventually become beam_lib:beam(), once that's exposed (https://github.com/erlang/otp/pull/7534)

 Link to this type

 erl_parse_foo/0

 View Source

 -type erl_parse_foo() ::
 {attribute,
 Pos :: erl_syntax_annotation_or_location(),
 Name :: erl_syntax:syntaxTree(),
 Args :: none | [erl_syntax:syntaxTree()]} |
 {macro,
 Pos :: erl_syntax_annotation_or_location(),
 Name :: erl_syntax:syntaxTree(),
 Args :: none | [erl_syntax:syntaxTree()]} |
 {atom, [{node, Node :: erl_syntax:syntaxTree()}], non_reversible_form}.

 Link to this type

 erl_syntax_annotation_or_location/0

 View Source

 -type erl_syntax_annotation_or_location() :: erl_anno:anno() | erl_anno:location().

Should eventually become erl_syntax:annotation_or_location(), once that's exposed (https://github.com/erlang/otp/pull/7535)

 Link to this type

 tree_node/0

 View Source

 -type tree_node() ::
 #{type => tree_node_type(), attrs => map(), node_attrs => map(), content => [tree_node()]}.

 Link to this type

 tree_node_type/0

 View Source

 -type tree_node_type() ::
 root | function | clause | match | tuple | atom | integer | float | string | char | binary |
 binary_element | var | call | remote | 'case' | case_expr | case_clauses | 'fun' | named_fun |
 query | 'try' | try_catch | try_case | try_after | 'if' | 'catch' | 'receive' |
 receive_after | receive_case | nil | cons | map | map_field_assoc | map_field_exact | lc |
 lc_expr | generate | bc | bc_expr | b_generate | op | record_field | record_index | block |
 module | export | import | compile | vsn | on_load | behaviour | behavior | callback |
 record | include | include_lib | define | undef | ifdef | ifndef | else | endif | elif |
 error | warning | file | line | type | opaque | export_type | remote_type | ann_type |
 paren_type | any.

 Anchor for this section

Functions

 Link to this function

 attr(Key, Node)

 View Source

 -spec attr(term(), tree_node()) -> term() | undefined.

 Link to this function

 beam_to_erl(BeamPath, ErlPath)

 View Source

 -spec beam_to_erl(beam_lib_beam(), string()) -> ok.

If the beam was not compiled with debug_info the code generated by this function will look really ugly

 Link to this function

 beam_to_string(BeamPath)

 View Source

 -spec beam_to_string(beam_lib_beam()) -> {ok, string()} | {error, beam_lib, term()}.

If the beam was not compiled with debug_info the code generated by this function will look really ugly

 Link to this function

 consult(Source)

 View Source

 -spec consult(string() | binary()) -> [term()].

Like file:consult/1 but for strings and binaries.

 Link to this function

 content(Node)

 View Source

 -spec content(tree_node()) -> [tree_node()].

 Link to this function

 eval(Source)

 View Source

 -spec eval(string() | binary()) -> term().

Evaluates the Erlang expression in the string provided.

 Link to this function

 node_attr(Key, Node)

 View Source

 -spec node_attr(term(), tree_node()) -> term() | undefined.

 Link to this function

 parse_tree(Source)

 View Source

 -spec parse_tree(string() | binary()) -> tree_node().

Parses code in a string or binary format and returns the parse tree.

 Link to this function

 to_str(Arg)

 View Source

 -spec to_str(binary() | list() | atom() | integer()) -> string().

 Link to this function

 type(_)

 View Source

 -spec type(tree_node()) -> atom().

ktn_dodger

epp_dodger - bypasses the Erlang preprocessor.
This module tokenises and parses most Erlang source code without expanding preprocessor directives and macro applications, as long as these are syntactically "well-behaved". Because the normal parse trees of the erl_parse module cannot represent these things (normally, they are expanded by the Erlang preprocessor (epp) before the parser sees them), an extended syntax tree is created, using the erl_syntax module.

 Anchor for this section

 Summary

 Types

 errorinfo/0

 option/0

 Functions

 parse(Dev)

 Equivalent to parse(IODevice, 1).

 parse(Dev, L)

 Equivalent to parse(IODevice, StartLine, []).

 parse(Dev, L0, Options)

 Reads and parses program text from an I/O stream. Characters are read from IODevice until end-of-file; apart from this, the behaviour is the same as for parse_file/2. StartLine is the initial line number, which should be a positive integer.See also: parse/2, parse_file/2, parse_form/2, quick_parse/3.

 parse_file(File)

 Equivalent to parse_file(File, []).

 parse_file(File, Options)

 Reads and parses a file. If successful, {ok, Forms} is returned, where Forms is a list of abstract syntax trees representing the "program forms" of the file (cf. erl_syntax:is_form/1). Otherwise, {error, errorinfo()} is returned, typically if the file could not be opened. Note that parse errors show up as error markers in the returned list of forms; they do not cause this function to fail or return {error, errorinfo()}.

 parse_form(Dev, L0)

 Equivalent to parse_form(IODevice, StartLine, []).

 parse_form(Dev, L0, Options)

 Reads and parses a single program form from an I/O stream. Characters are read from IODevice until an end-of-form marker is found (a period character followed by whitespace), or until end-of-file; apart from this, the behaviour is similar to that of parse/3, except that the return values also contain the final line number given that StartLine is the initial line number, and that {eof, LineNo} may be returned.See also: parse/3, parse_form/2, quick_parse_form/3.

 quick_parse(Dev)

 Equivalent to quick_parse(IODevice, 1).

 quick_parse(Dev, L)

 Equivalent to quick_parse(IODevice, StartLine, []).

 quick_parse(Dev, L0, Options)

 Similar to parse/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.See also: parse/3, quick_parse/2, quick_parse_file/2, quick_parse_form/2.

 quick_parse_file(File)

 Equivalent to quick_parse_file(File, []).

 quick_parse_file(File, Options)

 Similar to parse_file/2, but does a more quick-and-dirty processing of the code. Macro definitions and other preprocessor directives are discarded, and all macro calls are replaced with atoms. This is useful when only the main structure of the code is of interest, and not the details. Furthermore, the quick-parse method can usually handle more strange cases than the normal, more exact parsing.

 quick_parse_form(Dev, L0)

 Equivalent to quick_parse_form(IODevice, StartLine, []).

 quick_parse_form(Dev, L0, Options)

 Similar to parse_form/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.See also: parse/3, parse_form/3, quick_parse_form/2.

 tokens_to_string(Ts)

 Anchor for this section

Types

 Link to this type

 errorinfo/0

 View Source

 -type errorinfo() :: {integer(), atom(), term()}.

 Link to this type

 option/0

 View Source

 -type option() :: atom() | {atom(), term()}.

 Anchor for this section

Functions

 Link to this function

 parse(Dev)

 View Source

 -spec parse(file:io_device()) -> {ok, erl_syntax:forms()}.

Equivalent to parse(IODevice, 1).

 Link to this function

 parse(Dev, L)

 View Source

 -spec parse(file:io_device(), integer()) -> {ok, erl_syntax:forms()}.

Equivalent to parse(IODevice, StartLine, []).
See also: parse/1.

 Link to this function

 parse(Dev, L0, Options)

 View Source

 -spec parse(file:io_device(), erl_anno:location(), [option()]) -> {ok, erl_syntax:forms()}.

Reads and parses program text from an I/O stream. Characters are read from IODevice until end-of-file; apart from this, the behaviour is the same as for parse_file/2. StartLine is the initial line number, which should be a positive integer.See also: parse/2, parse_file/2, parse_form/2, quick_parse/3.

 Link to this function

 parse_file(File)

 View Source

 -spec parse_file(file:filename()) -> {ok, erl_syntax:forms()} | {error, errorinfo()}.

Equivalent to parse_file(File, []).

 Link to this function

 parse_file(File, Options)

 View Source

 -spec parse_file(file:filename(), [option()]) -> {ok, erl_syntax:forms()} | {error, errorinfo()}.

Reads and parses a file. If successful, {ok, Forms} is returned, where Forms is a list of abstract syntax trees representing the "program forms" of the file (cf. erl_syntax:is_form/1). Otherwise, {error, errorinfo()} is returned, typically if the file could not be opened. Note that parse errors show up as error markers in the returned list of forms; they do not cause this function to fail or return {error, errorinfo()}.
Options:	{no_fail, boolean()}
	If true, this makes epp_dodger replace any program forms that could not be parsed with nodes of type text (see erl_syntax:text/1), representing the raw token sequence of the form, instead of reporting a parse error. The default value is false.
	{clever, boolean()}
	If set to true, this makes epp_dodger try to repair the source code as it seems fit, in certain cases where parsing would otherwise fail. Currently, it inserts ++-operators between string literals and macros where it looks like concatenation was intended. The default value is false.

See also: parse/2, quick_parse_file/1, erl_syntax:is_form/1.

 Link to this function

 parse_form(Dev, L0)

 View Source

 -spec parse_form(file:io_device(), non_neg_integer()) ->
 {ok, erl_syntax:forms(), non_neg_integer()} |
 {eof, non_neg_integer()} |
 {error, errorinfo(), non_neg_integer()}.

Equivalent to parse_form(IODevice, StartLine, []).
See also: quick_parse_form/2.

 Link to this function

 parse_form(Dev, L0, Options)

 View Source

 -spec parse_form(file:io_device(), integer(), [option()]) ->
 {ok, erl_syntax:forms(), integer()} |
 {eof, integer()} |
 {error, errorinfo(), integer()}.

Reads and parses a single program form from an I/O stream. Characters are read from IODevice until an end-of-form marker is found (a period character followed by whitespace), or until end-of-file; apart from this, the behaviour is similar to that of parse/3, except that the return values also contain the final line number given that StartLine is the initial line number, and that {eof, LineNo} may be returned.See also: parse/3, parse_form/2, quick_parse_form/3.

 Link to this function

 quick_parse(Dev)

 View Source

 -spec quick_parse(file:io_device()) -> {ok, erl_syntax:forms()}.

Equivalent to quick_parse(IODevice, 1).

 Link to this function

 quick_parse(Dev, L)

 View Source

 -spec quick_parse(file:io_device(), integer()) -> {ok, erl_syntax:forms()}.

Equivalent to quick_parse(IODevice, StartLine, []).
See also: quick_parse/1.

 Link to this function

 quick_parse(Dev, L0, Options)

 View Source

 -spec quick_parse(file:io_device(), integer(), [option()]) -> {ok, erl_syntax:forms()}.

Similar to parse/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.See also: parse/3, quick_parse/2, quick_parse_file/2, quick_parse_form/2.

 Link to this function

 quick_parse_file(File)

 View Source

 -spec quick_parse_file(file:filename()) -> {ok, erl_syntax:forms()} | {error, errorinfo()}.

Equivalent to quick_parse_file(File, []).

 Link to this function

 quick_parse_file(File, Options)

 View Source

 -spec quick_parse_file(file:filename(), [option()]) -> {ok, erl_syntax:forms()} | {error, errorinfo()}.

Similar to parse_file/2, but does a more quick-and-dirty processing of the code. Macro definitions and other preprocessor directives are discarded, and all macro calls are replaced with atoms. This is useful when only the main structure of the code is of interest, and not the details. Furthermore, the quick-parse method can usually handle more strange cases than the normal, more exact parsing.
Options: see parse_file/2. Note however that for quick_parse_file/2, the option no_fail is true by default.See also: parse_file/2, quick_parse/2.

 Link to this function

 quick_parse_form(Dev, L0)

 View Source

 -spec quick_parse_form(file:io_device(), non_neg_integer()) ->
 {ok, erl_syntax:forms(), non_neg_integer()} |
 {eof, non_neg_integer()} |
 {error, errorinfo(), non_neg_integer()}.

Equivalent to quick_parse_form(IODevice, StartLine, []).
See also: parse_form/2.

 Link to this function

 quick_parse_form(Dev, L0, Options)

 View Source

 -spec quick_parse_form(file:io_device(), integer(), [option()]) ->
 {ok, erl_syntax:forms(), integer()} |
 {eof, integer()} |
 {error, errorinfo(), integer()}.

Similar to parse_form/3, but does a more quick-and-dirty processing of the code. See quick_parse_file/2 for details.See also: parse/3, parse_form/3, quick_parse_form/2.

 Link to this function

 tokens_to_string(Ts)

 View Source

 -spec tokens_to_string([term()]) -> string().

ktn_io_string

 Anchor for this section

 Summary

 Types

 state/0

 Functions

 init(Str)

 loop(State)

 new(Str)

 skip(Str, Length)

 skip(Str, Data, Length)

 start_link(Str)

 Anchor for this section

Types

 Link to this type

 state/0

 View Source

 -type state() :: #{buffer := string(), original := string()}.

 Anchor for this section

Functions

 Link to this function

 init(Str)

 View Source

 -spec init(string()) -> ok.

 Link to this function

 loop(State)

 View Source

 -spec loop(state()) -> ok.

 Link to this function

 new(Str)

 View Source

 -spec new(string() | binary()) -> pid().

 Link to this function

 skip(Str, Length)

 View Source

 -spec skip(string() | {cont, integer(), string()}, integer()) ->
 {more, {cont, integer(), string()}} | {done, integer(), string()}.

 Link to this function

 skip(Str, Data, Length)

 View Source

 -spec skip(string() | {cont, integer(), string()}, term(), integer()) ->
 {more, {cont, integer(), string()}} | {done, integer(), string()}.

 Link to this function

 start_link(Str)

 View Source

 -spec start_link(string()) -> pid().

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

