

 keylara

 v1.2.2

 Table of contents

 	Overview

 	License

 	
 Modules

 	keylara

 	keylara_aes

 	keylara_chacha20

 	keylara_dilithium

 	keylara_mlkem

 	keylara_rsa

 	keylara_slhdsa

 Keylara

Keylara is a high-security cryptographic library for Erlang/OTP designed to provide strong cryptographic operations with enhanced entropy through the ALARA (Distributed Entropy Network System).
The library supports a variety of algorithms, both classical and post-quantum, each implemented in its own module.
[image: Hex.pm]
[image: Hex Docs]
[image: License]
Features and Algorithms
Classical Algorithms
	RSA (keylara_rsa.erl):
RSA (Rivest–Shamir–Adleman) is a widely used public-key cryptosystem for secure data transmission. Keylara uses RSA for key pair generation and encryption/decryption operations. Its security is based on the difficulty of factoring large integers.

	AES (keylara_aes.erl):
AES (Advanced Encryption Standard) is a symmetric-key algorithm used for secure data encryption. It provides confidentiality for data at rest and in transit with different key sizes (128, 192, 256 bits).

	ChaCha20 (keylara_chacha20.erl):
ChaCha20 is a modern stream cipher designed for high performance and strong security, particularly in software implementations. It is used for fast symmetric encryption and is resistant to timing attacks.

Post-Quantum Algorithms
	ML-KEM (CRYSTALS-Kyber) (keylara_mlkem.erl):
ML-KEM is a Key Encapsulation Mechanism based on the Kyber lattice-based algorithm. It is designed to resist quantum computer attacks and is used for secure key exchange and encapsulation.

	Dilithium (keylara_dilithium.erl):
Dilithium is a lattice-based digital signature scheme from the CRYSTALS project. It provides post-quantum signature security and is used for signing and verifying messages.

	SLHDSA (keylara_slhdsa.erl):
SLH-DSA is a post-quantum digital signature algorithm providing authentication and integrity for messages. It is designed to resist both classical and quantum attacks.

Integration with Alara Network
The ALARA (Distributed Entropy Network System) enhances the randomness used for cryptographic operations, increasing security and reducing predictability of keys.

Keylara is intended to be explored through its comprehensive set of test files, which demonstrate usage patterns, algorithmic correctness, and error handling. These tests serve both as validation and as practical examples for integrating Keylara into your applications.
Contributions are welcome! If you want to improve Keylara, add algorithms, or fix issues, please submit a pull request (PR) on the repository.

 License

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of
 this License; and

2. You must cause any modified files to carry prominent notices stating that
 You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You
 distribute, all copyright, patent, trademark, and attribution notices from
 the Source form of the Work, excluding those notices that do not pertain to
 any part of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then
 any Derivative Works that You distribute must include a readable copy of the
 attribution notices contained within such NOTICE file, excluding those
 notices that do not pertain to any part of the Derivative Works, in at least
 one of the following places: within a NOTICE text file distributed as part
 of the Derivative Works; within the Source form or documentation, if
 provided along with the Derivative Works; or, within a display generated by
 the Derivative Works, if and wherever such third-party notices normally
 appear. The contents of the NOTICE file are for informational purposes only
 and do not modify the License. You may add Your own attribution notices
 within Derivative Works that You distribute, alongside or as an addendum to
 the NOTICE text from the Work, provided that such additional attribution
 notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Copyright 2025, Steve Roques <steve.roques@gmail.com>.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

keylara

 Summary

 Functions

 get_entropy_bytes(NBytes)

 Get random entropy bytes from the ALARA network

 get_network_pid()

 Get the network PID (internal use)

 get_version()

 Return Keylara version

 seed_random()

 Seed Erlang's random number generator with Alara entropy

 start()

 Start Keylara and its dependencies

 stop()

 Stop Keylara and its dependencies

 Functions

 get_entropy_bytes(NBytes)

 -spec get_entropy_bytes(non_neg_integer()) -> {ok, binary()} | {error, term()}.

Get random entropy bytes from the ALARA network

 get_network_pid()

 -spec get_network_pid() -> {ok, pid()} | {error, term()}.

Get the network PID (internal use)

 get_version()

 -spec get_version() -> string().

Return Keylara version

 seed_random()

 -spec seed_random() -> ok | {error, term()}.

Seed Erlang's random number generator with Alara entropy

 start()

 -spec start() -> ok | {error, term()}.

Start Keylara and its dependencies

 stop()

 -spec stop() -> ok.

Stop Keylara and its dependencies

keylara_aes

 Summary

 Types

 aes_encrypted/0

 aes_iv/0

 aes_key/0

 aes_key_size/0

 entropy_error/0

 keylara_error/0

 Functions

 decrypt(EncryptedData, AESKey)

 Decrypt data using AES with IV

 decrypt(EncryptedData, AESKey, IV)

 Decrypt data using AES with specified IV

 encrypt(Data, AESKey)

 Encrypt data using AES with a randomly generated IV

 encrypt(Data, AESKey, IV)

 Encrypt data using AES with specified IV

 generate_iv()

 Generate random IV for AES

 generate_key()

 Generate AES key using Alara distributed entropy network

 generate_key(KeySize)

 Generate AES key of specific size using Alara distributed entropy network

 get_key_type(AESKey)

 Get AES cipher type based on key size

 validate_iv(IV)

 Validate AES IV

 validate_key(AESKey)

 Validate AES key

 Types

 aes_encrypted/0

 -type aes_encrypted() :: {aes_iv(), binary()}.

 aes_iv/0

 -type aes_iv() :: binary().

 aes_key/0

 -type aes_key() :: binary().

 aes_key_size/0

 -type aes_key_size() :: 128 | 192 | 256.

 entropy_error/0

 -type entropy_error() ::
 {entropy_generation_failed, term()} |
 {insufficient_entropy, integer(), integer()} |
 {alara_network_error, term(), term()}.

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 Functions

 decrypt(EncryptedData, AESKey)

 -spec decrypt(aes_encrypted() | binary(), aes_key()) -> {ok, binary()} | keylara_error().

Decrypt data using AES with IV

 decrypt(EncryptedData, AESKey, IV)

 -spec decrypt(binary(), aes_key(), aes_iv()) -> {ok, binary()} | keylara_error().

Decrypt data using AES with specified IV

 encrypt(Data, AESKey)

 -spec encrypt(binary(), aes_key()) -> {ok, aes_encrypted()} | keylara_error().

Encrypt data using AES with a randomly generated IV

 encrypt(Data, AESKey, IV)

 -spec encrypt(binary(), aes_key(), aes_iv()) -> {ok, binary()} | keylara_error().

Encrypt data using AES with specified IV

 generate_iv()

 -spec generate_iv() -> aes_iv().

Generate random IV for AES

 generate_key()

 -spec generate_key() -> {ok, aes_key()} | keylara_error().

Generate AES key using Alara distributed entropy network

 generate_key(KeySize)

 -spec generate_key(aes_key_size()) -> {ok, aes_key()} | keylara_error().

Generate AES key of specific size using Alara distributed entropy network

 get_key_type(AESKey)

 -spec get_key_type(aes_key()) -> {ok, atom()} | keylara_error().

Get AES cipher type based on key size

 validate_iv(IV)

 -spec validate_iv(aes_iv()) -> ok | keylara_error().

Validate AES IV

 validate_key(AESKey)

 -spec validate_key(aes_key()) -> ok | keylara_error().

Validate AES key

keylara_chacha20

 Summary

 Types

 chacha20_counter/0

 chacha20_key/0

 chacha20_nonce/0

 keylara_error/0

 Functions

 decrypt(EncryptedData, Key, Nonce)

 Decrypt data using ChaCha20 with counter = 0

 decrypt(EncryptedData, Key, Nonce, Counter)

 Decrypt data using ChaCha20 with specified counter

 encrypt(Data, Key, Nonce)

 Encrypt data using ChaCha20 with counter = 0

 encrypt(Data, Key, Nonce, Counter)

 Encrypt data using ChaCha20 with specified counter

 generate_key()

 Generate ChaCha20 key using Alara distributed entropy

 generate_nonce()

 Generate ChaCha20 nonce using Alara distributed entropy

 get_key_size()

 Get ChaCha20 key size in bytes

 get_nonce_size()

 Get ChaCha20 nonce size in bytes

 validate_key(Key)

 Validate ChaCha20 key format and size

 validate_nonce(Nonce)

 Validate ChaCha20 nonce format and size

 Types

 chacha20_counter/0

 -type chacha20_counter() :: non_neg_integer().

 chacha20_key/0

 -type chacha20_key() :: binary().

 chacha20_nonce/0

 -type chacha20_nonce() :: binary().

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 Functions

 decrypt(EncryptedData, Key, Nonce)

 -spec decrypt(binary(), chacha20_key(), chacha20_nonce()) -> {ok, binary()} | keylara_error().

Decrypt data using ChaCha20 with counter = 0

 decrypt(EncryptedData, Key, Nonce, Counter)

 -spec decrypt(binary(), chacha20_key(), chacha20_nonce(), chacha20_counter()) ->
 {ok, binary()} | keylara_error().

Decrypt data using ChaCha20 with specified counter

 encrypt(Data, Key, Nonce)

 -spec encrypt(binary(), chacha20_key(), chacha20_nonce()) -> {ok, binary()} | keylara_error().

Encrypt data using ChaCha20 with counter = 0

 encrypt(Data, Key, Nonce, Counter)

 -spec encrypt(binary(), chacha20_key(), chacha20_nonce(), chacha20_counter()) ->
 {ok, binary()} | keylara_error().

Encrypt data using ChaCha20 with specified counter

 generate_key()

 -spec generate_key() -> {ok, chacha20_key()} | keylara_error().

Generate ChaCha20 key using Alara distributed entropy

 generate_nonce()

 -spec generate_nonce() -> {ok, chacha20_nonce()} | keylara_error().

Generate ChaCha20 nonce using Alara distributed entropy

 get_key_size()

 -spec get_key_size() -> integer().

Get ChaCha20 key size in bytes

 get_nonce_size()

 -spec get_nonce_size() -> integer().

Get ChaCha20 nonce size in bytes

 validate_key(Key)

 -spec validate_key(term()) -> ok | keylara_error().

Validate ChaCha20 key format and size

 validate_nonce(Nonce)

 -spec validate_nonce(term()) -> ok | keylara_error().

Validate ChaCha20 nonce format and size

keylara_dilithium

 Summary

 Types

 dilithium_param_set/0

 dilithium_private_key/0

 dilithium_public_key/0

 dilithium_signature/0

 keylara_error/0

 Functions

 generate_keypair(ParamSet)

 Generate Dilithium keypair using centralized entropy management

 get_parameter_sizes(ParamSet)

 sign(Message, PrivateKey, ParamSet)

 validate_private_key(PrivateKey, ParamSet)

 validate_public_key(PublicKey, ParamSet)

 validate_signature(Signature, ParamSet)

 verify(Message, Signature, PublicKey, ParamSet)

 Types

 dilithium_param_set/0

 -type dilithium_param_set() :: dilithium_2 | dilithium_3 | dilithium_5.

 dilithium_private_key/0

 -type dilithium_private_key() :: binary().

 dilithium_public_key/0

 -type dilithium_public_key() :: binary().

 dilithium_signature/0

 -type dilithium_signature() :: binary().

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 Functions

 generate_keypair(ParamSet)

 -spec generate_keypair(dilithium_param_set()) ->
 {ok, {dilithium_public_key(), dilithium_private_key()}} | keylara_error().

Generate Dilithium keypair using centralized entropy management

 get_parameter_sizes(ParamSet)

 -spec get_parameter_sizes(dilithium_param_set()) ->
 {ok, #{atom() => non_neg_integer()}} | keylara_error().

 sign(Message, PrivateKey, ParamSet)

 -spec sign(binary(), dilithium_private_key(), dilithium_param_set()) ->
 {ok, dilithium_signature()} | keylara_error().

 validate_private_key(PrivateKey, ParamSet)

 -spec validate_private_key(term(), dilithium_param_set()) -> ok | keylara_error().

 validate_public_key(PublicKey, ParamSet)

 -spec validate_public_key(term(), dilithium_param_set()) -> ok | keylara_error().

 validate_signature(Signature, ParamSet)

 -spec validate_signature(term(), dilithium_param_set()) -> ok | keylara_error().

 verify(Message, Signature, PublicKey, ParamSet)

 -spec verify(binary(), dilithium_signature(), dilithium_public_key(), dilithium_param_set()) ->
 {ok, boolean()} | keylara_error().

keylara_mlkem

ML-KEM (CRYSTALS-Kyber) post-quantum key encapsulation module. Simplified implementation for Keylara, using centralized entropy. ===

 Summary

 Types

 keylara_error/0

 mlkem_ciphertext/0

 mlkem_param_set/0

 mlkem_private_key/0

 mlkem_public_key/0

 mlkem_shared_secret/0

 Functions

 decapsulate(Ciphertext, PrivateKey, ParamSet)

 Decapsulate shared secret using ML-KEM.

 encapsulate(PublicKey, ParamSet)

 Encapsulate shared secret using ML-KEM.

 generate_keypair(ParamSet)

 Generate ML-KEM keypair using centralized entropy management.

 get_parameter_sizes(ParamSet)

 Get parameter sizes for given ML-KEM parameter set.

 validate_ciphertext(Ciphertext, ParamSet)

 Validate ML-KEM ciphertext format and size.

 validate_private_key(PrivateKey, ParamSet)

 Validate ML-KEM private key format and size.

 validate_public_key(PublicKey, ParamSet)

 Validate ML-KEM public key format and size.

 Types

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 mlkem_ciphertext/0

 -type mlkem_ciphertext() :: binary().

 mlkem_param_set/0

 -type mlkem_param_set() :: mlkem_512 | mlkem_768 | mlkem_1024.

 mlkem_private_key/0

 -type mlkem_private_key() :: binary().

 mlkem_public_key/0

 -type mlkem_public_key() :: binary().

 mlkem_shared_secret/0

 -type mlkem_shared_secret() :: binary().

 Functions

 decapsulate(Ciphertext, PrivateKey, ParamSet)

 -spec decapsulate(mlkem_ciphertext(), mlkem_private_key(), mlkem_param_set()) ->
 {ok, mlkem_shared_secret()} | keylara_error().

Decapsulate shared secret using ML-KEM.

 encapsulate(PublicKey, ParamSet)

 -spec encapsulate(mlkem_public_key(), mlkem_param_set()) ->
 {ok, {mlkem_ciphertext(), mlkem_shared_secret()}} | keylara_error().

Encapsulate shared secret using ML-KEM.

 generate_keypair(ParamSet)

 -spec generate_keypair(mlkem_param_set()) ->
 {ok, {mlkem_public_key(), mlkem_private_key()}} | keylara_error().

Generate ML-KEM keypair using centralized entropy management.

 get_parameter_sizes(ParamSet)

 -spec get_parameter_sizes(mlkem_param_set()) -> {ok, #{atom() => non_neg_integer()}} | keylara_error().

Get parameter sizes for given ML-KEM parameter set.

 validate_ciphertext(Ciphertext, ParamSet)

 -spec validate_ciphertext(term(), mlkem_param_set()) -> ok | keylara_error().

Validate ML-KEM ciphertext format and size.

 validate_private_key(PrivateKey, ParamSet)

 -spec validate_private_key(term(), mlkem_param_set()) -> ok | keylara_error().

Validate ML-KEM private key format and size.

 validate_public_key(PublicKey, ParamSet)

 -spec validate_public_key(term(), mlkem_param_set()) -> ok | keylara_error().

Validate ML-KEM public key format and size.

keylara_rsa

 Summary

 Types

 keylara_error/0

 rsa_key_size/0

 rsa_private_key/0

 rsa_public_key/0

 Functions

 decrypt(EncryptedData, PrivateKey)

 Decrypt data using RSA private key

 encrypt(Data, PublicKey)

 Encrypt data using RSA public key

 extract_public_key(_)

 Extract public key from private key structure

 generate_keypair()

 Generate RSA keypair using default key size

 generate_keypair(KeySize)

 Generate RSA keypair using Alara distributed entropy network Entropy is managed internally by keylara module

 get_key_size(_)

 Get the size of an RSA key in bits

 validate_key_size(KeySize)

 Validate RSA key size

 Types

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 rsa_key_size/0

 -type rsa_key_size() :: 1024 | 2048 | 4096.

 rsa_private_key/0

 -type rsa_private_key() ::
 #'RSAPrivateKey'{version :: term(),
 modulus :: term(),
 publicExponent :: term(),
 privateExponent :: term(),
 prime1 :: term(),
 prime2 :: term(),
 exponent1 :: term(),
 exponent2 :: term(),
 coefficient :: term(),
 otherPrimeInfos :: term()}.

 rsa_public_key/0

 -type rsa_public_key() :: #'RSAPublicKey'{modulus :: term(), publicExponent :: term()}.

 Functions

 decrypt(EncryptedData, PrivateKey)

 -spec decrypt(binary(), rsa_private_key()) -> {ok, binary()} | keylara_error().

Decrypt data using RSA private key

 encrypt(Data, PublicKey)

 -spec encrypt(binary() | list(), rsa_public_key()) -> {ok, binary()} | keylara_error().

Encrypt data using RSA public key

 extract_public_key(_)

 -spec extract_public_key(rsa_private_key()) -> rsa_public_key().

Extract public key from private key structure

 generate_keypair()

 -spec generate_keypair() -> {ok, {rsa_public_key(), rsa_private_key()}} | keylara_error().

Generate RSA keypair using default key size

 generate_keypair(KeySize)

 -spec generate_keypair(rsa_key_size()) -> {ok, {rsa_public_key(), rsa_private_key()}} | keylara_error().

Generate RSA keypair using Alara distributed entropy network Entropy is managed internally by keylara module

 get_key_size(_)

 -spec get_key_size(rsa_public_key() | rsa_private_key()) -> integer().

Get the size of an RSA key in bits

 validate_key_size(KeySize)

 -spec validate_key_size(integer()) -> ok | keylara_error().

Validate RSA key size

keylara_slhdsa

 Summary

 Types

 keylara_error/0

 slh_dsa_param_set/0

 slh_dsa_private_key/0

 slh_dsa_public_key/0

 slh_dsa_signature/0

 Functions

 generate_keypair(ParamSet)

 Generate SLH-DSA keypair using centralized entropy management

 get_parameter_sizes(ParamSet)

 sign(Message, PrivateKey, ParamSet)

 validate_private_key(PrivateKey, ParamSet)

 validate_public_key(PublicKey, ParamSet)

 validate_signature(Signature, ParamSet)

 verify(Message, Signature, PublicKey, ParamSet)

 Types

 keylara_error/0

 -type keylara_error() :: {error, term()}.

 slh_dsa_param_set/0

 -type slh_dsa_param_set() ::
 slh_dsa_sha2_128s | slh_dsa_sha2_128f | slh_dsa_sha2_192s | slh_dsa_sha2_192f |
 slh_dsa_sha2_256s | slh_dsa_sha2_256f.

 slh_dsa_private_key/0

 -type slh_dsa_private_key() :: binary().

 slh_dsa_public_key/0

 -type slh_dsa_public_key() :: binary().

 slh_dsa_signature/0

 -type slh_dsa_signature() :: binary().

 Functions

 generate_keypair(ParamSet)

 -spec generate_keypair(slh_dsa_param_set()) ->
 {ok, {slh_dsa_public_key(), slh_dsa_private_key()}} | keylara_error().

Generate SLH-DSA keypair using centralized entropy management

 get_parameter_sizes(ParamSet)

 -spec get_parameter_sizes(slh_dsa_param_set()) -> {ok, #{atom() => non_neg_integer()}} | keylara_error().

 sign(Message, PrivateKey, ParamSet)

 -spec sign(binary(), slh_dsa_private_key(), slh_dsa_param_set()) ->
 {ok, slh_dsa_signature()} | keylara_error().

 validate_private_key(PrivateKey, ParamSet)

 -spec validate_private_key(term(), slh_dsa_param_set()) -> ok | keylara_error().

 validate_public_key(PublicKey, ParamSet)

 -spec validate_public_key(term(), slh_dsa_param_set()) -> ok | keylara_error().

 validate_signature(Signature, ParamSet)

 -spec validate_signature(term(), slh_dsa_param_set()) -> ok | keylara_error().

 verify(Message, Signature, PublicKey, ParamSet)

 -spec verify(binary(), slh_dsa_signature(), slh_dsa_public_key(), slh_dsa_param_set()) ->
 {ok, boolean()} | keylara_error().

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

