

 kindling

 v1.0.2

 Table of contents

 	

 	Modules

 	Kindling

 	Kindling.Client

 	Kindling.Client.Req

 	Kindling.Config

 	Kindling.Converter

 	Kindling.Converter.DateTime

 	Kindling.Schema

 	Kindling.Schema.Resource

 	Kindling.SchemaDownloader

 	Kindling.Templates

 	Kindling.Templates.Functions

 	Kindling.Version

 	Kindling.Xml

 	Mix Tasks

 	mix kindling.generate_schemas

Kindling

Kindling is a library for working with HL7 FHIR APIs. It can generate
each FHIR resource as an Ecto.Schema. It also contains a client for working with the FHIR REST
API.

 Installation

Kindling can be installed by adding kindling to your list of dependencies in mix.exs:
def deps do
 [
 {:kindling, "~> 1.0.2"}
]
end
You should then configure your root resources, which are the FHIR resources that your application
uses:
config :kindling, root_resources: ["Bundle", "Patient", "Encounter"]
When you generate resource schemas, Kindling will generate these schemas, plus any that they reference (recursively).

 Generating Resource Schemas

mix kindling.generate_schemas will generate Elixir source files for the resource schemas under a namespace module under the lib/ directory. It takes two arguments: the name of the namespace module, and a FHIR version.
Example:
mix kindling.generate_schemas FHIR R4

 Example Schema Module

The generated schema modules are normal Ecto.Schemas. Here's an example of a Patient resource schema:
defmodule FHIR.R4.Patient do
 use Ecto.Schema
 import Ecto.Changeset

 @fields [
 :active,
 :multiple_birth_boolean,
 :language,
 :implicit_rules,
 :birth_date,
 :multiple_birth_integer,
 :id,
 :deceased_boolean,
 :gender,
 :deceased_date_time
]
 @required_fields []

 @primary_key {:id, :binary_id, autogenerate: true}
 schema "patient" do
 # Constants
 field(:resource_type, :string, virtual: true, default: "Patient")

 # Fields
 field(:active, :boolean)
 field(:multiple_birth_boolean, :boolean)
 field(:language, :string)
 field(:implicit_rules, :string)
 field(:birth_date, :date)
 field(:multiple_birth_integer, :integer)
 field(:deceased_boolean, :boolean)
 field(:deceased_date_time, :string)

 # Enum
 field(:gender, Ecto.Enum, values: [:male, :female, :other, :unknown])

 # Embed One
 embeds_one(:marital_status, FHIR.R4.CodeableConcept)
 embeds_one(:managing_organization, FHIR.R4.Reference)
 embeds_one(:text, FHIR.R4.Narrative)
 embeds_one(:meta, FHIR.R4.Meta)

 # Embed Many
 embeds_many(:photo, FHIR.R4.Attachment)
 embeds_many(:communication, FHIR.R4.Patient.Communication)
 embeds_many(:name, FHIR.R4.HumanName)
 embeds_many(:extension, FHIR.R4.Extension)
 embeds_many(:telecom, FHIR.R4.ContactPoint)
 embeds_many(:contained, FHIR.R4.ResourceList)
 embeds_many(:link, FHIR.R4.Patient.Link)
 embeds_many(:contact, FHIR.R4.Patient.Contact)
 embeds_many(:modifier_extension, FHIR.R4.Extension)
 embeds_many(:identifier, FHIR.R4.Identifier)
 embeds_many(:general_practitioner, FHIR.R4.Reference)
 embeds_many(:address, FHIR.R4.Address)
 end

 def version, do: FHIR.R4
 def path, do: "/Patient"

 def base_changeset(data \\ %__MODULE__{}, attrs) do
 data
 |> cast(attrs, @fields)
 |> validate_required(@required_fields)
 end
end

 API Client

Kindling also includes a FHIR REST API client that can be used to request resources
from a FHIR server. The client will automatically convert the results to resource schema structs:
Use the public FHIR test server
client = %{
 base_url: "http://hapi.fhir.org/baseR4",
 auth_mode: :open
}

patient_id = "593166"

Kindling.Client.read(client, FHIR.R4.Patient, patient_id)
Results in a struct something like this:
%FHIR.R4.Patient{
 __meta__: #Ecto.Schema.Metadata<:built, "patient">,
 id: "593166",
 resource_type: "Patient",
 active: nil,
 multiple_birth_boolean: nil,
 language: nil,
 implicit_rules: nil,
 birth_date: ~D[2000-10-31],
 multiple_birth_integer: nil,
 deceased_boolean: nil,
 deceased_date_time: nil,
 gender: :female,
 marital_status: nil,
 managing_organization: nil,
 text: %FHIR.R4.Narrative{
 id: nil,
 div: "<div xmlns=\"http://www.w3.org/1999/xhtml\"><div class=\"hapiHeaderText\">Sabrina SPELLMAN </div><table class=\"hapiPropertyTable\"><tbody/></table></div>",
 status: :generated,
 extension: []
 },
 meta: %FHIR.R4.Meta{
 id: nil,
 last_updated: {:error, :invalid_format},
 source: "#NPQrzINFNuDwuDgM",
 version_id: "1",
 profile: nil,
 extension: [],
 security: [],
 tag: []
 },
 photo: [],
 communication: [],
 name: [
 %FHIR.R4.HumanName{
 id: nil,
 family: "Spellman",
 text: nil,
 given: ["Sabrina"],
 prefix: nil,
 suffix: nil,
 use: nil,
 period: nil,
 extension: []
 }
],
 extension: [],
 telecom: [
 %FHIR.R4.ContactPoint{
 id: nil,
 rank: nil,
 value: "1(845)443-7666",
 system: :phone,
 use: :home,
 period: nil,
 extension: []
 }
],
 contained: [],
 link: [],
 contact: [],
 modifier_extension: [],
 identifier: [],
 general_practitioner: [],
 address: [
 %FHIR.R4.Address{
 id: nil,
 city: "Greendale",
 country: "United States",
 district: nil,
 postal_code: "11199",
 state: "New York",
 text: nil,
 line: ["1138 Decario Lane"],
 type: nil,
 use: nil,
 period: nil,
 extension: []
 }
]
}

 Additional Resources

The docs can be found at https://hexdocs.pm/kindling.

Kindling.Client

FHIR API client.

 Summary

 Types

 access_token()

 The FHIR access token. Used when :auth_mode is :bearer or :basic. Ignored when :auth_mode is :open.

 fhir_server_base_url()

 The base URL of the FHIR server. Often (but not always), includes the FHIR version in the URL path.

 resource_id()

 A string that is the ID of a FHIR resource.

 t()

 Configuration of a FHIR client.

 Functions

 convert_response(other, resource_module)

 create(client, resource_module, attrs, opts \\ [], req_fn \\ &Kindling.Client.Req.post/2)

 delete(client, resource_module, id, opts \\ [], req_fn \\ &Kindling.Client.Req.delete/2)

 read(client, resource_module, id, opts \\ [], req_fn \\ &Kindling.Client.Req.get/2)

 Make a read REST request against a FHIR API server, for a resource of type resource_module
and the id id. Returns a schema struct of the results, or an error.

 search(client, resource_module, params \\ [], opts \\ [], req_fn \\ &Kindling.Client.Req.get/2)

 Make a search REST request against a FHIR API server, for a resource of type resource_module
using the search params params.

 update(client, resource_module, id, attrs, opts \\ [], req_fn \\ &Kindling.Client.Req.put/2)

 Types

 Link to this type

 access_token()

 View Source

 @type access_token() :: String.t()

The FHIR access token. Used when :auth_mode is :bearer or :basic. Ignored when :auth_mode is :open.

 Link to this type

 fhir_server_base_url()

 View Source

 @type fhir_server_base_url() :: String.t()

The base URL of the FHIR server. Often (but not always), includes the FHIR version in the URL path.

 Link to this type

 resource_id()

 View Source

 @type resource_id() :: String.t()

A string that is the ID of a FHIR resource.

 Link to this type

 t()

 View Source

 @type t() :: %{
 base_url: fhir_server_base_url(),
 access_token: access_token(),
 auth_mode: :bearer | :basic | :open
}

Configuration of a FHIR client.

 Functions

 Link to this function

 convert_response(other, resource_module)

 View Source

 Link to this function

 create(client, resource_module, attrs, opts \\ [], req_fn \\ &Kindling.Client.Req.post/2)

 View Source

 Link to this function

 delete(client, resource_module, id, opts \\ [], req_fn \\ &Kindling.Client.Req.delete/2)

 View Source

 Link to this function

 read(client, resource_module, id, opts \\ [], req_fn \\ &Kindling.Client.Req.get/2)

 View Source

Make a read REST request against a FHIR API server, for a resource of type resource_module
and the id id. Returns a schema struct of the results, or an error.
opts:
	headers: additional HTTP request headers to send with the request, as a list of {key, value}
 pairs.

 Link to this function

 search(client, resource_module, params \\ [], opts \\ [], req_fn \\ &Kindling.Client.Req.get/2)

 View Source

Make a search REST request against a FHIR API server, for a resource of type resource_module
using the search params params.
Returns a schema struct of the results (usually a FHIR bundle), or an error.
opts:
	headers: additional HTTP request headers to send with the request, as a list of {key, value}
 pairs.

 Link to this function

 update(client, resource_module, id, attrs, opts \\ [], req_fn \\ &Kindling.Client.Req.put/2)

 View Source

Kindling.Client.Req

 Summary

 Functions

 delete(request, opts \\ [])

 get(request, opts \\ [])

 post(request, opts \\ [])

 put(request, opts \\ [])

 Functions

 Link to this function

 delete(request, opts \\ [])

 View Source

 Link to this function

 get(request, opts \\ [])

 View Source

 Link to this function

 post(request, opts \\ [])

 View Source

 Link to this function

 put(request, opts \\ [])

 View Source

Kindling.Config

Configuration for Kindling.

 Summary

 Functions

 root_resources()

 Returns the list of configured root resources.

 Functions

 Link to this function

 root_resources()

 View Source

 @spec root_resources() :: [String.t()]

Returns the list of configured root resources.

Kindling.Converter

Convert between JSON-style maps and Elixir structs, using the generated resource Ecto schemas as
a guide.

 Summary

 Functions

 convert(version_namespace, resource_json)

 Convert a JSON-style map with string keys to a FHIR resource schema. version_namespace is
the module namespace where your resource schema module have been generated (e.g. FHIR.R4)
and resource_json is the map of data.

 Functions

 Link to this function

 convert(version_namespace, resource_json)

 View Source

 @spec convert(atom() | binary(), map() | binary()) ::
 Kindling.Schema.Resource.schema() | binary()

Convert a JSON-style map with string keys to a FHIR resource schema. version_namespace is
the module namespace where your resource schema module have been generated (e.g. FHIR.R4)
and resource_json is the map of data.

Kindling.Converter.DateTime

Handles dates and datetimes in FHIR's format. Dates may be in ISO8601 format, or may be in a truncated
form that indicates only certain parts of a date (e.g. year, or year+month, etc). DateTimes work
similarly.

 Summary

 Functions

 parse(value)

 Parse a string containing a FHIR-style datetime. Return {:ok, DateTime.t(), integer()} or a parse
error.

 parse!(value)

 Functions

 Link to this function

 parse(value)

 View Source

 @spec parse(binary()) ::
 {:error,
 :incompatible_calendars
 | :invalid_date
 | :invalid_format
 | :invalid_time
 | :missing_offset}
 | {:ok, DateTime.t(), integer()}

Parse a string containing a FHIR-style datetime. Return {:ok, DateTime.t(), integer()} or a parse
error.

 Link to this function

 parse!(value)

 View Source

Kindling.Schema

Tools for working with the JSON schema for FHIR.

 Summary

 Types

 version_string()

 A string representing a particular FHIR version ("R5" | "R4B" | "R4" | "R3").

 Functions

 add_choice_data(schema, map)

 all_resources(schema)

 get_choice_data(version)

 refs_recursive(schema, root_name)

 Given a schema map in the style returned by &schema_map/1, and a root resource name (e.g.
"Encounter"), return a MapSet of resources that are referenced (recursively) from the
resource. This can be used to determine the set of resource schemas that need to be generated
to full support that resource as a fully-defined set or schemas.

 schema_map(version)

 Load and process a JSON schema file for the given version, return the map defining the spec
for that version.

 Types

 Link to this type

 version_string()

 View Source

 @type version_string() :: String.t()

A string representing a particular FHIR version ("R5" | "R4B" | "R4" | "R3").

 Functions

 Link to this function

 add_choice_data(schema, map)

 View Source

 Link to this function

 all_resources(schema)

 View Source

 Link to this function

 get_choice_data(version)

 View Source

 Link to this function

 refs_recursive(schema, root_name)

 View Source

 @spec refs_recursive(map(), String.t()) :: MapSet.t()

Given a schema map in the style returned by &schema_map/1, and a root resource name (e.g.
"Encounter"), return a MapSet of resources that are referenced (recursively) from the
resource. This can be used to determine the set of resource schemas that need to be generated
to full support that resource as a fully-defined set or schemas.

 Link to this function

 schema_map(version)

 View Source

 @spec schema_map(version_string()) :: map()

Load and process a JSON schema file for the given version, return the map defining the spec
for that version.

Kindling.Schema.Resource

Functions for working on entries of the definitions section of the FHIR schema, which define
the Resources available in FHIR.

 Summary

 Types

 definition()

 A string-keyed map that represents one resource in the definitions section of the FHIR schema.

 grouped_properties_struct()

 schema()

 An Ecto.Schema struct representing a FHIR Resource.

 t()

 A module representing a given FHIR resource, generated by
mix kindling.generate_schemas.

 Functions

 all_fields(df)

 Given the definition df return a list of all the properties which are "simple values", i.e.
arrays, enum values, or base value types like integer or string.

 class_name(name)

 Convert from a FHIR spec resource type name ("Encounter_patient") to the corresponding
Elixir-style module name as a string ("Encounter.Patient").

 class_name?(name)

 Return true if the resource type name matches the convention for resource type names (i.e. they
start with a capital letter).

 grouped_properties(df, roots)

 Given the definition df and a list of root resource types, return a struct which contains
all the properties of df, grouped by the type of field that should be used to represent them (
:array, :const, :embeds_one, :embeds_many, :has_one, :has_many, :enum, :value).

 properties(df)

 Return the property fields of a given definition map.

 ref_to_class_name(arg)

 Convert from a definition reference in the FHIR spec (i.e. a string like
"#/definitions/ResourceName") to the corresponding Elixir-style module name (i.e.
ResourceName) as a string.

 refs(df)

 Return all properties of df that are references to other resource (i.e. are not simple value
types).

 required(df)

 Return a map of all properties (simple or reference) that are required under the FHIR spec.

 required?(df, key)

 Return true if key is required in the definition df, else return false.

 required_fields(df)

 Given the definition df return a list of all the properties which are "simple values", i.e.
arrays, enum values, or base value types like integer or string AND are required by the FHIR
spec.

 Types

 Link to this type

 definition()

 View Source

 @type definition() :: map()

A string-keyed map that represents one resource in the definitions section of the FHIR schema.

 Link to this type

 grouped_properties_struct()

 View Source

 @type grouped_properties_struct() :: %Kindling.Schema.Resource{
 array: term(),
 const: term(),
 embeds_many: term(),
 embeds_one: term(),
 enum: term(),
 has_many: term(),
 has_one: term(),
 value: term()
}

 Link to this type

 schema()

 View Source

 @type schema() :: Ecto.Schema.t()

An Ecto.Schema struct representing a FHIR Resource.

 Link to this type

 t()

 View Source

 @type t() :: atom()

A module representing a given FHIR resource, generated by
mix kindling.generate_schemas.

 Functions

 Link to this function

 all_fields(df)

 View Source

 @spec all_fields(definition()) :: [String.t()]

Given the definition df return a list of all the properties which are "simple values", i.e.
arrays, enum values, or base value types like integer or string.

 Link to this function

 class_name(name)

 View Source

 @spec class_name(String.t()) :: String.t()

Convert from a FHIR spec resource type name ("Encounter_patient") to the corresponding
Elixir-style module name as a string ("Encounter.Patient").

 Link to this function

 class_name?(name)

 View Source

 @spec class_name?(binary()) :: boolean()

Return true if the resource type name matches the convention for resource type names (i.e. they
start with a capital letter).

 Link to this function

 grouped_properties(df, roots)

 View Source

 @spec grouped_properties(definition(), [String.t()]) :: grouped_properties_struct()

Given the definition df and a list of root resource types, return a struct which contains
all the properties of df, grouped by the type of field that should be used to represent them (
:array, :const, :embeds_one, :embeds_many, :has_one, :has_many, :enum, :value).

 Link to this function

 properties(df)

 View Source

 @spec properties(definition()) :: map()

Return the property fields of a given definition map.

 Link to this function

 ref_to_class_name(arg)

 View Source

 @spec ref_to_class_name(String.t()) :: String.t()

Convert from a definition reference in the FHIR spec (i.e. a string like
"#/definitions/ResourceName") to the corresponding Elixir-style module name (i.e.
ResourceName) as a string.

 Link to this function

 refs(df)

 View Source

 @spec refs(definition()) :: MapSet.t()

Return all properties of df that are references to other resource (i.e. are not simple value
types).

 Link to this function

 required(df)

 View Source

 @spec required(definition()) :: map()

Return a map of all properties (simple or reference) that are required under the FHIR spec.

 Link to this function

 required?(df, key)

 View Source

 @spec required?(definition(), any()) :: boolean()

Return true if key is required in the definition df, else return false.

 Link to this function

 required_fields(df)

 View Source

 @spec required_fields(definition()) :: [String.t()]

Given the definition df return a list of all the properties which are "simple values", i.e.
arrays, enum values, or base value types like integer or string AND are required by the FHIR
spec.

Kindling.SchemaDownloader

Handles downloading and unzipping FHIR JSON schemas from the hl7 server.

 Summary

 Functions

 download_choices(version)

 download_version(version)

 Download and unzip the JSON schema file for the given version into the _build directory for
the library to reference.

 ensure_choices!(version)

 ensure_version!(version)

 Check if the version JSON schema is downloaded and unzipped for use. If not, download and unzip
it. If that download & unzip fails, raise an error.

 handle_utf16(arg)

 Functions

 Link to this function

 download_choices(version)

 View Source

 Link to this function

 download_version(version)

 View Source

 @spec download_version(Kindling.Schema.version_string()) :: :ok | {:error, any()}

Download and unzip the JSON schema file for the given version into the _build directory for
the library to reference.

 Link to this function

 ensure_choices!(version)

 View Source

 Link to this function

 ensure_version!(version)

 View Source

Check if the version JSON schema is downloaded and unzipped for use. If not, download and unzip
it. If that download & unzip fails, raise an error.

 Link to this function

 handle_utf16(arg)

 View Source

Kindling.Templates

Template functions for generating FHIR Resource modules.

 Summary

 Functions

 render(assigns)

 render_embedded(assigns)

 resource_code(namespace, version, roots, resource_name, resource)

 to_source_file_name(resource_name)

 write_code(namespace, version, roots, resource_name, resource)

 Functions

 Link to this function

 render(assigns)

 View Source

 Link to this function

 render_embedded(assigns)

 View Source

 Link to this function

 resource_code(namespace, version, roots, resource_name, resource)

 View Source

 Link to this function

 to_source_file_name(resource_name)

 View Source

 Link to this function

 write_code(namespace, version, roots, resource_name, resource)

 View Source

Kindling.Templates.Functions

Helper functions used the in generator templates.

 Summary

 Functions

 enum_value_string(df)

 fhir_type_to_ecto(map)

 Functions

 Link to this function

 enum_value_string(df)

 View Source

 Link to this function

 fhir_type_to_ecto(map)

 View Source

Kindling.Version

Functions for working with FHIR versions e.g. R3, R4, R5, STU3, etc.

 Summary

 Functions

 version_dir(version)

 Functions

 Link to this function

 version_dir(version)

 View Source

Kindling.Xml

 Summary

 Functions

 parse(doc)

 process(arg)

 reduce_child(binary, acc)

 Functions

 Link to this function

 parse(doc)

 View Source

 Link to this function

 process(arg)

 View Source

 Link to this function

 reduce_child(binary, acc)

 View Source

mix kindling.generate_schemas

Generates FHIR schemas

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

