

 Kirayedar

 v0.1.0

 Table of contents

 	Kirayedar

 	
 Modules

 	Kirayedar

 	Kirayedar.Migration

 	Kirayedar.Plug

 	Kirayedar.Repo

 	Kirayedar.Resolver

 	
 Mix Tasks

 	mix kirayedar.gen.live

 	mix kirayedar.setup

 Kirayedar

Multi-tenancy library for Elixir/Phoenix with schema-based isolation.
Features
	🏢 Schema-based isolation using PostgreSQL schemas or MySQL databases
	🔍 Intelligent tenant resolution from host/subdomain
	🔌 Plug integration for automatic tenant context
	📊 Migration helpers for multi-tenant databases
	📈 Telemetry support for monitoring and observability
	🪶 Lightweight with minimal dependencies
	📝 Observable with comprehensive structured logging
	🔄 Dynamic adapter detection from your Repo configuration
	🛠️ Mix tasks for easy setup and code generation

Installation
Add kirayedar to your list of dependencies in mix.exs:
def deps do
 [
 {:kirayedar, "~> 0.1.0"},
 # Choose your database adapter
 {:postgrex, ">= 0.0.0"}, # For PostgreSQL
 # {:myxql, ">= 0.0.0"}, # For MySQL
]
end
Quick Start with Mix Tasks
1. Setup Kirayedar
Run the interactive setup task:
mix kirayedar.setup

This will:
	Prompt you for configuration options
	Generate the tenant model
	Create the tenant table migration
	Update your config/config.exs
	Optionally generate LiveView CRUD interfaces

Example session:
What do you want to call your tenant/organization? [Tenant]: Organization
Do you want to use binary_id (UUID)? [Yn]: Y
What is your Admin Host? [localhost]: admin.myapp.com
What is your primary domain? [example.com]: myapp.com
Do you want to generate LiveViews for CRUD? [Yn]: Y
2. Run Migrations
mix ecto.migrate

3. Add Plug to Your Endpoint
Edit lib/my_app_web/endpoint.ex:
defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint, otp_app: :my_app

 # Add this line
 plug Kirayedar.Plug

 # ... rest of your plugs
end
4. Update Your Repo
Edit lib/my_app/repo.ex:
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 # Add this line
 use Kirayedar.Repo
end
5. Create Your First Tenant
iex> Kirayedar.create(MyApp.Repo, "acme_corp")
:ok

iex> Kirayedar.Migration.migrate(MyApp.Repo, "acme_corp")
:ok
Manual Configuration
If you prefer manual setup, configure in config/config.exs:
config :kirayedar,
 repo: MyApp.Repo,
 primary_domain: "example.com",
 admin_host: "admin.example.com",
 tenant_model: MyApp.Accounts.Organization
 # adapter: :postgres # Optional - auto-detected from Repo
Usage
Creating and Managing Tenants
Create a tenant schema
Kirayedar.create(MyApp.Repo, "acme_corp")

Run migrations for the tenant
Kirayedar.Migration.migrate(MyApp.Repo, "acme_corp")

Drop a tenant schema
Kirayedar.drop(MyApp.Repo, "acme_corp")

Rollback migrations
Kirayedar.Migration.rollback(MyApp.Repo, "acme_corp", step: 1)
Migrating All Tenants
In your release tasks or deployment scripts
defmodule MyApp.ReleaseTasks do
 def migrate_all do
 {:ok, _} = Application.ensure_all_started(:kirayedar)

 Kirayedar.Migration.migrate_all(
 MyApp.Repo,
 MyApp.Accounts.Organization
)
 end
end
Global Scope
Query global tables while in a tenant context:
Inside a tenant request
Kirayedar.scope_global(fn ->
 Repo.all(GlobalSettings)
end)
Manual Tenant Context
Set tenant manually
Kirayedar.put_tenant("acme_corp")
Repo.all(Post) # Queries acme_corp schema

Execute in specific tenant context
Kirayedar.with_tenant("acme_corp", fn ->
 Repo.all(Post)
end)
Telemetry Integration
Monitor tenant operations with Telemetry:
In your application.ex
defmodule MyApp.Application do
 def start(_type, _args) do
 :telemetry.attach_many(
 "kirayedar-handler",
 [
 [:kirayedar, :tenant, :create],
 [:kirayedar, :tenant, :drop],
 [:kirayedar, :tenant, :migrate],
 [:kirayedar, :tenant, :create, :error],
 [:kirayedar, :tenant, :drop, :error],
 [:kirayedar, :tenant, :migrate, :error]
],
 &MyApp.TelemetryHandler.handle_event/4,
 nil
)

 # ... rest of your supervision tree
 end
end

defmodule MyApp.TelemetryHandler do
 require Logger

 def handle_event([:kirayedar, :tenant, action], measurements, metadata, _config) do
 Logger.info("Tenant operation completed",
 action: action,
 tenant: metadata.tenant,
 duration_ms: measurements.duration
)
 end

 def handle_event([:kirayedar, :tenant, action, :error], _measurements, metadata, _config) do
 Logger.error("Tenant operation failed",
 action: action,
 tenant: metadata.tenant,
 error: inspect(metadata.error)
)
 end
end
Tenant Resolution
Kirayedar resolves tenants in the following priority order:
	Admin host check - Returns nil for admin domain
	Exact domain match - Checks domain field in tenant model
	Subdomain extraction - Extracts subdomain from primary domain
	Slug fallback - Checks slug field for custom domains

Examples:
admin.example.com → nil (admin host)
acme.example.com → "acme" (subdomain)
custom-domain.com → looks up by domain/slug in DB
acme.example.com:4000 → "acme" (port stripped)
Testing
Running Tests
Run all tests
mix test

Run PostgreSQL tests only
mix test test/kirayedar_postgres_test.exs

Run MySQL tests only (requires MySQL)
mix test test/kirayedar_mysql_test.exs

Run with coverage
mix test --cover

Test Database Setup
PostgreSQL
Create test database
createdb kirayedar_test

Or using psql
psql -U postgres -c "CREATE DATABASE kirayedar_test;"

MySQL
Create test database
mysql -u root -p -e "CREATE DATABASE kirayedar_test;"

Test Configuration
Update config/test.exs:
PostgreSQL
config :kirayedar, Kirayedar.Test.PostgresRepo,
 username: "postgres",
 password: "postgres",
 hostname: "localhost",
 database: "kirayedar_test",
 pool: Ecto.Adapters.SQL.Sandbox

MySQL (optional)
config :kirayedar, Kirayedar.Test.MySQLRepo,
 username: "root",
 password: "root",
 hostname: "localhost",
 database: "kirayedar_test",
 pool: Ecto.Adapters.SQL.Sandbox
Writing Tests
defmodule MyApp.TenantTest do
 use MyApp.DataCase

 test "tenant isolation works" do
 Kirayedar.create(Repo, "tenant1")
 Kirayedar.create(Repo, "tenant2")

 # Insert data in tenant1
 Kirayedar.with_tenant("tenant1", fn ->
 %Post{title: "Tenant 1 Post"} |> Repo.insert!()
 end)

 # Verify isolation
 count = Kirayedar.with_tenant("tenant2", fn ->
 Repo.aggregate(Post, :count)
 end)

 assert count == 0
 end
end
Mix Tasks Reference
mix kirayedar.setup
Interactive setup wizard that generates:
	Tenant model with customizable name
	Migration file
	Configuration updates
	Optional LiveView CRUD

mix kirayedar.gen.live
Generates LiveView components for tenant management:
	Index view with listing
	Form component for create/update
	Show view for details

Requires prior mix kirayedar.setup.
Production Considerations
1. Connection Pooling
Each tenant schema uses the same connection pool, but queries include the prefix. Monitor your pool size:
config :my_app, MyApp.Repo,
 pool_size: 20, # Adjust based on tenant count and load
 queue_target: 5000
2. Migration Strategy
For production deployments:
In your release module
def migrate do
 # Migrate global tables first
 Ecto.Migrator.run(MyApp.Repo, :up, all: true)

 # Then migrate all tenants
 Kirayedar.Migration.migrate_all(MyApp.Repo, MyApp.Accounts.Organization)
end
3. Monitoring
Use telemetry to track:
	Migration durations
	Tenant creation/deletion
	Schema switching overhead
	Failed operations

4. Backup Strategy
For PostgreSQL:
Backup all schemas
pg_dump -U postgres -d myapp_db -n "tenant_*" > tenant_backups.sql

Backup specific tenant
pg_dump -U postgres -d myapp_db -n "acme_corp" > acme_corp_backup.sql

For MySQL:
Backup specific tenant database
mysqldump -u root -p acme_corp > acme_corp_backup.sql

Structured Logging
Kirayedar uses structured logging with keyword lists:
Logs appear as:
[info] Kirayedar: create tenant schema/database tenant=acme_corp
[info] Kirayedar.Resolver: Subdomain match host=acme.example.com tenant=acme
[info] Kirayedar.Migration: Running migrations tenant=acme_corp duration_ms=1234
Works seamlessly with:
	Datadog
	CloudWatch
	Loki
	ElasticSearch

License
Apache 2.0
Contributing
	Fork the repository
	Create your feature branch (git checkout -b feature/amazing-feature)
	Run tests (mix test)
	Commit your changes (git commit -am 'Add amazing feature')
	Push to the branch (git push origin feature/amazing-feature)
	Open a Pull Request

Support
	GitHub Issues: https://github.com/viveksingh0143/elixir-kirayedar/issues
	Documentation: https://hexdocs.pm/kirayedar

Kirayedar

Kirayedar - Multi-tenancy library for Elixir/Phoenix.
Provides schema-based isolation using PostgreSQL schemas or MySQL databases.
Manages tenant state through the process dictionary and provides DDL operations.
Configuration
config :kirayedar,
 repo: MyApp.Repo,
 primary_domain: "example.com",
 admin_host: "admin.example.com",
 tenant_model: MyApp.Accounts.Tenant,
 adapter: :postgres # or :mysql (optional - auto-detected from repo)
Usage
Create a tenant
Kirayedar.create(repo, "tenant_slug")

Drop a tenant
Kirayedar.drop(repo, "tenant_slug")

Get current tenant
Kirayedar.current_tenant()

Set current tenant
Kirayedar.put_tenant("tenant_slug")

Run code without tenant scope
Kirayedar.scope_global(fn -> Repo.all(GlobalTable) end)
Telemetry Events
Kirayedar emits the following telemetry events:
	[:kirayedar, :tenant, :create] - Tenant schema creation
	[:kirayedar, :tenant, :drop] - Tenant schema deletion
	[:kirayedar, :tenant, :migrate] - Tenant migration execution
	[:kirayedar, :tenant, :create, :error] - Errors during creation
	[:kirayedar, :tenant, :drop, :error] - Errors during deletion
	[:kirayedar, :tenant, :migrate, :error] - Errors during migration

Each success event includes measurements: %{duration: milliseconds}
Each event includes metadata: %{tenant: string, repo: module, action: atom}

 Summary

 Types

 repo()

 tenant_id()

 Functions

 clear_tenant()

 Clears the current tenant from the process dictionary.

 create(repo, tenant_id)

 Creates a new tenant schema/database.

 current_tenant()

 Gets the current tenant from the process dictionary.

 drop(repo, tenant_id)

 Drops an existing tenant schema/database.

 put_tenant(tenant_id)

 Sets the current tenant in the process dictionary.
When set to nil, clears the tenant context.

 scope_global(fun)

 Runs a block of code without any tenant prefix.
Useful for querying global tables from within a tenant request.

 with_tenant(tenant_id, fun)

 Executes a function within the context of a specific tenant.

 Types

 repo()

 @type repo() :: module()

 tenant_id()

 @type tenant_id() :: String.t() | nil

 Functions

 clear_tenant()

 @spec clear_tenant() :: :ok

Clears the current tenant from the process dictionary.

 create(repo, tenant_id)

 @spec create(repo(), String.t()) :: :ok | {:error, term()}

Creates a new tenant schema/database.
Examples
iex> Kirayedar.create(MyApp.Repo, "acme_corp")
:ok

iex> Kirayedar.create(MyApp.Repo, "invalid slug!")
{:error, :invalid_tenant_id}

 current_tenant()

 @spec current_tenant() :: tenant_id()

Gets the current tenant from the process dictionary.

 drop(repo, tenant_id)

 @spec drop(repo(), String.t()) :: :ok | {:error, term()}

Drops an existing tenant schema/database.
Examples
iex> Kirayedar.drop(MyApp.Repo, "acme_corp")
:ok

 put_tenant(tenant_id)

 @spec put_tenant(tenant_id()) :: :ok

Sets the current tenant in the process dictionary.
When set to nil, clears the tenant context.

 scope_global(fun)

 @spec scope_global((-> any())) :: any()

Runs a block of code without any tenant prefix.
Useful for querying global tables from within a tenant request.
Examples
Query global settings while in tenant context
Kirayedar.scope_global(fn ->
 Repo.all(GlobalSettings)
end)

Access shared reference data
Kirayedar.scope_global(fn ->
 Repo.get(Country, "US")
end)

 with_tenant(tenant_id, fun)

 @spec with_tenant(tenant_id(), (-> any())) :: any()

Executes a function within the context of a specific tenant.
Examples
iex> Kirayedar.with_tenant("acme_corp", fn ->
...> MyApp.Repo.all(MyApp.Post)
...> end)
[%MyApp.Post{}, ...]

Kirayedar.Migration

Helpers for running migrations across all tenants.
Usage
defmodule MyApp.ReleaseTasks do
 def migrate_tenants do
 Kirayedar.Migration.migrate_all(MyApp.Repo, MyApp.Accounts.Tenant)
 end

 def migrate_specific_tenant(tenant_id) do
 Kirayedar.Migration.migrate(MyApp.Repo, tenant_id)
 end
end
Telemetry
Migration operations emit telemetry events that can be used for monitoring:
:telemetry.attach(
 "kirayedar-migration-handler",
 [:kirayedar, :tenant, :migrate],
 &handle_migration_event/4,
 nil
)

 Summary

 Functions

 migrate(repo, tenant_id, opts \\ [])

 Runs migrations for a specific tenant.

 migrate_all(repo, tenant_model, opts \\ [])

 Runs migrations for all tenants in the database.

 rollback(repo, tenant_id, opts \\ [])

 Rolls back the last migration for a specific tenant.

 Functions

 migrate(repo, tenant_id, opts \\ [])

Runs migrations for a specific tenant.
Options
	:path - Custom migrations path (defaults to priv/repo/migrations)
	:direction - Migration direction, :up or :down (defaults to :up)
	:all - Run all pending migrations (defaults to true)

Examples
Kirayedar.Migration.migrate(MyApp.Repo, "acme_corp")

Kirayedar.Migration.migrate(MyApp.Repo, "acme_corp",
 path: "priv/repo/tenant_migrations",
 direction: :down,
 all: false
)

 migrate_all(repo, tenant_model, opts \\ [])

Runs migrations for all tenants in the database.
Options
	:path - Custom migrations path (defaults to priv/repo/migrations)
	:direction - Migration direction, :up or :down (defaults to :up)
	:all - Run all pending migrations (defaults to true)

Examples
Kirayedar.Migration.migrate_all(MyApp.Repo, MyApp.Accounts.Tenant)

Kirayedar.Migration.migrate_all(MyApp.Repo, MyApp.Accounts.Tenant,
 path: "priv/repo/tenant_migrations"
)

 rollback(repo, tenant_id, opts \\ [])

Rolls back the last migration for a specific tenant.
Examples
Kirayedar.Migration.rollback(MyApp.Repo, "acme_corp")

Kirayedar.Migration.rollback(MyApp.Repo, "acme_corp", step: 2)

Kirayedar.Plug

Plug for intercepting incoming requests and setting tenant context.
Automatically resolves the tenant from the request host and updates
both the Kirayedar process state and connection assigns.
Usage
In your Phoenix endpoint or router:
plug Kirayedar.Plug
Or with options:
plug Kirayedar.Plug, assign_key: :current_tenant
Configuration
config :kirayedar,
 repo: MyApp.Repo,
 primary_domain: "example.com",
 admin_host: "admin.example.com",
 tenant_model: MyApp.Accounts.Tenant

Kirayedar.Repo

Ecto.Repo wrapper that automatically sets the appropriate schema prefix
based on the current tenant.
Usage
defmodule MyApp.Repo do
 use Ecto.Repo,
 otp_app: :my_app,
 adapter: Ecto.Adapters.Postgres

 use Kirayedar.Repo
end
This will override default_options/1 to inject the tenant prefix
automatically for all queries.
Adapter Detection
The prefix strategy is automatically determined from the Repo's adapter:
	Ecto.Adapters.Postgres → uses schema prefix
	Ecto.Adapters.MyXQL → uses database prefix

Examples
All queries automatically use the current tenant
Kirayedar.put_tenant("acme_corp")
Repo.all(Post) # Queries acme_corp schema/database

Query global tables
Kirayedar.scope_global(fn ->
 Repo.all(GlobalSettings)
end)

Kirayedar.Resolver

Pure logic for identifying a tenant from a host string.
Resolution priority:
	Check against admin_host configuration (returns nil)
	Check if entire host matches domain field in database
	Check if host ends with primary_domain (extracts subdomain)
	Fallback to first segment extraction (supports custom domains via slug)

Automatically strips port numbers and trailing dots.

 Summary

 Types

 host()

 tenant_id()

 Functions

 resolve(host)

 Resolves a tenant from a host string.

 Types

 host()

 @type host() :: String.t()

 tenant_id()

 @type tenant_id() :: String.t() | nil

 Functions

 resolve(host)

 @spec resolve(host()) :: tenant_id()

Resolves a tenant from a host string.
Examples
iex> Kirayedar.Resolver.resolve("admin.example.com")
nil

iex> Kirayedar.Resolver.resolve("acme.example.com")
"acme"

iex> Kirayedar.Resolver.resolve("custom-domain.com")
"acme" # if custom-domain.com matches a tenant's domain or slug

mix kirayedar.gen.live

Generates LiveView components for tenant management.
This task generates:
	Index LiveView with list and actions
	Form component for create/update
	Show LiveView for viewing details

Usage
mix kirayedar.gen.live
Note: This requires that you've already run mix kirayedar.setup

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 run(args)

Callback implementation for Mix.Task.run/1.

mix kirayedar.setup

Generates the complete Kirayedar multi-tenancy setup for your application.
This task will:
	Generate the tenant model
	Create the tenant table migration
	Update your config.exs
	Optionally generate LiveView CRUD

Usage
mix kirayedar.setup
You will be prompted for:
	Tenant resource name (e.g., "Tenant", "Organization")
	Whether to use binary_id (UUID)
	Admin host domain
	Whether to generate LiveViews

 Summary

 Functions

 application()

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 application()

 run(args)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

