

 Klife

 v0.5.0

 Table of contents

 	README

 	Examples

 	Client configuration

 	

 	Modules

 	Klife

 	Klife.TestUtils.AsyncProducerBenchmark

 	Client

 	Klife.Client

 	Klife.Record

 	Klife.Topic

 	Producer

 	Klife.Producer

 	Klife.Producer.DefaultPartitioner

 	Klife.TxnProducerPool

 	Testing

 	Klife.Testing

 	Behaviours

 	Klife.Behaviours.Partitioner

 	Example

 	MyClient

 	Mix Tasks

 	mix benchmark

README

[image: ci]
[image: hex.pm badge]
[image: Documentation badge]
Klife
Klife is a high-performance Kafka client built from the ground up with minimal dependencies.
Currently, Klife supports producer functionality, with plans to add consumer features in the future.
To achieve high batch efficiency and ensure compatibility with evolving protocol versions, Klife
leverages Klife Protocol. This efficiency allows
Klife to deliver exceptional performance, with throughput improvements of up to 15x over other
community Kafka clients in some scenarios.

 Features

Currently, Klife provides producer functionality, with plans to expand into consumer
features as the project develops. Key features include:
	Efficient Batching: Batches data to the same broker in a single TCP request per producer.
	Minimal Resource Usage: Only one connection per broker for each client, optimizing resource usage.
	Exactly Once Semantics (EOS): Providing safe retries with idempotency on the protocol level.
	Synchronous and Asynchronous Produce Options: Synchronous produces return the offset, while asynchronous produces support callbacks.
	Batch Produce API: Allows batching for multiple topics and partitions.
	Automatic Cluster and Metadata Management: Automatically adapts to changes in cluster topology and metadata.
	Testing Utilities: Includes helper functions for testing against a real broker without complex mocking.
	Simple Configuration: Streamlined setup for straightforward use.
	Comprehensive Documentation: Includes examples and explanations of trade-offs.
	Custom Partitioner per Topic: Configurable partitioning for each topic.
	Transactional Support: Supports transactions in an Ecto-like style.
	SASL Authentication: Currently supports plain authentication.
	Protocol Compatibility: Supports recent protocol versions, with forward compatibility in mind.

 Installation

 Add klife to your list of dependencies in mix.exs:

def deps do
 [
 {:klife, "~> 0.5.0"}
]
end

 Basic Usage

 Define your application client

defmodule MyApp.Client do
 use Klife.Client, otp_app: :my_app
end

 Add basic configuration

config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
]

 Add the client to the supervision tree

children = [MyApp.Client]

opts = [strategy: :one_for_one, name: Example.Supervisor]
Supervisor.start_link(children, opts)

 Call the producer API

my_rec = %Klife.Record{value: "my_val_1", topic: "my_topic_1"}
{:ok, %Klife.Record} = MyApp.Client.produce(my_rec)
Checkout the Klife.Client docs for more details

 Producer performance

I've test it against the 3 awesome community kafka libraries brod
and kafka_ex and erlkaf
which are the most popular ones.
The relevant client configuration should be equal on all clients and they are:
	required_acks: all
	max_inflight_request: 1
	linger_ms: 0
	max_batch_size: 512kb

 Produce sync

In order to test sync produce performance we prepared a benchmark that uses benchee to produce
kafka records on kafka cluster running locally.
The details can be checked out on benchmark.ex mix task and the results on bechmark_results.
To reproduce it on your setup you can run (16 is the benchee parallel value):
bash start-kafka.sh
mix benchmark producer_sync 16
Each iteration of the benchmark produces 3 records for 3 different topics in paralel and wait for the completion
in order to move to the next iteration.
The main point driving the Klife's performance is the batching efficiency. As far as I can tell:
	Klife: Batches everything that can be batched together in a single TCP request
	Brod: Batches records only for the same topic/partition in a single TCP request
	Kafka_ex: Does not batch records (I'm not sure if there is a way to change this behaviour)

With this scenario I've executed the benchmark increasing the parallel attribute from
benchee from 1 to 16, doubling it each round. The results are the following:
[image:]

 Produce async

In order to test async produce performance we prepared a test script that produces records asynchronously on
a kafka cluster running locally.
The asynchronous benchmark spawns N parallel processes producing to one of 3 topics in a loop. After 10 seconds,
it calculates the difference between the initial and current offsets for each topic partition to determine
the total records produced and the throughput (records per second).
The details can be checked out on async_producer_benchmark.ex.
To reproduce it on your setup you can run (16 is the N value):
bash start-kafka.sh
mix benchmark producer_async 16
[image:]

 Compatibility with Kafka versions

Although Klife Protocol give us the capability to support all the latests versions
for now Klife uses fixed versions of the protocol that are not the latest for each message.
I have plans to evolve this slowly as the project grows and I find a good way to deal
with multiple protocol versions at the same time on the code.
For now the message versions can be checked at lib/klife/connection/message_versions.ex
For performance reasons I'm aiming to support only versions after the flexible version that
were introduced on kafka 2.4 on KIP-482.
But should not be hard to support versions prior to that, if you are willing to try Klife
but you use an older version of kafka let me know and we can see if it is possible.

Client configuration

Here are some client configuration examples.

 Simplest configuration

 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
]
This client will connect to brokers using non ssl connection and produce messages using the default producer and default partitioner.

 SSL with SASL and custom socket opts

 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: true,
 connect_opts: [
 verify: :verify_peer,
 cacertfile: Path.relative("test/compose_files/ssl/ca.crt")
],
 socket_opts: [delay_send: true],
 sasl_opts: [
 mechanism: "PLAIN",
 mechanism_opts: [
 username: "klifeusr",
 password: "klifepwd"
]
],
]
This client will connect to brokers using ssl connection, connect_opts and socket_opts are forwarded to erlang module :ssl in order to proper configure the socket. See the documentation for more details.

 Defining and using multiple producers

 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
],
 producers: [
 [
 name: :my_linger_ms_producer,
 linger_ms: 1_000
],
 [
 name: :my_custom_client_id_producer,
 client_id: "my_custom_client_id",
]
],
 topics: [
 [
 name: "my_topic_0",
 default_producer: :my_linger_ms_producer
],
 [
 name: "my_topic_1",
 default_producer: :my_custom_client_id_producer
]
]
This client will have a total of 3 producers, the default one plus the other 2 defined in the configuration. You can see all the configuration options for the producers in Klife.Producer.
Messages produced to my_topic_0 and my_topic_1 will use my_linger_ms_producer and my_custom_client_id_producer respectively if no producer is set on opts. All other topics keep using the default producer.

 Defining and using custom partitioner

First you need to implement a module following the Klife.Behaviours.Partitioner behaviour.
defmodule MyApp.MyCustomPartitioner do
 @behaviour Klife.Behaviours.Partitioner

 alias Klife.Record

 @impl true
 def get_partition(%Record{} = record, max_partition) do
 # Some logic to find the partition here!
 end
end

Then, you need to use it on your configuration.
 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
],
 topics: [
 [
 name: "my_topic_0",
 default_partitioner: MyApp.MyCustomPartitioner
]
]
On this client, the records produced to my_topic_0 without a specific partition will have a partition assigned using the MyApp.MyCustomPartitioner module all other topics keep using the default partitioner.

 Defining multiple transactional (txn) pools

 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
],
 default_txn_pool: :my_txn_pool,
 txn_pools: [
 [name: :my_txn_pool, base_txn_id: "my_custom_base_txn_id"],
 [name: :my_txn_pool_2, txn_timeout_ms: :timer.seconds(120)]
]
 topics: [[name: "my_topic_0"]]
This client will have a total of 3 txn pools, the default one plus the other two defined in the configuration. You can see all the configuration options for the producers in Klife.TxnProducerPool.

 Using custom default producer, partitioner and txn pool

 config :my_app, MyApp.Client,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
],
 default_producer: :my_custom_producer,
 producers: [[name: :my_custom_producer, linger_ms: 1_000]],
 default_partitioner: MyCustomPartitioner,
 default_txn_pool: :my_txn_pool,
 txn_pools: [[name: :my_txn_pool, base_txn_id: "my_custom_base_txn_id"]],
 topics: [[name: "my_topic_0"]]
This cliente will have only one producer (:my_custom_producer) and txn pool (:my_txn_pool),and the default paritioner strategy will be MyCustomPartitioner. All this 3 configurations will be used in produce API calls to topics that does not have any override config defined in the topics configuration.

Klife

Main functions to interact with clients.
Usually you will not need to call any function here directly
but instead use them through a module that uses Klife.Client.

Klife.TestUtils.AsyncProducerBenchmark

 Summary

 Functions

 Klife.Client - Klife v0.5.0

Klife.Client behaviour

Defines a kafka client.
To use it you must do 3 steps:
	Use it in a module
	Config the module on your config file
	Start the module on your supervision tree

 Using it in a module

When used it expects an :otp_app option that is the OTP application that has the client configuration.
defmodule MyApp.MyClient do
 use Klife.Client, otp_app: :my_app
end
use Klife.Client
When you use Klife.Client, it will extend your module in two ways:
	Define it as a proxy to a subset of the functions on Klife module,
using it's module's name as the client_name parameter.
One example of this is the MyClient.produce/2 that forwards
both arguments to Klife.produce/3 and inject MyClient as the
second argument.

	Define it as a supervisor by calling use Supervisor and implementing
some related functions such as start_link/1 and init/1, so it can be
started under on your app supervision tree.

 Configuration

The client has a bunch of configuration options, you can read more below.
But it will look somehting like this:
config :my_app, MyApp.MyClient,
 connection: [
 bootstrap_servers: ["localhost:19092", "localhost:29092"],
 ssl: false
],
 producers: [
 [
 name: :my_custom_producer,
 linger_ms: 5,
 max_in_flight_requests: 10
]
],
 topics: [
 [name: "my_topic_0", producer: :my_custom_producer]
]

You can see more configuration examples on the "Client configuration examples" section
or an working application example on the example folder on the project's repository.

 Configuration options:

	:connection (non-empty keyword/0) - Required.
	:bootstrap_servers (list of String.t/0) - Required. List of servers to establish the initial connection. (eg: ["localhost:9092", "localhost:9093"])

	:ssl (boolean/0) - Specify the underlying socket module. Use :ssl if true and :gen_tcp if false. The default value is false.

	:connect_opts (list of term/0) - Options used to configure the socket connection, which are forwarded to the connect/3 function of the underlying socket module (see ssl option above.). The default value is [inet_backend: :socket, active: false].

	:socket_opts (list of term/0) - Options used to configure the open socket, which are forwarded to the setopts/2 function of the underlying socket module :inet for :gen_tcp and :ssl for :ssl (see ssl option above.). The default value is [keepalive: true].

	:sasl_opts (list of term/0) - Options to configure SASL authentication, see SASL section for supported mechanisms and examples. The default value is [].

	:default_producer (atom/0) - Name of the producer to be used on produce API calls when a specific producer is not provided via configuration or option. If not provided a default producer will be started automatically. The default value is :klife_default_producer.

	:default_partitioner (atom/0) - Partitioner module to be used on produce API calls when a specific partitioner is not provided via configuration or option. The default value is Klife.Producer.DefaultPartitioner.

	:default_txn_pool (atom/0) - Name of the txn pool to be used on transactions when a :pool_name is not provided as an option. If not provided a default txn pool will be started automatically. The default value is :klife_default_txn_pool.

	:txn_pools (List of Klife.TxnProducerPool configurations) - List of configurations, each starting a pool of transactional producers for use with transactional api. The default value is [].

	:producers (List of Klife.Producer configurations) - List of configurations, each starting a new producer for use with produce api. The default value is [].

	:topics (List of Klife.Topic configurations) - List of topics that may have special configurations The default value is [].

	:disabled_features (List atoms representing a features to disable.) - :producer disable producer feature. :txn_producer disables transactions. The default value is [].

 Starting it

Finally, it must be started on your application. It will look something like this:
defmodule MyApp.Application do
 def start(_type, _args) do
 children = [
 # some other modules...,
 MyApp.MyClient
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

 Producer API overview

In order to interact with the producer API you will work with Klife.Record module
as your main input and output data structure.
Usually you will give an record to some producer API function and it will return an
enriched record with some new attributes based on what happened.
So in summary the interaction goes like this:
	Build one or more Klife.Record
	Pass it to some producer API function
	Receive an enriched version of the provided records

rec = %Klife.Record{value: "some_val", topic: "my_topic_1"}
{:ok, %Klife.Record{offset: offset, partition: partition}} = MyClient.produce(rec)

 Summary

 Producer API

 Klife.Record - Klife v0.5.0

Klife.Record

Kafka record representation.
Represents a Kafka record struct that will be used in the Klife.Client APIs.
In general terms it can be used to represent input or output data.
As an input the Klife.Record may have the following attributes:
	:value (required)
	:topic (required)
	:key (optional)
	:headers (optional)
	:partition (optional)

As an output the input record will be added with one or more the following attributes:
	:offset (if it was succesfully written)
	:partition (if it was not present in the input)
	:error_code (if something goes wrong on produce. See kafka protocol error code for context)

 Summary

 Types

 Klife.Topic - Klife v0.5.0

Klife.Topic

Defines a topic configuration.
For now this struct is only useful for initial client configuration, but in the future it may be useful for the admin api as well.

 Client configurations

	:name (String.t/0) - Required. Topic's name

	:default_producer (atom/0) - Define the default producer to be used on produce API calls.

	:default_partitioner (atom/0) - Define the default partitioner module to be used on produce API calls. Must implement Klife.Behaviours.Partitioner

 Klife.Producer - Klife v0.5.0

Klife.Producer

Defines a producer.

 Client configurations

	:name - Required. Producer name. Must be unique per client. Can be used as an option on the producer api

	:client_id (String.t/0) - String used on all requests for the client. If not provided the following string is used: "klife_producer.{client_name}.{producer_name}"

	:acks (:all, 1) - The number of broker's acks the producer requires before considering a request complete. :all means all ISR(in sync replicas) The default value is :all.

	:linger_ms (non_neg_integer/0) - The maximum time to wait for additional messages before sending a batch to the broker. The default value is 0.

	:batch_size_bytes (non_neg_integer/0) - The maximum size of the batch of messages that the producer will send to the broker in a single request. The default value is 512000.

	:delivery_timeout_ms (non_neg_integer/0) - The maximum amount of time the producer will retry to deliver a message before timing out and failing the send. The default value is 60000.

	:request_timeout_ms (non_neg_integer/0) - The maximum amount of time the producer will wait for a broker response to a request before considering it as failed. The default value is 15000.

	:retry_backoff_ms (non_neg_integer/0) - The amount of time that the producer waits before retrying a failed request to the broker. The default value is 1000.

	:max_in_flight_requests (non_neg_integer/0) - The maximum number of unacknowledged requests per broker the producer will send before waiting for acknowledgments. The default value is 1.

	:batchers_count (pos_integer/0) - The number of batchers per broker the producer will start. See Batchers Count session for more details. The default value is 1.

	:enable_idempotence (boolean/0) - Indicates if the producer will use kafka idempotency capabilities for exactly once semantics. The default value is true.

	:compression_type (:none, :gzip or :snappy) - The compression algorithm to be used for compressing messages before they are sent to the broker. The default value is :none.

 Interacting with producers

When configuring Klife.Client, users can specify a list of producers to be initialized for sending records to the Kafka cluster.
Once configured, users can interact with these producers through the Klife.Client producer API.

 How many producers?

By default, all records are produced using a single default producer configured with standard settings, maximizing batch efficiency.
There are two main reasons to consider using multiple producers:
	Different configurations for specific topics: Some topics may require unique settings.
In this case, you can assign topics with similar configuration needs to the same producer.

	Fault isolation: Each producer has an independent queue of messages.
Using multiple producers can help isolate issues in one topic from affecting the performance of others.

Let's dive in an example of fault isolation. Consider this scenario:
- A producer batches messages for topics A and B into a single request to the broker leader.
- For some reason, topic B is temporarily unavailable and fails, but topic A remains functional.
- The producer is configured with in_flight_requests = 1 and delivery_timeout_ms = 1 minute.
- This means the producer will retry sending records for topic B for up to one minute.
- Because in_flight_requests is set to 1, all other records, including those for topic A, must wait
until retries for topic B are exhausted.
In this situation, issues with one topic can delay other topics handled by the same producer,
as the retry mechanism occupies the single in-flight request slot.
If this scenario presents a potential issue for your use case, consider creating multiple producers
and dedicating some of them to critical topics. However, note that this approach may slightly reduce
batch efficiency in normal operation to improve resilience in specific failure scenarios, which may
be infrequent.

 Order guarantees

Kafka guarantees message order only within the same topic and partition so this is the maximum
level of ordering that the producer can provide as well.
However, certain scenarios can lead to records being produced to Kafka out of order. In this context,
"out of order" means the following:
1. `rec1` and `rec2` are produced to the same topic and partition.
2. The user calls produce(rec1) before calling produce(rec2).
3. Both produce calls complete successfully.
4. `rec1` is stored in the broker after `rec2`, resulting in `rec1.offset > rec2.offset`.
In this case, rec1 and rec2 are considered "out of order."
The ordering behavior for producers depends on their configuration:
	Records produced by different producers (even if targeting the same topic and partition) may
be out of order since each producer operates independently and in parallel.
	Records produced by a producer with max_in_flight_requests > 1 and enable_idempotence set to false
may be out of order due to network failures and retries.
	Any records produced by a producer with max_in_flight_requests = 1 have guaranteed ordering.
	Any records produced by a producer with enable_idempotence = true have guaranteed ordering.

 Dynamic batching

Klife’s producer uses dynamic batching, which automatically accumulates records that cannot be sent
immediately due to in_flight_request limitations. As a result, it is rarely necessary
to set linger_ms to a value greater than zero.
Typically, increasing linger_ms can improve batching efficiency, which benefits high-throughput topics.
However, if your topic already has high throughput, dynamic batching will likely handle batching
effectively without adjusting linger_ms.
Increasing linger_ms may be helpful only if you set a very high value for in_flight_request or
if you need to limit request rates to the broker for specific reasons.

 Batchers Count

Each Klife producer starts a configurable number of batchers for each broker in the Kafka cluster.
Topics and partitions with the same leader are managed by the same batcher.
By default, Klife initializes only one batcher per broker, which optimizes batch efficiency but
may underutilize CPU resources on high-core systems.
Consider the following setup:
	A Kafka cluster with 3 brokers
	An application running on a machine with 64 cores
	batchers_count = 1

In this scenario, the application could encounter a performance bottleneck due to having only
three batchers handling all record production requests. Increasing parallelism by adjusting batcher_count
can help resolve this issue.
For instance, increasing batcher_count from 1 to 5 would create 15 batchers (5 per broker), potentially improving
parallelism and CPU utilization.
Some caveats:
	The same topic and partition are always handled by the same batcher.
	Higher batcher counts reduce batch efficiency, which may lower overall throughput.
	The ideal setting may vary depending on your workload, so it's best to measure and
adjust batcher_count based on your specific performance needs.

 Topic default producer

Each topic has a designated default producer, which is used by the producer client API
for regular produce calls. While this default producer can be overridden with options
in the client API, be mindful that doing so may affect order guarantees.

 Client default producer

If a produce call is made to a topic without a predefined default producer,
the client default producer is used. The client default producer can be configured as part
of the overall Klife.Client setup. Refer to Klife.Client documentation for more details.

 Summary

 Functions

 Klife.Producer.DefaultPartitioner - Klife v0.5.0

Klife.Producer.DefaultPartitioner

Default partitioner implementation.
Uses the following logic:
	if record key is nil than defines a random partition
	if record key is not nil than define a partition using phash2 function

Source code is something like this:
defmodule Klife.Producer.DefaultPartitioner do
 @behaviour Klife.Behaviours.Partitioner
 alias Klife.Record

 @impl Klife.Behaviours.Partitioner
 def get_partition(%Record{key: nil}, max_partition),
 do: :rand.uniform(max_partition + 1) - 1

 def get_partition(%Record{key: key}, max_partition),
 do: :erlang.phash2(key, max_partition + 1)
end

 Klife.TxnProducerPool - Klife v0.5.0

Klife.TxnProducerPool

Pool of transactional producers.

 Client configurations

	:delivery_timeout_ms (non_neg_integer/0) - The maximum amount of time the producer will retry to deliver a message before timing out and failing the send. The default value is 60000.

	:request_timeout_ms (non_neg_integer/0) - The maximum amount of time the producer will wait for a broker response to a request before considering it as failed. The default value is 15000.

	:retry_backoff_ms (non_neg_integer/0) - The amount of time that the producer waits before retrying a failed request to the broker. The default value is 1000.

	:compression_type (:none, :gzip or :snappy) - The compression algorithm to be used for compressing messages before they are sent to the broker. The default value is :none.

	:name (atom/0) - Required. Pool name. Can be used as an option on the transactional api

	:base_txn_id (String.t/0) - Prefix used to define the transactional_id for the transactional producers. If not provided, a random string will be used. The default value is "".

	:pool_size (non_neg_integer/0) - Number of transactional producers in the pool The default value is 20.

	:txn_timeout_ms (non_neg_integer/0) - The maximum amount of time, in milliseconds, that a transactional producer is allowed to remain open without either committing or aborting a transaction before it is considered expired The default value is 90000.

 How to use?

When configuring Klife.Client, users can specify a list of transactional pools to be
initialized for sending records to the Kafka cluster.
Once configured, users can interact with these transactional producers through
the Klife.Client transaction API.

 Basic understanding

Since a single producer can only have a single open transaction at any given time
Klife starts a pool of transactional producers that can be checked out by other
processes in order to execute transactions.
Each transactional producer is a standard Klife.Producer but with transactional
capabilities. The transactional behaviour can be tweaked using its specific configurations.

 Semantics

A more practical and guided discussion about transaction semantics can be found on Klife.Client transaction API.

 Summary

 Functions

 Klife.Testing - Klife v0.5.0

Klife.Testing

Testing helper functions.
In order to test Kafka behaviour on tests we can have 2 approachs:
	Having a running Kafka broker locally and testing against it
	Mocking all external calls to the broker

Klife.Testing supports the first approach by offering helper functions in order to
verify if a record with the given list of properties exists in the broker.
You can use it like this:
on test_helper.exs
Klife.Testing.setup(MyClient)

on your test file
Klife.Testing.all_produced(MyClient, "my_topic_a", value: "abc")
The mocks approach is not supported directly by Klife but can be achieved using some
awesome community libraries such as Mimic or
Mox.

 Summary

 Functions

 Klife.Behaviours.Partitioner - Klife v0.5.0

Klife.Behaviours.Partitioner behaviour

Behaviour to define a partitioner
Modules must implement this behaviour in order to be used as partitioners on
the Klife.Client producer API.

 Summary

 Callbacks

 MyClient - Klife v0.5.0

MyClient

Example test client

 Summary

 Functions

 mix benchmark - Klife v0.5.0

mix benchmark

 Summary

 Functions

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

OEBPS/assets/producer_async_benchmark.png
= Klife = Brod = Erlkaf

200

62
52

71

93
57

122

121
99

155

157

(o}
[Te}

(o} o
[T} o
- —

puooas Jad paonpoid spiodal Jo spuesnoyl

32

16

Parallel executions

OEBPS/assets/producer_sync_benchmark.png
= Klife = Brod = Kafka_ex

300

200

