

 klotho

 v0.1.2

 Table of contents

 	Klotho usage

 	LICENSE

 	Modules

 	Klotho

 	Klotho.Mock

 	Klotho.Mock.TimerMsg

Klotho usage

General cosiderations
Testing code that deals with time, timeouts, and timers is hard. The main reason is that
getting time and setting timers is often not treated as a public contract, but it actually is.
Often, to test such code, one provides custom significantly reduced timeouts and uses :timer.sleep/1.
This approach has several drawbacks:
	it makes the tests slow
	if we use lagre timeouts, it makes the tests even slower
	if we use small timeouts, it makes the tests flaky

One of the approaches to testing without sleeps is injecting time-related functions directly,
thus making the contract explicitly public. However, this makes the code much more
complex and harder to read.
Klotho takes a different approach. It injects timer-based functions globally.
With Klotho you do not use time-related functions directly, but instead, you use Klotho functions that wrap the original ones in production code.
In tests, these functions are replaced with a mock implementation that allows controlling time "flow".
See Klotho.Mock for details.
Example
Assume we have a module implementing a simple "timeout map" functionality. It allows setting
a timeout for a key and records are automatically removed from the map when the timeout expires.
A possible (and a bit naive) implementation could look like this:
defmodule TimeoutCache do
 @moduledoc false

 use GenServer

 # API

 def start_link() do
 GenServer.start_link(__MODULE__, [])
 end

 def set(pid, key, value, timeout) do
 GenServer.call(pid, {:set, key, value, timeout})
 end

 def get(pid, key) do
 GenServer.call(pid, {:get, key})
 end

 # gen_server

 def init([]) do
 {:ok, %{}}
 end

 def handle_call({:set, key, value, timeout}, _from, state) do
 new_st =
 state
 |> maybe_delete(key)
 |> put_new(key, value, timeout)

 {:reply, :ok, new_st}
 end

 def handle_call({:get, key}, _from, state) do
 {:reply, get_value(state, key), state}
 end

 def handle_info({:timeout, ref, key}, state) do
 new_st = maybe_delete_timeout(state, key, ref)
 {:noreply, new_st}
 end

 # private

 defp maybe_delete(state, key) do
 case state do
 %{^key => {_value, ref}} ->
 :erlang.cancel_timer(ref)
 Map.delete(state, key)

 _ ->
 state
 end
 end

 defp put_new(state, key, value, timeout) do
 ref = :erlang.start_timer(timeout, self(), key)
 Map.put(state, key, {value, ref})
 end

 defp maybe_delete_timeout(state, key, ref) do
 case state do
 %{^key => {_value, ^ref}} ->
 Map.delete(state, key)

 _ ->
 state
 end
 end

 defp get_value(state, key) do
 case state do
 %{^key => {value, _ref}} ->
 {:ok, value}

 _ ->
 :not_found
 end
 end
end
How do we test that keys are actually removed from the map after the timeout expires?
A possible test suite could look like this:
defmodule TimeoutCacheTest do
 use ExUnit.Case

 setup do
 {:ok, pid} = TimeoutCache.start_link()
 {:ok, pid: pid}
 end

 test "set and get", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar, 100)
 assert {:ok, :bar} == TimeoutCache.get(pid, :foo)
 end

 test "get after timeout", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar, 100)
 :timer.sleep(200)
 assert :not_found == TimeoutCache.get(pid, :foo)
 end

 test "renew lifetime", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar1, 100)
 :timer.sleep(50)
 TimeoutCache.set(pid, :foo, :bar2, 100)
 :timer.sleep(70)
 assert {:ok, :bar2} == TimeoutCache.get(pid, :foo)
 end
end
This test suite is slow and flaky. It is slow because of :timer.sleep/1 calls.
Also, if the test machine is under heavy load, the timeouts may expire later than expected, thus making the tests flaky.
On the other hand, if we increase the timeouts, the tests will become even slower.
With Klotho we may rewrite the implementation as follows:
defmodule TimeoutCache do
 ...

 defp maybe_delete(state, key) do
 case state do
 %{^key => {_value, ref}} ->
 Klotho.cancel_timer(ref)
 Map.delete(state, key)

 _ ->
 state
 end
 end

 defp put_new(state, key, value, timeout) do
 ref = Klotho.start_timer(timeout, self(), key)
 Map.put(state, key, {value, ref})
 end

 ...
end
We just replaced :erlang.cancel_timer/1 with Klotho.cancel_timer/1 and :erlang.start_timer/3
with Klotho.start_timer/3. See timeout_cache.erl.
Now we can rewrite the test suite as follows:
defmodule TimeoutCacheTest do
 use ExUnit.Case

 setup do
 {:ok, pid} = TimeoutCache.start_link()
 Klotho.Mock.reset()
 Klotho.Mock.freeze()
 {:ok, pid: pid}
 end

 test "set and get", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar, 1000)
 assert {:ok, :bar} == TimeoutCache.get(pid, :foo)
 end

 test "get after timeout", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar, 1000)
 ## Timers whose time has passed are triggered in the end of warp
 Klotho.Mock.warp_by(2000)
 assert :not_found == TimeoutCache.get(pid, :foo)
 end

 test "renew lifetime", %{pid: pid} do
 TimeoutCache.set(pid, :foo, :bar1, 1000)
 Klotho.Mock.warp_by(500)
 TimeoutCache.set(pid, :foo, :bar2, 1000)
 Klotho.Mock.warp_by(700)
 assert {:ok, :bar2} == TimeoutCache.get(pid, :foo)
 end
end
We may use arbitrary timeouts in tests, just warping the time by the required amount. The code does not
use sleeps and runs fast. Also, the tests are not flaky anymore.
See the difference in the test execution time:
$ mix test test/klotho_timeout_cache_test.exs --trace

Klotho.TimeoutCacheTest.Klotho [test/klotho_timeout_cache_test.exs]
 * test set and get (1.7ms) [L#44]
 * test renew lifetime (0.05ms) [L#55]
 * test get after timeout (0.07ms) [L#49]

Klotho.TimeoutCacheTest.Timer [test/klotho_timeout_cache_test.exs]
 * test set and get (0.05ms) [L#12]
 * test renew lifetime (121.8ms) [L#23]
 * test get after timeout (200.9ms) [L#17]

Finished in 0.3 seconds (0.00s async, 0.3s sync)
6 tests, 0 failures

Limitations
Klotho does not intend to be suitable for any case and provide beam-wide time injection. It is
designed to be used in a wide but still limited scope of cases when the code deals with some
medium-intensive self-contained time-related logic.
	See Klotho for the full list of supported functions.
	The library may not be suitable for testing logic with some high-frequency events or events with
an order of millisecond latency because the time is managed by a GenServer process.
	The library may not work well if code actively uses other modules with their own and
intensive time-related logic.

LICENSE

MIT License

Copyright 2017-2023 Ilya Averyanov

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Klotho

A module that provides a interface to Erlang's time functions.
In production, all functions are proxied to the :erlang module directly.
In tests, the functions are proxied to Klotho.Mock, and the time "flow"
can be controlled by calling Klotho.Mock functions.

 Summary

 Functions

 cancel_timer(ref)

 cancel_timer(ref, opts)

 monotonic_time()

 monotonic_time(unit)

 read_timer(ref)

 send_after(time, pid, message)

 send_after(time, pid, message, opts)

 set_backend(backend)

 start_timer(time, pid, message)

 start_timer(time, pid, message, opts)

 system_time()

 system_time(unit)

 time_offset()

 time_offset(unit)

Functions

 Link to this function

 cancel_timer(ref)

 Link to this function

 cancel_timer(ref, opts)

 Link to this function

 monotonic_time()

 Link to this function

 monotonic_time(unit)

 Link to this function

 read_timer(ref)

 Link to this function

 send_after(time, pid, message)

 Link to this function

 send_after(time, pid, message, opts)

 Link to this function

 set_backend(backend)

 Link to this function

 start_timer(time, pid, message)

 Link to this function

 start_timer(time, pid, message, opts)

 Link to this function

 system_time()

 Link to this function

 system_time(unit)

 Link to this function

 time_offset()

 Link to this function

 time_offset(unit)

Klotho.Mock

This is the backend is used in :test environment.
The module gives control of the mocked time and provides inspection
of triggered timers.

 Summary

 Functions

 freeze()

 Freeze time. In frozen mode, all calls to monotonic_time and system_time
will return the same value. Timers will be not triggered unless warp is called.
The function is idempotent.

 reset()

 Reset the state of the time server. This

 timer_event_history()

 Return history of all messages (%Klotho.Mock.TimerMsg{}) sent by triggered timers.
Most recent messages are first.

 unfreeze()

 Unreeze time. In running mode, all calls to monotonic_time and system_time will
start produce values increasing with "normal" monotonic time pace.
Timers will be triggered according to their schedule.

 warp_by(timer_interval)

 Warp time forward by timer_interval milliseconds.
Regardless of the current mode (frozen or running), all the timers
that are due to trigger within the next timer_interval milliseconds
will be triggered after warp.

 warp_by(timer_interval, unit)

 Warp time forward by timer_interval in unit.
Regardless of the current mode (frozen or running), all the timers
that are due to trigger within the next timer_interval milliseconds
will be triggered after warp.

Functions

 Link to this function

 freeze()

 @spec freeze() :: :ok

Freeze time. In frozen mode, all calls to monotonic_time and system_time
will return the same value. Timers will be not triggered unless warp is called.
The function is idempotent.

 Link to this function

 reset()

 @spec reset() :: :ok

Reset the state of the time server. This
	resets the time to the actual current time;
	cleans timer history;
	resets the mode to running;
	cancels all timers.

 Link to this function

 timer_event_history()

 @spec timer_event_history() :: [Klotho.Mock.TimerMsg.t()]

Return history of all messages (%Klotho.Mock.TimerMsg{}) sent by triggered timers.
Most recent messages are first.

 Link to this function

 unfreeze()

 @spec unfreeze() :: :ok

Unreeze time. In running mode, all calls to monotonic_time and system_time will
start produce values increasing with "normal" monotonic time pace.
Timers will be triggered according to their schedule.

 Link to this function

 warp_by(timer_interval)

 @spec warp_by(non_neg_integer()) :: :ok

Warp time forward by timer_interval milliseconds.
Regardless of the current mode (frozen or running), all the timers
that are due to trigger within the next timer_interval milliseconds
will be triggered after warp.

 Link to this function

 warp_by(timer_interval, unit)

 @spec warp_by(non_neg_integer(), :erlang.time_unit()) :: :ok

Warp time forward by timer_interval in unit.
Regardless of the current mode (frozen or running), all the timers
that are due to trigger within the next timer_interval milliseconds
will be triggered after warp.

Klotho.Mock.TimerMsg

Struct to represent a timer message.

 Summary

 Types

 t()

Types

 Link to this type

 t()

 @type t() :: %Klotho.Mock.TimerMsg{
 message: term(),
 pid: pid(),
 ref: reference(),
 time: non_neg_integer(),
 type: :send_after | :start_timer
}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

