

 kubereq

 v0.4.2

 Table of contents

 	Kubereq

 	Changelog

 	
 Modules

 	Kubereq

 	Kubereq.Access

 	Kubereq.Watcher

 	Websocket Connection

 	Kubereq.PodExec

 	Kubereq.PodLogs

 	Kubeconfig Loading

 	Kubereq.Kubeconfig

 	Kubereq.Kubeconfig.Default

 	Kubereq.Kubeconfig.ENV

 	Kubereq.Kubeconfig.File

 	Kubereq.Kubeconfig.ServiceAccount

 	Kubereq.Kubeconfig.Stub

 	Selectors

 	Kubereq.Step.FieldSelector

 	Kubereq.Step.LabelSelector

 	Exceptions

 	Kubereq.Error.KubeconfError

 	Kubereq.Error.StepError

Kubereq

Used by kubegen to build Resource based
Kubernetes API clients using Req with kubereq.
[image: Module Version]
[image: Last Updated]
[image: Hex Docs]
[image: Total Download]
[image: License]
While this library can be used directly, it is easier to let
kubegen generate the API client modules
for you. The resulting clients are then using kubereq to get the prepared
Req.Request struct and make the requests to the Kubernetes API Server.

 Installation

The package can be installed by adding kubereq to your list of dependencies in
mix.exs:
def deps do
 [
 {:kubereq, "~> 0.4.0"}
]
end
The docs can be found at https://hexdocs.pm/kubereq.

 Usage

This library can be used with plain Req but the functions in this module
provide an easier API to people used to kubectl and friends.

 Kubereq API

While you can use this library with plain Req functions (see below), it is
easier to prepare a Req request for a specific resource and then use the
functions defined in the Kubereq module.
sa_req = Req.new() |> Kubereq.attach(api_version: "v1", kind: "ServiceAccount")

Kubereq.get(sa_req, "my-namespace", "default")
Kubereq.list(sa_req, "my-namespace")
Or use the functions right away, defining the resource through options:
req = Req.new() |> Kubereq.attach()

Kubereq.get(req, "my-namespace", "default", api_version: "v1", kind: "ServiceAccount")

get the "status" subresource of the default namespace
Kubereq.get(req, "my-namespace", api_version: "v1", kind: "Namespace", subresource: "status")
For resources defined by Kubernetes, the api_version can be omitted:
Req.new()
|> Kubereq.attach(kind: "Namespace")
|> Kubereq.get("my-namespace")

 Plain Req

Inestead of using the function in Kubereq, you can use
Kubereq.Kubeconfig.Default to create connection to the cluster and then use
plain Req.request() to make the request.
req = Req.new() |> Kubereq.attach()

Req.request!(req,
 api_version: "v1",
 kind: "ServiceAccount",
 operation: :get,
 path_params: [namespace: "default", name: "default"]
)
You can pass your own Kubeconfigloader pipeline when attaching:
req = Req.new() |> Kubereq.attach(kubeconfig: {Kubereq.Kubeconfig.File, path: "/path/to/kubeconfig.yaml"})

Req.request!(req,
 api_version: "v1",
 kind: "ServiceAccount",
 operation: :get,
 path_params: [namespace: "default", name: "default"]
)
Prepare a Req struct for a specific resource:
sa_req = Req.new() |> Kubereq.attach(api_version: "v1", kind: "ServiceAccount")

Req.request!(sa_req, operation: :get, path_params: [namespace: "default", name: "default"])
Req.request!(sa_req, operation: :list, path_params: [namespace: "default"])

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 Unreleased

 Kubereq - kubereq v0.4.2

Kubereq

A Kubernetes client for Elixir based on Req.

 Usage

First, attach kubereq to your Req request (see attach/2 for options):
Req.new() |> Kubereq.attach()
Now you can use plain Req functionality. However, the functions defined in
this module make it much easier to perform the most common operation.

 Kubereq API

While you can use this library with plain Req functions (see below), it is
easier to prepare a Req request for a specific resource and then use the
functions defined in the Kubereq module.
sa_req = Req.new() |> Kubereq.attach(api_version: "v1", kind: "ServiceAccount")

Kubereq.get(sa_req, "my-namespace", "default")
Kubereq.list(sa_req, "my-namespace")
Or use the functions right away, defining the resource through options:
req = Req.new() |> Kubereq.attach()

Kubereq.get(req, "my-namespace", "default", api_version: "v1", kind: "ServiceAccount")

get the "status" subresource of the default namespace
Kubereq.get(req, "my-namespace", api_version: "v1", kind: "Namespace", subresource: "status")
For resources defined by Kubernetes, the api_version can be omitted:
Req.new()
|> Kubereq.attach(kind: "Namespace")
|> Kubereq.get("my-namespace")

 Usage with plain Req functionality

Inestead of using the function in Kubereq, you can use
Kubereq.Kubeconfig.Default to create connection to the cluster and then use
plain Req.request() to make the request.
req = Req.new() |> Kubereq.attach()

Req.request!(req,
 api_version: "v1",
 kind: "ServiceAccount",
 operation: :get,
 path_params: [namespace: "default", name: "default"]
)
You can pass your own Kubeconfigloader pipeline when attaching:
req = Req.new() |> Kubereq.attach(kubeconfig: {Kubereq.Kubeconfig.File, path: "/path/to/kubeconfig.yaml"})

Req.request!(req,
 api_version: "v1",
 kind: "ServiceAccount",
 operation: :get,
 path_params: [namespace: "default", name: "default"]
)
Prepare a Req struct for a specific resource:
sa_req = Req.new() |> Kubereq.attach(api_version: "v1", kind: "ServiceAccount")

Req.request!(sa_req, operation: :get, path_params: [namespace: "default", name: "default"])
Req.request!(sa_req, operation: :list, path_params: [namespace: "default"])

 Options

kubereq registeres the following options with Req:
	:kubeconfig - A %Kubereq.Kubeconfig{} struct. The attach/2 function also accepts a
Kubeconf pipeline (e.g. Kubereq.Kubeconfig.Default)
	:api_version - The group and version of the targeted resource (case sensitive)
	:kind - The kind of the targeted resource (case sensitive)
	:resource_path - Can be defined instead of :api_version and :kind. The path to the
targeted resource with placeholders for :namespace and :name
(e.g. api/v1/namespaces/:namespace/configmaps/:name)
	:field_selectors - See Kubereq.Step.FieldSelector
	:label_selectors - See Kubereq.Step.LabelSelector
	:operation - The operation on the resource (one of :create, :get :update,
:delete, :delete_all, :apply, :json_patch, :merge_patch, :watch)
	:subresource - Some operations can be performed on subresources
(e.g. status or scale)

 Summary

 Types

 namespace()

 response()

 subresource()

 wait_until_callback()

 wait_until_response()

 Functions

 apply(req, resource, field_manager \\ "Elixir", force \\ true, opts \\ [])

 Applies the given resource using a Server-Side-Apply Patch. Returns a
response or an error.

 apply!(req, resource, field_manager \\ "Elixir", force \\ true, opts \\ [])

 Applies the given resource using a Server-Side-Apply Patch. Returns a
response or raises an error.

 attach(req, opts \\ [])

 Attaches kubereq to a Req.Request struct for making HTTP requests to a
Kubernetes cluster. You can optionally pass a Kubernetes configuration or
pipeline via kubeconfig option. If it is omitted, the default config
Kubereq.Kubeconfig.Default is loaded.

 can_i?(req, attributes, opts \\ [])

 Checks whether the authenticated user is authorized to perform a specific
action.

 create(req, resource, opts \\ [])

 Create the resource or its subresource on the cluster and returns a
response or an error.

 create!(req, resource, opts \\ [])

 Create the resource or its subresource on the cluster and returns a
response or raises an error.

 delete(req, namespace \\ nil, name, opts \\ [])

 Deletes the resource or its subresource from the cluster. Returns a
response or an error.

 delete!(req, namespace \\ nil, name, opts \\ [])

 Deletes the resource or its subresource from the cluster. Returns a
response or raises an error.

 delete_all(req, namespace \\ nil, opts \\ [])

 Deletes all resources in the given namespace. Returns a response or an error.

 delete_all!(req, namespace \\ nil, opts \\ [])

 Deletes all resources in the given namespace. Returns a response or raises an
error.

 exec(req, namespace, name, opts \\ [])

 Opens a websocket to the given Pod and executes a command on it.
Returns a response or an error.

 exec!(req, namespace, name, opts \\ [])

 Opens a websocket to the given Pod and executes a command on it.
Returns a response or raises an error.

 get(req, namespace \\ nil, name, opts \\ [])

 Get the resource name in namespace or its subresource. and returns a
response or an error

 get!(req, namespace \\ nil, name, opts \\ [])

 Get the resource name in namespace or its subresource. and returns a
response or raises an error

 json_patch(req, json_patch, namespace \\ nil, name, opts \\ [])

 Patches the resource namein namespace or its subresource using the given
json_patch. Returns a response or an error.

 json_patch!(req, json_patch, namespace \\ nil, name, opts \\ [])

 Patches the resource namein namespace or its subresource using the given
json_patch. Returns a response or raises an error.

 list(req, namespace \\ nil, opts \\ [])

 Get a resource list. Returns a response or an error.

 list!(req, namespace \\ nil, opts \\ [])

 Get a resource list. Returns a response or raises an error.

 logs(req, namespace, name, opts \\ [])

 Opens a websocket to the given container and streams logs from it.
Returns a response or an error.

 logs!(req, namespace, name, opts \\ [])

 Opens a websocket to the given container and streams logs from it.
Returns a response or raises an error.

 merge_patch(req, merge_patch, namespace \\ nil, name, opts \\ [])

 Patches the resource namein namespace or its subresource using the given
merge_patch. Returns a response or an error.

 merge_patch!(req, merge_patch, namespace \\ nil, name, opts \\ [])

 Patches the resource namein namespace or its subresource using the given
merge_patch. Returns a response or raises an error.

 new(kubeconfig)

 deprecated

 new(kubeconfig, resource_path)

 deprecated

 update(req, resource, opts \\ [])

 Updates the given resource. Returns a response or an error.

 update!(req, resource, opts \\ [])

 Updates the given resource. Returns a response or raises an error.

 wait_until(req, namespace \\ nil, name, callback, opts \\ [])

 GET a resource and wait until the given callback returns true or the given
timeout (ms) has expired.

 watch(req, namespace \\ nil, opts \\ [])

 Watch events of all resources in namespace. If namespace is nil, all
namespaces are watched. Returns a response or an error.

 watch!(req, namespace \\ nil, opts \\ [])

 Watch events of all resources in namespace. If namespace is nil, all
namespaces are watched. Returns a response or raises an error.

 watch_single(req, namespace \\ nil, name, opts \\ [])

 Watch events of a single resources namein namespace. Returns a response
or an error.

 watch_single!(req, namespace \\ nil, name, opts \\ [])

 Watch events of a single resources namein namespace. Returns a response
or raises an error.

 Types

 namespace()

 @type namespace() :: String.t() | nil

 response()

 @type response() :: {:ok, Req.Response.t()} | {:error, Exception.t()}

 subresource()

 @type subresource() :: String.t() | nil

 wait_until_callback()

 @type wait_until_callback() :: (map() | :deleted -> boolean() | {:error, any()})

 wait_until_response()

 @type wait_until_response() :: :ok | {:error, :watch_timeout}

 Functions

 apply(req, resource, field_manager \\ "Elixir", force \\ true, opts \\ [])

 @spec apply(
 Req.Request.t(),
 resource :: map(),
 field_manager :: binary(),
 force :: boolean(),
 opts :: Keyword.t()
) :: response()

Applies the given resource using a Server-Side-Apply Patch. Returns a
response or an error.
See the documentation
for a documentation on field_manager and force arguments.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.apply(resource)

 apply!(req, resource, field_manager \\ "Elixir", force \\ true, opts \\ [])

 @spec apply!(
 Req.Request.t(),
 resource :: map(),
 field_manager :: binary(),
 force :: boolean(),
 opts :: Keyword.t()
) :: Req.Response.t()

Applies the given resource using a Server-Side-Apply Patch. Returns a
response or raises an error.
See the documentation
for a documentation on field_manager and force arguments.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.apply!(resource)

 attach(req, opts \\ [])

 @spec attach(req :: Req.Request.t(), opts :: Keyword.t()) :: Req.Request.t()

Attaches kubereq to a Req.Request struct for making HTTP requests to a
Kubernetes cluster. You can optionally pass a Kubernetes configuration or
pipeline via kubeconfig option. If it is omitted, the default config
Kubereq.Kubeconfig.Default is loaded.

 Examples

Req.new() |> Kubereq.attach()

 Options

All options (see Options section in module doc) are accepted and merged with
the given req.

 can_i?(req, attributes, opts \\ [])

 @spec can_i?(Req.Request.t(), Keyword.t(), Keyword.t()) :: boolean()

Checks whether the authenticated user is authorized to perform a specific
action.
Creates a SelfSubjectAccessReview resource with
the given attributes and sends it to the API Server. It returns
.status.allowed from the result (boolean). In case of an error, the
function returns false.

 Attributes

attributes is a Keyword list that allows the following keywords (See
attribute descriptions on the Kubernetes documentation)

 Examples

Check for a specific action (GET) on a specific resource (pods in namespace
default):
Req.new()
|> Kubereq.attach()
|> Kubereq.can_i?(verb: "get", version: "v1", resource: "pods", namespace: "default")
Check for a specific path on the API Server:
Req.new()
|> Kubereq.attach()
|> Kubereq.can_i?(verb: "get", path: "apis/apiregistration.k8s.io/v1")

 create(req, resource, opts \\ [])

 @spec create(Req.Request.t(), resource :: map(), opts :: Keyword.t()) :: response()

Create the resource or its subresource on the cluster and returns a
response or an error.

 Example

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.create(resource)

 create!(req, resource, opts \\ [])

 @spec create!(Req.Request.t(), resource :: map(), opts :: Keyword.t()) ::
 Req.Response.t()

Create the resource or its subresource on the cluster and returns a
response or raises an error.

 Example

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.create!(resource)

 delete(req, namespace \\ nil, name, opts \\ [])

 @spec delete(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: response()

Deletes the resource or its subresource from the cluster. Returns a
response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.delete("default", "foo")

 delete!(req, namespace \\ nil, name, opts \\ [])

 @spec delete!(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: Req.Response.t()

Deletes the resource or its subresource from the cluster. Returns a
response or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.delete!("default", "foo")

 delete_all(req, namespace \\ nil, opts \\ [])

 @spec delete_all(Req.Request.t(), namespace :: namespace(), opts :: keyword()) ::
 response()

Deletes all resources in the given namespace. Returns a response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.delete_all("default", label_selectors: [{"app", "my-app"}])

 delete_all!(req, namespace \\ nil, opts \\ [])

 @spec delete_all!(Req.Request.t(), namespace :: namespace(), opts :: keyword()) ::
 Req.Response.t()

Deletes all resources in the given namespace. Returns a response or raises an
error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.delete_all!("default", label_selectors: [{"app", "my-app"}])

 exec(req, namespace, name, opts \\ [])

 @spec exec(
 req :: Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: response()

Opens a websocket to the given Pod and executes a command on it.
Returns a response or an error.
Info
This function blocks the process. It should be used to execute commands
which terminate eventually. To implement a shell with a long running
connection, use Kubereq.PodExec with tty: true instead.

 Examples

{:ok, resp} =
 Kubereq.exec(req, "defaault", "my-pod",
 container: "main-container",
 command: "/bin/sh",
 command: "-c",
 command: "echo foobar",
 stdout: true,
 stderr: true
)
Enum.each(resp.body, &IO.inspect/1)
{:stdout, ""}
{:stdout, "foobar\n"}

 Options

	:container (optional) - The container to connect to. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:command - Command is the remote command to execute. Not executed within a shell.
	:stdin (optional) - Redirect the standard input stream of the pod for this call. Defaults to true.
	:stdin (optional) - Redirect the standard output stream of the pod for this call. Defaults to true.
	:stderr (optional) - Redirect the standard error stream of the pod for this call. Defaults to true.
	:tty (optional) - If true indicates that a tty will be allocated for the exec call. Defaults to false.

 exec!(req, namespace, name, opts \\ [])

 @spec exec!(
 req :: Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: Req.Response.t()

Opens a websocket to the given Pod and executes a command on it.
Returns a response or raises an error.
Info
This function blocks the process. It should be used to execute commands
which terminate eventually. To implement a shell with a long running
connection, use Kubereq.PodExec with tty: true instead.

 Examples

{:ok, resp} =
 Kubereq.exec!(req, "defaault", "my-pod",
 container: "main-container",
 command: "/bin/sh",
 command: "-c",
 command: "echo foobar",
 stdout: true,
 stderr: true
)
Enum.each(resp.body, &IO.inspect/1)
{:stdout, ""}
{:stdout, "foobar\n"}

 Options

	:container (optional) - The container to connect to. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:command - Command is the remote command to execute. Not executed within a shell.
	:stdin (optional) - Redirect the standard input stream of the pod for this call. Defaults to true.
	:stdin (optional) - Redirect the standard output stream of the pod for this call. Defaults to true.
	:stderr (optional) - Redirect the standard error stream of the pod for this call. Defaults to true.
	:tty (optional) - If true indicates that a tty will be allocated for the exec call. Defaults to false.

 get(req, namespace \\ nil, name, opts \\ [])

 @spec get(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: response()

Get the resource name in namespace or its subresource. and returns a
response or an error
Omit namespace to get cluster resources.

 Example

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.get("default", "foo")

 get!(req, namespace \\ nil, name, opts \\ [])

 @spec get!(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: Req.Response.t()

Get the resource name in namespace or its subresource. and returns a
response or raises an error
Omit namespace to get cluster resources.

 Example

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.get!("default", "foo")

 json_patch(req, json_patch, namespace \\ nil, name, opts \\ [])

 @spec json_patch(
 Req.Request.t(),
 json_patch :: map(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: response()

Patches the resource namein namespace or its subresource using the given
json_patch. Returns a response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.json_patch(%{...}, "default", "foo")

 json_patch!(req, json_patch, namespace \\ nil, name, opts \\ [])

 @spec json_patch!(
 Req.Request.t(),
 json_patch :: map(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: Req.Response.t()

Patches the resource namein namespace or its subresource using the given
json_patch. Returns a response or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.json_patch!(%{...}, "default", "foo")

 list(req, namespace \\ nil, opts \\ [])

 @spec list(Req.Request.t(), namespace :: namespace(), opts :: keyword()) :: response()

Get a resource list. Returns a response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.list("default")

 Options

All options described in the moduledoc plus:
	:into - Optional. When set to :stream, the underlying list request to
Kubernetes is paginated using :limit and :continue query parameters.

	:limit - Optional. Used with into: :stream; defines the limit query
parameter used for pagination.

 Async Response through the into: :stream

With into: :srteam, the response's :body is a Stream
{:ok, resp} =
 Req.new()
 |> Kubereq.attach(api_version: "v1", kind: "Pod")
 |> Kubereq.list(into: :stream)
resp.body |> Stream.take(25) |> Enum.to_list()

 list!(req, namespace \\ nil, opts \\ [])

 @spec list!(Req.Request.t(), namespace :: namespace(), opts :: keyword()) ::
 Req.Response.t()

Get a resource list. Returns a response or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.list!("default")

 Options

All options described in the moduledoc plus:
	:into - Optional. When set to :stream, the underlying list request to
Kubernetes is paginated using :limit and :continue query parameters.

	:limit - Optional. Used with into: :stream; defines the limit query
parameter used for pagination.

 Async Response through the into: :stream

With into: :srteam, the response's :body is a Stream
{:ok, resp} =
 Req.new()
 |> Kubereq.attach(api_version: "v1", kind: "Pod")
 |> Kubereq.list!(into: :stream)
resp.body |> Stream.take(25) |> Enum.to_list()

 logs(req, namespace, name, opts \\ [])

 @spec logs(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: response()

Opens a websocket to the given container and streams logs from it.
Returns a response or an error.
Info
This function blocks the process. It should be used to retrieve a finite
set of logs from a container. If you want to follow logs, use
Kubereq.PodLogs combined with the :follow options instead.

 Examples

req = Req.new() |> Kubereq.attach()
{:ok, resp} =
 Kubereq.logs(req, "default", "my-pod",
 container: "main-container",
 tailLines: 5
)
Enum.each(resp.body, &IO.inspect/1)

 Options

	:container - The container for which to stream logs. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:follow - Follow the log stream of the pod. If this is set to true,
the connection is kept alive which blocks current the process. If you need
this, you probably want to use Kubereq.PodLogs instead. Defaults to
false.
	:insecureSkipTLSVerifyBackend - insecureSkipTLSVerifyBackend indicates
that the apiserver should not confirm the validity of the serving
certificate of the backend it is connecting to. This will make the HTTPS
connection between the apiserver and the backend insecure. This means the
apiserver cannot verify the log data it is receiving came from the real
kubelet. If the kubelet is configured to verify the apiserver's TLS
credentials, it does not mean the connection to the real kubelet is
vulnerable to a man in the middle attack (e.g. an attacker could not
intercept the actual log data coming from the real kubelet).
	:limitBytes - If set, the number of bytes to read from the server before
terminating the log output. This may not display a complete final line of
logging, and may return slightly more or slightly less than the specified
limit.
	:pretty - If 'true', then the output is pretty printed.
	:previous - Return previous t erminated container logs. Defaults to
false.
	:sinceSeconds - A relative time in seconds before the current time from
which to show logs. If this value precedes the time a pod was started,
only logs since the pod start will be returned. If this value is in the
future, no logs will be returned. Only one of sinceSeconds or sinceTime
may be specified.
	:tailLines - If set, the number of lines from the end of the logs to
show. If not specified, logs are shown from the creation of the container
or sinceSeconds or sinceTime
	:timestamps - If true, add an RFC3339 or RFC3339Nano timestamp at the
beginning of every line of log output. Defaults to false.

 logs!(req, namespace, name, opts \\ [])

 @spec logs!(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t() | nil
) :: Req.Response.t()

Opens a websocket to the given container and streams logs from it.
Returns a response or raises an error.
Info
This function blocks the process. It should be used to retrieve a finite
set of logs from a container. If you want to follow logs, use
Kubereq.PodLogs combined with the :follow options instead.

 Examples

req = Req.new() |> Kubereq.attach()
{:ok, resp} =
 Kubereq.logs!(req, "default", "my-pod",
 container: "main-container",
 tailLines: 5
)
Enum.each(resp.body, &IO.inspect/1)

 Options

	:container - The container for which to stream logs. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:follow - Follow the log stream of the pod. If this is set to true,
the connection is kept alive which blocks current the process. If you need
this, you probably want to use Kubereq.PodLogs instead. Defaults to
false.
	:insecureSkipTLSVerifyBackend - insecureSkipTLSVerifyBackend indicates
that the apiserver should not confirm the validity of the serving
certificate of the backend it is connecting to. This will make the HTTPS
connection between the apiserver and the backend insecure. This means the
apiserver cannot verify the log data it is receiving came from the real
kubelet. If the kubelet is configured to verify the apiserver's TLS
credentials, it does not mean the connection to the real kubelet is
vulnerable to a man in the middle attack (e.g. an attacker could not
intercept the actual log data coming from the real kubelet).
	:limitBytes - If set, the number of bytes to read from the server before
terminating the log output. This may not display a complete final line of
logging, and may return slightly more or slightly less than the specified
limit.
	:pretty - If 'true', then the output is pretty printed.
	:previous - Return previous t erminated container logs. Defaults to
false.
	:sinceSeconds - A relative time in seconds before the current time from
which to show logs. If this value precedes the time a pod was started,
only logs since the pod start will be returned. If this value is in the
future, no logs will be returned. Only one of sinceSeconds or sinceTime
may be specified.
	:tailLines - If set, the number of lines from the end of the logs to
show. If not specified, logs are shown from the creation of the container
or sinceSeconds or sinceTime
	:timestamps - If true, add an RFC3339 or RFC3339Nano timestamp at the
beginning of every line of log output. Defaults to false.

 merge_patch(req, merge_patch, namespace \\ nil, name, opts \\ [])

 @spec merge_patch(
 Req.Request.t(),
 merge_patch :: String.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: response()

Patches the resource namein namespace or its subresource using the given
merge_patch. Returns a response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.merge_patch(%{...}, "default", "foo")

 merge_patch!(req, merge_patch, namespace \\ nil, name, opts \\ [])

 @spec merge_patch!(
 Req.Request.t(),
 merge_patch :: String.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: Keyword.t()
) :: Req.Response.t()

Patches the resource namein namespace or its subresource using the given
merge_patch. Returns a response or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.merge_patch!(%{...}, "default", "foo")

 new(kubeconfig)

 This function is deprecated. Use Kubereq.attach/2.

 @spec new(kubeconfig :: Kubereq.Kubeconfig.t()) :: Req.Request.t()

 new(kubeconfig, resource_path)

 This function is deprecated. Use Kubereq.attach/2.

 @spec new(kubeconfig :: Kubereq.Kubeconfig.t(), resource_path :: binary()) ::
 Req.Request.t()

 update(req, resource, opts \\ [])

 @spec update(Req.Request.t(), resource :: map(), opts :: Keyword.t()) :: response()

Updates the given resource. Returns a response or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.update(resource)

 update!(req, resource, opts \\ [])

 @spec update!(Req.Request.t(), resource :: map(), opts :: Keyword.t()) ::
 Req.Response.t()

Updates the given resource. Returns a response or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.update!(resource)

 wait_until(req, namespace \\ nil, name, callback, opts \\ [])

 @spec wait_until(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 callback :: wait_until_callback(),
 opts :: Keyword.t()
) :: wait_until_response()

GET a resource and wait until the given callback returns true or the given
timeout (ms) has expired.

 Options

All options described in the moduledoc plus:
	:timeout - Timeout in ms after function terminates with {:error, :timeout}

 watch(req, namespace \\ nil, opts \\ [])

 @spec watch(
 Req.Request.t(),
 namespace :: namespace(),
 opts :: keyword()
) :: response()

Watch events of all resources in namespace. If namespace is nil, all
namespaces are watched. Returns a response or an error.
Info
The Enumerable returned via the response's body blocks the process when run.
Use Kubereq.Watcher instead if you want to build a long running process
handling all occurring events.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch("default")
Omit the namespace in order to watch events in all namespaces:
Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch()

 Options

 All options described in the moduledoc plus:
* `:resource_version` - Optional. Resource version to start watching from.
 Per default, the watcher starts watching from the current
 resource_version.

 watch!(req, namespace \\ nil, opts \\ [])

 @spec watch!(
 Req.Request.t(),
 namespace :: namespace(),
 opts :: keyword()
) :: Req.Response.t()

Watch events of all resources in namespace. If namespace is nil, all
namespaces are watched. Returns a response or raises an error.
Info
The Enumerable returned via the response's body blocks the process when run.
Use Kubereq.Watcher instead if you want to build a long running process
handling all occurring events.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch!("default")
Omit the namespace in order to watch events in all namespaces:
Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch!()

 Options

 All options described in the moduledoc plus:
* `:resource_version` - Optional. Resource version to start watching from.
 Per default, the watcher starts watching from the current
 resource_version.

 watch_single(req, namespace \\ nil, name, opts \\ [])

 @spec watch_single(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: keyword()
) :: response()

Watch events of a single resources namein namespace. Returns a response
or an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch_single("default")
Omit the second argument in order to watch events in all namespaces:
Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch_single()

 watch_single!(req, namespace \\ nil, name, opts \\ [])

 @spec watch_single!(
 Req.Request.t(),
 namespace :: namespace(),
 name :: String.t(),
 opts :: keyword()
) :: Req.Response.t()

Watch events of a single resources namein namespace. Returns a response
or raises an error.

 Examples

Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch_single!("default")
Omit the second argument in order to watch events in all namespaces:
Req.new()
|> Kubereq.attach(api_version: "v1", kind: "ConfigMap")
|> Kubereq.watch_single!()

 Kubereq.Access - kubereq v0.4.2

Kubereq.Access

Helper module to access maps in lists.

 Summary

 Functions

 find(func, default \\ nil)

 Returns a function that accesses the first element for which fun returns a truthy value.

 find!(func)

 Returns a function that accesses the first element for which fun returns a truthy value.

 Functions

 find(func, default \\ nil)

 @spec find((term() -> boolean()), term()) ::
 Access.access_fun(data :: list(), current_value :: list())

Returns a function that accesses the first element for which fun returns a truthy value.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.

 Examples

iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Kubereq.Access.find(&(&1.name == "john")), :salary])
10
iex> get_and_update_in(list, [Kubereq.Access.find(&(&1.name == "john")), :salary], fn prev ->
...> {prev, 15}
...> end)
{10, [%{name: "john", salary: 15}, %{name: "francine", salary: 30}]}
find/1 can also be used to pop elements out of a list or
a key inside of a list:
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> pop_in(list, [Kubereq.Access.find(&(&1.name == "francine"))])
{%{name: "francine", salary: 30}, [%{name: "john", salary: 10}]}
iex> pop_in(list, [Kubereq.Access.find(&(&1.name == "francine")), :name])
{"francine", [%{salary: 30}, %{name: "john", salary: 10}]}
When no match is found, the given default is used. This can be used to
specify defaults and safely traverse missing items.
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Kubereq.Access.find(&(&1.name == "adam"), %{name: "adam", salary: 50}), :salary])
50
iex> get_and_update_in(list, [Kubereq.Access.find(&(&1.name == "adam"), %{name: "adam"}), :salary], fn prev ->
...> {prev, 50}
...> end)
{nil, [%{name: "adam", salary: 50}, %{name: "john", salary: 10}, %{name: "francine", salary: 30}]}
When multiple items exist for which fun return a truthy value, the first one is accessed.
iex> list = [%{name: "john", salary: 10}, %{name: "john", salary: 30}]
iex> get_in(list, [Kubereq.Access.find(&(&1.name == "john")), :salary])
10
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Kubereq.Access.find(&(&1.name == "john"))])
** (RuntimeError) Kubereq.Access.find/1 expected a list, got: %{}

 find!(func)

 @spec find!((term() -> boolean())) ::
 Access.access_fun(data :: list(), current_value :: list())

Returns a function that accesses the first element for which fun returns a truthy value.
The returned function is typically passed as an accessor to Kernel.get_in/2,
Kernel.get_and_update_in/3, and friends.
Similar to find/2, but the returned function raises if the no item is found for which fun returns a truthy value.

 Examples

iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> get_in(list, [Kubereq.Access.find!(&(&1.name == "john")), :salary])
10
iex> get_and_update_in(list, [Kubereq.Access.find!(&(&1.name == "john")), :salary], fn prev ->
...> {prev, 15}
...> end)
{10, [%{name: "john", salary: 15}, %{name: "francine", salary: 30}]}
find/1 can also be used to pop elements out of a list or
a key inside of a list:
iex> list = [%{name: "john", salary: 10}, %{name: "francine", salary: 30}]
iex> pop_in(list, [Kubereq.Access.find!(&(&1.name == "francine"))])
{%{name: "francine", salary: 30}, [%{name: "john", salary: 10}]}
iex> pop_in(list, [Kubereq.Access.find!(&(&1.name == "francine")), :name])
{"francine", [%{salary: 30}, %{name: "john", salary: 10}]}
iex> get_in(list, [Kubereq.Access.find!(&(&1.name == "adam")), :salary])
** (ArgumentError) There is no item in the list for which the given function returns a truthy value.
When multiple items exist for which fun return a truthy value, the first one is accessed.
iex> list = [%{name: "john", salary: 10}, %{name: "john", salary: 30}]
iex> get_in(list, [Kubereq.Access.find!(&(&1.name == "john")), :salary])
10
An error is raised if the accessed structure is not a list:
iex> get_in(%{}, [Kubereq.Access.find!(&(&1.name == "john"))])
** (RuntimeError) Kubereq.Access.find!/1 expected a list, got: %{}

 Kubereq.Watcher - kubereq v0.4.2

Kubereq.Watcher behaviour

A behaviour module for implementing a Kubernetes watch event handler.
Establishes a watch connection for efficient detection of changes. All events are passed to handle_event/3.
sequenceDiagram
 participant Watcher
 participant K8s as K8s API Server

 Watcher->>K8s: ?watch=true

 loop K8s Detects Changes
 K8s ->> Watcher: {:created, %{"kind" => "Pod"}}
 K8s ->> Watcher: {:modified, %{"kind" => "Pod"}}
 K8s ->> Watcher: {:deleted, %{"kind" => "Pod"}}
 end

 Example

When started, Kubereq.Watcher establishes a watch connection to the API
Server.
For every watch event, handle_event/3 is then called with the t:type,
object and state.
defmodule PodEventHandler do
 use Kubereq.Watcher

 require Logger

 def start_link(init_arg) do
 req = Keyword.fetch!(init_arg, :req)
 naemspace = Keyword.get(opts, :namespace)

 Kubereq.Watcher.start_link(__MODULE__, req, namespace, api_version: "v1", kind: "Pod")
 end

 @impl Kubereq.Watcher
 def init(init_arg) do
 initial_state = %{}
 {:ok, initial_state}
 end

 @impl Kubereq.Watcher
 def handle_event(:created, pod, state) do
 Logger.debug("Pod #{pod["metadata"]["name"]} was created.")
 {:noreply, state}
 end

 @impl Kubereq.Watcher
 def handle_event(:modified, pod, state) do
 Logger.debug("Pod #{pod["metadata"]["name"]} was modified.")
 {:noreply, state}
 end

 @impl Kubereq.Watcher
 def handle_event(:deleted, pod, state) do
 Logger.debug("Pod #{pod["metadata"]["name"]} was deleted.")
 {:noreply, state}
 end
end

 Summary

 Types

 event_type()

 Callbacks

 handle_event(event_type, object, state)

 Called for every event detected for the resources watched on the Kubernetes
cluster. It is passed the t:event_type (one of :created, :modified or
:deleted), the object (resource) the event occurred on and the current
 state.

 handle_info(msg, state)

 Similar to GenServer's GenServer.handle_info/2, called for messages sent
to the process.

 init(init_arg)

 Called when the server is started but before connection is establised.

 terminate(reason, state)

 Similar to GenServer's GenServer.terminate/2, called then the watcher is
terminated.

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 connect(req, namespace, opts \\ [])

 Establish a watch connection to the API Server for the given req.
If namespace is nil, all namespaces are watched.

 start_link(module, req, namespace \\ nil, opts \\ [], init_arg \\ [])

 Starts a watcher process linked to the current process.

 Types

 event_type()

 @type event_type() :: :created | :modified | :deleted

 Callbacks

 handle_event(event_type, object, state)

 @callback handle_event(event_type :: event_type(), object :: map(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state, timeout()}
 | {:stop, reason, new_state}
when new_state: term(), reason: term()

Called for every event detected for the resources watched on the Kubernetes
cluster. It is passed the t:event_type (one of :created, :modified or
:deleted), the object (resource) the event occurred on and the current
 state.

 handle_info(msg, state)

 @callback handle_info(msg :: :timeout | term(), state :: term()) ::
 {:noreply, new_state}
 | {:noreply, new_state,
 timeout() | :hibernate | {:continue, continue_arg :: term()}}
 | {:stop, reason, new_state}
when new_state: term(), reason: term()

Similar to GenServer's GenServer.handle_info/2, called for messages sent
to the process.

 init(init_arg)

 @callback init(init_arg :: term()) :: {:ok, state :: any()} | {:stop, reason :: any()}

Called when the server is started but before connection is establised.

 terminate(reason, state)

 @callback terminate(reason, state :: term()) :: term()
when reason: :normal | :shutdown | {:shutdown, term()} | term()

Similar to GenServer's GenServer.terminate/2, called then the watcher is
terminated.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 connect(req, namespace, opts \\ [])

Establish a watch connection to the API Server for the given req.
If namespace is nil, all namespaces are watched.

 Options

All options described in Kubereq's moduledoc plus:
	:resource_version - Optional. Resource version to start watching from.
Per default, the watcher starts watching from the current
resource_version.

 start_link(module, req, namespace \\ nil, opts \\ [], init_arg \\ [])

Starts a watcher process linked to the current process.
Once the watcher is started, the init/1 function of the given module is
called. After that, the watch connection is established.

 Arguments

req, namespace and init_arg are forwarded to connect/3.

 Kubereq.PodExec - kubereq v0.4.2

Kubereq.PodExec

Establish a connection to a Pod and execute a command in a container.
The connection is kept alive until the websocket is closed by the counterpart.
The bytes received from the container are sent to the process passed via the
:into option. Bytes sent to this process via send_stdin/2 are forwarded to
the container.

 Examples

When the command terminates, the websocket is automatically closed and the
process terminates.
req = Req.new() |> Kubereq.attach()
Kubereq.PodExec.start_link(
 req: req,
 namespace: "default",
 name: "my-pod",
 container: "main",
 into: self(),
 command: ["/bin/sh", "-c", "echo foo"],
 stdin: true,
 stdout: true,
 stderr: true
 tty: false,
)
Messages in inbox: {:stdout, "foo\n"}, {:close, 1000, ""}
Passing the path to a shell as command will keep the socket open. Together
with :stdin, :stdout, :stderr and :tty, this can be used to implement
an interactive shell:
req = Req.new() |> Kubereq.attach()
{:ok, dest} = Kubereq.PodExec.start_link(
 req: req,
 namespace: "default",
 name: "my-pod",
 container: "main",
 into: self(),
 command: ["/bin/sh"],
 stdin: true,
 stdout: true,
 stderr: true
 tty: false,
)
Message in inbox: {:stdout, "sh-5.2# "}

Kubereq.PodExec.send_stdin(dest, "echo foo")
Message in inbox: {:stdout, "echo foo\r\nfoo\r\nsh-5.2# "}

 Arguments

	:req - A Req.Request struct with Kubereq attached.
	:namespace - The namespace the Pod runs in
	:name - The name of the Pod
	:container (optional) - The container for which to stream logs. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:into - Destination for messages received from the pod. Can be a pid or
a {pid, ref} tuple.
	:command - Command is the remote command to execute. Not executed within a shell.
	:stdin (optional) - Redirect the standard input stream of the pod for this call. Defaults to true.
	:stdin (optional) - Redirect the standard output stream of the pod for this call. Defaults to true.
	:stderr (optional) - Redirect the standard error stream of the pod for this call. Defaults to true.
	:tty (optional) - If true indicates that a tty will be allocated for the exec call. Defaults to false.
	:opts (optional) - Additional options passed to Req

 Summary

 Functions

 args_to_opts(args)

 child_spec(init_arg)

 close(dest)

 Close the connection and terminate the process.

 close(dest, code, reason)

 Send a close frame to close the websocket.

 connect_and_stream(req)

 open?(dest)

 Check if the websocket is open.

 send_stdin(dest, data)

 Send the given data to the container.

 start_link(args)

 Functions

 args_to_opts(args)

 child_spec(init_arg)

 close(dest)

 @spec close(dest :: :gen_statem.server_ref()) :: :ok

Close the connection and terminate the process.

 close(dest, code, reason)

Send a close frame to close the websocket.

 connect_and_stream(req)

 open?(dest)

Check if the websocket is open.

 send_stdin(dest, data)

 @spec send_stdin(dest :: :gen_statem.server_ref(), data :: binary()) :: :ok

Send the given data to the container.

 start_link(args)

 Kubereq.PodLogs - kubereq v0.4.2

Kubereq.PodLogs

Establish a connection to a Pod and stream logs.
The connection is kept alive until the websocket is closed via close/1.
The bytes received from the container are sent to the process passed via the
:into option.

 Examples

req = Req.new() |> Kubereq.attach()
Kubereq.PodLogs.start_link(
 req: req,
 into: self(),
 namespace: "default",
 name: "my-pod",
 container: "main-container",
)
Messages in inbox: {:stdout, "log entries"}, {:stdout, "more log entries"}

 Arguments

	:req - A Req.Request struct with Kubereq attached.
	:namespace - The namespace the Pod runs in
	:name - The name of the Pod
	:container - The container for which to stream logs. Defaults to only
container if there is one container in the pod. Fails if not defined for
pods with multiple pods.
	:into - Destination for messages received from the pod. Can be a pid or
a {pid, ref} tuple.
	:follow - Follow the log stream of the pod. If this is set to true,
the connection is kept alive which blocks current the process. Defaults to
true.
	:insecureSkipTLSVerifyBackend - insecureSkipTLSVerifyBackend indicates
that the apiserver should not confirm the validity of the serving
certificate of the backend it is connecting to. This will make the HTTPS
connection between the apiserver and the backend insecure. This means the
apiserver cannot verify the log data it is receiving came from the real
kubelet. If the kubelet is configured to verify the apiserver's TLS
credentials, it does not mean the connection to the real kubelet is
vulnerable to a man in the middle attack (e.g. an attacker could not
intercept the actual log data coming from the real kubelet).
	:limitBytes - If set, the number of bytes to read from the server before
terminating the log output. This may not display a complete final line of
logging, and may return slightly more or slightly less than the specified
limit.
	:pretty - If 'true', then the output is pretty printed.
	:previous - Return previous terminated container logs. Defaults to false.
	:sinceSeconds - A relative time in seconds before the current time from
which to show logs. If this value precedes the time a pod was started,
only logs since the pod start will be returned. If this value is in the
future, no logs will be returned. Only one of sinceSeconds or sinceTime
may be specified.
	:tailLines - If set, the number of lines from the end of the logs to
show. If not specified, logs are shown from the creation of the container
or sinceSeconds or sinceTime
	:timestamps - If true, add an RFC3339 or RFC3339Nano timestamp at the
beginning of every line of log output. Defaults to false.
	:opts (optional) - Additional options passed to Req

 Summary

 Functions

 args_to_opts(args)

 child_spec(init_arg)

 close(dest)

 Close the connection and terminate the process.

 close(dest, code, reason)

 Send a close frame to close the websocket.

 connect_and_stream(req)

 open?(dest)

 Check if the websocket is open.

 start_link(args)

 Functions

 args_to_opts(args)

 child_spec(init_arg)

 close(dest)

 @spec close(dest :: :gen_statem.server_ref()) :: :ok

Close the connection and terminate the process.

 close(dest, code, reason)

Send a close frame to close the websocket.

 connect_and_stream(req)

 open?(dest)

Check if the websocket is open.

 start_link(args)

 Kubereq.Kubeconfig - kubereq v0.4.2

Kubereq.Kubeconfig

This is the Pluggable.Token for the pipeline loading the Kubernetes config.
The Kubeconfig represents the configuration to establish a connection to
the Kubernetes cluster. It contains informations like endpoint, certificates,
user authentication details etc.
In most cases you can just rely on Kubereq.Kubeconfig.Default to load
the Kubeconfig from well-known places.
Sometimes you only want to allow to load the Kubeconfig from a specific
YAML file or rely on an ENV variable pointing to that file. Check out
the Kubereq.Kubeconfig.* modules.
You can also chain these modules to build your own Kubeconfig loader pipeline.
defmodule MyKubeconfLoader do
 use Pluggable.StepBuilder

 step Kubereq.Kubeconfig.ENV
 step Kubereq.Kubeconfig.File, path: "/path/to/kubeconfig.yaml"
end

 Summary

 Types

 t()

 The %Kubereq.Kubeconfig{} struct holds information required to connect to
Kubernetes clusters

 Functions

 load(pipeline)

 Loads the Kubernetes config by running the given pipeline. Returns the
resulting %Kubereq.Kubeconfig{}.

 new!(fields)

 Creates a new %Kubereq.Kubeconfig{} struct with the given fields

 set_current_context(kubeconfig, current_context)

 Sets the current context. This function sets current_cluster and
current_user in the given Kubereq.Kubeconfig.t()

 Types

 t()

 @type t() :: %Kubereq.Kubeconfig{
 assigns: map(),
 clusters: [map()],
 contexts: [map()],
 current_cluster: map(),
 current_context: String.t(),
 current_namespace: String.t() | nil,
 current_user: map(),
 halted: boolean(),
 users: [map()]
}

The %Kubereq.Kubeconfig{} struct holds information required to connect to
Kubernetes clusters
For descriptions of the fields, refer to the
kubeconfig.v1 documentation.

 Functions

 load(pipeline)

 @spec load(pipeline :: module() | {module(), keyword()}) :: t()

Loads the Kubernetes config by running the given pipeline. Returns the
resulting %Kubereq.Kubeconfig{}.
pipeline can be passed in the form of {pipeline_module, opts} tuples,
a single pipeline_module or a list of either.

 Example

Single pipeline module without opts passed as module:
Kubereq.Kubeconfig.load(Kubereq.Kubeconfig.Default)
Single pipeline module with opts:
Kubereq.Kubeconfig.load({Kubereq.Kubeconfig.File, path: "/path/to/kubeconfig"})
List of either:
Kubereq.Kubeconfig.load([
 Kubereq.Kubeconfig.ENV,
 {Kubereq.Kubeconfig.File, path: "~/.kube/config"},
 Kubereq.Kubeconfig.ServiceAccount
])

 new!(fields)

 @spec new!(keyword()) :: t()

Creates a new %Kubereq.Kubeconfig{} struct with the given fields

 set_current_context(kubeconfig, current_context)

 @spec set_current_context(kubeconfig :: t(), current_context :: String.t()) :: t()

Sets the current context. This function sets current_cluster and
current_user in the given Kubereq.Kubeconfig.t()

 Kubereq.Kubeconfig.Default - kubereq v0.4.2

Kubereq.Kubeconfig.Default

Default pipeline of pluggable steps for loading the Kubeconfig. Tries to
build the Kubeconfig from different default settings.
	Checks for the KUBECONFIG environment variable. If it is set and pointing
to a Kubeconfig file, that file is imported.
	Checks for $HOME/.kube/config.
	Checks if running inside a Cluster and tries to connect using the Service
Account Token.

 Example

Usage in a pipeline created with Pluggable.StepBuilder:
defmodule MyApp.KubeconfLoader do
 use Pluggable.StepBuilder

 step Kubereq.Kubeconfig.Default
end

 Kubereq.Kubeconfig.ENV - kubereq v0.4.2

Kubereq.Kubeconfig.ENV

Pluggable step that loads the Kubeconfig from a config file whose location is
defined by an ENV variable. Uses Kubereq.Kubeconfig.File under the hood.

 Examples

step Kubereq.Kubeconfig.ENV
By default, this step assumes the name of the variable to be KUBECONFIG.
This can be customized through the :env_var option
step Kubereq.Kubeconfig.ENV, env_var: SPECIAL_KUBECONFIG

 Options

	env_var - (optional) The name of the environment variable. Defaults to
KUBECONFIG
	! - (optional. And yes, that's a valid atom) Raise an exception if the
env var not found. Defaults to false.

 Kubereq.Kubeconfig.File - kubereq v0.4.2

Kubereq.Kubeconfig.File

Pluggable step that load the Kubeconfig from a file.
step Kubereq.Kubeconfig.File, path: "path/to/kubeconfig-integration.yaml"
If the config file defined by the :path option is not found on disk, by
default, the step gracefully returns the kubeconfig that was passed as
argument. If you want the step to raise an ArgumentException instead, you
can set the option !: true.

 Options

	:path - Path to the config file.
	:! - (optional. And yes, that's a valid atom) Raise an exception if the
config file is not found. Defaults to false.
	:context - (optional) Sets the current context in case there's multiple
contexts defined in the config file. Defaults to what's defined in the
"current-context" field in the loaded config.

 Kubereq.Kubeconfig.ServiceAccount - kubereq v0.4.2

Kubereq.Kubeconfig.ServiceAccount

Pluggable step that builds the Kubeconfig using a Service Account's token for
authentication.
When running the app inside a Kubernetes cluster, make sure RBAC is configured
correctly and use this step. It reads the service account's JWC token and
build the Kubeconfig accordingly.

 Examples

step Kubereq.Kubeconfig.ServiceAccount
If your token is mounted at a different location than the default, pass its
location as :path_to_folder.
step Kubereq.Kubeconfig.ServiceAccount, path_to_folder: "path/to/folder/with/token"

 Options

	path_to_folder - (optional) Path to the folder where the token, ca.crt
and namespace files of the service account are located. Defaults to
"/var/run/secrets/kubernetes.io/serviceaccount"
	:! - (optional. And yes, that's a valid atom) Raise an exception if the
config file is not found. Defaults to false.

 Kubereq.Kubeconfig.Stub - kubereq v0.4.2

Kubereq.Kubeconfig.Stub

Req testing conveniences for kubereq requests.
Since kubereq is using Req under the hood, we can use
Req.Test to run requests through
mocks/stubs. Using this step as your Kubeconfig pipeline, you can set a stub
on the Req.Request configured by this step.
In your tests, you can then use Req.Test according to its documentation.

 Example

Imagine we're building an app with a pod client that lists pods on the
cluster.
We start off by defining a module for loading the Kubernetes config:
defmodule MyApp.Kubeconfig do
 @kubeconfig_pipeline Application.compile_env(:myapp, :kubeconfig_pipeline)

 def load(), do: Kubereq.Kubeconfig.load(@kubeconfig_pipeline)
end
We then implement the pod client using the Kubeconfig loader to create a
Req.Request:
defmodule MyApp.PodClient do
 @resource_path "api/v1/namespaces/:namespace/pods/:name"

 def list(namespace) do
 req = Kubereq.new(MyApp.Kubeconfig.load(), @resource_path)

 {:ok, resp} = Kubereq.list(req, namespace)
 resp.body["items"]
 end
end
We configure the kubeconfig pipeline for production using
Kubereq.Kubeconfig.Default as our pipeline to load the Kubeconfig:
config/prod.exs
config :myapp, kubeconfig_pipeline: Kubereq.Kubeconfig.Default
In tests, instead of sending requests to the cluster, we make the request
against a plug stub named MyApp.Cluster:
config/test.exs
config :myapp, kubeconfig_pipeline: {Kubereq.Kubeconfig.Stub, plugs: {Req.Test, MyApp.Cluster}}
Now we can control our stubs in concurrent tests:
use ExUnit.Case, async: true

test "many pods" do
 Req.Test.stub(MyApp.Cluster, fn conn ->
 Req.Test.json(conn, %{
 "apiVersion" => "v1",
 "kind" => "List",
 "items" => [
 %{
 "apiVersion" => "v1",
 "kind" => "Pod"
 # ...
 }
]
 })
 end)

 assert [_] = MyApp.PodClient.list("default")
end

 Stubs per Context

If you want to simulate multiple different clusters or different responses for
the same calls, you can pass a %{context :: String.t() => plug :: tuple} map
to as plugs option.
config/test.exs
config :myapp, kubeconfig_pipeline: {Kubereq.Kubeconfig.Stub, plugs: %{
 "happy-path" => {Req.Test, MyApp.HappyPathCluster}
 "missing-permissions" => {Req.Test, MyApp.MissingPermissionsCluster}
}}

 Options

	plugs - The plug or %{context => plug} map to be configured on the
Req.Request configured by this step.

 Kubereq.Step.FieldSelector - kubereq v0.4.2

Kubereq.Step.FieldSelector

Req step to format field selectors.
Field selectors let you select Kubernetes objects based on the value of one or more resource fields.
The concept is explained on the Kubernetes documentation
Field Selectors
The functions for listing and watching resources accept an option
:field_selectors as a list of strings or tuples.

 Examples

The following are equivalent field selectors for equality:
	"metadata.name=my-service"
	"metadata.name==my-service"
	{"metadata.name", "my-service"} *{"metadata.name", {:eq, "my-service"}}

The following are equivalent field selectors for inequality:
	"metadata.namespace!=default"
	{"metadata.namespace", {:neq, "default"}}
	{"metadata.namespace", {:ne, "default"}}

 Summary

 Functions

 call(req)

 Functions

 call(req)

 Kubereq.Step.LabelSelector - kubereq v0.4.2

Kubereq.Step.LabelSelector

Req step to format label selectors.
Label selectors are used to filter list and watch operations by resource
labels. The concept is explained on the Kubernetes
documentation Labels and Selectors
The functions for listing and watching resources accept an option
:label_selectors as a list of strings or tuples.

 Equality-based requirements

The following are equivalent label selectors for equality:
	"environment = production"
	{"environment", "production"}
	{"environment", {:eq, "production"}}

The following are equivalent label selectors for inequality:
	"tier != frontend"
	{"tier", {:neq, "frontend"}}
	{"tier", {:ne, "frontend"}}

 Set-based requirements

The following are equivalent label selectors for In requirements:
	"environment in (production, qa)"
	{"environment", ["production", "qa"]}
	{"environment", {:in, ["production", "qa"]}}

The following are equivalent label selectors for NotIn requirements:
	"tier notin (frontend, backend)"
	{"tier", {:notin, ["frontend", "backend"]}}
	{"tier", {:not_in, ["frontend", "backend"]}}

The following are equivalent label selectors for Exists requirements:
	"partition"
	{"partition"}
	{"partition", :exists}

The following are equivalent label selectors for not DoesNotExist requirements:
	"!partition"
	{"!partition"}
	{"partition", :notexists}
	{"partition", :not_exists}

 Summary

 Functions

 call(req)

 Functions

 call(req)

 Kubereq.Error.KubeconfError - kubereq v0.4.2

Kubereq.Error.KubeconfError exception

Indicates an error with the Kubernetes Configuration

 Summary

 Types

 t()

 Functions

 new(code, fields \\ [])

 Types

 t()

 @type t() :: %Kubereq.Error.KubeconfError{
 __exception__: true,
 code: atom(),
 message: String.t(),
 upstream: Exception.t()
}

 Functions

 new(code, fields \\ [])

 @spec new(atom(), Keyword.t() | nil) :: t()

 Kubereq.Error.StepError - kubereq v0.4.2

Kubereq.Error.StepError exception

Indicates an error during the Req steps processing.

 Summary

 Types

 t()

 Functions

 new(code, upstream \\ nil)

 Types

 t()

 @type t() :: %Kubereq.Error.StepError{
 __exception__: true,
 code: atom(),
 message: String.t(),
 upstream: Exception.t()
}

 Functions

 new(code, upstream \\ nil)

 @spec new(atom(), Exception.t() | nil) :: t()

OEBPS/dist/epub-4WIP524F.js
