

 kubernetes_health_check

 v0.7.1

 Table of contents

 	kubernetes_health_check

 	Changelog

 	License (Apache-2.0)

 	Contributing

 	Code of Conduct

 	
 Modules

 	KubernetesHealthCheck

 	KubernetesHealthCheck.Plug

 kubernetes_health_check

Health check Plug with Kubernetes semantics.
Kubernetes has well defined semantics for how health checks should behave,
distinguishing between between startup, liveness, and readiness:
Liveness is the core health check. It determines whether the app is alive
and able to respond to requests. It should be relatively fast, as it is called
frequently, but should include checks for dependencies, e.g. whether the app
can connect to a database or back end service. If the liveness check fails for
a specified period, Kubernetes kills and replaces the instance.
Startup checks whether the app has finished booting up. It is useful when
the app may take significant time to start, e.g. because it is loading data
from a cache. Separating this from liveness allows us to use different
timeouts, rather than making the liveness timeout long enough to support
startup. Once startup has completed successfully, Kubernetes does not call it
again, it uses the liveness check.
Readiness checks whether the app should receive requests. Kubernetes uses
it to decide whether to route traffic to the the instance. If the readiness
probe fails, Kubernetes doesn't kill and restart the container, instead it
marks the pod as "unready" and stops sending traffic to it, e.g. in the
ingress. It is useful to temporarily stop serving traffic, e.g. when the
instance is overloaded or it has transient problems connecting to a back end
service.
See this blog post for more background:
https://www.cogini.com/blog/kubernetes-health-checks-for-elixir-apps/
Links:
	https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
	https://shyr.io/blog/kubernetes-health-probes-elixir

Following is an example Kubernetes deployment yaml configuration:
 startupProbe:
 httpGet:
 path: /healthz/startup
 port: http
 periodSeconds: 3
 failureThreshold: 5

 livenessProbe:
 httpGet:
 path: /healthz/liveness
 port: http
 periodSeconds: 10
 failureThreshold: 6

 readinessProbe:
 httpGet:
 path: /healthz/readiness
 port: http
 periodSeconds: 10
 failureThreshold: 1
Installation
Add the package to your list of dependencies in mix.exs:
def deps do
 [
 {:kubernetes_health_check, "~> 0.7.0"}
]
end
Usage
Add KubernetesHealthCheck.Plug to your endpoint or router.
Place it at the very top to avoid noise in your logs from health checks.
plug KubernetesHealthCheck.Plug,
 mod: Foo.Health,
 base_path: "/healthz"
Options:
	:mod - Callback module which implements the health checks for the app, default KubernetesHealthCheck
	:base_path - Base request_path for health checks, default /healthz
	:startup_path - Path for startup check, default <base_path>/startup
	:liveness_path - Path for liveness check, default <base_path>/liveness
	:readiness_path - Path for readiness check, default <base_path>/readiness

Add a module which provides the app-specific health checks.
Following is an example:
defmodule Example.Health do
 @moduledoc """
 Collect app status for Kubernetes health checks.
 """
 alias Example.Repo

 @app :example
 @repos Application.compile_env(@app, :ecto_repos) || []

 @type check_return ::
 :ok
 | {:error, {status_code :: non_neg_integer(), reason :: binary()}}
 | {:error, reason :: binary()}

 @doc """
 Check if the app has finished booting up.

 This returns app status for the Kubernetes `startupProbe`.
 Kubernetes checks this probe repeatedly until it returns a successful
 response. After that, Kubernetes switches to executing the other two probes.
 If the app fails to successfully start before the `failureThreshold` time is
 reached, Kubernetes kills the container and restarts it.

 For example, this check might return OK when the app has started the
 web-server, connected to a DB, connected to external services, and performed
 initial setup tasks such as loading a large cache.
 """
 @spec startup :: check_return()
 def startup do
 # Return error if there are available migrations which have not been executed.
 # This supports deployment to AWS ECS using the following strategy:
 # https://engineering.instawork.com/elegant-database-migrations-on-ecs-74f3487da99f
 #
 # By default Elixir migrations lock the database migration table, so they
 # will only run from a single instance.
 migrations =
 @repos
 |> Enum.map(&Ecto.Migrator.migrations/1)
 |> List.flatten()

 if Enum.empty?(migrations) do
 liveness()
 else
 {:error, "Database not migrated"}
 end
 end

 @doc """
 Check if the app is alive and working properly.

 This returns app status for the Kubernetes `livenessProbe`.
 Kubernetes continuously checks if the app is alive and working as expected.
 If it crashes or becomes unresponsive for a specified period of time,
 Kubernetes kills and replaces the container.

 This check should be lightweight, only determining if the server is
 responding to requests and can connect to the DB.
 """
 @spec liveness :: check_return()
 def liveness do
 case Ecto.Adapters.SQL.query(Repo, "SELECT 1") do
 {:ok, %{num_rows: 1, rows: [[1]]}} ->
 :ok

 {:error, reason} ->
 {:error, inspect(reason)}
 end
 rescue
 e ->
 {:error, inspect(e)}
 end

 @doc """
 Check if app should be serving public traffic.

 This returns app status for the Kubernetes `readinessProbe`.
 Kubernetes continuously checks if the app should serve traffic. If the
 readiness probe fails, Kubernetes doesn't kill and restart the container,
 instead it marks the pod as "unready" and stops sending traffic to it, e.g.
 in the ingress.

 This is useful to temporarily stop serving requests. For example, if the app
 gets a timeout connecting to a back end service, it might return an error for
 the readiness probe. After multiple failed attempts, it would switch to
 returning false for the `livenessProbe`, triggering a restart.

 Similarly, the app might return an error if it is overloaded, shedding
 traffic until it has caught up.
 """
 @spec readiness :: check_return()
 def readiness do
 liveness()
 end

 @spec basic :: check_return()
 def basic do
 :ok
 end
end
Docs can be found at https://hexdocs.pm/kubernetes_health_check.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[0.7.1] - 2025-08-14
Changed
	Update libraries

[0.7.0] - 2024-12-11
Added
	Initial release

 Apache License

Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.
"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.
"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.
2. Grant of Copyright License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.
3. Grant of Patent License.
Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.
4. Redistribution.
You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:
	You must give any other recipients of the Work or Derivative Works a copy of
this License; and

	You must cause any modified files to carry prominent notices stating that
You changed the files; and

	You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those
notices that do not pertain to any part of the Derivative Works, in at least
one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only
and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.
5. Submission of Contributions.
Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.
6. Trademarks.
This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.
7. Disclaimer of Warranty.
Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.
8. Limitation of Liability.
In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability.
While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2021-2023, Jake Morrison jake@cogini.com.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 Contributing to Uinta

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved!
Also make sure you read our Code of Conduct that outlines our commitment towards an open and welcoming environment.
Using the issue tracker
Use the issues tracker for:
	Bug reports
	Submitting pull requests

We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Uinta.
Bug reports
A bug is either a demonstrable problem that is caused by the code in the repository,
or indicate missing, unclear, or misleading documentation. Good bug reports are extremely
helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally create a reduced test
case.

Please try to be as detailed as possible in your report. Include information about
your Operating System, as well as your Erlang, Elixir and Uinta versions. Please provide steps to
reproduce the issue as well as the outcome you were expecting! All these details
will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title
A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.
	This is the first step
	This is the second step
	Further steps, etc.

<url> - a link to the reduced test case (e.g. a GitHub Gist)
Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

Contributing Documentation
Code documentation (@doc, @moduledoc, @typedoc) has a special convention:
the first paragraph is considered to be a short summary.
For functions, macros and callbacks say what it will do. For example write
something like:
@doc """
Marks the given value as HTML safe.
"""
def safe({:safe, value}), do: {:safe, value}
For modules, protocols and types say what it is. For example write
something like:
defmodule MyModule do
 @moduledoc """
 Conveniences for working HTML strings and templates.
 ...
 """
Keep in mind that the first paragraph might show up in a summary somewhere, long
texts in the first paragraph create very ugly summaries. As a rule of thumb
anything longer than 80 characters is too long.
Try to keep unnecessary details out of the first paragraph, it's only there to
give a user a quick idea of what the documented "thing" does/is. The rest of the
documentation string can contain the details, for example when a value and when
nil is returned.
If possible include examples, preferably in a form that works with doctests.
This makes it easy to test the examples so that they don't go stale and examples
are often a great help in explaining what a function does.
Pull requests
Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.
IMPORTANT: By submitting a patch, you agree that your work will be
licensed under the license used by the project.
If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc), please ask first otherwise you risk spending
a lot of time working on something that the project's developers might
not want to merge into the project.
Please adhere to the coding conventions in the project (indentation,
accurate comments, etc.) and don't forget to add your own tests and
documentation. When working with git, we recommend the following process
in order to craft an excellent pull request:
	Fork the project, clone your fork,
and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/uinta

Navigate to the newly cloned directory
cd uinta

Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/podium/uinta

	If you cloned a while ago, get the latest changes from upstream, and update your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's
interactive rebase
feature to tidy up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!
Guides
These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discrete topic, then write a small amount of code to demonstrate the
concept, then verify that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the elixir code fence for all module code.
	We use the iex for IEx sessions.
	We use the console code fence for shell commands.
	We use the html code fence for html templates, even if there is elixir code
in the template.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.
	Documentation line length should hard wrapped at around 100 characters if possible.

 Contributor Covenant Code of Conduct

Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
engineering@therealreal.com. All complaints will be reviewed and investigated
promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
1. Correction
Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
2. Warning
Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
3. Temporary Ban
Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.
Attribution
This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

KubernetesHealthCheck

Health check with Kubernetes semantics.
This module is called by KubernetesHealthCheck.Plug to perform
application-specific logic.
To avoid bringing in excess dependencies, this module is a dummy that always
returns :ok. You should implement your own functions that perform useful checks.

 Summary

 Types

 check_return()

 Functions

 basic()

 Basic health check.

 liveness()

 Check if the app is alive and working properly.

 readiness()

 Check if app should be serving public traffic.

 startup()

 Check if the app has finished booting up.

 Types

 check_return()

 @type check_return() ::
 :ok
 | {:error, {status_code :: non_neg_integer(), reason :: binary()}}
 | {:error, reason :: binary()}

 Functions

 basic()

 @spec basic() :: check_return()

Basic health check.
This is a sanity check that the app is running and responding to requests.
It should always succeed.

 liveness()

 @spec liveness() :: check_return()

Check if the app is alive and working properly.
This returns app status for the Kubernetes livenessProbe.
Kubernetes continuously checks if the app is alive and working as expected.
If it crashes or becomes unresponsive for a specified period of time,
Kubernetes kills and replaces the container.
This check should be lightweight, only determining if the server is
responding to requests and can connect to the DB.

 readiness()

 @spec readiness() :: check_return()

Check if app should be serving public traffic.
This returns app status for the Kubernetes readinessProbe.
Kubernetes continuously checks if the app should serve traffic. If the
readiness probe fails, Kubernetes doesn't kill and restart the container,
instead it marks the pod as "unready" and stops sending traffic to it, e.g.
in the ingress.
This is useful to temporarily stop serving requests. For example, if the app
gets a timeout connecting to a back end service, it might return an error for
the readiness probe. After multiple failed attempts, it would switch to
returning false for the livenessProbe, triggering a restart.
Similarly, the app might return an error if it is overloaded, shedding
traffic until it has caught up.

 startup()

 @spec startup() :: check_return()

Check if the app has finished booting up.
This returns app status for the Kubernetes startupProbe.
Kubernetes checks this probe repeatedly until it returns a successful
response. After that, Kubernetes switches to executing the other two probes.
If the app fails to successfully start before the failureThreshold time is
reached, Kubernetes kills the container and restarts it.
For example, this check might return OK when the app has started the
web-server, connected to a DB, connected to external services, and performed
initial setup tasks such as loading a large cache.

KubernetesHealthCheck.Plug

Plug to return health check results.
It calls the app module which does the actual checking.
Following is an example Kubernetes deployment yaml configuration:
startupProbe:
 httpGet:
 path: /healthz/startup
 port: http
 periodSeconds: 3
 failureThreshold: 5

livenessProbe:
 httpGet:
 path: /healthz/liveness
 port: http
 periodSeconds: 10
 failureThreshold: 6

readinessProbe:
 httpGet:
 path: /healthz/readiness
 port: http
 periodSeconds: 10
 failureThreshold: 1
Installation
Add the plug to your endpoint or router.
It whould normally be placed above the logger to avoid noise in your logs
from health checks.
plug KubernetesHealthCheck.Plug,
 mod: Example.Health,
 base_path: "/healthz"
Init Options
	:mod - Callback module which implements the health checks for the app, default KubernetesHealthCheck
	:base_path - Base request_path for health checks, default /healthz
	:startup_path - Path for startup check, default <base_path>/startup
	:liveness_path - Path for liveness check, default <base_path>/liveness
	:readiness_path - Path for readiness check, default <base_path>/readiness

 Summary

 Functions

 call(conn, arg2)

 init(opts)

 Functions

 call(conn, arg2)

 init(opts)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

