

 kujira

 v0.1.12

 Table of contents

 	Modules

 	Kujira

 	Kujira.Contract

 	Kujira.Ghost

 	Kujira.Ghost.Market

 	Kujira.Ghost.Market.Status

 	Kujira.Ghost.Position

 	Kujira.Ghost.Vault

 	Kujira.Ghost.Vault.Status

 	Kujira.Oracle

 	Kujira.Orca

 	Kujira.Orca.Bid

 	Kujira.Orca.Liquidation

 	Kujira.Orca.Market

 	Kujira.Orca.Pool

 	Kujira.Orca.Queue

 	Kujira.Token

 	Mix Tasks

 	mix dump_tx

Kujira

Documentation for Kujira.

Kujira.Contract

Convenience methods for querying CosmWasm smart contracts on Kujira

 Summary

 Functions

 by_code(channel, code_id)

 by_codes(channel, code_ids)

 get(channel, arg)

 list(channel, module, code_ids)

 query_state_all(channel, address, expires_in \\ 60 * 60 * 1000)

 Queries the full, raw contract state at an address. Default 1h cache

 query_state_smart(channel, address, query)

 stream_state_all(channel, address)

 Streams the current contract state

 Functions

 Link to this function

 by_code(channel, code_id)

 @spec by_code(GRPC.Channel.t(), integer()) ::
 {:ok, [String.t()]} | {:error, GRPC.RPCError.t()}

 Link to this function

 by_codes(channel, code_ids)

 @spec by_codes(GRPC.Channel.t(), [integer()]) ::
 {:ok, [String.t()]} | {:error, GRPC.RPCError.t()}

 Link to this function

 get(channel, arg)

 @spec get(
 Channel.t(),
 {module(), String.t()}
) :: {:ok, struct()} | {:error, :not_found}

 Link to this function

 list(channel, module, code_ids)

 @spec list(GRPC.Channel.t(), module(), [integer()]) :: {:ok, [struct()]} | :error

 Link to this function

 query_state_all(channel, address, expires_in \\ 60 * 60 * 1000)

 @spec query_state_all(GRPC.Channel.t(), String.t(), integer() | nil) ::
 {:ok, map()} | {:error, GRPC.RPCError.t()}

Queries the full, raw contract state at an address. Default 1h cache

 Link to this function

 query_state_smart(channel, address, query)

 @spec query_state_smart(GRPC.Channel.t(), String.t(), map()) ::
 {:ok, map()} | {:error, GRPC.RPCError.t()}

 Link to this function

 stream_state_all(channel, address)

Streams the current contract state

Kujira.Ghost

Kujira's lending platform.
It has a vault-market architecture, where multiple Market can draw down from a single Vault. A Market must be whitelisted,
as the repayment is guaranteed by its own execution logic, e.g. being over-collateralised and having a connection to Orca
to liquidate collateral when needed

 Summary

 Functions

 get_market(channel, address)

 Fetches the Market contract and its current config from the chain.

 get_vault(channel, address)

 Fetches the Vault contract and its current config from the chain.

 list_markets(channel, code_ids \\ [136, 186])

 Fetches all Markets. This will only change when config changes or new Markets are added.
It's Memoized, clearing every 24h.

 list_vaults(channel, code_ids \\ [140])

 Fetches all Vaults. This will only change when config changes or new Vaults are added.
It's Memoized, clearing every 24h.

 load_market(channel, market)

 Loads the current Status into the Market

 load_orca_market(channel, market, precision \\ 3)

 Loads the Market into a format that Orca can consume for health reporting.
It's Memoized due to the call to Contract.query_state_all, clearing every 10m.

 load_vault(channel, vault)

 Loads the current Status into the Vault

 load_vault_oracle_price(channel, vault)

 stream_positions(channel, market, vault)

 Creates a lazy stream for fetching all positions for a Market

 Functions

 Link to this function

 get_market(channel, address)

 @spec get_market(GRPC.Channel.t(), String.t()) ::
 {:ok, Kujira.Ghost.Market.t()} | {:error, :not_found}

Fetches the Market contract and its current config from the chain.
Config is very very rarely changed, if ever, and so this function is Memoized by default.
Clear with Memoize.invalidate(Kujira.Ghost, :get_market, [address])

 Link to this function

 get_vault(channel, address)

 @spec get_vault(GRPC.Channel.t(), String.t()) ::
 {:ok, Kujira.Ghost.Vault.t()} | {:error, :not_found}

Fetches the Vault contract and its current config from the chain.
Config is very very rarely changed, if ever, and so this function is Memoized by default.
Clear with Memoize.invalidate(Kujira.Ghost, :get_vault, [address])

 Link to this function

 list_markets(channel, code_ids \\ [136, 186])

 @spec list_markets(GRPC.Channel.t(), [integer()]) ::
 {:ok, [Kujira.Ghost.Market.t()]} | :error

Fetches all Markets. This will only change when config changes or new Markets are added.
It's Memoized, clearing every 24h.
Manually clear with Memoize.invalidate(Kujira.Ghost, :list_markets)

 Link to this function

 list_vaults(channel, code_ids \\ [140])

 @spec list_vaults(GRPC.Channel.t(), [integer()]) ::
 {:ok, [Kujira.Ghost.Vault.t()]} | :error

Fetches all Vaults. This will only change when config changes or new Vaults are added.
It's Memoized, clearing every 24h.
Manually clear with Memoize.invalidate(Kujira.Ghost, :list_vaults)

 Link to this function

 load_market(channel, market)

 @spec load_market(GRPC.Channel.t(), Kujira.Ghost.Market.t()) ::
 {:ok, Kujira.Ghost.Market.t()} | :error

Loads the current Status into the Market

 Link to this function

 load_orca_market(channel, market, precision \\ 3)

 @spec load_orca_market(GRPC.Channel.t(), Kujira.Ghost.Market.t(), integer() | nil) ::
 {:ok, Kujira.Orca.Market.t()} | :error

Loads the Market into a format that Orca can consume for health reporting.
It's Memoized due to the call to Contract.query_state_all, clearing every 10m.
Manually clear with Memoize.invalidate(Kujira.Contract, :query_state_all, [market.address])

 Link to this function

 load_vault(channel, vault)

 @spec load_vault(GRPC.Channel.t(), Kujira.Ghost.Vault.t()) ::
 {:ok, Kujira.Ghost.Vault.t()} | :error

Loads the current Status into the Vault

 Link to this function

 load_vault_oracle_price(channel, vault)

 Link to this function

 stream_positions(channel, market, vault)

 @spec stream_positions(
 GRPC.Channel.t(),
 Kujira.Ghost.Market.t(),
 Kujira.Ghost.Vault.t()
) :: %Stream{
 accs: term(),
 done: term(),
 enum: term(),
 funs: term()
}

Creates a lazy stream for fetching all positions for a Market

Kujira.Ghost.Market

A Ghoat market taked deposits of collateral_token, and allows borrowing of the vault.deposit_token, up to the maximum LTV as quoted by the oracle denoms

 Fields

	:address - The address of the market

	:owner - The owner of the market

	:vault_address - The address of Vault that the Market draws from

	:orca_address - The address of the Orca Queue that is used to liquidate the collateral token

	:collateral_token - The token used to back the loan

	:collateral_oracle_denom - The denom string that is used to price the collateral token

	:max_ltv - MAximum loan-to-value ratio of a position

	:full_liquidation_threshold - The value of collateral (as priced by collateral oracle, 6dp), below which a position is 100% liquidated

	:partial_liquidation_target - The target LTV when a position is partially liquidated

	:borrow_fee - The amount of the borrowed asset retained as a fee when borrow amount is increased

 Summary

 Types

 t()

 Functions

 from_config(address, map)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Ghost.Market{
 address: String.t(),
 borrow_fee: Decimal.t(),
 collateral_oracle_denom: String.t(),
 collateral_token: Kujira.Token.t(),
 full_liquidation_threshold: integer(),
 max_ltv: Decimal.t(),
 orca_queue: {Kujira.Orca.Queue, String.t()},
 owner: String.t(),
 partial_liquidation_target: Decimal.t(),
 status: :not_loaded | Kujira.Ghost.Market.Status.t(),
 vault: {Kujira.Ghost.Vault, String.t()}
}

 Functions

 Link to this function

 from_config(address, map)

 @spec from_config(String.t(), map()) :: {:ok, t()} | :error

Kujira.Ghost.Market.Status

The current deposit and borrow totals

 Fields

	:deposited - The amount of collateral_token deposited

	:borrowed - The amount of the Vault deposit_token borrowed

 Summary

 Types

 t()

 Functions

 from_query(map)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Ghost.Market.Status{borrowed: integer(), deposited: integer()}

 Functions

 Link to this function

 from_query(map)

 @spec from_query(map()) :: :error | {:ok, t()}

Kujira.Ghost.Position

An item representing the collateral deposit vs debt position of a particular address for a particular market

 Fields

	:market - The market where the position is held

	:holder - The address that owns the position

	:collateral_amount - The amount of collateral_token that has been deposited

	:debt_shares - The amount of debt_token minted and owned by this position

	:debt_amount - The resultant amount of debt owed, based on the debt_ratio

 Summary

 Types

 adjustment()

 t()

 Functions

 from_query(market, vault, map)

 from_tx_response(response)

 Returns all adjustments to positions found in the tx response

 Types

 Link to this type

 adjustment()

 @type adjustment() :: :deposit | :withdrawal | :borrow | :repay

 Link to this type

 t()

 @type t() :: %Kujira.Ghost.Position{
 collateral_amount: integer(),
 debt_amount: integer(),
 debt_shares: integer(),
 holder: String.t(),
 market: {Kujira.Ghost.Market, String.t()}
}

 Functions

 Link to this function

 from_query(market, vault, map)

 @spec from_query(Kujira.Ghost.Market.t(), Kujira.Ghost.Vault.t(), map()) ::
 :error | t()

 Link to this function

 from_tx_response(response)

 @spec from_tx_response(TxResponse.t()) ::
 [{{Kujira.Ghost.Market, String.t()}, String.t(), adjustment()}] | nil

Returns all adjustments to positions found in the tx response

Kujira.Ghost.Vault

A central vault for deposits of a specific deposit_token, which is lent to the Vault's markets, and interest earned on deposits

 Fields

	:address - The address of the market

	:owner - The owner of the market

	:deposit_token - The token deposited into the vault to be lent

	:oracle_denom - The denom string that is used to price the deposit token

	:receipt_token - The token minted on deposit, that represents ownership of that deposit

	:debt_token - The token minted and sent to a Market when borrowing, use as an accounting tool to accrue interest on debt

	:markets - The whitelisted markets that are allowed to borrow from the Vault

 Summary

 Types

 t()

 Functions

 from_config(address, map)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Ghost.Vault{
 address: String.t(),
 debt_token: Kujira.Token.t(),
 deposit_token: Kujira.Token.t(),
 markets: :not_loaded | [Kujira.Ghost.Market.t()],
 oracle_denom: {:live, String.t()} | {:static, Decimal.t()},
 owner: String.t(),
 receipt_token: Kujira.Token.t(),
 status: :not_loaded | Kujira.Ghost.Vault.Status.t()
}

 Functions

 Link to this function

 from_config(address, map)

 @spec from_config(String.t(), map()) :: {:ok, t()} | :error

Kujira.Ghost.Vault.Status

The current deposit and borrow totals

 Fields

	:deposited - The amount of deposit_token deposited

	:borrowed - The amount of the Vault deposit_token lent out

	:rate - The current interest rate charged on lent tokens

	:deposit_ratio - The ratio between deposit_token and receipt_token

	:debt_ratio - The ratiop between the debt_token and the amount of deposit_token owed by the borrowing Market

 Summary

 Types

 t()

 Functions

 from_query(map)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Ghost.Vault.Status{
 borrowed: integer(),
 debt_ratio: Decimal.t(),
 deposit_ratio: Decimal.t(),
 deposited: integer(),
 rate: Decimal.t()
}

 Functions

 Link to this function

 from_query(map)

 @spec from_query(map()) :: :error | {:ok, t()}

Kujira.Oracle

Utility functions for querying the on-chain oracle

 Summary

 Functions

 load_price(channel, denom)

 Functions

 Link to this function

 load_price(channel, denom)

 @spec load_price(GRPC.Channel.t(), any()) :: {:ok, Decimal.t()} | :error

Kujira.Orca

Methods for querying the Orca Liquidation Queues, and related data

 Summary

 Functions

 get_queue(channel, address)

 Fetches the Queue contract and its current config from the chain.

 list_queues(channel, code_ids \\ [108, 122, 216, 220])

 Fetches all Liquidation Queues. This will only change when config changes or new Queues are added.
It's Memoized, clearing every 24h.

 load_bid(channel, queue, idx)

 Loads a bid for a specific Queue

 load_bids(channel, queue, address, start_after \\ nil)

 Loads a user's bids for a specific Queue

 load_queue(channel, queue)

 Loads the current contract state into the Queue; the totals of each bid pool

 Functions

 Link to this function

 get_queue(channel, address)

 @spec get_queue(GRPC.Channel.t(), String.t()) ::
 {:ok, Kujira.Orca.Queue.t()} | {:error, :not_found}

Fetches the Queue contract and its current config from the chain.
Config is very very rarely changed, if ever, and so this function is Memoized by default.
Clear with Memoize.invalidate(Kujira.Orca, :get_queue, [address])

 Link to this function

 list_queues(channel, code_ids \\ [108, 122, 216, 220])

 @spec list_queues(GRPC.Channel.t(), [integer()]) ::
 {:ok, [Kujira.Orca.Queue.t()]} | :error

Fetches all Liquidation Queues. This will only change when config changes or new Queues are added.
It's Memoized, clearing every 24h.
Manually clear with Memoize.invalidate(Kujira.Orca, :list_queues)

 Link to this function

 load_bid(channel, queue, idx)

 @spec load_bid(GRPC.Channel.t(), Kujira.Orca.Queue.t(), String.t()) ::
 {:ok, Kujira.Orca.Bid.t()} | :error

Loads a bid for a specific Queue

 Link to this function

 load_bids(channel, queue, address, start_after \\ nil)

Loads a user's bids for a specific Queue

 Link to this function

 load_queue(channel, queue)

 @spec load_queue(GRPC.Channel.t(), Kujira.Orca.Queue.t()) ::
 {:ok, Kujira.Orca.Queue.t()} | :error

Loads the current contract state into the Queue; the totals of each bid pool

Kujira.Orca.Bid

A bid placed by a user to buy liquidated collateral at a specific discount from the market price

 Fields

	:id - The unique ID of the bid

	:bid_amount - The remaining amount of the bid_token

	:filled_amount - The amount of collateral available for withdrawal

	:premium - The bid discount on the market rate

	:activation_time - When not nil, the bid must be activated at or after this time

 Summary

 Types

 t()

 Functions

 from_query(queue, map)

 from_tx_response(channel, response)

 Returns all new bids found in a specific transaction

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Orca.Bid{
 activation_time: DateTime.t() | nil | :not_loaded,
 bid_amount: integer(),
 bidder: String.t(),
 filled_amount: integer(),
 id: String.t(),
 premium: Decimal.t()
}

 Functions

 Link to this function

 from_query(queue, map)

 Link to this function

 from_tx_response(channel, response)

 @spec from_tx_response(GRPC.Channel.t(), Cosmos.Base.Abci.V1beta1.TxResponse.t()) ::
 [{String.t(), t()}] | nil

Returns all new bids found in a specific transaction

Kujira.Orca.Liquidation

An individual liquidation, as seen by Orca. These can be duplicated as the liquidating market
will also have something that represents the liquidation, but these may be different.
 ## Fields
	:txhash - The hash of the transaction the liqdation ocurred in

	:height - The block height that included the transaction

	:timestamp - The timestamp of the block

	:queue_address - The address of the liquidation queue that processed the liquidation

	:market_address - The market that requested the liquidation

	:collateral_amount - The amount of collateral liquidated by the market

	:bid_amount - The amount of bid_token that was consumed during the liquidation

	:repay_amount - The amount of bid_token that was returned to the liquidating market

	:fee_amount - The amount of the bid_token that was retained as a fee

 Summary

 Types

 t()

 Functions

 from_tx_response(response)

 Returns all liquidations found in a specific transaction

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Orca.Liquidation{
 bid_amount: integer(),
 collateral_amount: integer(),
 fee_amount: integer(),
 height: integer(),
 market_address: String.t(),
 queue_address: String.t(),
 repay_amount: integer(),
 timestamp: DateTime.t(),
 txhash: String.t()
}

 Functions

 Link to this function

 from_tx_response(response)

 @spec from_tx_response(Cosmos.Base.Abci.V1beta1.TxResponse.t()) :: [t()] | nil

Returns all liquidations found in a specific transaction

Kujira.Orca.Market

We define a Market, as far as Orca is concerned, in order to be able to standardise
and aggregate the health of the various markets that any given liquidation queue can liquidate

 Fields

	:address - The address of the market

	:health - A bucketed map of market health -
key: liquidation price,
value: total collateral between this (inclusive) and the previous liquidation price (exclusive)

 Summary

 Types

 t()

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Orca.Market{address: String.t(), health: map()}

Kujira.Orca.Pool

A pool of bid tokens at a specific premium %, for a specific Queue

 Fields

	:premium - The premium "charged" above the current market rate (ie the discount that the collateral is bought for)

	:total - The total amount of activated bid token in the pool

 Summary

 Types

 t()

 Functions

 calculate(premium_rate_per_slot, slot)

 Calculates a new Pool from the config on the Queue

 load(arg1, pool)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Orca.Pool{
 epoch: integer() | :not_loaded,
 premium: Decimal.t(),
 total: integer() | :not_loaded
}

 Functions

 Link to this function

 calculate(premium_rate_per_slot, slot)

 @spec calculate(Decimal.t(), integer()) :: t()

Calculates a new Pool from the config on the Queue

 Link to this function

 load(arg1, pool)

 @spec load(map() | nil, t()) :: t()

Kujira.Orca.Queue

An individual Orca Liquidation Queue

 Fields

	:address - The contract address

	:owner - The account authorized to make changes to contract config

	:collateral_token - The token that is being liquidated

	:bid_token - The token that is used to buy the collateral

	:bid_pools - The aggregate amounts of bids at each supported discount amount. The contract confug contains max_slot and premium_rate_per_slot, which define these pools

	:activation_threshold - The total amount of bids, above which the activation_delay must pass before a bid can be activated. This is bid_threshold on the contract interfaace

	:activation_delay - The time in seconds that must pass before a bid can be activated. This is waiting_period on the contract interface

 Summary

 Types

 t()

 Functions

 from_config(address, map)

 load_pools(pools, queue)

 Assigns the current state to the bd_pools from a direct contract query response

 populate_pools(queue, max_slot, premium_rate_per_slot)

 Enumerates all bid pools based on contract config

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Orca.Queue{
 activation_delay: integer(),
 activation_threshold: integer(),
 address: String.t(),
 bid_pools: [Kujira.Orca.Pool.t()],
 bid_token: Kujira.Token.t(),
 collateral_token: Kujira.Token.t(),
 liquidation_fee: Decimal.t(),
 owner: String.t(),
 withdrawal_fee: Decimal.t()
}

 Functions

 Link to this function

 from_config(address, map)

 @spec from_config(String.t(), map()) :: {:ok, t()} | :error

 Link to this function

 load_pools(pools, queue)

 @spec load_pools([map()], t()) :: t()

Assigns the current state to the bd_pools from a direct contract query response

 Link to this function

 populate_pools(queue, max_slot, premium_rate_per_slot)

 @spec populate_pools(t(), integer(), Decimal.t()) :: t()

Enumerates all bid pools based on contract config

Kujira.Token

Metadata for tokens on the Kujira Blockchain

 Summary

 Types

 t()

 Functions

 from_denom(denom)

 Types

 Link to this type

 t()

 @type t() :: %Kujira.Token{decimals: integer(), denom: String.t()}

 Functions

 Link to this function

 from_denom(denom)

 @spec from_denom(String.t()) :: t()

mix dump_tx

 Summary

 Functions

 run(list)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(list)

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

