LearnKit v0.1.6 LearnKit.Preprocessing View Source
Module for data preprocessing
Link to this section Summary
Functions
Prepare coefficients for normalization
Normalize data set with minimax normalization
Normalize data set
Normalize 1 feature with predefined coefficients
Link to this section Types
Link to this section Functions
Prepare coefficients for normalization
Parameters
- features: features grouped by index
- type: minimax/z_normalization
Examples
iex> LearnKit.Preprocessing.coefficients([[1, 2], [3, 4], [5, 6]], "minimax")
[{1, 5}, {2, 6}]
iex> LearnKit.Preprocessing.coefficients([[1, 2], [3, 4], [5, 6]], "z_normalization")
[{3.0, 1.632993161855452}, {4.0, 1.632993161855452}]
Normalize data set with minimax normalization
Parameters
- features: list of features for normalization
Examples
iex> LearnKit.Preprocessing.normalize([[1, 2], [3, 4], [5, 6]])
[
[0.0, 0.0],
[0.5, 0.5],
[1.0, 1.0]
]
Normalize data set
Parameters
- features: list of features for normalization
- options: keyword list with options
Options
- type: minimax/z_normalization, default is minimax, optional
Examples
iex> LearnKit.Preprocessing.normalize([[1, 2], [3, 4], [5, 6]], [type: "z_normalization"])
[
[-1.224744871391589, -1.224744871391589],
[0.0, 0.0],
[1.224744871391589, 1.224744871391589]
]
Normalize 1 feature with predefined coefficients
Parameters
- feature: feature for normalization
- coefficients: predefined coefficients
- type: minimax/z_normalization
Examples
iex> LearnKit.Preprocessing.normalize_feature([1, 2], [{1, 5}, {2, 6}], "minimax")
[0.0, 0.0]