

 let_it_crash

 v0.4.0

 Table of contents

 	Getting Started

 	LetItCrash

 	Release Notes

 	Changelog

 	
 Modules

 	LetItCrash

 LetItCrash

[image: CI]
[image: Hex.pm]
[image: Hex.pm Downloads]
[image: License: MIT]
[image: Elixir Version]
A testing library for crash recovery and OTP supervision behavior in Elixir.
Embrace the "let it crash" philosophy in your tests by easily simulating crashes and verifying that your GenServers and supervised processes recover correctly.
Why Use LetItCrash?
We know Elixir/OTP supervision works. LetItCrash doesn't test if processes restart—it tests if your application handles restarts correctly.
Real bugs this library helps catch:
	🔍 Resource leaks: Database connections, file handles, ETS entries not cleaned up
	🗂️ Registry inconsistencies: Stale entries pointing to dead processes
	💾 State corruption: Shared caches with orphaned data after crashes
	🔗 Cascade failures: Client processes crashing when servers restart
	⚙️ Incomplete initialization: Processes not fully recovering their expected state

Think of it as integration testing for your crash recovery logic, not unit testing the BEAM.
Installation
Add let_it_crash to your list of dependencies in mix.exs:
def deps do
 [
 {:let_it_crash, "~> 0.1.0", only: :test}
]
end
Usage
defmodule MyAppTest do
 use ExUnit.Case
 use LetItCrash

 test "supervised genserver recovers after crash" do
 # Start a supervisor with your GenServer
 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_worker(supervisor, :my_worker)

 # Crash by name (automatic PID tracking)
 LetItCrash.crash(:my_worker)

 # Verify recovery - waits for new PID
 assert LetItCrash.recovered?(:my_worker)

 # Clean up
 Process.exit(supervisor, :shutdown)
 end

 test "process state resets after restart" do
 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_worker(supervisor, :stateful_server)

 LetItCrash.test_restart(:stateful_server, fn ->
 # This function runs before AND after the crash
 # State will be reset to initial after restart
 MyStatefulServer.increment()
 count = MyStatefulServer.get_count()
 IO.puts("Count: #{count}") # Will be 1 before crash, 1 after (reset + increment)
 end)

 Process.exit(supervisor, :shutdown)
 end

 test "manual PID tracking" do
 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_worker(supervisor, :manual_worker)

 # Store original PID manually
 original_pid = Process.whereis(:manual_worker)
 LetItCrash.crash(:manual_worker)

 # Check recovery with original PID and custom timeout
 assert LetItCrash.recovered?(:manual_worker, original_pid, timeout: 2000)

 Process.exit(supervisor, :shutdown)
 end
end
API
crash/1 and crash/2
Crashes a process by PID or registered name. Follows the same convention as Process.exit/2
with the process as the first argument to enable easy piping.
crash/1 - Sends :shutdown signal (can be trapped)
LetItCrash.crash(pid) # Crash by PID
LetItCrash.crash(:process_name) # Crash by name + auto tracking

crash/2 - Specify the signal type
LetItCrash.crash(pid, :shutdown) # Equivalent to crash/1
LetItCrash.crash(pid, :kill) # :kill signal (cannot be trapped)
LetItCrash.crash(:process_name, :kill) # With registered name

Piping support:
Process.whereis(:my_process)
|> LetItCrash.crash(:kill)
When to use :kill?
Use crash(process, :kill) when testing processes that use Process.flag(:trap_exit, true),
which is common in GenServers that need to perform cleanup logic on normal exits:
defmodule ScoreCoordinator do
 use GenServer

 def init(_) do
 Process.flag(:trap_exit, true) # Traps normal exits
 {:ok, %{}}
 end

 def handle_info({:EXIT, _pid, _reason}, state) do
 # Cleanup logic here
 {:noreply, state}
 end
end

In tests:
test "coordinator recovers from forced crash" do
 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_coordinator(supervisor, :coordinator)

 # Use :kill to guarantee termination even with trap_exit
 LetItCrash.crash(:coordinator, :kill)

 assert LetItCrash.recovered?(:coordinator)
end
wait_for_process/1,2
Waits for a registered process to exist and be alive. Useful in test setup when you need to ensure a process is available before interacting with it.
Basic usage - waits up to 1000ms (default)
:ok = LetItCrash.wait_for_process(:my_worker)

With custom timeout for slow-starting processes
:ok = LetItCrash.wait_for_process(:heavy_worker, timeout: 5000)

With custom polling interval
:ok = LetItCrash.wait_for_process(:worker, timeout: 2000, interval: 100)
Options:
	:timeout - Maximum wait time (default: 1000ms)
	:interval - Polling interval (default: 50ms)

Returns:
	:ok - Process exists and is alive
	{:error, :timeout} - Process did not appear within timeout

recovered?/1,2,3
Checks if a registered process has recovered after a crash. Multiple signatures available:
Uses stored PID from crash/1 (recommended)
LetItCrash.recovered?(:process_name)

With custom timeout/options
LetItCrash.recovered?(:process_name, timeout: 2000, interval: 100)

Manual PID comparison
LetItCrash.recovered?(:process_name, original_pid)

Manual PID + options
LetItCrash.recovered?(:process_name, original_pid, timeout: 3000)
Options:
	:timeout - Maximum wait time for recovery (default: 1000ms)
	:interval - Polling interval (default: 50ms)

test_restart/2,3
Tests that a process recovers by running the same function before and after crash.
Basic usage
LetItCrash.test_restart(:process_name, fn ->
 # Test logic executed before AND after crash
end)

With options
LetItCrash.test_restart(:process_name, fn ->
 # Test logic
end, timeout: 2000)
assert_clean_registry/2,3
Verifies that Registry entries are properly cleaned up when a process crashes and recreated when it recovers.
Basic usage - verifies cleanup and re-registration
LetItCrash.assert_clean_registry(MyApp.Registry, :process_name)

With custom timeout
LetItCrash.assert_clean_registry(MyApp.Registry, :process_name, timeout: 3000)
This function ensures your processes properly:
	Remove old Registry entries when crashing
	Create new Registry entries when recovering
	Point to the correct new PID after restart

verify_ets_cleanup/2,3
Monitors ETS table entries to verify proper cleanup during process crashes.
Verify entry is cleaned up (default behavior)
LetItCrash.verify_ets_cleanup(:my_cache, :process_data)

Custom cleanup expectations
LetItCrash.verify_ets_cleanup(:shared_table, :key,
 expect_cleanup: true,
 expect_recreate: false,
 timeout: 1500
)

Verify recreation after cleanup
LetItCrash.verify_ets_cleanup(:cache_table, :data_key,
 expect_cleanup: true,
 expect_recreate: true
)
Options:
	:expect_cleanup - Whether entry should be removed (default: true)
	:expect_recreate - Whether entry should be recreated (default: false)
	:timeout - Maximum wait time (default: 1000ms)

Advanced Usage Examples
Testing Registry and ETS Cleanup
defmodule MyAppTest do
 use ExUnit.Case
 use LetItCrash

 test "server cleans up resources properly on crash" do
 # Setup: Start Registry and ETS table
 {:ok, _} = Registry.start_link(keys: :unique, name: MyApp.Registry)
 :ets.new(:app_cache, [:set, :public, :named_table])

 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_worker(supervisor, :resource_server)

 # Server registers itself and creates ETS entries
 assert [{_pid, _}] = Registry.lookup(MyApp.Registry, :resource_server)
 :ets.insert(:app_cache, {:server_data, "important_data"})

 # Crash and verify proper cleanup + recovery
 LetItCrash.crash(:resource_server)

 # Verify Registry cleanup and re-registration
 assert :ok = LetItCrash.assert_clean_registry(MyApp.Registry, :resource_server)

 # Verify ETS cleanup
 assert :ok = LetItCrash.verify_ets_cleanup(:app_cache, :server_data)

 Process.exit(supervisor, :shutdown)
 end
end
Combined Testing Workflow
test "complete crash recovery validation" do
 {:ok, supervisor} = MySupervisor.start_link()
 {:ok, _pid} = MySupervisor.start_worker(supervisor, :full_test_server)

 # Test complete recovery workflow
 LetItCrash.test_restart(:full_test_server, fn ->
 # This runs before AND after crash
 MyServer.increment_counter()
 assert MyServer.get_counter() == 1 # Will be reset to 0, then incremented to 1
 end)

 # Verify additional cleanup
 LetItCrash.assert_clean_registry(MyApp.Registry, :full_test_server)
 LetItCrash.verify_ets_cleanup(:server_cache, :counter_data)

 Process.exit(supervisor, :shutdown)
end
Important Notes
⚠️ Requires Supervision: The recovered?/1 and test_restart/2 functions only work with supervised processes. Unsupervised processes won't restart after crashes.
🔄 State Reset: Process state is reset to initial values after restart (this is normal OTP behavior).
🏷️ Named Processes: Recovery detection only works with registered (named) processes.
Contributing
Contributions are welcome! Please see CONTRIBUTING.md for details on:
	🐛 Reporting bugs
	💡 Suggesting features
	🔧 Submitting pull requests
	🧪 Running tests

License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
	📝 Open an issue for bug reports or feature requests
	🤝 Check our Contributing Guide to help improve the project
	⭐ Star the project if you find it useful!

Embrace the crash, test the recovery! 💥➡️✅

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.4.0 - 2026-01-19
Added
	wait_for_process/2 function - Waits for a registered process to exist and be alive	Useful in test setup when ensuring a process is available before interacting with it
	Configurable :timeout (default: 1000ms) and :interval (default: 50ms) options
	Returns :ok when process is found, {:error, :timeout} otherwise
	Particularly helpful after starting supervisors or during async initialization

0.3.0 - 2025-10-21
Changed (Breaking)
	Refactored crash API - Following Elixir best practices, removed crash!/1 function in favor of crash/2	crash!/1 has been removed (the ! suffix is conventionally reserved for functions that raise exceptions)
	New signature: crash(process, type \\ :shutdown) where type can be :shutdown or :kill
	Follows the same convention as Process.exit/2 with the process as the first argument
	Enables easy piping: Process.whereis(:name) |> LetItCrash.crash(:kill)
	crash(pid) - default behavior (:shutdown signal)
	crash(pid, :kill) - guarantees termination (cannot be trapped)
	Maintains support for both PID and registered name with automatic PID tracking
	Tests updated to use the new API

Migration Guide
	Replace crash!(process) with crash(process, :kill)
	crash(process) continues to work the same way (uses :shutdown by default)
	Argument order follows Process.exit/2: process first, type second

0.2.0 - 2025-10-01
Added
	crash!/1 function - "Bang" version that uses :kill signal for guaranteed process termination	Works with processes that have Process.flag(:trap_exit, true)
	Cannot be trapped by the target process
	Particularly useful for testing GenServers with cleanup logic in handle_info({:EXIT, ...})
	Supports both PID and registered name with automatic PID tracking
	Complete test suite including TrapExitServer demonstration

Changed
	Updated module documentation to explain the difference between crash/1 and crash!/1
	Enhanced README with "When to use crash!/1?" section and practical examples
	Added comparison table between :shutdown and :kill exit signals

Technical Details
	:kill exit signal bypasses process trapping mechanisms
	Maintains same API signature as crash/1 for consistency
	Includes integration tests with supervised trap_exit processes

0.1.0 - 2025-01-03
Core Functions
	crash/1 - Crashes processes by PID or registered name with automatic PID tracking
	recovered?/1,2,3 - Detects process recovery after crashes with multiple signatures	Automatic PID tracking when crashing by name
	Configurable timeout and interval options
	Manual PID comparison support

	test_restart/2,3 - Tests complete crash/recovery workflow by running functions before and after

Advanced Testing Functions
	assert_clean_registry/2,3 - Verifies Registry entries are properly cleaned up on crash and recreated on recovery
	verify_ets_cleanup/2,3 - Monitors ETS table entries for proper cleanup during process crashes	Support for expect_cleanup and expect_recreate options
	Configurable timeout for verification
	Detects resource leaks and improper state management

Development Infrastructure
	Code Quality: Credo static code analysis integration with strict mode (0 issues)
	CI/CD Pipeline: GitHub Actions with comprehensive testing	Tests on Elixir 1.17.2 + OTP 26.0
	Automated formatting, compilation warnings, and Credo checks
	15 tests covering all functionality, 0 failures

	Documentation: ExDoc integration with HTML output	Complete API documentation with practical examples
	Advanced usage examples for Registry and ETS testing
	README and CHANGELOG integration

Technical Features
	✅ Safe process crashes (automatic unlink to prevent test failures)
	✅ Real recovery detection via PID comparison
	✅ Supervised process support (GenServers, Agents, custom processes)
	✅ Resource cleanup validation (Registry entries, ETS tables)
	✅ Simple and intuitive API with comprehensive error handling
	✅ Zero external runtime dependencies
	✅ Automatic tracking system using ETS for PID management

Project Setup
	MIT License with complete contribution guidelines
	Project badges for CI status, license, and Elixir compatibility
	Issue and PR templates for community contributions
	Comprehensive test coverage with realistic usage examples

LetItCrash

A testing library for crash recovery and OTP supervision behavior.
LetItCrash helps you test that your GenServers and supervised processes
recover correctly after crashes, embracing Elixir's "let it crash" philosophy.
Usage
use LetItCrash

test "genserver recovers after crash" do
 {:ok, pid} = MyGenServer.start_link([])

 LetItCrash.crash(pid)

 assert LetItCrash.recovered?(MyGenServer)
end
Crash Functions
The library provides a crash/2 function that allows you to specify the type of exit signal.
It follows the same convention as Process.exit/2 for consistency and piping support:
	crash(pid) - Sends a :shutdown exit signal (default, can be trapped)
	crash(pid, :shutdown) - Explicitly sends :shutdown signal
	crash(pid, :kill) - Sends a :kill exit signal (cannot be trapped, guarantees termination)

Use :kill when testing processes that trap exits, such as GenServers that
need to perform cleanup operations.

 Summary

 Functions

 __using__(opts)

 Imports LetItCrash testing functions into the current module.

 assert_clean_registry(registry, key, opts \\ [])

 Asserts that a process properly cleans up its Registry entries on crash and recovery.

 crash(process, type \\ :shutdown)

 Crashes a process by sending it an exit signal.

 recovered?(process_name, original_pid_or_opts \\ [])

 Checks if a registered process has recovered (restarted) after a crash.

 recovered?(process_name, original_pid, opts)

 start_tracking()

 test_restart(process, test_fn, opts \\ [])

 Tests that a process can recover from a crash by executing a test function
before and after the crash.

 verify_ets_cleanup(table, key, opts \\ [])

 Verifies that ETS table entries are properly cleaned up when a process crashes.

 wait_for_process(process_name, opts \\ [])

 Waits for a registered process to exist and be alive.

 Functions

 __using__(opts)

 (macro)

Imports LetItCrash testing functions into the current module.

 assert_clean_registry(registry, key, opts \\ [])

 @spec assert_clean_registry(module(), term(), keyword()) :: :ok | {:error, term()}

Asserts that a process properly cleans up its Registry entries on crash and recovery.
This function verifies that:
	The old Registry entry is removed when the process crashes
	A new Registry entry is created when the process recovers
	The new entry points to the new PID

Parameters
	registry - The Registry module to monitor
	process_name - The registered name/key of the process
	opts - Options for the verification	:timeout - Maximum time to wait for cleanup and re-registration (default: 2000ms)

Examples
test "process cleans up registry on restart" do
 {:ok, _pid} = MyServer.start_link(name: :my_server)
 Registry.register(MyApp.Registry, :my_server, %{status: :active})

 LetItCrash.crash(:my_server)
 LetItCrash.assert_clean_registry(MyApp.Registry, :my_server)
end

 crash(process, type \\ :shutdown)

 @spec crash(process :: pid() | atom(), type :: :shutdown | :kill) ::
 :ok | {:error, term()}

Crashes a process by sending it an exit signal.
Follows the same convention as Process.exit/2, with the process as the first argument
to enable easy piping.
Parameters
	process - A PID or registered process name to crash
	type - The type of exit signal: :shutdown (default) or :kill

The :shutdown signal can be trapped by processes with Process.flag(:trap_exit, true),
while :kill cannot be trapped and guarantees termination.
Examples
Default :shutdown signal:
{:ok, pid} = MyGenServer.start_link([])
LetItCrash.crash(pid)

Explicitly specifying :shutdown:
LetItCrash.crash(pid, :shutdown)

Piping support:
Process.whereis(:my_process)
|> LetItCrash.crash(:kill)

For processes with trap_exit, use :kill:
defmodule ScoreCoordinator do
 use GenServer

 def init(_) do
 Process.flag(:trap_exit, true)
 {:ok, %{}}
 end
end

{:ok, pid} = ScoreCoordinator.start_link([])
LetItCrash.crash(pid, :kill) # Guarantees termination

 recovered?(process_name, original_pid_or_opts \\ [])

 @spec recovered?(atom(), pid() | keyword()) :: boolean()

Checks if a registered process has recovered (restarted) after a crash.
This function works by comparing the current PID of a registered process
with a previously stored PID. If they differ, it means the process was restarted.
Parameters
	process_name - The registered name of the process to check
	original_pid - The PID before the crash (optional, will be retrieved if not provided)
	opts - Options for recovery checking	:timeout - Maximum time to wait for recovery (default: 1000ms)
	:interval - Polling interval (default: 50ms)

Examples
test "process recovers after crash" do
 original_pid = Process.whereis(MyGenServer)
 LetItCrash.crash(MyGenServer)
 assert LetItCrash.recovered?(MyGenServer, original_pid)
end

 recovered?(process_name, original_pid, opts)

 @spec recovered?(atom(), pid(), keyword()) :: boolean()

 start_tracking()

 test_restart(process, test_fn, opts \\ [])

 @spec test_restart(pid() | atom(), function(), keyword()) :: :ok | {:error, term()}

Tests that a process can recover from a crash by executing a test function
before and after the crash.
Parameters
	process - PID or registered name of the process to test
	test_fn - Function to execute before and after crash
	opts - Options for the test	:timeout - Maximum time to wait for recovery (default: 1000ms)

Examples
test "maintains state after restart" do
 LetItCrash.test_restart(MyStatefulServer, fn ->
 assert MyStatefulServer.get_count() == 0
 MyStatefulServer.increment()
 assert MyStatefulServer.get_count() == 1
 end)
end

 verify_ets_cleanup(table, key, opts \\ [])

 @spec verify_ets_cleanup(atom() | :ets.tid(), term(), keyword()) ::
 :ok | {:error, term()}

Verifies that ETS table entries are properly cleaned up when a process crashes.
This function monitors specific ETS table entries and ensures they are
cleaned up appropriately during process restart.
Parameters
	table - The ETS table name or reference to monitor
	key - The key to monitor in the ETS table
	opts - Options for the verification	:timeout - Maximum time to wait for cleanup (default: 1000ms)
	:expect_cleanup - Whether to expect the entry to be cleaned up (default: true)
	:expect_recreate - Whether to expect the entry to be recreated (default: false)

Examples
test "cleans up ETS entries on crash" do
 :ets.insert(:my_cache, {:server_data, "important"})

 LetItCrash.crash(:my_server)
 LetItCrash.verify_ets_cleanup(:my_cache, :server_data)
end

test "recreates ETS entries after recovery" do
 LetItCrash.crash(:my_server)
 LetItCrash.verify_ets_cleanup(:my_cache, :server_data,
 expect_cleanup: true, expect_recreate: true)
end

 wait_for_process(process_name, opts \\ [])

 @spec wait_for_process(
 atom(),
 keyword()
) :: :ok | {:error, :timeout}

Waits for a registered process to exist and be alive.
This function is useful in test setup when you need to ensure a process
is available before interacting with it, particularly after starting
supervisors or during async initialization.
Parameters
	process_name - The registered name of the process to wait for
	opts - Options for waiting	:timeout - Maximum time to wait (default: 1000ms)
	:interval - Polling interval (default: 50ms)

Returns
	:ok - Process exists and is alive
	{:error, :timeout} - Process did not appear within timeout

Examples
test "worker is available after supervisor starts" do
 {:ok, _sup} = MySupervisor.start_link()

 # Wait for the worker to be ready
 :ok = LetItCrash.wait_for_process(:my_worker)

 # Now safe to interact with it
 assert MyWorker.get_status() == :ready
end

With custom timeout for slow-starting processes
:ok = LetItCrash.wait_for_process(:heavy_worker, timeout: 5000)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

