

 LetMe

 v1.2.4

 Table of contents

 	LetMe

 	Changelog

 	Cheatsheets

 	Rules and Checks

 	

 	Modules

 	LetMe

 	LetMe.Policy

 	LetMe.Rule

 	LetMe.Schema

 	Exceptions

 	LetMe.UnauthorizedError

LetMe

[image: CI] [image: Hex] [image: Hex Docs] [image: Coverage Status]
LetMe is a user-friendly authorization library for Elixir. Designed with a
simple and expressive Domain Specific Language (DSL), it provides an intuitive
way to define and manage your authorization rules.
The strength of LetMe lies not only in its simplicity but also in its
introspection capabilities. It equips you with functions to answer important
questions about your application's authorization landscape, such as:
	Which actions are defined in my application?
	What are the conditions for a particular action?
	Which actions are permissible for a user assigned a specific role?

With its intuitive DSL for rule definition coupled with introspection
capabilities, LetMe makes managing permissions in your application a breeze.

 Installation

Add LetMe to your list of dependencies in mix.exs:
def deps do
 [
 {:let_me, "~> 1.2.4"}
]
end
Include LetMe in your .formatter.exs file:
[
 import_deps: [:let_me]
]
This ensures that your LetMe authorization rules are formatted correctly when
you run mix format.
Now, you're ready to start defining authorization rules with LetMe!

 Policy module

The Policy module sits at the heart of LetMe. It provides macros that allow you
to define the authorization rules of your application. These rules are then
compiled into functions for both authorization checks and introspection.
For instance, here's how you might define a policy for a simple article CRUD interface:
defmodule MyApp.Policy do
 use LetMe.Policy

 object :article do
 # Creating articles is allowed if the user role is `editor` or `writer`.
 action :create do
 allow role: :editor
 allow role: :writer
 end

 # Viewing articles is always allowed, unless the user is banned.
 action :read do
 allow true
 deny :banned
 end

 # Updating an article is allowed if (the user role is `editor`) OR
 # (the user role is `writer` AND the article belongs to the user).
 action :update do
 allow role: :editor
 allow [:own_resource, role: :writer]
 end

 # Deleting an article is allowed if the user is an editor.
 action :delete do
 allow role: :editor
 end
 end
end
The design of your policy modules—whether you have a single module for your
entire application, one for each context, or some other arrangement—is
completely up to you. LetMe offers the flexibility to organize your policy in
the way that best fits your application's needs.
Please note that while this example uses Role-Based Access Control (RBAC) for
simplicity, LetMe doesn't make any assumptions about your access control model.
You are completely free to define your authorization rules in any way you see
fit.

 Check module

Authorization rules, generally speaking, are based on the subject (usually the
current user), the object on which the action is performed, and the action
itself (the verb). LetMe doesn't enforce a particular authorization model or
check implementation, instead allowing you to define what makes sense for your
application.
The checks passed to LetMe.Policy.allow/1 reference functions in your own
check module (by default __MODULE__.Checks, so in the given example, this
would be MyApp.Policy.Checks). Each function in your check module should
accept the subject, the object, and optionally an extra argument. They must
return a boolean value indicating the result of the check.
For the policy example provided earlier, a corresponding check module could look
like this:
defmodule MyApp.Policy.Checks do
 alias MyApp.Accounts.User

 @doc """
 Returns `true` if the `banned` flag is set on the user.
 """
 def banned(%User{banned: banned}, _, _), do: banned

 @doc """
 Checks whether the user ID of the object matches the ID of the current user.

 Assumes that the object has a `:user_id` field.
 """
 def own_resource(%User{id: id}, %{user_id: id}, _opts) when is_binary(id), do: true
 def own_resource(_, _, _), do: false

 @doc """
 Checks whether the user role matches the role passed as an option.

 ## Usage

 allow role: :editor

 or

 allow {:role, :editor}
 """
 def role(%User{role: role}, _object, role), do: true
 def role(_, _, _), do: false
end
This way, you can establish checks that are perfectly tailored to your
application's specific authorization requirements.

 Callbacks

When you incorporate use LetMe.Policy at the start of your policy module,
LetMe generates a suite of useful functions for you:
	Authorization functions: See LetMe.Policy.authorize/4,
LetMe.Policy.authorize!/4 and LetMe.Policy.authorize?/4.
	Introspection functions: See LetMe.Policy.list_rules/0,
LetMe.Policy.list_rules/1, LetMe.Policy.get_rule/1 and others.

 Authorization

You can employ the authorization functions wherever your application needs to
make authorization decisions. An ideal place to use these functions would be in
your context modules. Here's an example illustrating how you could incorporate
authorization into a blog's context module:
defmodule MyApp.Blog do
 alias MyApp.Accounts.User
 alias MyApp.Blog.Article
 alias MyApp.Policy

 def list_articles(%User{} = current_user) do
 with :ok <- Policy.authorize(:article_read, current_user) do
 {:ok, Repo.all(Article)}
 end
 end

 def fetch_article(id, %User{} = current_user) do
 with :ok <- Policy.authorize(:article_read, current_user, id) do
 case Repo.get(Article, id) do
 nil -> {:error, :not_found}
 article -> {:ok, article}
 end
 end
 end

 def create_article(params, %User{} = current_user) do
 with :ok <- Policy.authorize(:article_create, current_user) do
 %Article{}
 |> Article.changeset(params)
 |> Repo.insert()
 end
 end

 def update_article(%Article{} = article, params, %User{} = current_user) do
 with :ok <- Policy.authorize(:article_update, current_user, article) do
 article
 |> Article.changeset(params)
 |> Repo.update()
 end
 end

 def delete_article(%Article{} = article, %User{} = current_user) do
 with :ok <- Policy.authorize(:article_delete, current_user, article) do
 Repo.delete(article)
 end
 end
end
In this example, before performing any actions on the articles, we first ensure
the current user is authorized to perform the intended action. This makes our
application secure by making sure only authorized users can perform sensitive
operations.
Typespecs
LetMe automatically generates typespecs for the authorize functions in your
policy modules. This helps you to leverage Dialyzer's static type checking to
ensure valid actions are specified in your authorize calls. It's another way
LetMe helps you write reliable, error-free code.

 Introspection

LetMe equips you with introspection functions, enabling you to access the
comprehensive list of authorization rules. This can be beneficial, for instance,
to render them on a documentation page:
iex> MyApp.Policy.list_rules()
[
 %LetMe.Rule{
 action: :create,
 allow: [
 [role: :admin],
 [role: :writer]
],
 deny: [],
 description: nil,
 name: :article_create,
 object: :article,
 pre_hooks: [],
 metadata: []
 },
 # ...
]
If you wish to find a specific rule by its name, you can do so as well:
iex> MyApp.Policy.get_rule(:article_create)
%LetMe.Rule{
 action: :create,
 allow: [
 [role: :admin],
 [role: :writer]
],
 name: :article_create,
 object: :article,
 # ...
}
Moreover, you can list all actions associated with a particular role (or any
other check):
iex> MyApp.Policy.list_rules(allow: {:role, :writer})
[
 %LetMe.Rule{
 action: :create,
 object: :article,
 # ...
 },
 %LetMe.Rule{
 action: :update,
 object: :article,
 # ...
 }
]
You can also define metadata on an action. This feature can be used to extend
the library's functionality.
For example, imagine wanting to expose certain actions through your Absinthe
GraphQL schema but needing to exclude others. You could achieve this by adding a
:gql_exclude key to the metadata.
defmodule GraphqlPolicy do
 use LetMe.Policy

 object :user do
 action :disable do
 allow role: :admin
 metadata :gql_exclude, true
 end
 end
end
iex> MyApp.Policy.get_rule(:user_disable)
%LetMe.Rule{
 action: :disable,
 allow: [
 [role: :admin]
],
 deny: [],
 description: nil,
 name: :user_disable,
 object: :user,
 pre_hooks: [],
 metadata: [
 gql_exclude: true
]
}
This gives you the power to customize your authorization policies even further.

 Scoped queries

There are situations where a user, despite having general access to a certain
resource type, is only permitted to view a subset of the data. Consider a blog
system: a user might be restricted to viewing only published articles, unless
they hold the role of a writer. Similarly, in a system where users are part of
specific companies, they might only be allowed to see users from their own
company.
To tailor your queries based on the user type, implement the
LetMe.Schema.scope/3 callback of the LetMe.Schema behavior, typically within
your Ecto schema module.
defmodule MyApp.Blog.Article do
 use Ecto.Schema
 use LetMe.Schema

 import Ecto.Query
 alias MyApp.Accounts.User

 # Ecto schema and changeset

 @impl LetMe.Schema
 def scope(q, user, opts \\ nil)
 def scope(q, %User{role: :editor}, _), do: q
 def scope(q, %User{role: :writer}, _), do: q
 def scope(q, %User{}, _), do: where(q, published: true)
end
In this example, the Ecto query is modified to only return published articles,
unless the user is an editor or writer. The third argument can be utilized for
additional options.
With this setup, your list and fetch functions can be updated as follows:
def list_articles(%User{} = current_user) do
 with :ok <- Policy.authorize(:article_read, current_user) do
 articles =
 Article
 |> Article.scope(current_user)
 |> Repo.all()

 {:ok, articles}
 end
end

def fetch_article(id, %User{} = current_user) do
 with :ok <- Policy.authorize(:article_read, current_user, id) do
 result =
 Article
 |> where(id: ^id)
 |> Article.scope(current_user)
 |> Repo.one()

 case result do
 nil -> {:error, :not_found}
 article -> {:ok, article}
 end
 end
end
If you've worked with Bodyguard before,
this might look familiar. In Bodyguard,
you can find a Bodyguard.scope/2 function that derives the Ecto schema module
from the Ecto.Queryable and forwards the call to that module. In LetMe, you
need to call the scope/2 function of your Ecto schema directly. The behaviour
then only serves to enforce this pattern.

 Field redactions

In certain scenarios, a user may be authorized to access a resource but should
only see a subset of its fields. For instance, one user might be able to see
basic details of another user, such as name and avatar, but shouldn't see
sensitive information like email or phone number. One way to manage such cases
would be to conditionally show or hide specific information on the frontend.
However, a cleaner solution is to have your context functions omit sensitive
fields entirely.
To assist in these kinds of situations, the LetMe.Schema behaviour has another
callback: LetMe.Schema.redacted_fields/3.
defmodule MyApp.Accounts.User do
 use Ecto.Schema
 use LetMe.Schema

 alias MyApp.Accounts.User

 # Ecto schema and changeset

 @impl LetMe.Schema
 def redacted_fields(%User{}, %User{role: :admin}, _), do: []
 def redacted_fields(%User{id: id}, %User{id: id}, _), do: []
 def redacted_fields(%User{}, %User{}, _), do: [:email, :phone_number]
end
The redacted_fields/2 function takes the object as the first argument, the
subject as the second argument, and an options argument. The function should
return a list of fields to redact.
In the example above, all fields are visible if the user has an 'admin' role, or
if the user being viewed (the object) is the same as the current user (the
subject). In other cases, the 'email' and 'phone_number' fields are hidden.
There are two strategies for handling field redactions:
	Modify the query to exclude the redacted fields.
	Redact the fields after retrieving the resource(s) from the database.

 Modifying the query

One approach to field redaction involves adjusting the database query to
exclude redacted fields. Ecto's __schema__/1 function can retrieve the
non-virtual schema fields from your Ecto module. From this list, you can reject
any redacted fields and add a select clause that includes only the unredacted
fields.
def list_users(%User{} = current_user) do
 fields = User.__schema__(:fields)
 filtered_fields = LetMe.reject_redacted_fields(fields, %User{}, current_user)

 Article
 |> select(^filtered_fields)
 |> Repo.all()
end
This method has the advantage of preventing the transfer of redacted fields from
the database. However, it also comes with several drawbacks:
	Decisions about which fields to select cannot be made based on data in the
struct. For instance, with the redacted_fields/2 function described
earlier, we can ensure that admins can see all fields, but we cannot
guarantee that users can view all fields in their own user account.
	All redacted fields will appear as nil, and you won't be able to
distinguish between fields that were redacted and fields that are simply
empty. This distinction might be necessary for display in the frontend.
	More complex select clauses may not be compatible with this syntax.

 Redacting the query result

To address the limitations of modifying the query, you can redact fields after
retrieving the data from the database. This can be done using the
LetMe.redact/2 function.
def list_articles(%User{} = current_user) do
 Article
 |> Repo.all()
 |> LetMe.redact(current_user)
end
The redact function can handle structs, lists of structs, and nil values.

 Why use this library?

Consider using this library if:
	You're seeking an easy-to-read DSL for authorization rules that offers the
flexibility to implement your authorization checks as desired.
	You prefer to locate your authorization rules within your business layer,
thereby decoupling them from your interfaces.
	You'd like to centralize your authorization rules in one place (or one per
context).
	You want to generate a list of authorization rules.
	You need to filter your authorization rules, e.g., to identify which actions a
certain user role can perform.
	You're in need of a library that aids with query scopes and field redactions.
	You prefer a library with zero dependencies.

 When not to use this library?

This library might not be the best fit if:
	You prefer to couple authorization checks with your interfaces.
	You favor using plugs or middlewares for authorization checks and require
ready-made solutions (though you can create your own plugs and middlewares
around this library's functions).
	You dislike DSLs and prefer to write functions directly (keep in mind, the DSL
only describes which checks to run and how to apply them; you'll still write
the actual checks as regular functions).
	Introspection isn't a priority for you.
	You need to provide details on why an authorization request fails. Checks in
LetMe currently return only a boolean value, meaning users receive a generic
error without knowing which exact check failed.

 Status

This library is actively maintained. Given its zero dependencies and precisely
scoped feature set, you may not see frequent updates. However, this is not an
indication of stagnation but of stability. If you ever find something missing or
encounter an issue, don't hesitate to open an issue – your feedback and
contributions are always welcome.

 Alternatives

For comparison, consider exploring these Elixir libraries:
	Canada
	Canary
	Bodyguard
	Speakeasy

The article
Authorization for Phoenix Contexts
may also be a helpful resource.

Changelog

 Unreleased

 [1.2.4] - 2024-04-22

 Fixed

	Nested lists within structs resulted in a CaseClauseError during redaction.

 [1.2.3] - 2023-11-11

 Changed

	Updated documentation.

 [1.2.2] - 2023-06-28

 Changed

	You can now override the exception message used by
LetMe.Policy.authorize!/4 (e.g.
use LetMe.Policy, error_message: "Not today, chap.").

 [1.2.1] - 2023-06-28

 Changed

	Define action type when you use LetMe.Policy.
	Add type specifications for generated authorize functions.

 [1.2.0] - 2023-06-19

 Added

	Added an optional opts argument to the authorize functions, so that
additional options can be passed to pre-hooks.
	Updated LetMe.filter_rules/2 to allow filtering by meta data.

 Changed

	Pre-hook options are now expected to be passed as a keyword list.

 Fixed

	Fix deprecation warning about Logger.warn/2 in Elixir 1.15.

 [1.1.0] - 2023-05-08

 Added

	Added a metadata macro to add metadata to actions. The metadata can be read
from the LetMe.Rule struct.

 [1.0.3] - 2023-03-21

 Changed

	Update ex_doc and other dev dependencies.

 [1.0.2] - 2023-01-05

 Added

	Added a cheat sheet for rules and checks.

 Fixed

	Fixed a code example for rule introspection in the readme.

 [1.0.1] - 2022-11-06

 Changed

	Use Keyword.pop/3 with default value instead of Keyword.pop!/2, so that
you can pass options to LetMe.redact/3 without passing the redact_value
option.

 [1.0.0] - 2022-11-06

 Added

	Added LetMe.Policy.filter_allowed_actions/3 and
LetMe.filter_allowed_actions/4.
	Added LetMe.Policy.get_object_name/1.

 Changed

	Renamed c:LetMe.Policy.authorized?/3 to c:LetMe.Policy.authorize?/3,
because consistency is more important than grammar, maybe.
	The c:LetMe.Schema.scope/2 callback was removed in favour of
LetMe.Schema.scope/3. The __using__ macro defined default
implementations for both functions that returned the given query unchanged, in
case you only needed the redact callback of the behaviour. In practice, this
made it all too easy to call the 2-arity version when only the 3-arity
version was defined, and vice versa, which would lead the query to not be
scoped. So in order to reduce the room for error at the cost of a minor
inconvenience, you will now always need to implement the 3-arity function,
even if you don't need the third argument.
	Changed c:LetMe.Schema.redacted_fields/2 to
LetMe.Schema.redacted_fields/3 to allow passing additional options, and to
be consistent with LetMe.Schema.scope/3.

 [0.2.0] - 2022-07-12

 Changed

	Added support for nested field redactions, either by explicitly listing the
fields or by referencing a module that also implements LetMe.Schema.

 Fixed

	reject_redacted_fields/3 called redact/2 callback with the wrong argument
order.

 [0.1.0] - 2022-07-11

initial release

Rules and Checks

 Minimal example

 Policy definition

Policy module
defmodule MyApp.Policy do
 use LetMe.Policy

 object :article do
 action :create do
 allow role: :writer
 end
 end
end
Check module
defmodule MyApp.Policy.Checks do
 def role(%MyApp.User{role: role}, _object, role), do: true
 def role(_, _, _), do: false
end

 Context module

defmodule MyApp.Blog do
 alias MyApp.Blog.Article
 alias MyApp.Policy

 def create_article(params, %MyApp.User{} = current_user) do
 with :ok <- Policy.authorize(:article_create, current_user) do
 %Article{}
 |> Article.changeset(params)
 |> Repo.insert()
 end
 end
end

 Check examples

 Check without options

Policy module
object :article do
 action :create do
 allow :writer
 end
end
Check implementation
def writer(%MyApp.User{role: :writer}, _object, _opts), do: true
def writer(_, _, _), do: false

 Check with options

Policy module
object :article do
 action :delete do
 allow trust_level: 50
 end
end
Check implementation
def trust_level(%MyApp.User{trust_level: actual_level}, _, required_level)
 when actual_level >= required_level,
 do: true

def trust_level(_, _, _), do: false

 Check that depends on the object

Policy module
object :article do
 action :update do
 allow :own_resource
 end
end
Check implementation
def own_resource(%MyApp.User{id: user_id}, %{user_id: user_id}, _), do: true
def own_resource(_, _, _), do: false

 Rule examples

 Multiple actions with the same rules

object :article do
 action [:create, :update, :delete] do
 allow :admin
 end
end

 Combine checks with AND

action :create do
 allow [:two_fa_enabled, role: :writer]
end

 Combine checks with OR

action :create do
 allow role: :admin
 allow role: :writer
end

 Conditionally allow with exception

action :create do
 allow :is_admin
 deny :is_suspended
end

 Always allow

action :read do
 allow true
end

 Always deny

action :read do
 deny true
end

 Always allow with exception

action :read do
 allow true
 deny :user_is_suspended
end

 Add description

action :create do
 desc "allows a user to create a new article"
 allow role: :writer
end

 Pre-hooks

 Without options

Policy module
object :article do
 action :create do
 pre_hooks :preload_roles

 allow role: :admin
 allow role: :editor
 allow role: :writer
 end
end
Check module
def role(%MyApp.User{roles: roles}, _object, role) do
 Enum.any?(roles, & &1.id == role)
end

def role(_, _, _), do: false

def preload_roles(subject, object) do
 {MyApp.Repo.preload(subject, [:roles]), object}
end

 With options

Policy module
object :article do
 action :create do
 pre_hooks {:preload_roles, force: true}

 allow role: :admin
 allow role: :editor
 allow role: :writer
 end
end
Check module
def role(%MyApp.User{roles: roles}, _object, role) do
 Enum.any?(roles, & &1.id == role)
end

def role(_, _, _), do: false

def preload_roles(subject, object, opts) do
 {MyApp.Repo.preload(subject, [:roles], opts), object}
end

 From a different module

object :article do
 action :create do
 pre_hooks {MyApp.Policy.Prehooks, :preload_roles, force: true}

 allow role: :admin
 allow role: :editor
 allow role: :writer
 end
end

 Multiple pre-hooks

object :article do
 action :create do
 pre_hooks [:preload_roles, :role_list_to_role_id_list]

 allow role: :admin
 allow role: :editor
 allow role: :writer
 end
end

 Metadata

object :article do
 action :create do
 allow role: :admin
 allow role: :editor
 allow role: :writer

 metadata :gql_exclude, true
 metadata :desc_ja, "ユーザーが新しい記事を作成できるようにする"
 end
end

LetMe

LetMe is library for defining and evaluating authorization rules and handling
query scopes and field redactions.
This module only defines auxiliary functions. The main functionality lies in
the LetMe.Policy module.

 Summary

 Functions

 filter_allowed_actions(rules, subject, object, policy)

 Takes a list of rules and only returns the rules that would evaluate to true
for the given subject and object.

 filter_rules(rules, opts)

 Takes a list of rules and a list of filter options and returns a filtered
list of rules.

 redact(struct, subject, opts \\ [])

 Takes a struct or a list of structs and redacts fields depending on the
subject (user).

 reject_redacted_fields(fields, object, subject, opts \\ [])

 Removes redacted fields from a given list of fields.

 Functions

 Link to this function

 filter_allowed_actions(rules, subject, object, policy)

 View Source

 @spec filter_allowed_actions([LetMe.Rule.t()], subject, object, module()) :: [
 LetMe.Rule.t()
]
when subject: any(), object: {atom(), any()} | struct()

Takes a list of rules and only returns the rules that would evaluate to true
for the given subject and object.
The object needs to be passed as a tuple, where the first element is the
object name, and the second element is the actual object, e.g.
{:article, %Article{}}.
If you registered the schema module with LetMe.Policy.object/3, you can
pass the struct without tagging it with the object name, e.g. %Article{}.
This function is used internally by LetMe.Policy.filter_allowed_actions/3.

 Example

rules = MyApp.Policy.list_rules()

filter_allowed_actions(
 rules,
 %User{},
 {:article, %Article{}},
 MyApp.Policy
)

 Link to this function

 filter_rules(rules, opts)

 View Source

 @spec filter_rules(
 [LetMe.Rule.t()],
 keyword()
) :: [LetMe.Rule.t()]

Takes a list of rules and a list of filter options and returns a filtered
list of rules.
This function is used by LetMe.Policy.list_rules/1.

 Filter options

	:object - Matches an object exactly.
	:action - Matches an action exactly.
	:allow - Either a check name as an atom or a 2-tuple with the check name
and the options.
	:metadata - Either a metadata name as an atom or a 2-tuple with the
metadata name and the metadata value.
	:deny - Either a check name as an atom or a 2-tuple with the check name
and the options.

If an atom is passed as allow or deny, the atom is interpreted as a check
name and all rules using the given check name are returned, regardless of
whether additional options are passed to the check. If a 2-tuple is passed,
the first tuple element must be the check name as an atom and the second
tuple element must be the check options. In this case, all rules are returned
that use the given check with exactly the same options. In either case, rules
that have more checks in addition to the given one will also be returned.

 Examples

iex> rules = [
...> %LetMe.Rule{action: :create, name: :article_create, object: :article},
...> %LetMe.Rule{action: :create, name: :category_create, object: :category}
...>]
iex> filter_rules(rules, object: :article)
[%LetMe.Rule{action: :create, name: :article_create, object: :article}]

iex> rules = [
...> %LetMe.Rule{
...> action: :create,
...> name: :article_create,
...> object: :article,
...> allow: [[role: :editor]]
...> },
...> %LetMe.Rule{
...> action: :update,
...> name: :article_update,
...> object: :article,
...> allow: [:own_resource, [role: :writer]]
...> }
...>]
iex> filter_rules(rules, allow: :own_resource)
[%LetMe.Rule{action: :update, name: :article_update, object: :article, allow: [:own_resource, [role: :writer]]}]
iex> match?([_, _], filter_rules(rules, allow: :role))
true
iex> filter_rules(rules, allow: {:role, :editor})
[%LetMe.Rule{action: :create, name: :article_create, object: :article, allow: [[role: :editor]]}]
iex> filter_rules(rules, allow: {:role, :writer})
[%LetMe.Rule{action: :update, name: :article_update, object: :article, allow: [:own_resource, [role: :writer]]}]

 Link to this function

 redact(struct, subject, opts \\ [])

 View Source

 @spec redact(struct(), any(), keyword()) :: struct()

 @spec redact([struct()], any(), keyword()) :: [struct()]

 @spec redact(nil, any(), keyword()) :: nil

Takes a struct or a list of structs and redacts fields depending on the
subject (user).
Uses the callback implementation for LetMe.Schema.redacted_fields/3 in the
struct module.

 Options

	:redact_value - The value to be used for redacted fields. Defaults to
:redacted.

Any additional options will be passed to LetMe.Schema.redacted_fields/3.

 Example

iex> article = %MyApp.Blog.Article{}
iex> user = %{id: 2, role: :user}
iex> redact(article, user)
%MyApp.Blog.Article{like_count: :redacted, title: "Give us back our moon dust and cockroaches", user_id: 1, view_count: :redacted}

iex> article = %MyApp.Blog.Article{}
iex> user = %{id: 2, role: :user}
iex> redact(article, user, redact_value: nil)
%MyApp.Blog.Article{like_count: nil, title: "Give us back our moon dust and cockroaches", user_id: 1, view_count: nil}

iex> articles = [
...> %MyApp.Blog.Article{},
...> %MyApp.Blog.Article{user_id: 2, title: "Joey Chestnut is chomp champ"}
...>]
iex> user = %{id: 2, role: :user}
iex> redact(articles, user)
[%MyApp.Blog.Article{like_count: :redacted, title: "Give us back our moon dust and cockroaches", user_id: 1, view_count: :redacted}, %MyApp.Blog.Article{like_count: 25, title: "Joey Chestnut is chomp champ", user_id: 2, view_count: :redacted}]

 Link to this function

 reject_redacted_fields(fields, object, subject, opts \\ [])

 View Source

 @spec reject_redacted_fields([atom()], struct(), any(), keyword()) :: [atom()]

Removes redacted fields from a given list of fields.
Uses the LetMe.Schema.redacted_fields/3 callback implementation of the
struct module to determine the fields to remove.

 Examples

iex> fields = [:like_count, :title, :user_id, :view_count]
iex> user = %{id: 1, role: :user}
iex> article = %MyApp.Blog.Article{}
iex> result = reject_redacted_fields(fields, article, user)
iex> Enum.sort(result)
[:like_count, :title, :user_id]
This can be useful as a safeguard to prevent accidentally casting fields the
user is not allowed to see and thereby nilifying or replacing them.
def update_changeset(%Article{} = article, attrs, %User{} = user) do
 fields = LetMe.reject_redacted_fields(
 [:title, :body, :internal_reference],
 article,
 user
)

 article
 |> cast(attrs, fields)
 |> validate_required([:title, :body])
end
If a keyword list is given as a fourth argument, it is passed to
LetMe.Schema.redacted_fields/3.

LetMe.Policy behaviour

This module defines a DSL for authorization rules and compiles these rules
to authorization and introspection functions.

 Usage

defmodule MyApp.Policy do
 use LetMe.Policy

 object :article do
 # Creating articles is allowed if the user role is `editor` or `writer`.
 action :create do
 allow role: :editor
 allow role: :writer
 end

 # Viewing articles is always allowed, unless the user is banned.
 action :read do
 allow true
 deny :banned
 end

 # Updating an article is allowed if (the user role is `editor`) OR
 # (the user role is `writer` AND the article belongs to the user).
 action :update do
 allow role: :editor
 allow [:own_resource, role: :writer]
 end

 # Deleting an article is allowed if the user is an editor.
 action :delete do
 allow role: :editor
 end
 end
end
use LetMe.Policy
When you use LetMe.Policy, the module will set @behaviour LetMe.Policy
and define all callback functions for that behaviour based on the macros
you use. It will also define an action type based your rules.

 Options

These options can be passed when using this module:
	check_module - The module where the check functions are defined. Defaults
to __MODULE__.Checks.
	error_reason - The error reason used by the authorize/4 callback.
Defaults to :unauthorized.
	error_message - The error message used by the authorize!/4. Defaults
to "unauthorized".

 Check module

The checks passed to allow/1 and deny/1 reference the names of functions
in the check module.
By default, LetMe tries to find the functions in __MODULE__.Checks (in the
example, this would be MyApp.Policy.Checks). However, you can override the
default check module:
use LetMe.Policy, check_module: MyApp.AuthChecks
Each check function has to take the subject (user), the object, and optionally
an additional argument, and must return a boolean value.
For example, this check determines whether a user is banned:
def banned(%User{banned: true}, _), do: true
def banned(%User{}, _), do: false
This check determines whether the user has the given role:
def role(%User{role: role}, _, role), do: true
def role(_, _, _), do: false
And this check determines whether the object belongs to the user:
def own_resource(%User{id: user_id}, %{user_id: user_id}), do: true
def own_resource(_, _), do: false
LetMe does not make any assumptions about your access control model, as long
as you can map your rules to subject, object and action. You can use the three
rules above with the allow/1 and deny/1 macros.
allow role: :admin
allow :own_resource
deny :banned

 Combining checks

Rules evaluate to false by default. These rules will always be false
because they don't have any allow clauses:
action :create do
end

action :update do
 deny false
end
Trying to evaluate a rule name that does not exist also evaluates to false.
As soon as one deny check evaluates to true, the whole rule will evaluate
to false. This rule will always evaluate to false:
action :create do
 allow true
 deny true
end
If you pass a list of checks to either allow/1 or deny/1, the checks
are combined with a logical AND.
false
action :create do
 allow [true, false]
end

true
action :create do
 allow [true, true]
end

true
action :create do
 allow [true, true]
 deny [true, false]
end

false
action :create do
 allow [true, true]
 deny [true, true]
end
On the other hand, if either the allow/1 or the deny/1 macro is used
multiple times, the checks are combined with a logical OR.
true
action :create do
 allow true
 allow false
end

false
action :create do
 allow [true, false]
 allow false
end

true
action :create do
 allow [true, false]
 allow true
end

false
action :create do
 allow [true, true]
 allow true
 deny false
 deny true
end

 Pre-hooks

You can use pre-hooks to process or gather additional data about the subject
and/or object before running the checks. This can be useful if you need to
preload associations or make external requests. Pre-hooks run once per
authorization request before running the checks. See the documentation for
pre_hooks/1.

 Summary

 Callbacks

 authorize(atom, any, any, keyword)

 Authorizes a request defined by the action, subject and object.

 authorize!(atom, any, any, keyword)

 Same as authorize/4, but raises an error if unauthorized.

 authorize?(atom, any, any, keyword)

 Same as authorize/4, but returns a boolean.

 fetch_rule(atom)

 Returns the rule for the given name. Returns an :ok tuple or :error.

 fetch_rule!(atom)

 Returns the rule with the given name. Raises if the rule is not found.

 filter_allowed_actions(list, subject, object)

 Takes a list of rules and only returns the rules that would evaluate to true
for the given subject and object.

 get_object_name(module)

 Returns the object name for the given schema module or struct, if it was
registered using object/3.

 get_rule(atom)

 Returns the rule for the given rule name. Returns nil if the rule is
not found.

 get_schema(atom)

 Returns the schema module for the given object name, if it was registered
using object/3.

 list_rules()

 Returns all authorization rules as a list.

 list_rules(keyword)

 Same as list_rules/0, but takes a keyword list with filter options.

 Functions

 action(names, list)

 Defines an action that needs to be authorized.

 allow(checks)

 Defines the checks to be run to determine if an action is allowed.

 deny(checks)

 Defines the checks to be run to determine if an action is denied.

 desc(text)

 Allows you to add a description to a rule.

 metadata(key, value)

 Assigns metadata to the action in the form of a key value pair.

 object(name, module \\ nil, list)

 Defines an object on which actions can be performed.

 pre_hooks(hooks)

 Registers one or multiple functions to run in order to hydrate the subject
and/or object of the request.

 Callbacks

 Link to this callback

 authorize(atom, any, any, keyword)

 View Source

 @callback authorize(atom(), any(), any(), keyword()) :: :ok | {:error, any()}

Authorizes a request defined by the action, subject and object.

 Example

Assume we defined this authorization rule:
object :article do
 action :update do
 allow :own_resource
 end
end
And the :own_resource check is defined as:
def own_resource(%{id: user_id}, %{user_id: user_id}), do: true
def own_resource(_, _), do: false
The rule name consists of the object and the action name, in this case
:article_create. To authorize the action, we need to pass the rule name, the
subject (current user) and the object (the article to be updated).
iex> article = %{id: 80, user_id: 1}
iex> user_1 = %{id: 1}
iex> user_2 = %{id: 2}
iex> MyApp.Policy.authorize(:article_update, user_1, article)
:ok
iex> MyApp.Policy.authorize(:article_update, user_2, article)
{:error, :unauthorized}
If the checks don't require the object, it can be omitted.
object :user do
 action :list do
 allow {:role, :admin}
 allow {:role, :client}
 end
end

iex> user = %{id: 1, role: :admin}
iex> MyApp.Policy.authorize(:user_list, user)
:ok
iex> user = %{id: 2, role: :user}
iex> MyApp.Policy.authorize(:user_list, user)
{:error, :unauthorized}
The error reason can be customized by setting the :error_reason option when
using the module.
The last parameter is a set of arguments that can be defined dynamically
which will be passed into any pre_hooks defined on the resource's policy.

 Link to this callback

 authorize!(atom, any, any, keyword)

 View Source

 @callback authorize!(atom(), any(), any(), keyword()) :: :ok

Same as authorize/4, but raises an error if unauthorized.

 Example

With the same authorization rules as defined in the authorize/4
documentation, we get this:
iex> article = %{id: 80, user_id: 1}
iex> user_1 = %{id: 1}
iex> user_2 = %{id: 2}
iex> MyApp.Policy.authorize!(:article_update, user_1, article)
:ok
iex> MyApp.Policy.authorize!(:article_update, user_2, article)
** (LetMe.UnauthorizedError) unauthorized

 Link to this callback

 authorize?(atom, any, any, keyword)

 View Source

 @callback authorize?(atom(), any(), any(), keyword()) :: boolean()

Same as authorize/4, but returns a boolean.

 Example

With the same authorization rules as defined in the authorize/4
documentation, we get this:
iex> article = %{id: 80, user_id: 1}
iex> user_1 = %{id: 1}
iex> user_2 = %{id: 2}
iex> MyApp.Policy.authorize?(:article_update, user_1, article)
true
iex> MyApp.Policy.authorize?(:article_update, user_2, article)
false

 Link to this callback

 fetch_rule(atom)

 View Source

 @callback fetch_rule(atom()) :: {:ok, LetMe.Rule.t()} | :error

Returns the rule for the given name. Returns an :ok tuple or :error.
The rule name is an atom with the format {object}_{action}.

 Example

iex> MyApp.Policy.fetch_rule(:article_create)
{:ok,
 %LetMe.Rule{
 action: :create,
 allow: [[role: :admin], [role: :writer]],
 deny: [],
 name: :article_create,
 object: :article,
 pre_hooks: []
 }}

 iex> MyApp.Policy.fetch_rule(:cookie_eat)
 :error

 Link to this callback

 fetch_rule!(atom)

 View Source

 @callback fetch_rule!(atom()) :: LetMe.Rule.t()

Returns the rule with the given name. Raises if the rule is not found.
The rule name is an atom with the format {object}_{action}.

 Example

iex> MyApp.Policy.fetch_rule!(:article_create)
%LetMe.Rule{
 action: :create,
 allow: [[role: :admin], [role: :writer]],
 deny: [],
 name: :article_create,
 object: :article,
 pre_hooks: []
}

 Link to this callback

 filter_allowed_actions(list, subject, object)

 View Source

 @callback filter_allowed_actions([LetMe.Rule.t()], subject, object) :: [LetMe.Rule.t()]
when subject: any(), object: {atom(), any()} | struct()

Takes a list of rules and only returns the rules that would evaluate to true
for the given subject and object.

 Examples

The object can be passed as a tuple, where the first element is the
object name, and the second element is the actual object, e.g.
{:article, %Article{}}.
iex> rules = MyApp.Policy.list_rules()
iex> MyApp.Policy.filter_allowed_actions(
...> rules,
...> %{id: 2, role: nil},
...> {:article, %MyApp.Blog.Article{}}
...>)
[
 %LetMe.Rule{
 action: :view,
 allow: [true],
 deny: [],
 description: "allows to view an article and the list of articles",
 name: :article_view,
 object: :article,
 pre_hooks: []
 }
]
If you registered the schema module with LetMe.Policy.object/3, you can
pass the struct without tagging it with the object name.
iex> rules = MyApp.Policy.list_rules()
iex> MyApp.Policy.filter_allowed_actions(
...> rules,
...> %{id: 2, role: nil},
...> %MyApp.Blog.Article{}
...>)
[
 %LetMe.Rule{
 action: :view,
 allow: [true],
 deny: [],
 description: "allows to view an article and the list of articles",
 name: :article_view,
 object: :article,
 pre_hooks: []
 }
]

 Link to this callback

 get_object_name(module)

 View Source

 @callback get_object_name(module()) :: atom() | nil

Returns the object name for the given schema module or struct, if it was
registered using object/3.

 Examples

iex> MyApp.Policy.get_object_name(MyApp.Blog.Article)
:article

iex> MyApp.Policy.get_object_name(%MyApp.Blog.Article{})
:article

iex> MyApp.Policy.get_object_name(MyApp.Blog.Tag)
nil

 Link to this callback

 get_rule(atom)

 View Source

 @callback get_rule(atom()) :: LetMe.Rule.t() | nil

Returns the rule for the given rule name. Returns nil if the rule is
not found.
The rule name is an atom with the format {object}_{action}.

 Example

iex> MyApp.Policy.get_rule(:article_create)
%LetMe.Rule{
 action: :create,
 allow: [[role: :admin], [role: :writer]],
 deny: [],
 name: :article_create,
 object: :article,
 pre_hooks: []
}

iex> MyApp.Policy.get_rule(:cookie_eat)
nil

 Link to this callback

 get_schema(atom)

 View Source

 @callback get_schema(atom()) :: module() | nil

Returns the schema module for the given object name, if it was registered
using object/3.

 Examples

iex> MyApp.Policy.get_schema(:article)
MyApp.Blog.Article

iex> MyApp.Policy.get_schema(:user)
nil

 Link to this callback

 list_rules()

 View Source

 @callback list_rules() :: [LetMe.Rule.t()]

Returns all authorization rules as a list.

 Example

iex> MyApp.PolicyShort.list_rules() |> Enum.sort()
[
 %LetMe.Rule{
 action: :create,
 allow: [[role: :admin], [role: :writer]],
 deny: [],
 name: :article_create,
 object: :article,
 pre_hooks: []
 },
 %LetMe.Rule{
 action: :update,
 allow: [:own_resource],
 deny: [],
 name: :article_update,
 object: :article,
 pre_hooks: [:preload_groups]
 }
]

 Link to this callback

 list_rules(keyword)

 View Source

 @callback list_rules(keyword()) :: [LetMe.Rule.t()]

Same as list_rules/0, but takes a keyword list with filter options.
See LetMe.filter_rules/2 for a list of available filter options.

 Functions

 Link to this macro

 action(names, list)

 View Source

 (macro)

 @spec action(atom() | [atom()], Macro.t()) :: Macro.t()

Defines an action that needs to be authorized.
Within the do-block, you can use the allow/1, deny/1 and pre_hooks/1
macros to define the checks to be run and the desc/1 macro to add a
description.
This macro must be used within the do-block of object/2.
Each action block will be compiled to a rule. The rule name is an atom with
the format {object}_{action}.

 Example

object :article do
 action :create do
 allow role: :editor
 allow role: :writer
 end

 action :update do
 allow role: :editor
 allow [:own_resource, role: :writer]
 end
end
If you have multiple actions with the same allow and deny rules, you can also
pass a list of action names as the first argument.
object :article do
 action [:create, :update, :delete] do
 allow role: :editor
 allow role: :writer
 end
end

 Link to this macro

 allow(checks)

 View Source

 (macro)

 @spec allow(LetMe.Rule.check() | [LetMe.Rule.check()]) :: Macro.t()

Defines the checks to be run to determine if an action is allowed.
The argument can be:
	a function name as an atom
	a tuple with the function name and an additional argument
	a list of function names or function/argument tuples
	true or false - Always allows or denies an action. Can be useful in
combination with the deny/1 macro.

The function must be defined in the configured check module and take the
subject (current user), object as arguments, and if given, the additional
argument.
If a list is given as an argument, the checks are combined with a logical
AND.
If the allow/1 macro is used multiple times within the same action/2
block, the checks of each macro call are combined with a logical OR.

 Examples

Let's assume you defined the following checks:
defmodule MyApp.Policy.Checks do
 def role(%User{role: role}, _, role), do: true
 def role(_, _, _), do: false

 def own_resource(%User{id: id}, %{user_id: id}, _), do: true
 def own_resource(_, _, _), do: false
end
This would allow the :article_update action only if the current user has
the role :admin:
object :article do
 action :update do
 allow role: :admin
 end
end
This is equivalent to:
object :article do
 action :update do
 allow {:role, :admin}
 end
end
This would allow the :article_update action if the user has the role
:writer and the article belongs to the user:
object :article do
 action :update do
 allow [:own_resource, role: :writer]
 end
end
This is equivalent to:
object :article do
 action :update do
 allow [:own_resource, {:role, :writer}]
 end
end
This would allow the :article_update action if
(the user has the role :admin or (the user has the role :writer and
the article belongs to the user)):
object :article do
 action :update do
 allow role: :admin
 allow [:own_resource, role: :writer]
 end
end

 Link to this macro

 deny(checks)

 View Source

 (macro)

 @spec deny(LetMe.Rule.check() | [LetMe.Rule.check()]) :: Macro.t()

Defines the checks to be run to determine if an action is denied.
If any of the checks evaluates to true, the allow checks are overridden
and the authorization request is automatically denied.
If a list is given as an argument, the checks are combined with a logical
AND.
If the allow/1 macro is used multiple times within the same action/2
block, the checks of each macro call are combined with a logical OR.

 Examples

Let's assume you defined the following checks:
defmodule MyApp.Policy.Checks do
 def role(%User{role: role}, _, role), do: true
 def role(_, _, _), do: false

 def own_resource(%User{id: id}, %{user_id: id}, _), do: true
 def own_resource(_, _, _), do: false

 def same_user(%User{id: id}, %User{id: id}, _), do: true
 def same_user(_, _, _), do: false
end
This would allow the :user_delete action by default, unless the object is
the current user:
object :user do
 action :delete do
 allow true
 deny :same_user
 end
end
This would allow the :article_update action only if the current user has
the role :admin, unless the object is the current user:
object :user do
 action :delete do
 allow role: :admin
 deny :same_user
 end
end
This would allow the :user_delete by default, unless the object is the
current user and the current user is an admin:
object :user do
 action :delete do
 allow true
 deny [:same_user, role: :admin]
 end
end
This would allow the :user_delete by default, unless the object is the
current user or the current user is a peasant:
object :user do
 action :delete do
 allow true
 deny :same_user
 deny role: :peasant
 end
end

 Link to this macro

 desc(text)

 View Source

 (macro)

 @spec desc(String.t()) :: Macro.t()

Allows you to add a description to a rule.
The description can be accessed from the LetMe.Rule struct. You can use it
to generate help texts or documentation.

 Example

object :article do
 action :create do
 desc "allows a user to create a new article"
 allow role: :writer
 end
end

 Link to this macro

 metadata(key, value)

 View Source

 (macro)

 @spec metadata(atom(), term()) :: Macro.t()

Assigns metadata to the action in the form of a key value pair.
The metadata can be accessed from the LetMe.Rule struct. You can use it
to extend the functionality of the library.

 Example

object :article do
 action :create do
 allow role: :writer

 desc "Allows a user to create a new article."
 metadata :desc_ja, "ユーザーが新しい記事を作成できるようにする"
 end
end
The LetMe.Rule struct returned by the introspection functions would look
like this:
%LetMe.Rule{
 action: :create,
 allow: [[role: :writer]],
 deny: [],
 description: "Allows a user to create a new article.",
 name: :article_create,
 object: :article,
 pre_hooks: [],
 metadata: [
 desc_ja: "ユーザーが新しい記事を作成できるようにする"
]
}
It is also possible to use the metadata macro multiple times.
object :article do
 action :create do
 allow role: :writer

 desc "Allows a user to create a new article."
 metadata :desc_ja, "ユーザーが新しい記事を作成できるようにする"
 metadata :desc_es, "Permite al usuario crear un nuevo artículo."
 end
end
This would result in:
%LetMe.Rule{
 action: :create,
 allow: [[role: :writer]],
 deny: [],
 description: "Allows a user to create a new article.",
 name: :article_create,
 object: :article,
 pre_hooks: [],
 metadata: [
 desc_ja: "ユーザーが新しい記事を作成できるようにする",
 desc_es: "Permite al usuario crear un nuevo artículo."
]
}

 Link to this macro

 object(name, module \\ nil, list)

 View Source

 (macro)

 @spec object(atom(), module() | nil, Macro.t()) :: Macro.t()

Defines an object on which actions can be performed.
Within the do-block, you can use the action/2 macro to define the actions
and checks.

 Examples

object :article do
 action :create do
 allow role: :writer
 end

 action :delete do
 allow role: :editor
 end
end
You can optionally pass the schema module as the second argument. The schema
module should implement the LetMe.Schema behaviour.
object :article, MyApp.Blog.Article do
 action :create do
 allow role: :writer
 end
end
At the moment, this doesn't do much, except that you can find the schema
module by passing the object name to get_schema/1, or find the object name
by passing the schema module or struct to get_object_name/1 now. Also,
you can now only pass the struct toc:MyApp.Policy.filter_allowed_actions/3,
without explicitly passing the object name.

 Link to this macro

 pre_hooks(hooks)

 View Source

 (macro)

 @spec pre_hooks(LetMe.Rule.hook() | [LetMe.Rule.hook()]) :: Macro.t()

Registers one or multiple functions to run in order to hydrate the subject
and/or object of the request.
This is useful if you need to enhance the data for multiple checks in the
same action by preloading associations, making external requests, or similar
things. The configured hook functions will be called once before running the
checks for an action.
The referenced functions must take the subject and object as arguments and
return a 2-tuple with the updated subject and object.
The referenced functions may also take an optional third argument that are
opts passed through the authorize functions. These opts are merged into
any opts that are specified in the pre_hook definition.

 Examples

Let's assume we defined these check and hook functions in our check module:
def MyApp.Policy.Checks do
 # Checks

 def min_age(%{age: age}, _, min_age), do: age >= min_age

 # Hooks

 def double_age(subject, object) do
 new_subject = %{subject | age: subject.age * 2}
 {new_subject, object}
 end

 def set_age(subject, object, age: age) do
 new_subject = %{subject | age: age}
 {new_subject, object}
 end
end
If an atom is passed, LetMe will try to find the function in the check module.
object :article do
 action :view do
 pre_hooks :double_age
 allow min_age: 50
 end
end
With this in place, the following authorization request will evaluate to
true:
MyApp.Policy.authorize!(:article_view, %{age: 25})
=> true
If your hooks are defined in a different module, you can also pass a
module/function tuple. The pre-hook configuration above is equivalent to:
object :article do
 action :view do
 pre_hooks {MyApp.Policy.Checks, :double_age}
 allow min_age: 50
 end
end
You can also pass options to a hook by using an MFA tuple:
object :article do
 action :view do
 pre_hooks {MyApp.Policy.Checks, :set_age, age: 50}
 allow min_age: 50
 end
end

MyApp.Policy.authorize!(:article_view, %{age: 10})
=> true
You can achieve the same functionality dynamically using the opts on authorize!:
object :article do
 action :view do
 pre_hooks {MyApp.Policy.Checks, :set_age}
 allow min_age: 50
 end
end

MyApp.Policy.authorize!(:article_view, %{age: 10}, age: 50)
=> true
And finally, you can also pass a list of hooks, which will be run in sequence:
alias MyApp.Policy.Checks

object :article do
 action :view do
 pre_hooks [{Checks, :set_age, 25}, :double_age]
 allow min_age: 50
 end
end

MyApp.Policy.authorize!(:article_view, %{age: 10})
=> true

LetMe.Rule

A struct for an authorization rule.

 Summary

 Types

 check()

 A check references a function in the configured check module.

 hook()

 A hook can be registered to hydrate the subject and/or object before passing
them to the check functions.

 t()

 Struct for an authorization rule.

 Types

 Link to this type

 check()

 View Source

 @type check() :: atom() | {atom(), any()}

A check references a function in the configured check module.
Can be either one of:
	A function name as an atom. The function must be a 2-arity function that
takes the subject (usually the current user) and the object as
arguments.
	A tuple with the function name as an atom and a value of any type. The
function must be a 3-arity function that takes the subject, the object, and
the given value as arguments.

 Link to this type

 hook()

 View Source

 @type hook() :: atom() | {module(), atom()} | {module(), atom(), any()}

A hook can be registered to hydrate the subject and/or object before passing
them to the check functions.
"Hydration" in this context means enriching or preparing the data by adding
or transforming necessary information. For instance, you might fetch related
data from the database, calculate derived properties, or format the data in a
certain way.
A hook can be one of the following:
	The name of a function defined in the configured check module as an atom.
	A {module, function} tuple.
	A {module, function, arguments} tuple.

In either case, the function must take the subject as the first argument, the
object as the second argument, and return a tuple with the updated subject and
object. If an MFA tuple is passed, the given arguments are appended to the
default arguments.

 Link to this type

 t()

 View Source

 @type t() :: %LetMe.Rule{
 action: atom(),
 allow: [check() | [check()]],
 deny: [check() | [check()]],
 description: String.t() | nil,
 metadata: Keyword.t(),
 name: atom(),
 object: atom(),
 pre_hooks: [hook()]
}

Struct for an authorization rule.
	action - The action (verb) to be performed on the object, e.g. :update.
	allow - A list of lists of checks to run to determine whether the action
is allowed. The outer list contains the alternatives (one for each allow
call; combined with OR). The inner lists are the checks for each allow
(combined with AND).
	description - A human-readable description of the action.
	deny - A list of lists of checks to run to determine whether the action is
explicitly denied. Same format as in allow. If any of these checks returns
true, the end result of the authorization request is immediately false,
even if any of the checks in the allow field would return true.
	name - The name of the rule. Is always {object}_{action}.
	object - The object that the action is performed on, e.g. :article.
	pre_hooks - Functions to run in order to hydrate the subject and/or object
before running the allow and deny checks.
	metadata - A list of relevant metadata useful for extending functionality.

The list entries in the outer list of the allow and deny fields are
combined with a logical OR. If one of the entries is a list of checks, those
checks are combined with a logical AND.

 Examples

	[{role: :editor}, {role: :writer}] - role is editor OR role is writer
	[[{role: :editor}], [{role: :writer}]] - same as above
	[[{role: :editor}], [{role: :writer}, {:own_resource}]] -
 (role is editor OR (role is writer AND object is the user's own resource))

LetMe.Schema behaviour

Defines a behaviour with callbacks for scoping and redactions.
Using this module will define overridable default implementations for the
scope/3 and redacted_fields/3 callbacks.

 Usage

defmodule MyApp.Blog.Article do
 use LetMe.Schema
 import Ecto.Schema
 alias MyApp.Accounts.User

 @impl LetMe.Schema
 def scope(q, user, opts \\ nil)
 def scope(q, %User{role: :admin}, _), do: q
 def scope(q, %User{}, _), do: where(q, published: true)

 @impl LetMe.Schema
 def redacted_fields(_, %User{role: :admin}, _), do: []
 def redacted_fields(%__MODULE__{user_id: id}, %User{id: id}, _), do: []
 def redacted_fields(_, %User{}, _), do: [:view_count]
end
use LetMe.Schema
When you use LetMe.Schema, the module will set @behaviour LetMe.Schema
and define default implementations for the functions scope/3 and
redacted_fields/3. Both functions are overridable.

 Scoping a query

With the setup above, you can scope a blog article query depending on the
user.
defmodule MyApp.Blog do
 import Ecto.Query

 alias MyApp.Accounts.User
 alias MyApp.Blog.Article

 def list_articles(%User{} = current_user) do
 Article
 |> Article.scope(current_user)
 |> Repo.all()
 end

 def get_article(id, %User{} = current_user) when is_integer(id) do
 Article
 |> where(id: id)
 |> Article.scope(current_user)
 |> Repo.one()
 end
end

 Redacting fields

After implementing the redacted_fields/3 callback, you can hide fields
from depending on the user by calling LetMe.redact/3 on a struct or a list
of structs.
def list_articles(%User{} = current_user) do
 Article
 |> Repo.all()
 |> LetMe.redact(current_user)
end

 Summary

 Types

 redacted_fields()

 Callbacks

 redacted_fields(object, subject, opts)

 Returns the fields that need to be removed from the given object for the given
subject.

 scope(queryable, subject, opts)

 Takes a queryable (usually an Ecto.Queryable) and a subject (usually the
current user) and returns an updated queryable.

 Types

 Link to this type

 redacted_fields()

 View Source

 @type redacted_fields() :: [atom() | {atom(), module() | redacted_fields()}]

 Callbacks

 Link to this callback

 redacted_fields(object, subject, opts)

 View Source

 @callback redacted_fields(object, subject, opts) :: redacted_fields()
when object: any(), subject: any(), opts: keyword()

Returns the fields that need to be removed from the given object for the given
subject.
This function can be used to hide certain fields depending on the current
user. See also LetMe.redact/3 and LetMe.reject_redacted_fields/3.
defmodule MyApp.Blog.Article do
 use LetMe.Schema
 alias MyApp.Accounts.User

 @impl LetMe.Schema
 # hide view count unless the user is an admin or the article was written
 # by the user
 def redacted_fields(_, %User{role: :admin}, _), do: []
 def redacted_fields(%__MODULE__{user_id: id}, %User{id: id}, _), do: []
 def redacted_fields(_, %User{}, _), do: [:view_count]
end
The return value must be a list of fields to redact. You can also redact
nested fields by passing the field names directly:
[:email, sibling: [:phone_number]]
Or you can pass the module name of a nested struct, if that module also
implements LetMe.Schema:
[:email, sibling: MyApp.Relative]
The last argument can be used for any additional options.

 Link to this callback

 scope(queryable, subject, opts)

 View Source

 @callback scope(queryable, subject, opts) :: queryable
when queryable: any(), subject: any(), opts: any()

Takes a queryable (usually an Ecto.Queryable) and a subject (usually the
current user) and returns an updated queryable.
This allows you to add WHERE clauses to a query depending on the user. For
example, you may want to add a WHERE clause to only return articles that are
published, unless the user is an admin. Or you may want to only return
objects that belong to the user.
defmodule MyApp.Blog.Article do
 use Ecto.Schema
 use LetMe.Schema

 import Ecto.Schema
 alias MyApp.Accounts.User

 # Ecto schema and changeset

 @impl LetMe.Schema
 def scope(q, user, opts \\ nil)
 def scope(q, %User{role: :admin}, _), do: q
 def scope(q, %User{}, _), do: where(q, published: true)
end
Since LetMe does not depend on Ecto and does not make any assumptions on the
queryable passed to the callback function, you are not constrained to use this
mechanism for Ecto queries only. For example, you could use the function to
add filter parameters before passing them to a filter function or making an
API call.
@impl LetMe.Schema
def scope(q, user, opts \\ nil)

def scope(query_params, %User{role: :admin}, _), do: query_params

def scope(query_params, %User{}, _) do
 Keyword.put(query_params, :published, true)
end
You can use the third argument to pass any additional options.

LetMe.UnauthorizedError exception

Raised by LetMe.Policy.authorize!/4 if a request is unauthorized.

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

