

 libcluster

 v3.3.3

 Table of contents

 	Changelog

 	libcluster

 	Modules

 	Cluster.Strategy

 	Cluster.Strategy.DNSPoll

 	Cluster.Strategy.Epmd

 	Cluster.Strategy.ErlangHosts

 	Cluster.Strategy.Gossip

 	Cluster.Strategy.Kubernetes

 	Cluster.Strategy.Kubernetes.DNS

 	Cluster.Strategy.Kubernetes.DNSSRV

 	Cluster.Strategy.LocalEpmd

 	Cluster.Strategy.Rancher

 	Cluster.Strategy.State

 	Cluster.Supervisor

Changelog

Unreleased
	Use new cypher names
	Allow Epmd strategy to reconnect after connection failures
	Detect Self Signed Certificate Authority for Kubernetes Strategy
	Remove calls to deprecated Logger.warn/2

3.3.0
Changed
	Default multicast address is now 233.252.1.32, was 230.1.1.251, commit

2.3.0
Added
	Clustering strategy for the Rancher container platform (see: https://github.com/rancher/rancher)
	LocalEpmd strategy that uses epmd to discover nodes on the local host
	Gossip strategy multicast interface is used for adding multicast membership

2.0.0
Added
	Configurable connect and disconnect options for implementing strategies
on top of custom topologies
	The ability to start libcluster for more than a single topology
	Added polling_interval option to Kubernetes strategy
	Added ability to specify a list of hosts for the Epmd strategy to connect to on start

Removed
	Cluster.Events module, as it was redundant and unused

Changed
	Configuration format has changed significantly, please review the docs

libcluster

[image: Build Status]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
This library provides a mechanism for automatically forming clusters of Erlang nodes, with
either static or dynamic node membership. It provides a pluggable "strategy" system, with a variety of strategies
provided out of the box.
You can find supporting documentation here.
Features
	Automatic cluster formation/healing
	Choice of multiple clustering strategies out of the box:	Standard Distributed Erlang facilities (e.g. epmd, .hosts.erlang), which supports IP-based or DNS-based names
	Multicast UDP gossip, using a configurable port/multicast address,
	Kubernetes via its metadata API using via a configurable label selector and
node basename; or alternatively, using DNS.
	Rancher, via its metadata API

	Easy to provide your own custom clustering strategies for your specific environment.
	Easy to use provide your own distribution plumbing (i.e. something other than
Distributed Erlang), by implementing a small set of callbacks. This allows
libcluster to support projects like
Partisan.

Installation
defp deps do
 [{:libcluster, "~> MAJ.MIN"}]
end
You can determine the latest version by running mix hex.info libcluster in
your shell, or by going to the libcluster page on Hex.pm.
Usage
It is easy to get started using libcluster, simply decide which strategy you
want to use to form a cluster, define a topology, and then start the Cluster.Supervisor module in
the supervision tree of an application in your Elixir system, as demonstrated below:
defmodule MyApp.App do
 use Application

 def start(_type, _args) do
 topologies = [
 example: [
 strategy: Cluster.Strategy.Epmd,
 config: [hosts: [:"a@127.0.0.1", :"b@127.0.0.1"]],
]
]
 children = [
 {Cluster.Supervisor, [topologies, [name: MyApp.ClusterSupervisor]]},
 # ..other children..
]
 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
 end
end
The following section describes topology configuration in more detail.
Example Configuration
You can configure libcluster either in your Mix config file (config.exs) as
shown below, or construct the keyword list structure manually, as shown in the
previous section. Either way, you need to pass the configuration to the
Cluster.Supervisor module in it's start arguments. If you prefer to use Mix
config files, then simply use Application.get_env(:libcluster, :topologies) to
get the config that Cluster.Supervisor expects.
config :libcluster,
 topologies: [
 epmd_example: [
 # The selected clustering strategy. Required.
 strategy: Cluster.Strategy.Epmd,
 # Configuration for the provided strategy. Optional.
 config: [hosts: [:"a@127.0.0.1", :"b@127.0.0.1"]],
 # The function to use for connecting nodes. The node
 # name will be appended to the argument list. Optional
 connect: {:net_kernel, :connect_node, []},
 # The function to use for disconnecting nodes. The node
 # name will be appended to the argument list. Optional
 disconnect: {:erlang, :disconnect_node, []},
 # The function to use for listing nodes.
 # This function must return a list of node names. Optional
 list_nodes: {:erlang, :nodes, [:connected]},
],
 # more topologies can be added ...
 gossip_example: [
 # ...
]
]
Strategy Configuration
For instructions on configuring each strategy included with libcluster, please
visit the docs on HexDocs, and look at the
module doc for the strategy you want to use. The authoritative documentation for
each strategy is kept up to date with the module implementing it.
Clustering
You have a handful of choices with regards to cluster management out of the box:
	Cluster.Strategy.Epmd, which relies on epmd to connect to a configured set
of hosts.
	Cluster.Strategy.LocalEpmd, which relies on epmd to connect to discovered
nodes on the local host.
	Cluster.Strategy.ErlangHosts, which uses the .hosts.erlang file to
determine which hosts to connect to.
	Cluster.Strategy.Gossip, which uses multicast UDP to form a cluster between
nodes gossiping a heartbeat.
	Cluster.Strategy.Kubernetes, which uses the Kubernetes Metadata API to query
nodes based on a label selector and basename.
	Cluster.Strategy.Kubernetes.DNS, which uses DNS to join nodes under a shared
headless service in a given namespace.
	Cluster.Strategy.Rancher, which like the Kubernetes strategy, uses a
metadata API to query nodes to cluster with.

You can also define your own strategy implementation, by implementing the
Cluster.Strategy behavior. This behavior expects you to implement a
start_link/1 callback, optionally overriding child_spec/1 if needed. You don't necessarily have
to start a process as part of your strategy, but since it's very likely you will need to maintain some state, designing your
strategy as an OTP process (e.g. GenServer) is the ideal method, however any
valid OTP process will work. See the Cluster.Strategy module for details on
the callbacks you need to implement and the arguments they receive.
If you do not wish to use the default Erlang distribution protocol, you may provide an alternative means of connecting/
disconnecting nodes via the connect and disconnect configuration options, if not using Erlang distribution you must provide a list_nodes implementation as well.
They take a {module, fun, args} tuple, and append the node name being targeted to the args list. How to implement distribution in this way is left as an
exercise for the reader, but I recommend taking a look at the Firenest project
currently under development. By default, libcluster uses Distributed Erlang.
Third-Party Strategies
The following list of third-party strategy implementations is not comprehensive,
but are known to exist.
	libcluster_ec2 - EC2 clustering strategy based on tags
	libcluster_droplet - Digital Ocean Droplet clustering strategy
	libcluster_consul - Consul clustering strategy

Copyright and License
Copyright (c) 2016 Paul Schoenfelder
This library is MIT licensed. See the
LICENSE.md for details.

Cluster.Strategy behaviour

This module defines the behaviour for implementing clustering strategies.

 Anchor for this section

 Summary

 Types

 bad_nodes()

 mfa_tuple()

 strategy_args()

 topology()

 Callbacks

 child_spec(strategy_args)

 start_link(strategy_args)

 Functions

 connect_nodes(topology, connect, list_nodes, nodes)

 Given a list of node names, attempts to connect to all of them.
Returns :ok if all nodes connected, or {:error, [{node, reason}, ..]}
if we failed to connect to some nodes.

 difference(a, b)

 disconnect_nodes(topology, disconnect, list_nodes, nodes)

 Given a list of node names, attempts to disconnect from all of them.
Returns :ok if all nodes disconnected, or {:error, [{node, reason}, ..]}
if we failed to disconnect from some nodes.

 intersection(a, b)

 Anchor for this section

Types

 Link to this type

 bad_nodes()

 View Source

 @type bad_nodes() :: [{node(), reason :: term()}]

 Link to this type

 mfa_tuple()

 View Source

 @type mfa_tuple() :: {module(), atom(), [term()]}

 Link to this type

 strategy_args()

 View Source

 @type strategy_args() :: [Cluster.Strategy.State.t()]

 Link to this type

 topology()

 View Source

 @type topology() :: atom()

 Anchor for this section

Callbacks

 Link to this callback

 child_spec(strategy_args)

 View Source

 @callback child_spec(strategy_args()) :: Supervisor.child_spec()

 Link to this callback

 start_link(strategy_args)

 View Source

 @callback start_link(strategy_args()) ::
 {:ok, pid()} | :ignore | {:error, reason :: term()}

 Anchor for this section

Functions

 Link to this function

 connect_nodes(topology, connect, list_nodes, nodes)

 View Source

 @spec connect_nodes(topology(), mfa_tuple(), mfa_tuple(), [atom()]) ::
 :ok | {:error, bad_nodes()}

Given a list of node names, attempts to connect to all of them.
Returns :ok if all nodes connected, or {:error, [{node, reason}, ..]}
if we failed to connect to some nodes.
All failures are logged.

 Link to this function

 difference(a, b)

 View Source

 Link to this function

 disconnect_nodes(topology, disconnect, list_nodes, nodes)

 View Source

 @spec disconnect_nodes(topology(), mfa_tuple(), mfa_tuple(), [atom()]) ::
 :ok | {:error, bad_nodes()}

Given a list of node names, attempts to disconnect from all of them.
Returns :ok if all nodes disconnected, or {:error, [{node, reason}, ..]}
if we failed to disconnect from some nodes.
All failures are logged.

 Link to this function

 intersection(a, b)

 View Source

Cluster.Strategy.DNSPoll

Assumes you have nodes that respond to the specified DNS query (A record), and which follow the node name pattern of
<name>@<ip-address>. If your setup matches those assumptions, this strategy will periodically poll DNS and connect
all nodes it finds.
Options
	poll_interval - How often to poll in milliseconds (optional; default: 5_000)
	query - DNS query to use (required; e.g. "my-app.example.com")
	node_basename - The short name of the nodes you wish to connect to (required; e.g. "my-app")

Usage
config :libcluster,
 topologies: [
 dns_poll_example: [
 strategy: Elixir.Cluster.Strategy.DNSPoll,
 config: [
 polling_interval: 5_000,
 query: "my-app.example.com",
 node_basename: "my-app"]]]

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 lookup_all_ips(q)

 start_link(args)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 lookup_all_ips(q)

 View Source

 Link to this function

 start_link(args)

 View Source

Cluster.Strategy.Epmd

This clustering strategy relies on Erlang's built-in distribution protocol.
You can have libcluster automatically connect nodes on startup for you by configuring
the strategy like below:
config :libcluster,
 topologies: [
 epmd_example: [
 strategy: Elixir.Cluster.Strategy.Epmd,
 config: [
 timeout: 30_000,
 hosts: [:"a@127.0.0.1", :"b@127.0.0.1"]]]]
An optional timeout can be specified in the config. This is the timeout that
will be used in the GenServer to connect the nodes. This defaults to
:infinity meaning that the connection process will only happen when the
worker is started. Any integer timeout will result in the connection process
being triggered. In the example above, it has been configured for 30 seconds.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Cluster.Strategy.ErlangHosts

This clustering strategy relies on Erlang's built-in distribution protocol by
using a .hosts.erlang file (as used by the :net_adm module).
Please see the net_adm docs for more details.
In short, the following is the gist of how it works:
File .hosts.erlang consists of a number of host names written as Erlang terms. It is looked for in the current work
directory, the user's home directory, and $OTP_ROOT (the root directory of Erlang/OTP), in that order.

This looks a bit like the following in practice:
'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.

You can have libcluster automatically connect nodes on startup for you by configuring
the strategy like below:
config :libcluster,
 topologies: [
 erlang_hosts_example: [
 strategy: Elixir.Cluster.Strategy.ErlangHosts,
 config: [timeout: 30_000]
]
]
An optional timeout can be specified in the config. This is the timeout that
will be used in the GenServer to connect the nodes. This defaults to
:infinity meaning that the connection process will only happen when the
worker is started. Any integer timeout will result in the connection process
being triggered. In the example above, it has been configured for 30 seconds.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(list)

 Callback implementation for Cluster.Strategy.start_link/1.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(list)

 View Source

Callback implementation for Cluster.Strategy.start_link/1.

Cluster.Strategy.Gossip

This clustering strategy uses multicast UDP to gossip node names
to other nodes on the network. These packets are listened for on
each node as well, and a connection will be established between the
two nodes if they are reachable on the network, and share the same
magic cookie. In this way, a cluster of nodes may be formed dynamically.
The gossip protocol is extremely simple, with a prelude followed by the node
name which sent the packet. The node name is parsed from the packet, and a
connection attempt is made. It will fail if the two nodes do not share a cookie.
By default, the gossip occurs on port 45892, using the multicast address 233.252.1.32
The gossip protocol is not encrypted by default, but can be by providing a secret
in the configuration of the strategy (as shown below).
This can also be used to run multiple clusters with the same multicast configuration,
as nodes not sharing the same encryption key will not be connected.
You may configure the multicast interface, multicast address, the interface address to bind to, the port,
the TTL of the packets and the optional secret using the following settings:
config :libcluster,
 topologies: [
 gossip_example: [
 strategy: Elixir.Cluster.Strategy.Gossip,
 config: [
 port: 45892,
 if_addr: "0.0.0.0",
 multicast_if: "192.168.1.1",
 multicast_addr: "233.252.1.32",
 multicast_ttl: 1,
 secret: "somepassword"]]]
A TTL of 1 will limit packets to the local network, and is the default TTL.
Optionally, broadcast_only: true option can be set which disables multicast and
only uses broadcasting. This limits connectivity to local network but works on in
scenarios where multicast is not enabled. Use multicast_addr as the broadcast address.
Example for broadcast only:
config :libcluster,
 topologies: [
 gossip_example: [
 strategy: Elixir.Cluster.Strategy.Gossip,
 config: [
 port: 45892,
 if_addr: "0.0.0.0",
 multicast_addr: "255.255.255.255",
 broadcast_only: true]]]
Debug logging is deactivated by default for this clustering strategy, but it can be easily activated by configuring the application:
use Mix.Config

config :libcluster,
 debug: true
All the checks are done at runtime, so you can flip the debug level without being forced to shutdown your node.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Callback implementation for Cluster.Strategy.start_link/1.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(args)

 View Source

Callback implementation for Cluster.Strategy.start_link/1.

Cluster.Strategy.Kubernetes

This clustering strategy works by fetching information of endpoints or pods, which are filtered by
given Kubernetes namespace and label.
This strategy requires a service account with the ability to list endpoints or pods. If you want
to avoid that, you could use one of the DNS-based strategies instead.
See Cluster.Strategy.Kubernetes.DNS and Cluster.Strategy.Kubernetes.DNSSRV.

It assumes that all Erlang nodes are using longnames - <basename>@<ip_or_domain>:
	all nodes are using the same <basename>
	all nodes are using unique <ip_or_domain>

In <basename>@<ip_or_domain>:
	<basename> would be the value configured by :kubernetes_node_basename option.
	<ip_or_domain> would be the value which is controlled by following options:	:kubernetes_namespace
	:kubernetes_selector
	:kubernetes_service_name
	:kubernetes_ip_lookup_mode
	:mode

Getting <basename>
As said above, the basename is configured by :kubernetes_node_basename option.
Just one thing to keep in mind - when building an OTP release, make sure that the name of the OTP
release matches the name configured by :kubernetes_node_basename.
Getting <ip_or_domain>
:kubernetes_namespace and :kubernetes_selector option
These two options configure how to filter required endpoints or pods.
:kubernetes_ip_lookup_mode option
These option configures where to lookup the required IP.
Available values:
	:endpoints (default)
	:pods

:endpoints
When setting this value, this strategy will lookup IP from endpoints.
In order for your endpoints to be found they should be returned when you run:
kubectl get endpoints -l app=myapp
Then, this strategy will fetch the addresses of all endpoints with that label and attempt to
connect.
:pods
When setting this value, this strategy will lookup IP from pods directly.
In order for your pods to be found they should be returned when you run:
kubectl get pods -l app=myapp
Then, this strategy will fetch the IP of all pods with that label and attempt to connect.
:mode option
These option configures how to build the longname.
Available values:
	:ip (default)
	:dns
	:hostname

:ip
In this mode, the IP address is used directly. The longname will be something like:
myapp@<ip>
Getting this mode to work requires:
	exposing pod IP from Kubernetes to the Erlang node.
	setting the name of Erlang node according to the exposed information

First, expose required information from Kubernetes as environment variables of Erlang node:
deployment.yaml
env:
- name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
Then, set the name of Erlang node by using the exposed environment variables. If you use mix releases, you
can configure the required options in rel/env.sh.eex:
rel/env.sh.eex
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>@${POD_IP}
export RELEASE_DISTRIBUTION=name will append a -name option to the start command directly
and requires no further changes to the vm.args.

:hostname
In this mode, the hostname is used directly. The longname will be something like:
myapp@<hostname>.<service_name>.<namespace>.svc.<cluster_domain>
Getting :hostname mode to work requires:
	deploying pods as a StatefulSet (otherwise, hostname is not set for pods)
	setting :kubernetes_service_name to the name of the Kubernetes service that is being lookup
	setting the name of Erlang node according to hostname of pods

Then, set the name of Erlang node by using the hostname of pod. If you use mix releases, you can
configure the required options in rel/env.sh.eex:
rel/env.sh.eex
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>@$(hostname -f)
hostname -f returns the whole FQDN, which is something like:
$(hostname).${SERVICE_NAME}.${NAMESPACE}.svc.${CLUSTER_DOMAIN}".

:dns
In this mode, an IP-based pod A record is used. The longname will be something like:
myapp@<pod_a_record>.<namespace>.pod.<cluster_domain>
Getting :dns mode to work requires:
	exposing pod IP from Kubernetes to the Erlang node
	setting the name of Erlang node according to the exposed information

First, expose required information from Kubernetes as environment variables of Erlang node:
deployment.yaml
env:
- name: NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
- name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
Then, set the name of Erlang node by using the exposed environment variables. If you use mix
releases, you can configure the required options in rel/env.sh.eex:
rel/env.sh.eex
export POD_A_RECORD=$(echo $POD_IP | sed 's/./-/g')
export CLUSTER_DOMAIN=cluster.local # modify this value according to your actual situation
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>@${POD_A_RECORD}.${NAMESPACE}.pod.${CLUSTER_DOMAIN}
Which mode is the best one?
There is no best, only the best for you:
	If you're not using a StatefulSet, use :ip or :dns.
	If you're using a StatefulSet, use :hostname.

And, there is one thing that can be taken into consideration. When using :ip or :dns, you
can establish a remote shell (as well as run observer) by using kubectl port-forward in combination
with some entries in /etc/hosts.
Polling Interval
The default interval to sync topologies is 5000
(5 seconds). You can configure it with :polling_interval option.
Getting cluster information
In general, you don't need to read this, the default values will work.

This strategy fetchs information of endpoints or pods by accessing the REST API provided by
Kubernetes.
The base URL of the REST API has two parts:
<master_name>.<cluster_domain>
<master_name> is configured by following options:
	:kubernetes_master - the default value is kubernetes.default.svc

<cluster_domain> is configured by following options and environment variables:
	:kubernetes_cluster_name - the default value is cluster, and the final cluster domain will be <cluster_name>.local
	CLUSTER_DOMAIN - when this environment variable is provided, :kubernetes_cluster_name will be ignored

<master_name> and <cluster_domain> also affect each other, checkout the source code for more
details.

Besides the base URL of the REST API, a service account must be provided. The service account is
configured by following options:
	:kubernetes_service_account_path - the default value is /var/run/secrets/kubernetes.io/serviceaccount

An example configuration
config :libcluster,
 topologies: [
 erlang_nodes_in_k8s: [
 strategy: Elixir.Cluster.Strategy.Kubernetes,
 config: [
 mode: :ip,
 kubernetes_node_basename: "myapp",
 kubernetes_selector: "app=myapp",
 kubernetes_namespace: "my_namespace",
 polling_interval: 10_000
]
]
]

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Callback implementation for Cluster.Strategy.start_link/1.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(args)

 View Source

Callback implementation for Cluster.Strategy.start_link/1.

Cluster.Strategy.Kubernetes.DNS

This clustering strategy works by fetching IP addresses with the help of a headless service in
current Kubernetes namespace.
This strategy requires exposing pods by a headless service.
If you want to avoid that, you could use Cluster.Strategy.Kubernetes.

It assumes that all Erlang nodes are using longnames - <basename>@<ip>:
	all nodes are using the same <basename>
	all nodes are using unique <ip>

In <basename>@<ip>:
	<basename> would be the value configured by :application_name option.
	<ip> would be the value which is controlled by following options:	:service
	:resolver

Getting <basename>
As said above, the basename is configured by :application_name option.
Just one thing to keep in mind - when building an OTP release, make sure that the name of the OTP
release matches the name configured by :application_name.
Getting <ip>
It will fetch IP addresses of all pods under a headless service and attempt to connect.
Setup
Getting this strategy to work requires:
	exposing pod IP from Kubernetes to the Erlang node.
	setting a headless service for the pods
	setting the name of Erlang node according to the exposed information

First, expose required information from Kubernetes as environment variables of Erlang node:
deployment.yaml
env:
- name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
Second, set a headless service for the pods:
deployment.yaml
apiVersion: v1
kind: Service
metadata:
 name: myapp-headless
spec:
 selector:
 app: myapp
 type: ClusterIP
 clusterIP: None
Then, set the name of Erlang node by using the exposed environment variables. If you use mix releases, you
can configure the required options in rel/env.sh.eex:
rel/env.sh.eex
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>@${POD_IP}
Polling Interval
The default interval to sync topologies is 5000
(5 seconds). You can configure it with :polling_interval option.
An example configuration
config :libcluster,
 topologies: [
 erlang_nodes_in_k8s: [
 strategy: Elixir.Cluster.Strategy.Kubernetes.DNS,
 config: [
 service: "myapp-headless",
 application_name: "myapp",
 polling_interval: 10_000
]
]
]

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Cluster.Strategy.Kubernetes.DNSSRV

This clustering strategy works by issuing a SRV query for the headless service where the StatefulSet
containing your nodes is running.
This strategy requires deploying pods as a StatefulSet which is exposed by a headless service.
If you want to avoid that, you could use Cluster.Strategy.Kubernetes.DNS.

It assumes that all Erlang nodes are using longnames - <basename>@<domain>:
	all nodes are using the same <basename>
	all nodes are using unique <domain>

In <basename>@<domain>:
	<basename> would be the value configured by :application_name option.
	<domain> would be the value which is controlled by following options:	:service
	:namespace
	:resolver

Getting <basename>
As said above, the basename is configured by :application_name option.
Just one thing to keep in mind - when building an OTP release, make sure that the name of the OTP
release matches the name configured by :application_name.
Getting <domain>
For more information, see the kubernetes stateful-application documentation

Setup
Getting this strategy to work requires:
	deploying pods as a StatefulSet (otherwise, hostname won't set for pods)
	exposing above StatefulSet by a headless service (otherwise, the SRV query won't work as expected)
	setting the name of Erlang node according to hostname of pods

First, deploying pods as a StatefulSet which is exposed by a headless service. And here is an
example of a corresponding Kubernetes definition:
apiVersion: v1
kind: Service
metadata:
 name: "myapp-headless"
 labels:
 app: myapp
spec:
 ports:
 - port: 4000
 name: web
 clusterIP: None
 selector:
 app: myapp

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: myapp
spec:
 serviceName: "myapp-headless"
 replicas: 2
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: myapp:v1.0.0
 imagePullPolicy: Always
 ports:
 - containerPort: 4000
 name: http
 protocol: TCP
Then, set the name of Erlang node by using the hostname of pod. If you use mix releases, you
can configure the required options in rel/env.sh.eex:
rel/env.sh.eex
export RELEASE_DISTRIBUTION=name
export RELEASE_NODE=<%= @release.name %>@$(hostname -f)
Polling Interval
The default interval to sync topologies is 5000
(5 seconds). You can configure it with :polling_interval option.
An example configuration
config :libcluster,
 topologies: [
 erlang_nodes_in_k8s: [
 strategy: Elixir.Cluster.Strategy.Kubernetes.DNSSRV,
 config: [
 service: "myapp-headless",
 application_name: "myapp",
 namespace: "default",
 polling_interval: 10_000
]
]
]
An example of how this strategy extracts topology information from DNS
$ hostname -f
myapp-1.myapp-headless.default.svc.cluster.local

An SRV query for a headless service returns multiple entries
$ dig SRV myapp-headless.default.svc.cluster.local

; <<>> DiG 9.14.3 <<>> SRV myapp-headless.default.svc.cluster.local
;; global options: +cmd
;; Got answer:
;; WARNING: .local is reserved for Multicast DNS
;; You are currently testing what happens when an mDNS query is leaked to DNS
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 7169
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 2

;; QUESTION SECTION:
;myapp-headless.default.svc.cluster.local. IN SRV

;; ANSWER SECTION:
myapp-headless.default.svc.cluster.local. 30 IN SRV 10 50 0 myapp-0.myapp-headless.default.svc.cluster.local.
myapp-headless.default.svc.cluster.local. 30 IN SRV 10 50 0 myapp-1.myapp-headless.default.svc.cluster.local.

;; ADDITIONAL SECTION:
myapp-0.myapp-headless.default.svc.cluster.local. 30 IN A 10.1.0.95
myapp--1.myapp-headless.default.svc.cluster.local. 30 IN A 10.1.0.96

;; Query time: 0 msec
;; SERVER: 10.96.0.10#53(10.96.0.10)
;; WHEN: Wed Jul 03 11:55:27 UTC 2019
;; MSG SIZE rcvd: 167

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Cluster.Strategy.LocalEpmd

This clustering strategy relies on Erlang's built-in distribution protocol.
Unlike Cluster.Strategy.Empd, this strategy assumes that all nodes are on
the local host and can be discovered by epmd.
Make sure epmd is started before you start your application, or startup
will fail. When running with mix, you can do this automatically by passing
the --name or --sname flag to start distribution.
It should be configured as follows:
config :libcluster,
 topologies: [
 local_epmd_example: [
 strategy: Elixir.Cluster.Strategy.LocalEpmd]]

 Anchor for this section

 Summary

 Functions

 start_link(list)

 Callback implementation for Cluster.Strategy.start_link/1.

 Anchor for this section

Functions

 Link to this function

 start_link(list)

 View Source

Callback implementation for Cluster.Strategy.start_link/1.

Cluster.Strategy.Rancher

This clustering strategy is specific to the Rancher container platform.
It works by querying the platform's metadata API for containers belonging to
the same service as the node and attempts to connect them.
(see: http://rancher.com/docs/rancher/latest/en/rancher-services/metadata-service/)
It assumes that all nodes share a base name and are using longnames of the form
<basename@<ip> where the <ip> is unique for each node.
A way to assign a name to a node on boot in an app running as a Distillery release is:
Create a wrapper script which will interpolate the current ip of the container.
#!/bin/sh

export CONTAINER_IP="$(hostname -I | cut -f1 -d' ')"
export REPLACE_OS_VARS=true

/app/bin/app "$@"

vm.args
-name app@${CONTAINER_IP}
An example configuration is below:
config :libcluster,
 topologies: [
 rancher_example: [
 strategy: Elixir.Cluster.Strategy.Rancher,
 config: [
 node_basename: "myapp",
 polling_interval: 10_000]]]

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Callback implementation for Cluster.Strategy.start_link/1.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(args)

 View Source

Callback implementation for Cluster.Strategy.start_link/1.

Cluster.Strategy.State

The state of one strategy.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Cluster.Strategy.State{
 config: [{atom(), term()}],
 connect: {module(), atom(), [term()]},
 disconnect: {module(), atom(), [term()]},
 list_nodes: {module(), atom(), [:connected] | [:connected | [any()]]},
 meta: term(),
 topology: atom()
}

Cluster.Supervisor

This module handles supervising the configured topologies, and is designed
to support being started within your own supervision tree, as shown below:
defmodule MyApp.App do
 use Application

 def start(_type, _args) do
 topologies = [
 example: [
 strategy: Cluster.Strategy.Epmd,
 config: [hosts: [:"a@127.0.0.1", :"b@127.0.0.1"]],
]
]
 children = [
 {Cluster.Supervisor, [topologies, [name: MyApp.ClusterSupervisor]]},
 ..other children..
]
 Supervisor.start_link(children, strategy: :one_for_one, name: MyApp.Supervisor)
 end
end
The topologies configuration structure shown above can be built manually,
like shown, so that you can load config at runtime in a way that best
suits your application; or if you don't need to do any special config
handling, you can use the Mix config file, and just use
Application.get_env(:libcluster, :topologies). That config would look like so:
config :libcluster,
 topologies: [
 example: [...]
]
Use the method most convenient for you.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Start a new instance of this supervisor. This is the callback indicated in
the child specification returned by child_spec/1. It expects a list of
the form [config, supervisor_opts], or [config]. The former allows you
to provide options for the supervisor like with Supervisor.start_link/3.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(args)

 View Source

Start a new instance of this supervisor. This is the callback indicated in
the child specification returned by child_spec/1. It expects a list of
the form [config, supervisor_opts], or [config]. The former allows you
to provide options for the supervisor like with Supervisor.start_link/3.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

