

 libmention

 v0.1.4

 [image: Logo]

 Table of contents

 	Readme

 	Changelog

 	License

 	Examples

 	Using with NimblePublisher

 	Setting up Persistence with Ecto

 	Modules

 	Libmention

 	Libmention.Supervisor

 	Libmention.Outgoing

 	Libmention.Outgoing.Proxy

 	Libmention.StorageApi

 	Libmention.Outgoing.Error

Readme

[image: Libmention Logo]
A Webmention implementation for Elixir
Read the documentation
Goals
	[x] Send WebMentions
	[] Receive Webmentions (in progress)
	[x] Configurable storage, defaulting to ets
	[] Easy local development and management of WebMentions including:	[] Accept
	[] Decline
	[] Verify
	[] Block
	[x] See Sent

Usage
All aspects of the library can be used piecemeal or as a supervised system.
Sending
When using piecemeal, the functions worth exploring are in Libmention.Outgoing:
	Libmention.Outgoing.parse/1 is used to parse an html document for all unique links. The idea here is to pass in the body of your post/note/comment and determine which urls may need to have a webmention sent.
	Libmention.Outgoing.discover/2 takes a link, sends a discovery and determines if webmention is supported at that specific link
	Libmention.Outgoing.send/4 sends a webmention

When using as a supervised system, add the Libmention.Supervisor to your supervision tree and configure it for sending.
config = [
 outgoing: [
 storage: Libmention.EtsStorage
]
]
children = [
 ...,
 {Libmention.Supervisor, config}
]
See Libmention.Supervisor for a full list of options

Then to send webmentions for a page or content,
Libmention.Supervisor.send(url, html)
When the process is done,
Receiving
Installation
Add libmention to your list of dependencies in mix.exs:
def deps do
 [
 {:libmention, "~> 0.1.2"}
]
end

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[Unreleased]
[0.1.4]
Added
	Added Guides for:	using with NimblePublisher

Fixed
	Invalid response from proxy during discover call

[0.1.3]
Added
	New Logo

Changed
	Proxy	Send discovery traffic through the proxy
	Allow another host other than localhost via configuration

[0.1.2]
Fixed
	Invalid return from outgoing worker

[0.1.1]
Added
	Proxy for local development when sending webmentions

[0.1.0]
Added
	The ability to send webmentions
	Configurable storage, defaulting to ets

License

Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Using with NimblePublisher

NimblePublisher is a library that uses the filesystem for storage and builds content at compile-time.
When used with Phoenix, it offers a powerful Markdown based platform for building personal websites and blogs.
Start with NimblePublisher
You can follow along in the example from the docs to get a simple site up and running.
Add some links to your post(s)
The example blog post from the link above needs a link, for testing our webmention sending:
/posts/2020/04-17-hello-world.md
%{
 title: "Hello world!",
 author: "José Valim",
 tags: ~w(hello),
 description: "Let's learn how to say hello world"
}

This is the post.

This is a [link to the webmention testing site](https://webmention.rocks/test/1)

With that in place, lets configure libmention.
Configure libmention
Once the example is up and running, you'll want to add libmention to your supervision tree.
Start by defining your options
libmention_opts = [
 outgoing: [
 proxy: [port: 8082], # only for local dev
 user_agent: "mywebsite-libmention"
]
]
See Libmention.Supervisor for all configuration options

Now add libmention AFTER the web server in your supervision tree
 children = [
 ...
 YourWeb.Endpoint,
 {Libmention.Supervisor, libmention_opts}
]

 opts = [strategy: :one_for_one, name: App.Supervisor]
 Supervisor.start_link(children, opts)
Send Webmentions
We need to tell libmention about our posts, lets create a very simple process.
defmodule MyApp.WebMentionSender do
 use GenServer, restart: :temporary

 def start_link(), do: GenServer.start_link(__MODULE__, :ok)

 @impl true
 def init(:ok) do
 pages = MyApp.Blog.all_posts()
 {:ok, %{pages: pages, done: []}, {:continue, :send}}
 end

 @impl true
 def handle_continue(:send, state) do
 for page <- state.pages do
 source_url = Routes.blog_path(Endpoint, :show, page.id)
 Libmention.Supervisor.send(source_url, page.body)
 end

 {:noreply, state}
 end

 # When the `send/2` function is done, a message will be sent
 # back to the parent process (this process) of :done or {:done, queue_url}
 @impl true
 def handle_info(:done, state) do
 state = %{state | done: [:done | state.done]}
 if Enum.count(state.done) == Enum.count(state.pages) do
 {:stop, :normal, state}
 else
 {:noreply, state}
 end
 end

 def handle_info({:done, url}, state) do
 state = %{state | done: [{:done, url} | state.done]}

 if Enum.count(state.done) == Enum.count(state.pages) do
 {:stop, :normal, state}
 else
 {:noreply, state}
 end
 end

 @impl true
 def terminate(_reason, _state) do
 :ok
 end
end
Great, now update the supervision tree to include this process
 children = [
 ...
 YourWeb.Endpoint,
 {Libmention.Supervisor, libmention_opts},
 MyApp.WebmentionSender
]
Start up your server and browse to http://localhost:8082/sent.
Since we are running in dev mode with the proxy active, our webmention didn't actually get sent anywhere. Instead, the proxy shows what would have been sent in production mode.
To test this out fully, you'll need to deploy to production and remove the proxy config for the prod build.
Whats next?
The previous configuration will work, but when the server is stopped and restarted, it will send your webmentions all over again.
This is because we are storing the results of your webmentions in an ets table by default. To persist this across restarts, you'll want to look at the guide on getting the persistence layer to work with Ecto.

Setting up Persistence with Ecto

Coming Soon

Libmention

A Webmention implementation for Elixir
Read the documentation
Goals
	[x] Send WebMentions
	[] Receive Webmentions (in progress)
	[x] Configurable storage, defaulting to ets
	[] Easy local development and management of WebMentions including:	[] Accept
	[] Decline
	[] Verify
	[] Block
	[x] See Sent

Usage
All aspects of the library can be used piecemeal or as a supervised system.
Sending
When using piecemeal, the functions worth exploring are in Libmention.Outgoing:
	Libmention.Outgoing.parse/1 is used to parse an html document for all unique links. The idea here is to pass in the body of your post/note/comment and determine which urls may need to have a webmention sent.
	Libmention.Outgoing.discover/2 takes a link, sends a discovery and determines if webmention is supported at that specific link
	Libmention.Outgoing.send/4 sends a webmention

When using as a supervised system, add the Libmention.Supervisor to your supervision tree and configure it for sending.
config = [
 outgoing: [
 storage: Libmention.EtsStorage
]
]
children = [
 ...,
 {Libmention.Supervisor, config}
]
See Libmention.Supervisor for a full list of options

Then to send webmentions for a page or content,
Libmention.Supervisor.send(url, html)
When the process is done,
Receiving

Libmention.Supervisor

Responsible for managing send and receive jobs.
Put this in your supervision tree to start the processes of sending and/or receiving webmentions.
opts = [
 outgoing: [],
 incoming: []
]

children = [
 ...,
 {Libmention.Supervisor, opts}
]
Options
A keyword list of options is accepted for configuring one or both of
	incoming webmentions (See "Incoming Opts" section)
	outgoing webmentions (See "Outgoing Opts" section)

Incoming opts
Outgoing opts
If you desire to send webmentions from your site, an outgoing key should be configured which
takes it's own keyword list of options.
outgoing: [
 user_agent: "",
 storage: Libmention.EtsStorage,
 proxy: [
 port: 8082,
 host: "localhost"
]
]
Options include:
	user_agent - String - Customize the HTTP User Agent used when fetching the target URL. Defaults to "libmention-Webmention-Discovery"
	storage - Module - The storage behaviour module to use when sending webmentions. Defaults to Libmention.EtsStorage. See Libmention.StorageApi for more options.
	proxy - Keyword List - This is useful for local development only. If enabled, it starts a Plug application on the requested port proxy: [port: 8082] that all sent webmentions go to and shows a dashboard with their payloads. See Libmention.Outgoing.Proxy for a full explanation and other options available.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 send(url, html)

 Starts a process that parses, validates and sends webmentions.

 start_link(init_arg)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 send(url, html)

 View Source

Starts a process that parses, validates and sends webmentions.

 Link to this function

 start_link(init_arg)

 View Source

Libmention.Outgoing

See Sending Webmentions for the full spec.
Functions for finding links in an html document, discovering webmention support, and sending webmentions
from a source_url to a target_url.

 Anchor for this section

 Summary

 Functions

 discover(target_url, opts \\ [])

 Fetchs the URL and checks for an HTTP Link header with a rel value of webmention.

 parse(html)

 Find available links in an html document.

 send(endpoint, source_url, target_url, opts \\ [])

 Sends a webmention to endpoint.

 Anchor for this section

Functions

 Link to this function

 discover(target_url, opts \\ [])

 View Source

 @spec discover(
 String.t(),
 keyword()
) :: String.t() | nil

Fetchs the URL and checks for an HTTP Link header with a rel value of webmention.
Initially make an HTTP HEAD request to check for the Link header before making a GET request.
When making a GET request, if the content type of the document is HTML, looks for an HTML <link> and <a> element with a rel value of webmention. If more than one of these is present, the first HTTP Link header takes precedence, followed by the first <link> or <a> element in document order.
Returns the Webmention link found at the target url.

 options

 Options

	user_agent - defaults to libmention-Webmention-Discovery

 Link to this function

 parse(html)

 View Source

 @spec parse(html() | Floki.html_tree()) :: links()

Find available links in an html document.
This is typically used to find links in your post or other html document
that may need Webmentions sent.

 Link to this function

 send(endpoint, source_url, target_url, opts \\ [])

 View Source

 @spec send(String.t(), String.t(), String.t(), keyword()) ::
 :ok | {:ok, String.t()} | {:error, String.t()}

Sends a webmention to endpoint.
source_url is the URL of the html page containing a link
target_url is the URL of the page being linked to
If the endpoint supports sending back a location for monitoring
the queued request, an {:ok, url} will be returned, otherwise
just an :ok will be returned.

 options

 Options

	user_agent - defaults to libmention-Webmention-Discovery
	proxy - useful when Libmention.Outgoing.Proxy is configured

Libmention.Outgoing.Proxy

A proxy is available for local development purposes.
When the proxy is enabled, outgoing http requests are routed to it.
This provides a way to test your outgoing webmentions locally since they
will always fail when running on a localhost.
The reason they will fail is because the server receiving the webmention
is, according to the spec, required to query the sender (in this case localhost)
and validate the url that was sent. In the case of local development, this will fail
and you won't get a good idea if you are sending the correct payload.
The proxy, when configured for localhost, makes available a small web-based dashboard where you can inspect
the discovery calls and the webmentions that were sent.
By default, the proxy exposes the web interface at http://localhost:8082/sent,
but is configurable via the options passed in.
Options
	port - defaults to 8082
	host - defaults to http://localhost (See "Optional Host" section for other options)
	patterns - this can be used to fine tune which http traffic gets routed to the proxy and even what is returned (See "Patterns" section for a full explanation)

Optional Host
You may want to run your own proxy in development/staging that handles your
traffic and contains custom rules for different links.
This option provides a way to configure which host your webmention traffic is sent to.
Your Web Server will receive traffic at the following methods/routes:
	HEAD /discover optional	Looks for a Link response header similar to Link: <http://aaronpk.example/webmention-endpoint>; rel="webmention"

	GET /discover	Looks for html with a <link rel="webmention" href="" /> in the head OR
	Looks for html with a in the body

	POST /webmention	sends a body that is of type application/x-www-form-urlencoded with the source and target

All of these calls will include a query param of proxy_for which will be the endpoint that would have
been used without the proxy.
Patterns
coming soon

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Libmention.StorageApi behaviour

The behaviour for required for storing a webmention.
By default ets is used, but implementing this behaviour
and setting your configuration value to that implementation,
you can use any storage backend you want.

 Anchor for this section

 Summary

 Types

 entity()

 The shape of the webmention passed to the save/update/exists? calls

 Callbacks

 exists?(entity)

 get(arg1)

 save(entity)

 This is called after a webmention is sent.

 update(entity)

 This is called when the content of a webmention (sha) changes and we've
already and we sent another one.

 Anchor for this section

Types

 Link to this type

 entity()

 View Source

 @type entity() :: %{
 source_url: String.t(),
 target_url: String.t(),
 endpoint: String.t(),
 status: :sent | :not_found | :failed | :pending,
 sha: String.t()
}

The shape of the webmention passed to the save/update/exists? calls

 Anchor for this section

Callbacks

 Link to this callback

 exists?(entity)

 View Source

 @callback exists?(entity()) :: boolean()

 Link to this callback

 get(arg1)

 View Source

 @callback get(id() | entity()) :: term() | nil

 Link to this callback

 save(entity)

 View Source

 @callback save(entity()) :: {:ok, term()} | {:error | term()}

This is called after a webmention is sent.
Saving the webmention result in storage means that we can make better
decisions about if we want to send another webmention or not.

 Link to this callback

 update(entity)

 View Source

 @callback update(entity()) :: {:ok, term()} | {:error | term()}

This is called when the content of a webmention (sha) changes and we've
already and we sent another one.

Libmention.Outgoing.Error exception

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

