

 LiveDebugger

 v0.1.4

 Table of contents

 	LiveDebugger

 	LICENSE

 	
 Modules

 	DevWeb

 	LiveDebugger

 	LiveDebugger.CommonTypes

 	LiveDebugger.Components

 	LiveDebugger.Components.ElixirDisplay

 	LiveDebugger.Components.Links

 	LiveDebugger.Components.Tree

 	LiveDebugger.Endpoint

 	LiveDebugger.Env

 	LiveDebugger.Layout

 	LiveDebugger.LiveComponents.NestedLiveViewsLinks

 	LiveDebugger.LiveComponents.Sidebar

 	LiveDebugger.LiveHelpers.Routes

 	LiveDebugger.LiveHelpers.TracingHelper

 	LiveDebugger.LiveViews.LiveViewsDashboardLive

 	LiveDebugger.LiveViews.StateLive

 	LiveDebugger.LiveViews.TracesLive

 	LiveDebugger.Plugs.AllowIframe

 	LiveDebugger.Router

 	LiveDebugger.Services.CallbackTracingService

 	LiveDebugger.Services.ChannelService

 	LiveDebugger.Services.LiveViewDiscoveryService

 	LiveDebugger.Services.ModuleDiscoveryService

 	LiveDebugger.Services.System.ModuleService

 	LiveDebugger.Services.System.ProcessService

 	LiveDebugger.Services.TraceService

 	LiveDebugger.Structs.LvProcess

 	LiveDebugger.Structs.Trace

 	LiveDebugger.Structs.TraceDisplay

 	LiveDebugger.Structs.TreeNode

 	LiveDebugger.Structs.TreeNode.LiveComponent

 	LiveDebugger.Structs.TreeNode.LiveView

 	LiveDebugger.Utils.Callbacks

 	LiveDebugger.Utils.Parsers

 	LiveDebugger.Utils.PubSub

 	LiveDebugger.Utils.TermParser

 	LiveDebugger.Utils.URL

 	LiveDebuggerDev.Components

 	LiveDebuggerDev.EmbeddedLiveViewController

 	LiveDebuggerDev.Endpoint

 	LiveDebuggerDev.Layout

 	LiveDebuggerDev.LiveComponents.Conditional

 	LiveDebuggerDev.LiveComponents.LiveComponentWithVeryVeryLongName

 	LiveDebuggerDev.LiveComponents.ManyAssigns

 	LiveDebuggerDev.LiveComponents.Name

 	LiveDebuggerDev.LiveComponents.Recursive

 	LiveDebuggerDev.LiveComponents.Send

 	LiveDebuggerDev.LiveViews.Embedded

 	LiveDebuggerDev.LiveViews.Main

 	LiveDebuggerDev.LiveViews.Messages

 	LiveDebuggerDev.LiveViews.Nested

 	LiveDebuggerDev.LiveViews.Side

 	LiveDebuggerDev.LiveViews.Simple

 	LiveDebuggerDev.Router

 	LiveDebuggerDev.Runner

 	
 Mix Tasks

 	mix live_debugger.install

LiveDebugger

LiveDebugger is a browser-based tool for debugging applications written in Phoenix LiveView - an Elixir library designed for building rich, interactive online experiences with server-rendered HTML.
Designed to enhance your development experience LiveDebugger gives you:
	:deciduous_tree: A detailed view of your LiveComponents tree
	:mag: The ability to inspect assigns for LiveViews and LiveComponents
	:link: Tracing of their callback executions

https://github.com/user-attachments/assets/37f1219c-93cc-4d06-96f7-9b2140a1c971

 Installation

Add live_debugger to your list of dependencies in mix.exs:
 defp deps do
 [
 {:live_debugger, "~> 0.1.4", only: :dev}
]
 end
After you start your application LiveDebugger will be running at a default port http://localhost:4007.
[!WARNING]
LiveDebugger should not be used on production! Make sure that the dependency you've added is :dev only

 Browser features

List of browser features:
	Debug button
	Components highlighting (coming soon!)

Some features require injecting JS into the debugged application. To achieve that you need to turn them on in the config and add LiveDebugger scripts to your application root layout.
config/dev.exs

config :live_debugger, browser_features?: true
lib/my_app_web/components/layouts/root.html.heex

<head>
 <%= if Application.get_env(:live_debugger, :browser_features?) do %>
 <script id="live-debugger-scripts" src={Application.get_env(:live_debugger, :assets_url)}>
 </script>
 <% end %>
</head>

 Content Security Policy

In router.ex of your Phoenix app, make sure your locally running Phoenix app can access the LiveDebugger JS files on port 4007. To achieve that you may need to extend your CSP in :dev mode:
 @csp "{...your CSP} #{if Mix.env() == :dev, do: "http://127.0.0.1:4007"}"

 pipeline :browser do
 # ...
 plug :put_secure_browser_headers, %{"content-security-policy" => @csp}

 Igniter

LiveDebugger has Igniter support - an alternative for standard mix installation. It'll automatically add LiveDebugger scripts to root.html.heex and enable browser features in your config/dev.exs after you use the below command.
Make sure that added dependency is :dev only.
mix igniter.install live_debugger

 Optional configuration

config/dev.exs

config :live_debugger,
 ip: {127, 0, 0, 1}, # IP on which LiveDebugger will be hosted
 port: 4007, # Port on which LiveDebugger will be hosted
 secret_key_base: <SECRET_KEY_BASE>, # Secret key used for LiveDebugger.Endpoint
 signing_salt: "your_signing_salt", # Signing salt used for LiveDebugger.Endpoint
 adapter: Bandit.PhoenixAdapter # Adapter used in LiveDebugger.Endpoint

 Contributing

For those planning to contribute to this project, you can run a dev version of the debugger with the following commands:
mix setup
iex -S mix

It'll run the application declared in the dev/ directory with the library installed.
LiveReload is working both for .ex files and static files, but if some styles don't show up, try using this command
mix assets.build:dev

 Authors

LiveDebugger is created by Software Mansion.
Since 2012

 LICENSE - LiveDebugger v0.1.4

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2025 Software Mansion

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

 DevWeb - LiveDebugger v0.1.4

DevWeb

 Summary

 Functions

 live_component()

 live_view()

 Functions

 live_component()

 live_view()

 LiveDebugger - LiveDebugger v0.1.4

LiveDebugger

Debugger for LiveView applications.

 Summary

 Functions

 start(type, args)

 Callback implementation for Application.start/2.

 Functions

 start(type, args)

Callback implementation for Application.start/2.

 LiveDebugger.CommonTypes - LiveDebugger v0.1.4

LiveDebugger.CommonTypes

This module provides types used in the LiveDebugger application.

 Summary

 Types

 channel_state()

 Type for state of a channel that hosts a LiveView.

 cid()

 Types

 channel_state()

 @type channel_state() :: %{
 socket: %Phoenix.LiveView.Socket{
 assigns: term(),
 endpoint: term(),
 fingerprints: term(),
 host_uri: term(),
 id: term(),
 parent_pid: term(),
 private: term(),
 redirected: term(),
 root_pid: term(),
 router: term(),
 transport_pid: term(),
 view: term()
 },
 components: {map(), any(), any()}
}

Type for state of a channel that hosts a LiveView.

 cid()

 @type cid() :: %Phoenix.LiveComponent.CID{cid: integer()}

 LiveDebugger.Components - LiveDebugger v0.1.4

LiveDebugger.Components

This module provides reusable components for LiveDebugger.

 Summary

 Functions

 alert(assigns)

 Renders an alert
Right now we have styles only for danger variant, but it'll change soon

 badge(assigns)

 Attributes
	text (:string) (required)
	icon (:string) (required)

 button(assigns)

 Renders a button.

 collapsible(assigns)

 Collapsible element that can be toggled open and closed.
It uses the details and summary HTML elements.
If you add hide-on-open class to element it will be hidden when collapsible is opened.

 fullscreen(assigns)

 Renders a fullscreen using Fullscreen hook.
It can be opened and via browser "open" event (by default) with JS.dispatch or via server event (check example in fullscreen button).

 fullscreen_button(assigns)

 Renders a button which will show a fullscreen when clicked.
You can override phx-click value, but remember to push correct event at the end of handle_event function.

 h1(assigns)

 Typography component to render headings.

 icon(assigns)

 Renders an icon.
Not all icons are available. If you want to use an icon check if it exists in the assets/icons folder.
name must start with icon-

 icon_button(assigns)

 Renders a button with an icon in it.

 list(assigns)

 Attributes
	elements (:list) (required) - Elements that will be displayed in the list's item slot.
	class (:any) - Additional classes. Defaults to nil.
	item_class (:any) - Additional classes for each item. Defaults to nil.

Slots
	item (required)

 nav_icon(assigns)

 Attributes
	icon (:string) (required) - Icon to be displayed.
	class (:any) - Additional classes to add to the nav icon. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["id"].

 navbar(assigns)

 Renders navbar with possible link to return to the main page.

 report_issue(assigns)

 Attributes
	class (:any) - Defaults to nil.
	text (:string) - Defaults to "See any issues?".

 section(assigns)

 Attributes
	id (:string) (required)
	title (:string) (required)
	class (:any) - Defaults to nil.
	inner_class (:any) - Defaults to nil.

Slots
	right_panel
	inner_block

 show_collapsible_assign(_)

 Used to add Hook to element based on condition.

 spinner(assigns)

 Attributes
	class (:any) - CSS class. Defaults to nil.
	size (:string) - Size of the spinner. Defaults to "md".
	show (:boolean) - show or hide spinner. Defaults to true.
	Global attributes are accepted.

 tooltip(assigns)

 Renders a tooltip using Tooltip hook.

 Functions

 alert(assigns)

Renders an alert
Right now we have styles only for danger variant, but it'll change soon

 Attributes

	variant (:string) (required) - Must be one of "danger".
	class (:any) - Additional classes to add to the alert. Defaults to nil.
	with_icon (:boolean) - Whether to show an icon. Defaults to false.
	heading (:string) - Heading for the alert. Defaults to nil.
	Global attributes are accepted.

 Slots

	inner_block (required)

 badge(assigns)

 Attributes

	text (:string) (required)
	icon (:string) (required)

 button(assigns)

Renders a button.

 Attributes

	variant (:string) - Defaults to "primary".
	size (:string) - Defaults to "md".
	class (:any) - Additional classes to add to the button. Defaults to nil.
	Global attributes are accepted.

 Slots

	inner_block (required)

 collapsible(assigns)

Collapsible element that can be toggled open and closed.
It uses the details and summary HTML elements.
If you add hide-on-open class to element it will be hidden when collapsible is opened.

 Examples

<.collapsible id="collapsible" open={true}>
 <:label>
 <div>Collapsible <div class="hide-on-open">Info when closed</div></div>
 </:label>
 <div>Content</div>
</.collapsible>

 Attributes

	id (:string) (required)
	class (:any) - CSS class for parent container. Defaults to nil.
	label_class (:any) - CSS class for the label. Defaults to nil.
	chevron_class (:any) - CSS class for the chevron icon. Defaults to nil.
	open (:boolean) - Whether the collapsible is open by default. Defaults to false.
	icon (:string) - Icon for chevron. It will be rotated 90 degrees when the collapsible is open. Defaults to "icon-chevron-right".
	Global attributes are accepted.

 Slots

	label (required)
	inner_block (required)

 fullscreen(assigns)

Renders a fullscreen using Fullscreen hook.
It can be opened and via browser "open" event (by default) with JS.dispatch or via server event (check example in fullscreen button).
You can use fullscreen_button to open this fullscreen.
You can close the fullscreen using X button or by pressing ESC key.

 Attributes

	id (:string) (required)
	title (:string) - Title of the fullscreen. Defaults to "".
	class (:any) - Additional classes to be added to the fullscreen element. Defaults to nil.

 Slots

	inner_block (required)

 fullscreen_button(assigns)

Renders a button which will show a fullscreen when clicked.
You can override phx-click value, but remember to push correct event at the end of handle_event function.

 Examples

<.fullscreen_button
 id="my-fullscreen"
 phx-click="open-fullscreen"
 icon="icon-expand"
/>

@impl true
def handle_event("open-fullscreen", _, socket) do
 trace_id = String.to_integer(string_id)

 socket
 |> push_event("my-fullscreen-open", %{})
 |> noreply()
end

 Attributes

	id (:string) (required) - Same as id of the fullscreen.
	class (:any) - Additional classes to be added to the button. Defaults to nil.
	icon (:string) - Icon to be displayed as a button. Defaults to "icon-expand".
	Global attributes are accepted.

 h1(assigns)

Typography component to render headings.

 Attributes

	class (:any) - Additional classes to add to the heading. Defaults to nil.
	Global attributes are accepted.

 Slots

	inner_block (required)

 icon(assigns)

Renders an icon.
Not all icons are available. If you want to use an icon check if it exists in the assets/icons folder.
name must start with icon-

 Examples

<.icon name="icon-play" />

 Attributes

	name (:string) (required) - The name of the icon. Must start with icon-.
	class (:any) - Additional classes to add to the icon. Defaults to nil.
	Global attributes are accepted.

 icon_button(assigns)

Renders a button with an icon in it.

 Attributes

	icon (:string) (required) - Icon to be displayed as a button.
	size (:string) - Size of the button. Defaults to "md".
	variant (:string) - Variant of the button. Defaults to "primary".
	class (:any) - Additional classes to add to the button. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["id"].

 list(assigns)

 Attributes

	elements (:list) (required) - Elements that will be displayed in the list's item slot.
	class (:any) - Additional classes. Defaults to nil.
	item_class (:any) - Additional classes for each item. Defaults to nil.

 Slots

	item (required)

 nav_icon(assigns)

 Attributes

	icon (:string) (required) - Icon to be displayed.
	class (:any) - Additional classes to add to the nav icon. Defaults to nil.
	Global attributes are accepted. Supports all globals plus: ["id"].

 navbar(assigns)

Renders navbar with possible link to return to the main page.

 Attributes

	return_link? (:boolean) (required) - Whether to show a link to return to the main page.

 Slots

	inner_block

 report_issue(assigns)

 Attributes

	class (:any) - Defaults to nil.
	text (:string) - Defaults to "See any issues?".

 section(assigns)

 Attributes

	id (:string) (required)
	title (:string) (required)
	class (:any) - Defaults to nil.
	inner_class (:any) - Defaults to nil.

 Slots

	right_panel
	inner_block

 show_collapsible_assign(_)

Used to add Hook to element based on condition.

 spinner(assigns)

 Attributes

	class (:any) - CSS class. Defaults to nil.
	size (:string) - Size of the spinner. Defaults to "md".
	show (:boolean) - show or hide spinner. Defaults to true.
	Global attributes are accepted.

 tooltip(assigns)

Renders a tooltip using Tooltip hook.

 Attributes

	id (:string) (required)
	content (:string) - Defaults to nil.
	position (:string) - Defaults to "top".
	Global attributes are accepted.

 Slots

	inner_block (required)

 LiveDebugger.Components.ElixirDisplay - LiveDebugger v0.1.4

LiveDebugger.Components.ElixirDisplay

This module provides a component to display a tree of terms.
Check LiveDebugger.Utils.TermParser.

 Summary

 Functions

 term(assigns)

 Returns a tree of terms.

 Functions

 term(assigns)

Returns a tree of terms.

 Attributes

	id (:string) (required)
	node (:any) (required)
	level (:integer) (required)

 LiveDebugger.Components.Links - LiveDebugger v0.1.4

LiveDebugger.Components.Links

Adds styling for links.

 Summary

 Functions

 live_view(assigns)

 Attributes
	lv_process (LiveDebugger.Structs.LvProcess) (required)
	id (:string) (required)
	icon (:any) - Icon to add before module name. If nil no icon added. Defaults to nil.

 Functions

 live_view(assigns)

 Attributes

	lv_process (LiveDebugger.Structs.LvProcess) (required)
	id (:string) (required)
	icon (:any) - Icon to add before module name. If nil no icon added. Defaults to nil.

 LiveDebugger.Components.Tree - LiveDebugger v0.1.4

LiveDebugger.Components.Tree

Tree component which show nested tree of live view and live components.

 Summary

 Functions

 max_opened_node_level(root_node, max_nodes \\ 20)

 Calculates the maximum level to be opened in the tree.

 tree(assigns)

 Tree component which show nested tree of live view and live components.
You need to pass TreeNode struct to render the tree.
This component emits select_node event with node_id param to the event_target when a node is clicked. node_id is parsed.
To calculate max_opened_node_level it uses max_nesting_level/2 function.

 Functions

 max_opened_node_level(root_node, max_nodes \\ 20)

 @spec max_opened_node_level(
 root_node :: LiveDebugger.Structs.TreeNode.t(),
 max_nodes :: integer()
) ::
 integer()

Calculates the maximum level to be opened in the tree.

 tree(assigns)

Tree component which show nested tree of live view and live components.
You need to pass TreeNode struct to render the tree.
This component emits select_node event with node_id param to the event_target when a node is clicked. node_id is parsed.
To calculate max_opened_node_level it uses max_nesting_level/2 function.

 Attributes

	tree_node (:any) (required) - The TreeNode struct to render.
	title (:string) (required) - The title of the tree.
	event_target (:any) (required) - The target for the click event.
	selected_node_id (:string) (required) - The id of the selected node.
	class (:string) - CSS class. Defaults to nil.
	max_opened_node_level (:integer) (required) - The maximum level of the tree to be opened.

 LiveDebugger.Endpoint - LiveDebugger v0.1.4

LiveDebugger.Endpoint

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

Callback implementation for Plug.call/2.

 child_spec(opts)

Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

Returns the endpoint configuration for key
Returns default if the key does not exist.

 config_change(changed, removed)

Reloads the configuration given the application environment changes.

 host()

Returns the host for the given endpoint.

 init(opts)

Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

Generates the path information when routing to this endpoint.

 script_name()

Generates the script name.

 server_info(scheme)

Returns the address and port that the server is running on

 start_link(opts \\ [])

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 static_integrity(path)

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

Generates a route to a static file in priv/static.

 static_url()

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 struct_url()

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 subscribe(topic, opts \\ [])

Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

 LiveDebugger.Env - LiveDebugger v0.1.4

LiveDebugger.Env

Gives you a save option to check env in runtime

 Summary

 Functions

 dev?()

 Functions

 dev?()

 LiveDebugger.Layout - LiveDebugger v0.1.4

LiveDebugger.Layout

Inspiration was taken from Phoenix LiveDashboard
https://github.com/phoenixframework/phoenix_live_dashboard/blob/main/lib/phoenix/live_dashboard/layout_view.ex
https://github.com/phoenixframework/phoenix_live_dashboard/blob/main/lib/phoenix/live_dashboard/layouts/dash.html.heex

 LiveDebugger.LiveComponents.NestedLiveViewsLinks - LiveDebugger v0.1.4

LiveDebugger.LiveComponents.NestedLiveViewsLinks

List of links to LvProcesses nested inside lv_process

 Summary

 Functions

 render(assigns)

 Attributes
	lv_process (LiveDebugger.Structs.LvProcess) (required)

 Functions

 render(assigns)

 Attributes

	lv_process (LiveDebugger.Structs.LvProcess) (required)

 LiveDebugger.LiveComponents.Sidebar - LiveDebugger v0.1.4

LiveDebugger.LiveComponents.Sidebar

Sidebar component which displays tree of live view and it's live components.
It adds node_id query param to the URL when a node is clicked.

 Summary

 Functions

 render(assigns)

 Attributes
	lv_process (:any) (required)
	node_id (:any) (required)
	url (:any) (required)

 Functions

 render(assigns)

 Attributes

	lv_process (:any) (required)
	node_id (:any) (required)
	url (:any) (required)

 LiveDebugger.LiveHelpers.Routes - LiveDebugger v0.1.4

LiveDebugger.LiveHelpers.Routes

Helper module to generate url routes for the LiveDebugger application.

 Summary

 Functions

 channel_dashboard(socket_id, transport_pid \\ nil)

 live_views_dashboard()

 Functions

 channel_dashboard(socket_id, transport_pid \\ nil)

 @spec channel_dashboard(
 socket_id :: String.t(),
 transport_pid :: pid() | String.t() | nil
) ::
 String.t()

 live_views_dashboard()

 @spec live_views_dashboard() :: String.t()

 LiveDebugger.LiveHelpers.TracingHelper - LiveDebugger v0.1.4

LiveDebugger.LiveHelpers.TracingHelper

This module provides a helper to manage tracing.
It is responsible for determining if the tracing should be stopped.
It introduces a fuse mechanism to prevent LiveView from being overloaded with traces.

 Summary

 Functions

 check_fuse(socket)

 Checks if the fuse is blown and stops tracing if it is.
It uses the tracing_helper assign to store information.
When tracing is not started returns {:noop, socket}.

 disable_tracing(socket)

 init(socket)

 switch_tracing(socket)

 Functions

 check_fuse(socket)

 @spec check_fuse(Phoenix.LiveView.Socket.t()) ::
 {:ok | :stopped | :noop, Phoenix.LiveView.Socket.t()}

Checks if the fuse is blown and stops tracing if it is.
It uses the tracing_helper assign to store information.
When tracing is not started returns {:noop, socket}.

 disable_tracing(socket)

 @spec disable_tracing(Phoenix.LiveView.Socket.t()) :: Phoenix.LiveView.Socket.t()

 init(socket)

 @spec init(Phoenix.LiveView.Socket.t()) :: Phoenix.LiveView.Socket.t()

 switch_tracing(socket)

 @spec switch_tracing(Phoenix.LiveView.Socket.t()) :: Phoenix.LiveView.Socket.t()

 LiveDebugger.LiveViews.LiveViewsDashboardLive - LiveDebugger v0.1.4

LiveDebugger.LiveViews.LiveViewsDashboardLive

It displays all active LiveView sessions in the debugged application.

 LiveDebugger.LiveViews.StateLive - LiveDebugger v0.1.4

LiveDebugger.LiveViews.StateLive

This nested live view displays the state of a LiveView.

 Summary

 Functions

 live_render(assigns)

 Attributes
	socket (:map) (required)
	id (:string) (required)
	lv_process (:map) (required)
	node_id (:string) (required)

 Functions

 live_render(assigns)

 Attributes

	socket (:map) (required)
	id (:string) (required)
	lv_process (:map) (required)
	node_id (:string) (required)

 LiveDebugger.LiveViews.TracesLive - LiveDebugger v0.1.4

LiveDebugger.LiveViews.TracesLive

This nested live view displays the traces of a LiveView.

 Summary

 Functions

 live_render(assigns)

 Attributes
	socket (:map) (required)
	id (:string) (required)
	lv_process (:map) (required)
	node_id (:string) (required)

 render(assigns)

 Attributes
	id (:string) (required)
	node_id (:map) (required)
	socket_id (:string) (required)

 Functions

 live_render(assigns)

 Attributes

	socket (:map) (required)
	id (:string) (required)
	lv_process (:map) (required)
	node_id (:string) (required)

 render(assigns)

 Attributes

	id (:string) (required)
	node_id (:map) (required)
	socket_id (:string) (required)

 LiveDebugger.Plugs.AllowIframe - LiveDebugger v0.1.4

LiveDebugger.Plugs.AllowIframe

Plug to allow iframes to be embedded in the application.

 Summary

 Functions

 call(conn, opts)

 init(opts)

 Functions

 call(conn, opts)

 @spec call(Plug.Conn.t(), any()) :: Plug.Conn.t()

 init(opts)

 @spec init(any()) :: any()

 LiveDebugger.Router - LiveDebugger v0.1.4

LiveDebugger.Router

 Summary

 Functions

 call(conn, opts)

 Callback invoked by Plug on every request.

 dbg_browser(conn, _)

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 Functions

 call(conn, opts)

Callback invoked by Plug on every request.

 dbg_browser(conn, _)

 init(opts)

Callback required by Plug that initializes the router
for serving web requests.

 LiveDebugger.Services.CallbackTracingService - LiveDebugger v0.1.4

LiveDebugger.Services.CallbackTracingService

It starts a tracing session for the given monitored PID via start_tracing/3.
When session is started sends traces to the recipient PID via message {:new_trace, trace}.
It stores traces in an ETS table with id created by CallbackTracingService.ets_table_id/1.
Traces ids starts from 0 and are decremented by 1 to make sure that they are ordered from the newest to the oldest.
This is how ets ordered set works. It does not allow you to change the order manually, it is always ordered by the key.
The session should be stopped when monitored process is killed with stop_tracing/1.

 Summary

 Types

 raw_trace()

 Represents a raw trace straight from :dbg.
It should not be used outside of this module.

 Functions

 start_tracing(socket_id, monitored_pid, recipient_pid)

 Starts a tracing for the given monitored PID.
It sends traces to the recipient PID via message {:new_trace, trace}.
It stores traces in an ETS table with id created by CallbackTracingService.ets_table_id/1.

 stop_tracing(session)

 Stops tracing.

 Types

 raw_trace()

 @type raw_trace() :: {atom(), pid(), atom(), {atom(), atom(), [term()]}}

Represents a raw trace straight from :dbg.
It should not be used outside of this module.

 Functions

 start_tracing(socket_id, monitored_pid, recipient_pid)

 @spec start_tracing(
 socket_id :: String.t(),
 monitored_pid :: pid(),
 recipient_pid :: pid()
) :: {:ok, term()} | {:error, term()}

Starts a tracing for the given monitored PID.
It sends traces to the recipient PID via message {:new_trace, trace}.
It stores traces in an ETS table with id created by CallbackTracingService.ets_table_id/1.
Since session mechanism is available only in OTP >= 27 it is impossible to have multiple tracing sessions in earlier versions.
Because of that when debugger is used in project with OTP < 27 user cannot open more than one debugger sessions at the same time.
More info here https://www.erlang.org/docs/27/apps/runtime_tools/dbg#session/2

 stop_tracing(session)

 @spec stop_tracing(term()) :: :ok

Stops tracing.

 LiveDebugger.Services.ChannelService - LiveDebugger v0.1.4

LiveDebugger.Services.ChannelService

This module provides functions that performs operation on state of LiveView channel.

 Summary

 Functions

 build_tree(channel_state)

 Creates a tree with LiveDebugger.Structs.TreeNode elements from the channel state.

 get_node(channel_state, id)

 Retrieves a TreeNode with the given id from the channel state
The id can be either a PID or a CID.
Returned node doesn't have children.

 node_ids(channel_state)

 Returns node ids that are present in the channel state where node can be both LiveView or LiveComponent.
For LiveView, the id is the PID of the process. For LiveComponent, the id is the CID.

 state(pid)

 Retrieves the state of the LiveView channel process identified by pid.

 Functions

 build_tree(channel_state)

 @spec build_tree(channel_state :: LiveDebugger.CommonTypes.channel_state()) ::
 {:ok, LiveDebugger.Structs.TreeNode.t()} | {:error, term()}

Creates a tree with LiveDebugger.Structs.TreeNode elements from the channel state.

 get_node(channel_state, id)

 @spec get_node(
 channel_state :: LiveDebugger.CommonTypes.channel_state(),
 id :: LiveDebugger.Structs.TreeNode.id()
) :: {:ok, LiveDebugger.Structs.TreeNode.t() | nil} | {:error, term()}

Retrieves a TreeNode with the given id from the channel state
The id can be either a PID or a CID.
Returned node doesn't have children.

 node_ids(channel_state)

 @spec node_ids(channel_state :: LiveDebugger.CommonTypes.channel_state()) ::
 {:ok, [LiveDebugger.Structs.TreeNode.id()]} | {:error, term()}

Returns node ids that are present in the channel state where node can be both LiveView or LiveComponent.
For LiveView, the id is the PID of the process. For LiveComponent, the id is the CID.

 state(pid)

 @spec state(pid :: pid()) ::
 {:ok, LiveDebugger.CommonTypes.channel_state()} | {:error, term()}

Retrieves the state of the LiveView channel process identified by pid.

 LiveDebugger.Services.LiveViewDiscoveryService - LiveDebugger v0.1.4

LiveDebugger.Services.LiveViewDiscoveryService

This module provides functions that discovers LiveView processes in the debugged application.

 Summary

 Functions

 children_lv_processes(pid, searched_lv_processes \\ nil)

 Returns all children LvProcesses of the given pid.

 debugged_lv_processes()

 Returns all debugged LvProcesses.

 debugger_lv_processes()

 Returns all LiveDebugger's LvProcesses.

 group_lv_processes(lv_processes)

 Groups LvProcesses by transport_pid and root_pid. To see map structure see examples.

 lv_process(socket_id, transport_pid \\ nil)

 Returns LvProcess associated the given socket_id and transport_pid.
When only socket_id is provided, LvProcess with the given socket_id is returned.
When more than one process is found, nil is returned.

 lv_processes()

 Returns all LiveView processes.

 successor_lv_processes(module)

 Finds potential successor LvProcess based on module when websocket connection breaks and new one is created.
This is a common scenario when user recompiles code or refreshes the page

 Functions

 children_lv_processes(pid, searched_lv_processes \\ nil)

 @spec children_lv_processes(
 pid :: pid(),
 searched_lv_processes :: [LiveDebugger.Structs.LvProcess.t()] | nil
) :: [LiveDebugger.Structs.LvProcess.t()]

Returns all children LvProcesses of the given pid.

 debugged_lv_processes()

 @spec debugged_lv_processes() :: [LiveDebugger.Structs.LvProcess.t()]

Returns all debugged LvProcesses.

 debugger_lv_processes()

 @spec debugger_lv_processes() :: [LiveDebugger.Structs.LvProcess.t()]

Returns all LiveDebugger's LvProcesses.

 group_lv_processes(lv_processes)

 @spec group_lv_processes(lv_processes :: [LiveDebugger.Structs.LvProcess.t()]) :: %{
 required(pid()) => %{
 required(LiveDebugger.Structs.LvProcess.t()) => [
 LiveDebugger.Structs.LvProcess.t()
]
 }
}

Groups LvProcesses by transport_pid and root_pid. To see map structure see examples.

 Examples

iex> lv_processes = LiveDebugger.Services.LiveViewDiscoveryService.debugged_lv_processes()
iex> LiveDebugger.Services.LiveViewDiscoveryService.group_lv_processes(lv_processes)
%{
 #<0.123.0> => {
 %LiveDebugger.Structs.LvProcess{pid: #<0.223.0>} => [
 %LiveDebugger.Structs.LvProcess{root_pid: #<0.223.0>},
 %LiveDebugger.Structs.LvProcess{root_pid: #<0.223.0>}
],
 #<0.124.0> => [
 %LiveDebugger.Structs.LvProcess{pid: #<0.224.0>} => [
 %LiveDebugger.Structs.LvProcess{root_pid: #<0.224.0>},
 %LiveDebugger.Structs.LvProcess{root_pid: #<0.224.0>}
]
 }
}

 lv_process(socket_id, transport_pid \\ nil)

 @spec lv_process(socket_id :: String.t(), transport_pid :: pid() | nil) ::
 LiveDebugger.Structs.LvProcess.t() | nil

Returns LvProcess associated the given socket_id and transport_pid.
When only socket_id is provided, LvProcess with the given socket_id is returned.
When more than one process is found, nil is returned.

 lv_processes()

 @spec lv_processes() :: [LiveDebugger.Structs.LvProcess.t()]

Returns all LiveView processes.

 successor_lv_processes(module)

 @spec successor_lv_processes(module :: module()) :: [
 LiveDebugger.Structs.LvProcess.t()
]

Finds potential successor LvProcess based on module when websocket connection breaks and new one is created.
This is a common scenario when user recompiles code or refreshes the page

 LiveDebugger.Services.ModuleDiscoveryService - LiveDebugger v0.1.4

LiveDebugger.Services.ModuleDiscoveryService

This module provides functions to discover LiveViews and LiveComponents in the current application.

 Summary

 Functions

 all_modules()

 live_component_modules(loaded_modules)

 Accepts a list of all modules from ModuleService.all/0
Returns a list of loaded LiveComponent modules.

 live_view_modules(loaded_modules)

 Accepts a list of all modules from ModuleService.all/0
Returns a list of loaded LiveView modules.

 Functions

 all_modules()

 @spec all_modules() :: [module()]

 live_component_modules(loaded_modules)

 @spec live_component_modules(loaded_modules :: [module()]) :: [module()]

Accepts a list of all modules from ModuleService.all/0
Returns a list of loaded LiveComponent modules.

 Examples

iex> services = LiveDebugger.Services.ModuleService.all()
[{MyAppWeb.LiveComponent, 'lib/my_app_web/live_component.ex'}, ...]
iex> LiveDebugger.Services.ModuleDiscoveryService.live_view_modules(services)
[MyAppWeb.LiveComponent, ...]

 live_view_modules(loaded_modules)

 @spec live_view_modules(loaded_modules :: [module()]) :: [module()]

Accepts a list of all modules from ModuleService.all/0
Returns a list of loaded LiveView modules.

 LiveDebugger.Services.System.ModuleService - LiveDebugger v0.1.4

LiveDebugger.Services.System.ModuleService behaviour

This module provides wrappers for system functions that queries modules in the current application.

 Summary

 Callbacks

 all()

 behaviours(module)

 loaded?(module)

 Functions

 all()

 Wrapper for :code.all_loaded/0 that returns a list of loaded modules.

 behaviours(module)

 Returns list of behaviours implemented by the given module.

 loaded?(module)

 Wrapper for Code.ensure_loaded?/1 that returns if a module is loaded.

 Callbacks

 all()

 @callback all() :: [{charlist(), charlist(), boolean()}]

 behaviours(module)

 @callback behaviours(module :: module()) :: [module()]

 loaded?(module)

 @callback loaded?(module :: module()) :: boolean()

 Functions

 all()

 @spec all() :: [{module(), charlist()}]

Wrapper for :code.all_loaded/0 that returns a list of loaded modules.

 behaviours(module)

 @spec behaviours(module :: module()) :: [module()]

Returns list of behaviours implemented by the given module.

 loaded?(module)

 @spec loaded?(module :: module()) :: boolean()

Wrapper for Code.ensure_loaded?/1 that returns if a module is loaded.

 LiveDebugger.Services.System.ProcessService - LiveDebugger v0.1.4

LiveDebugger.Services.System.ProcessService behaviour

This module provides wrappers for system functions that queries processes in the current application.

 Summary

 Callbacks

 initial_call(pid)

 list()

 state(pid)

 Functions

 initial_call(pid)

 Wrapper for Process.info/2 with some additional logic that returns the initial call of the process.

 list()

 Wrapper for Process.list/0 that returns a list of pids.

 state(pid)

 Wrapper for :sys.get_state/1 with additional error handling that returns the state of the process.

 Callbacks

 initial_call(pid)

 @callback initial_call(pid :: pid()) :: mfa() | nil

 list()

 @callback list() :: [pid()]

 state(pid)

 @callback state(pid :: pid()) :: {:ok, term()} | {:error, term()}

 Functions

 initial_call(pid)

 @spec initial_call(pid :: pid()) :: mfa() | nil

Wrapper for Process.info/2 with some additional logic that returns the initial call of the process.

 list()

 @spec list() :: [pid()]

Wrapper for Process.list/0 that returns a list of pids.

 state(pid)

 @spec state(pid :: pid()) :: {:ok, term()} | {:error, term()}

Wrapper for :sys.get_state/1 with additional error handling that returns the state of the process.

 LiveDebugger.Services.TraceService - LiveDebugger v0.1.4

LiveDebugger.Services.TraceService

This module provides functions that manages traces in the debugged application via ETS.
Created table is an ordered_set with non-positive integer keys.

 Summary

 Functions

 clear_traces(table_id, cid)

 Deletes all traces for the given table id and CID or PID.

 ets_table_id(socket_id)

 Returns the ETS table id for the given socket id.

 existing_traces(table_id)

 Returns all existing traces for the given table id.

 existing_traces(table_id, id, limit)

 Returns existing traces for the given table id and CID or PID.
It returns up to limit traces.

 get(table_id, id)

 Gets a trace from the ETS table by its id.

 insert(table_id, id, trace)

 Inserts a new trace into the ETS table.

 maybe_init_ets(ets_table_id)

 Initializes an ETS table with the given id if it doesn't exist.

 next_tuple_id(ets_table_id)

 Creates the id of next tuple based on the first tuple in the ETS table.
We need to store traces in this table in descending order.
To achieve this table is implemented as ordered_set with non-positive integer keys.
Because of that the element with the smallest key is the first element in the table.

 Functions

 clear_traces(table_id, cid)

 @spec clear_traces(atom(), pid() | LiveDebugger.CommonTypes.cid()) :: true

Deletes all traces for the given table id and CID or PID.

 ets_table_id(socket_id)

 @spec ets_table_id(String.t()) :: :ets.table()

Returns the ETS table id for the given socket id.

 existing_traces(table_id)

 @spec existing_traces(atom()) :: [LiveDebugger.Structs.Trace.t()]

Returns all existing traces for the given table id.

 existing_traces(table_id, id, limit)

 @spec existing_traces(atom(), pid() | LiveDebugger.CommonTypes.cid(), pos_integer()) ::
 [
 LiveDebugger.Structs.Trace.t()
]

Returns existing traces for the given table id and CID or PID.
It returns up to limit traces.

 get(table_id, id)

 @spec get(:ets.table(), integer()) :: LiveDebugger.Structs.Trace.t() | nil

Gets a trace from the ETS table by its id.

 insert(table_id, id, trace)

 @spec insert(:ets.table(), integer(), LiveDebugger.Structs.Trace.t()) :: true

Inserts a new trace into the ETS table.

 maybe_init_ets(ets_table_id)

 @spec maybe_init_ets(:ets.table()) :: :ets.table()

Initializes an ETS table with the given id if it doesn't exist.

 next_tuple_id(ets_table_id)

 @spec next_tuple_id(:ets.table()) :: integer()

Creates the id of next tuple based on the first tuple in the ETS table.
We need to store traces in this table in descending order.
To achieve this table is implemented as ordered_set with non-positive integer keys.
Because of that the element with the smallest key is the first element in the table.

 LiveDebugger.Structs.LvProcess - LiveDebugger v0.1.4

LiveDebugger.Structs.LvProcess

This module provides a struct to represent a LiveView process.
	nested? - whether the process is a nested LiveView process
	debugger? - whether the process is a LiveDebugger process

 Summary

 Types

 t()

 Functions

 new(pid)

 Creates new LvProcess struct with the given pid by fetching the socket from the process state.

 new(pid, socket)

 parent(lv_process)

 Returns the parent LvProcess of the given lv_process.

 Types

 t()

 @type t() :: %LiveDebugger.Structs.LvProcess{
 debugger?: boolean(),
 embedded?: boolean(),
 module: module(),
 nested?: boolean(),
 parent_pid: pid() | nil,
 pid: pid(),
 root_pid: pid(),
 socket_id: String.t(),
 transport_pid: pid()
}

 Functions

 new(pid)

 @spec new(pid :: pid()) :: t() | nil

Creates new LvProcess struct with the given pid by fetching the socket from the process state.

 new(pid, socket)

 @spec new(pid :: pid(), socket :: Phoenix.LiveView.Socket.t()) :: t()

 parent(lv_process)

 @spec parent(lv_process :: t()) :: t() | nil

Returns the parent LvProcess of the given lv_process.

 LiveDebugger.Structs.Trace - LiveDebugger v0.1.4

LiveDebugger.Structs.Trace

This module provides a struct to represent a trace.
ID is number generated by :dbg tracer.
PID is always present.
CID is optional - it is filled when trace comes from LiveComponent.
When trace has PID and CID it means that it comes from LiveComponent.
When trace has only PID it means that it comes from LiveView.
There cannot be a trace with CID and without PID.

 Summary

 Types

 t()

 Functions

 callback_name(trace)

 live_component_delete?(arg1)

 Checks if the trace is a delete live component trace.

 new(id, module, function, args, pid)

 Creates a new trace struct.

 new(id, module, function, args, pid, cid)

 node_id(trace)

 Returns the node id from the trace.
It is PID if trace comes from a LiveView, CID if trace comes from a LiveComponent.

 Types

 t()

 @type t() :: %LiveDebugger.Structs.Trace{
 args: list(),
 arity: non_neg_integer(),
 cid: struct() | nil,
 function: atom(),
 id: integer(),
 module: atom(),
 pid: pid(),
 timestamp: non_neg_integer()
}

 Functions

 callback_name(trace)

 @spec callback_name(t()) :: String.t()

 live_component_delete?(arg1)

 @spec live_component_delete?(t()) :: boolean()

Checks if the trace is a delete live component trace.

 new(id, module, function, args, pid)

 @spec new(integer(), atom(), atom(), list(), pid()) :: t()

Creates a new trace struct.

 new(id, module, function, args, pid, cid)

 @spec new(integer(), atom(), atom(), list(), pid(), LiveDebugger.CommonTypes.cid()) ::
 t()

 node_id(trace)

 @spec node_id(t()) :: pid() | LiveDebugger.CommonTypes.cid()

Returns the node id from the trace.
It is PID if trace comes from a LiveView, CID if trace comes from a LiveComponent.

 LiveDebugger.Structs.TraceDisplay - LiveDebugger v0.1.4

LiveDebugger.Structs.TraceDisplay

This module provides a struct used for displaying traces.
It wraps a trace struct and adds additional information.

 Summary

 Types

 t()

 Functions

 from_trace(trace)

 render_body(trace)

 Types

 t()

 @type t() :: %LiveDebugger.Structs.TraceDisplay{
 counter: term(),
 id: integer(),
 render_body?: boolean(),
 trace: LiveDebugger.Structs.Trace.t()
}

 Functions

 from_trace(trace)

 render_body(trace)

 LiveDebugger.Structs.TreeNode - LiveDebugger v0.1.4

LiveDebugger.Structs.TreeNode

This module provides functions to work with the tree of LiveView and LiveComponent nodes (TreeNodes).

 Summary

 Types

 cid()

 id()

 t()

 Functions

 add_child(parent, child)

 Adds a child to the parent node.

 display_id(arg1)

 Returns string representation of the node's ID, ready to be displayed in the UI.

 get_child(parent, child_id)

 Returns a child of the parent node by PID or CID.

 id(node)

 Returns PID or CID of the node.

 id_from_string(id)

 Parses ID from string to PID or CID.

 id_from_string!(string)

 Same as id_from_string/1, but raises an ArgumentError if the ID is invalid.

 live_component_node(channel_state, cid)

 Parses channel_state state to LiveDebugger.Structs.TreeNode.LiveComponent of given CID.
If the component is not found, returns nil.

 live_component_nodes(channel_state)

 Parses channel_state to a list of all LiveDebugger.Structs.TreeNode.LiveComponent nodes.
It doesn't include children.

 live_view_node(channel_state)

 Parses channel_state to LiveDebugger.Structs.TreeNode.LiveView.

 type(arg1)

 Gives type of the node.
Types

 Types

 cid()

 @type cid() :: LiveDebugger.Structs.TreeNode.LiveComponent.cid()

 id()

 @type id() :: cid() | pid()

 t()

 @type t() ::
 LiveDebugger.Structs.TreeNode.LiveView.t()
 | LiveDebugger.Structs.TreeNode.LiveComponent.t()

 Functions

 add_child(parent, child)

 @spec add_child(parent :: t(), child :: t()) :: t()

Adds a child to the parent node.

 display_id(arg1)

 @spec display_id(node :: t()) :: String.t()

Returns string representation of the node's ID, ready to be displayed in the UI.

 get_child(parent, child_id)

 @spec get_child(parent :: t(), child_id :: id()) :: t() | nil

Returns a child of the parent node by PID or CID.

 id(node)

 @spec id(node :: t()) :: id()

Returns PID or CID of the node.

 id_from_string(id)

 @spec id_from_string(id :: String.t()) :: {:ok, id()} | :error

Parses ID from string to PID or CID.

 id_from_string!(string)

 @spec id_from_string!(id :: String.t()) :: id()

Same as id_from_string/1, but raises an ArgumentError if the ID is invalid.

 live_component_node(channel_state, cid)

 @spec live_component_node(
 channel_state :: LiveDebugger.CommonTypes.channel_state(),
 cid :: cid()
) ::
 {:ok, t() | nil} | {:error, term()}

Parses channel_state state to LiveDebugger.Structs.TreeNode.LiveComponent of given CID.
If the component is not found, returns nil.

 Examples

iex> {:ok, state} = LiveDebugger.Services.LiveViewDiscoveryService.channel_state_from_pid(pid)
iex> LiveDebugger.Structs.TreeNode.live_component_node(state, 2)
{:ok, %LiveDebugger.Structs.TreeNode.LiveComponent{cid: 2, ...}}

iex> {:ok, state} = LiveDebugger.Services.LiveViewDiscoveryService.channel_state_from_pid(pid)
iex> LiveDebugger.Structs.TreeNode.live_component_node(state, 999)
{:ok, nil}

 live_component_nodes(channel_state)

 @spec live_component_nodes(channel_state :: LiveDebugger.CommonTypes.channel_state()) ::
 {:ok, [t()]} | {:error, term()}

Parses channel_state to a list of all LiveDebugger.Structs.TreeNode.LiveComponent nodes.
It doesn't include children.

 Examples

iex> {:ok, state} = LiveDebugger.Services.get_channel_state(pid)
iex> LiveDebugger.Structs.TreeNode.live_component_nodes(state)
{:ok, [%LiveDebugger.Structs.TreeNode.LiveComponent{...}, ...]}

 live_view_node(channel_state)

 @spec live_view_node(channel_state :: LiveDebugger.CommonTypes.channel_state()) ::
 {:ok, t()} | {:error, term()}

Parses channel_state to LiveDebugger.Structs.TreeNode.LiveView.

 Examples

iex> {:ok, state} = LiveDebugger.Services.LiveViewDiscoveryService.channel_state_from_pid(pid)
iex> LiveDebugger.Structs.TreeNode.live_view_node(state)
{:ok, %LiveDebugger.Structs.TreeNode.LiveView{...}}

 type(arg1)

 @spec type(node :: t()) :: atom()

Gives type of the node.
Types:
	:live_view
	:live_component

 LiveDebugger.Structs.TreeNode.LiveComponent - LiveDebugger v0.1.4

LiveDebugger.Structs.TreeNode.LiveComponent

This module provides a struct to represent a LiveComponent in the tree.

 Summary

 Types

 cid()

 t()

 Types

 cid()

 @type cid() :: %Phoenix.LiveComponent.CID{cid: integer()}

 t()

 @type t() :: %LiveDebugger.Structs.TreeNode.LiveComponent{
 assigns: map(),
 children: [t()],
 cid: cid(),
 id: String.t(),
 module: atom()
}

 LiveDebugger.Structs.TreeNode.LiveView - LiveDebugger v0.1.4

LiveDebugger.Structs.TreeNode.LiveView

This module provides a struct to represent a LiveView in the tree.

 Summary

 Types

 t()

 Types

 t()

 @type t() :: %LiveDebugger.Structs.TreeNode.LiveView{
 assigns: map(),
 children: [t()],
 id: String.t(),
 module: atom(),
 pid: pid()
}

 LiveDebugger.Utils.Callbacks - LiveDebugger v0.1.4

LiveDebugger.Utils.Callbacks

This module provides functions to generate a list of callbacks for LiveViews and LiveComponents.

 Summary

 Functions

 callbacks_functions()

 Generates a list of all function name callbacks for LiveViews and LiveComponents.

 live_component_callbacks(modules)

 Generates a list of callbacks for LiveComponents in form of {module, callback, arity}.
Accepts a single module or a list of modules.

 live_view_callbacks(modules)

 Generates a list of callbacks for LiveViews in form of {module, callback, arity}.
Accept a single module or a list of modules.

 Functions

 callbacks_functions()

 @spec callbacks_functions() :: [atom()]

Generates a list of all function name callbacks for LiveViews and LiveComponents.

 live_component_callbacks(modules)

 @spec live_component_callbacks(module() | [module()]) :: [mfa()]

Generates a list of callbacks for LiveComponents in form of {module, callback, arity}.
Accepts a single module or a list of modules.

 live_view_callbacks(modules)

 @spec live_view_callbacks(module() | [module()]) :: [mfa()]

Generates a list of callbacks for LiveViews in form of {module, callback, arity}.
Accept a single module or a list of modules.

 LiveDebugger.Utils.Parsers - LiveDebugger v0.1.4

LiveDebugger.Utils.Parsers

This module provides functions to parse some structs to string representation and vice versa.

 Summary

 Functions

 cid_to_string(cid)

 module_to_string(module)

 parse_timestamp(timestamp)

 pid_to_string(pid)

 string_to_cid(string)

 string_to_pid(string)

 Functions

 cid_to_string(cid)

 @spec cid_to_string(cid :: struct()) :: String.t()

 module_to_string(module)

 @spec module_to_string(module :: module()) :: String.t()

 parse_timestamp(timestamp)

 @spec parse_timestamp(non_neg_integer()) :: String.t()

 pid_to_string(pid)

 @spec pid_to_string(pid :: pid()) :: String.t()

 string_to_cid(string)

 @spec string_to_cid(string :: String.t()) :: {:ok, struct()} | :error

 string_to_pid(string)

 @spec string_to_pid(string :: String.t()) :: {:ok, pid()} | :error

 LiveDebugger.Utils.PubSub - LiveDebugger v0.1.4

LiveDebugger.Utils.PubSub

This module provides helpers for LiveDebugger's PubSub.

 Summary

 Functions

 broadcast(topic, payload)

 new_trace_topic(lv_process)

 node_changed_topic(socket_id)

 subscribe(topic)

 Functions

 broadcast(topic, payload)

 @spec broadcast(topic :: String.t(), payload :: term()) :: :ok

 new_trace_topic(lv_process)

 @spec new_trace_topic(lv_process :: LiveDebugger.Structs.LvProcess.t()) :: String.t()

 node_changed_topic(socket_id)

 @spec node_changed_topic(socket_id :: String.t()) :: String.t()

 subscribe(topic)

 @spec subscribe(topic :: String.t()) :: :ok

 LiveDebugger.Utils.TermParser - LiveDebugger v0.1.4

LiveDebugger.Utils.TermParser

This module provides functions to parse terms into display tree.
Based on Kino.Tree

 Summary

 Types

 display_element()

 tree_element()

 Functions

 term_to_display_tree(term)

 Types

 display_element()

 @type display_element() :: %{text: String.t(), color: String.t() | nil}

 tree_element()

 @type tree_element() :: %{
 kind: String.t(),
 children: [tree_element()] | nil,
 content: [display_element()],
 expanded_before: [display_element()] | nil,
 expanded_after: [display_element()] | nil
}

 Functions

 term_to_display_tree(term)

 @spec term_to_display_tree(term()) :: tree_element()

 LiveDebugger.Utils.URL - LiveDebugger v0.1.4

LiveDebugger.Utils.URL

URL utilities for managing URLs and query params.

 Summary

 Functions

 modify_query_params(url, fun)

 remove_query_param(url, key)

 remove_query_params(url, keys)

 to_relative(url)

 Converts an absolute URL to a relative URL.

 update_path(url, path)

 upsert_query_param(url, key, value)

 upsert_query_params(url, params)

 Functions

 modify_query_params(url, fun)

 @spec modify_query_params(url :: String.t(), fun :: (map() -> map())) :: String.t()

 remove_query_param(url, key)

 @spec remove_query_param(url :: String.t(), key :: String.t()) :: String.t()

 remove_query_params(url, keys)

 @spec remove_query_params(url :: String.t(), keys :: [String.t()]) :: String.t()

 to_relative(url)

 @spec to_relative(utl :: String.t()) :: String.t()

Converts an absolute URL to a relative URL.

 Examples

iex> URL.to_relative("http://example.com/foo?bar=baz")
"/foo?bar=baz"

 update_path(url, path)

 @spec update_path(url :: String.t(), path :: String.t()) :: String.t()

 upsert_query_param(url, key, value)

 @spec upsert_query_param(url :: String.t(), key :: String.t(), value :: String.t()) ::
 String.t()

 upsert_query_params(url, params)

 @spec upsert_query_params(
 url :: String.t(),
 params :: %{required(String.t()) => String.t()}
) ::
 String.t()

 LiveDebuggerDev.Components - LiveDebugger v0.1.4

LiveDebuggerDev.Components

 Summary

 Functions

 box(assigns)

 Attributes
	title (:string) (required)
	color (:string) - Defaults to "blue".
	class (:string) - Defaults to "".

Slots
	inner_block (required)

 button(assigns)

 Attributes
	color (:string) - Defaults to "green".
	Global attributes are accepted.

Slots
	inner_block (required)

 navbar(assigns)

 Attributes
	routes (:list) - Defaults to [{"/", "Main"}, {"/side", "Side"}, {"/nested", "Nested"}, {"/messages", "Messages"}, {"/embedded", "Embedded"}, {"/embedded_in_controller", "EmbeddedInController"}].

 Functions

 box(assigns)

 Attributes

	title (:string) (required)
	color (:string) - Defaults to "blue".
	class (:string) - Defaults to "".

 Slots

	inner_block (required)

 button(assigns)

 Attributes

	color (:string) - Defaults to "green".
	Global attributes are accepted.

 Slots

	inner_block (required)

 navbar(assigns)

 Attributes

	routes (:list) - Defaults to [{"/", "Main"}, {"/side", "Side"}, {"/nested", "Nested"}, {"/messages", "Messages"}, {"/embedded", "Embedded"}, {"/embedded_in_controller", "EmbeddedInController"}].

 LiveDebuggerDev.EmbeddedLiveViewController - LiveDebugger v0.1.4

LiveDebuggerDev.EmbeddedLiveViewController

 Summary

 Functions

 embedded(conn, params)

 Functions

 embedded(conn, params)

 LiveDebuggerDev.Endpoint - LiveDebugger v0.1.4

LiveDebuggerDev.Endpoint

 Summary

 Functions

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 server_info(scheme)

 Returns the address and port that the server is running on

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Functions

 broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast!(topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 broadcast_from!(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 call(conn, opts)

Callback implementation for Plug.call/2.

 child_spec(opts)

Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

Returns the endpoint configuration for key
Returns default if the key does not exist.

 config_change(changed, removed)

Reloads the configuration given the application environment changes.

 host()

Returns the host for the given endpoint.

 init(opts)

Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

Generates the path information when routing to this endpoint.

 script_name()

Generates the script name.

 server_info(scheme)

Returns the address and port that the server is running on

 start_link(opts \\ [])

Starts the endpoint supervision tree.
All other options are merged into the endpoint configuration.

 static_integrity(path)

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

Generates a route to a static file in priv/static.

 static_url()

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 struct_url()

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 subscribe(topic, opts \\ [])

Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

 LiveDebuggerDev.Layout - LiveDebugger v0.1.4

LiveDebuggerDev.Layout

 LiveDebuggerDev.LiveComponents.Conditional - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.Conditional

 Summary

 Functions

 handle_event(binary, _, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 mount(socket)

 Callback implementation for Phoenix.LiveComponent.mount/1.

 render(assigns)

 Slots
	inner_block

 Functions

 handle_event(binary, _, socket)

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 mount(socket)

Callback implementation for Phoenix.LiveComponent.mount/1.

 render(assigns)

 Slots

	inner_block

 LiveDebuggerDev.LiveComponents.LiveComponentWithVeryVeryLongName - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.LiveComponentWithVeryVeryLongName

 Summary

 Functions

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 Functions

 render(assigns)

Callback implementation for Phoenix.LiveComponent.render/1.

 LiveDebuggerDev.LiveComponents.ManyAssigns - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.ManyAssigns

 Summary

 Functions

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Functions

 render(assigns)

Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

Callback implementation for Phoenix.LiveComponent.update/2.

 LiveDebuggerDev.LiveComponents.Name - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.Name

 Summary

 Functions

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Functions

 render(assigns)

Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

Callback implementation for Phoenix.LiveComponent.update/2.

 LiveDebuggerDev.LiveComponents.Recursive - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.Recursive

 Summary

 Functions

 render(assigns)

 Attributes
	id (:string) (required)
	counter (:integer) (required)

 update(assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Functions

 render(assigns)

 Attributes

	id (:string) (required)
	counter (:integer) (required)

 update(assigns, socket)

Callback implementation for Phoenix.LiveComponent.update/2.

 LiveDebuggerDev.LiveComponents.Send - LiveDebugger v0.1.4

LiveDebuggerDev.LiveComponents.Send

 Summary

 Functions

 handle_event(binary, _, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Slots
	inner_block

 Functions

 handle_event(binary, _, socket)

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Slots

	inner_block

 LiveDebuggerDev.LiveViews.Embedded - LiveDebugger v0.1.4

LiveDebuggerDev.LiveViews.Embedded

 Summary

 Functions

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Functions

 render(assigns)

Callback implementation for Phoenix.LiveView.render/1.

 LiveDebuggerDev.LiveViews.Main - LiveDebugger v0.1.4

LiveDebuggerDev.LiveViews.Main

 Summary

 Functions

 handle_event(binary, _, socket)

 Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(arg, socket)

 Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(params, session, socket)

 Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Functions

 handle_event(binary, _, socket)

Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(arg, socket)

Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(params, session, socket)

Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

Callback implementation for Phoenix.LiveView.render/1.

 LiveDebuggerDev.LiveViews.Messages - LiveDebugger v0.1.4

LiveDebuggerDev.LiveViews.Messages

 Summary

 Functions

 handle_event(binary, _, socket)

 Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(_, socket)

 Callback implementation for Phoenix.LiveView.handle_info/2.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Functions

 handle_event(binary, _, socket)

Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(_, socket)

Callback implementation for Phoenix.LiveView.handle_info/2.

 render(assigns)

Callback implementation for Phoenix.LiveView.render/1.

 LiveDebuggerDev.LiveViews.Nested - LiveDebugger v0.1.4

LiveDebuggerDev.LiveViews.Nested

 Summary

 Functions

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Functions

 render(assigns)

Callback implementation for Phoenix.LiveView.render/1.

 LiveDebuggerDev.LiveViews.Side - LiveDebugger v0.1.4

LiveDebuggerDev.LiveViews.Side

 Summary

 Functions

 handle_info(atom, socket)

 Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(params, session, socket)

 Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Functions

 handle_info(atom, socket)

Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(params, session, socket)

Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

Callback implementation for Phoenix.LiveView.render/1.

