

 live_isolated_component

 v0.8.0

 Table of contents

 	Overview

 	Modules

 	LiveIsolatedComponent

LiveIsolatedComponent

[image: Elixir CI]
The simplest way to test a LiveView both stateful and function component in isolation
while keeping the interactivity.

 Installation

Version 0.7.0 drops support for some older versions of Elixir, OTP, Phoenix and Phoenix LiveView. This was done because the current CI matrix generated 24 different builds and just adding OTP 26 would mean duplicating that. Also, removing support for LiveView 0.18.16 drop some code.

def deps do
 [
 # If you are using OTP 25 or above, Elixir 1.14, Phoenix 1.7, LiveView 0.19:
 {:live_isolated_component, "~> 0.7.0", only: [:dev, :test]}
 # If you are in LV 0.18 or above
 {:live_isolated_component, "~> 0.6.5", only: [:dev, :test]}
 # If you are in LV 0.17
 {:live_isolated_component, "~> 0.5.2", only: [:dev, :test]}
]
end
Documentation can be found at hexdocs.

 Basic usage

Importing LiveIsolatedComponent will import one function, live_assign, and a few macros. You can use live_isolated_component like you would use live_isolated, just pass the component you want to test as the first argument and use the options as you see fit. If you want to change the passed assigns from the test, use live_assign with the view instead of the socket.

 Example

Simple rendering:
{:ok, view, _html} = live_isolated_component(SimpleButton)

assert has_element?(view, ".count", "Clicked 0 times")

view
 |> element("button")
 |> render_click()

assert has_element?(view, ".count", "Clicked 1 times")
Testing assigns:
{:ok, view, _html} = live_isolated_component(Greeting, %{name: "Sergio"})

assert has_element?(view, ".name", "Sergio")

live_assign(view, :name, "Fran")
or
live_assign(view, name: "Fran")
or
live_assign(view, %{name: "Fran"})

assert has_element?(view, ".name", "Fran")
Testing handle_event:
{:ok, view, _html} = live_isolated_component(SimpleButton,
 assigns: %{on_click: :i_was_clicked}
)

view
 |> element("button")
 |> render_click()

assert_handle_event view, :i_was_clicked
Testing handle_info:
{:ok, view, _html} = live_isolated_component(ComplexButton,
 assigns: %{on_click: :i_was_clicked}
)

view
 |> element("button")
 |> render_click()

assert_handle_info view, :i_was_clicked
handle_event callback:
{:ok, view, _html} = live_isolated_component(SimpleButton,
 assigns: %{on_click: :i_was_clicked},
 handle_event: fn :i_was_clicked, _params, socket ->
 # Do something
 {:noreply, socket}
 end
)
handle_info callback:
{:ok, view, _html} = live_isolated_component(SimpleButton,
 assigns: %{on_click: :i_was_clicked},
 handle_info: fn :i_was_clicked, _params, socket ->
 # Do something
 {:noreply, socket}
 end
)

 Slots

The slots options can be:
	Just a slot. In that case, it'd be taken as the default slot.
	A map or keywords. In this case, the keys are the name of the slots, the values
can either be a slot or an array of slots. In case of keywords, the values
will be collected for the same slot name.

 Defining a slot

We define slots by using the slot macro. This macro accepts a keyword list and a block.
The block needs to return a template (you can use sigil_H). The keywords will be considered
attributes of the slot except for the following let:
	let will bind the argument to the value. You can use destructuring here.

Like in a real slot, the assigns the slot have access to is that of the parent LiveView.

 Slot Examples

Just a default slot:
{:ok, view, html} = live_isolated_component(MyComponent,
 slots: slot(assigns: assigns) do
 ~H[Hello from default slot]
 end
)
Just a default slot (map version):
{:ok, view, html} = live_isolated_component(MyComponent,
 slots: %{
 inner_block: slot(assigns: assigns) do
 ~H[Hello from default slot]
 end
 }
)
Named slot (only one slot defined):
{:ok, view, html} = live_isolated_component(MyTableComponent,
 slots: %{
 col: slot(assigns: assigns, header: "Column Header") do
 ~H[Hello from the column slot]
 end
 }
)
Named slot (multiple slots defined):
{:ok, view, html} = live_isolated_component(MyTableComponent,
 slots: %{
 col: [
 slot(assigns: assigns, let: item, header: "Language") do
 ~H[<%= item.language %>]
 end,
 slot(assigns: assigns, let: %{greeting: greeting}, header: "Greeting") do
 ~H[<%= greeting %>]
 end
]
 }
)

LiveIsolatedComponent

Functions for testing LiveView stateful components in isolation easily.

 Summary

 Functions

 assert_handle_event(view, event \\ nil, params \\ nil, timeout \\ 500)

 Asserts that a given handle event has been received.

 assert_handle_event_return(view, return_value)

 Asserts the return value of a handle_event

 assert_handle_info(view, event \\ nil, timeout \\ 500)

 Asserts that a given handle_info event has been received.

 live_assign(view, keyword_or_map)

 Updates the assigns of the component.

 live_assign(view, key, value)

 Updates the key in assigns of the component.

 live_isolated_component(component, opts \\ quote do
 %{}
end)

 Renders the given component in isolation and live so you can tested like you would
test any LiveView.

 refute_handle_event(view, event \\ nil, params \\ nil, timeout \\ 500)

 Refutes that a given handle event has been received.

 refute_handle_info(view, event \\ nil, timeout \\ 500)

 Asserts that a given handle_info event has not been received.

 slot(args \\ quote do
 %{}
end, list)

 Macro to define slots. Accepts a map or keywords and a block.
The block needs to return a template (use a sigil_H).

Functions

 Link to this macro

 assert_handle_event(view, event \\ nil, params \\ nil, timeout \\ 500)

 View Source

 (macro)

Asserts that a given handle event has been received.
Depending on the number of parameters, different parts are checked:
	With no parameters, just that a handle_event message has been received.
	With one parameter, just the event name is checked.
	With two parameters, both event name and the parameters are checked.
	The optional last argument is the timeout, defaults to 500 milliseconds

If you just want to check the parameters without checking the event name,
pass nil as the event name.

 Link to this macro

 assert_handle_event_return(view, return_value)

 View Source

 (macro)

Asserts the return value of a handle_event

 Link to this macro

 assert_handle_info(view, event \\ nil, timeout \\ 500)

 View Source

 (macro)

Asserts that a given handle_info event has been received.
If only the view is passed, only that a handle_info is received is checked.
With an optional event name, we check that too.
The third argument is an optional timeout, defaults to 500 milliseconds.

 Link to this function

 live_assign(view, keyword_or_map)

 View Source

Updates the assigns of the component.
{:ok, view, _html} = live_isolated_component(SomeComponent, assigns: %{description: "blue"})

live_assign(view, %{description: "red"})

 Link to this function

 live_assign(view, key, value)

 View Source

Updates the key in assigns of the component.
{:ok, view, _html} = live_isolated_component(SomeComponent, assigns: %{description: "blue"})

live_assign(view, :description, "red")

 Link to this macro

 live_isolated_component(component, opts \\ quote do
 %{}
end)

 View Source

 (macro)

Renders the given component in isolation and live so you can tested like you would
test any LiveView.
It accepts the following options:
	:assigns accepts a map of assigns for the component.
	:handle_event accepts a handler for the handle_event callback in the LiveView.
	:handle_info accepts a handler for the handle_info callback in the LiveView.
	:on_mount accepts a list of either modules or tuples {Module, parameter}. See Phoenix.LiveView.on_mount/1 for more info on the parameters.
	:slots accepts different slot descriptors.

 More about slots

For defining slots, you need to use the slot/2 macro. If you just pass a slot
to :slots, it will be taken as a default sot (@inner_block inside the component).
You can also pass a map or keywords to :slots. In this case, the key is considered
to be the slot name and the value, the different slots. Remember that the default slot's
name is inner_block.
For passing multiple slots for the same name, you have two options:any()
	You can give an array of slots as the value in the map or the keywords.
	You can pass the same name multiple times with different slots. This option
is only available if you are using keywords, as this data structure preserves
all values.

 Link to this macro

 refute_handle_event(view, event \\ nil, params \\ nil, timeout \\ 500)

 View Source

 (macro)

Refutes that a given handle event has been received.
Depending on the number of parameters, different parts are checked:
	With no parameters, just that a handle_event message has not been received.
	With one parameter, just the event name is checked.
	With two parameters, both event name and the parameters are checked.
	The optional last argument is the timeout, defaults to 500 milliseconds

If you just want to check the parameters without checking the event name,
pass nil as the event name.

 Link to this macro

 refute_handle_info(view, event \\ nil, timeout \\ 500)

 View Source

 (macro)

Asserts that a given handle_info event has not been received.
If only the view is passed, only that a handle_info is not received is checked.
With an optional event name, we check that too.
The third argument is an optional timeout, defaults to 500 milliseconds.

 Link to this macro

 slot(args \\ quote do
 %{}
end, list)

 View Source

 (macro)

Macro to define slots. Accepts a map or keywords and a block.
The block needs to return a template (use a sigil_H).
The arguments can be anything and they will be passed to the slot
as attributes. There is only one special attribute that will not
be passed though:
	let behaves like in components, letting the component
pass some value into the slot.

 Example

> slot(let: {key, value}) do
 ~H[
 <div>
 <h2>Title coming from assigns: <%= @title %></h2>
 Key coming from let <%= key %>
 Value coming from let<%= value %>
 </div>
]
 end

 Conversion

In case you are wondering how to convert a slot in HEEX
to the slot macro, let's do a simple conversion from a
named slot with attributes:any()
<:slot_name attr_1={5} attr_2="hola" let={value}>
 Received value from parent component is <%= value %>
</:slot_name>
For converting this, we notice three different parts:
	The slot name. In this case, :slot_name.
	The slot attributes. In this case, attr_1={5} attr_2="hola" let={value}.
	The slot content (or inner_block). In this case, the span.

Thus, we just need to pass to the slots options the following value (just
showing the keyword options to live_isolated_component):
[
 slots: [
 slot_name: slot(attr_1: 5, attr_2: "hola", let: value) do
 ~H[Received value from parent component is <%= value %>]
 end
]
]

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

