

 LiveQuery

 v0.3.1

 Table of contents

 	Modules

 	LiveQuery

 	LiveQuery.Protocol.CallbackRegistered

 	LiveQuery.Protocol.CallbackUnregistered

 	LiveQuery.Protocol.Data

 	LiveQuery.Protocol.DataChanged

 	LiveQuery.Protocol.Link

 	LiveQuery.Protocol.Linked

 	LiveQuery.Protocol.NoQuery

 	LiveQuery.Protocol.Read

 	LiveQuery.Protocol.RegisterCallback

 	LiveQuery.Protocol.Unlink

 	LiveQuery.Protocol.Unlinked

 	LiveQuery.Protocol.UnregisterAllCallbacks

 	LiveQuery.Protocol.UnregisterCallback

 	LiveQuery.Query.Def

 	LiveQuery.Query.DefLike

LiveQuery

LiveQuery allows you to declare how to load, invalidate, and reload your data independently from your consumer logic.
An example is going to help a lot here.
Imagine you have a list of users in your database, and one or more consumers in your system want to "use" this list of users.
I'm saying "use" to because it could mean a lot of things.
Maybe you want to display the list of users in live view.
Maybe you want return the list as a response to an API call.
Maybe you just want to log them.
LiveQuery doesn't care.
Regardless, before you can consume a query you must define it.
A query definition (def) can take a lot of forms, but for now we'll just write it in a module.
defmodule Users do
 use LiveQuery.Query.Def

 @impl true
 def init(_ctx) do
 Repo.all(User)
 end
end
This is enough to get started, but since we want a "live" user's list we'll also need to define how to subscribe to updates and reload our list in response to those updates.
defmodule Demo.Users do
 use LiveQuery.Query.Def

 @impl true
 def init(_ctx) do
 Phoenix.PubSub.subscribe(Demo.PubSub, "users")
 Repo.all(User)
 end

 @impl true
 def handle_info(_msg, _from, _ctx) do
 Repo.all(User)
 end
end
Again, notice that this definition is consumer agnostic.
It says how to load a live user's list, but it doesn't care how you use it.
So, now let's use it.
How about from a Phoenix controller?
def DemoWeb.UsersController do
 use MyAppWeb, :controller

 def index(conn, _params) do
 LiveQuery.link(Demo.LiveQuery,
 query_key: [:users],
 query_def: Demo.Users,
 query_config: %{},
 client_pid: self()
)

 users = LiveQuery.read(Demo.LiveQuery, query_key: [:users]).value
 render(conn, :index, users: users)
 end
end
This will almost work, but we need to make one more change.
LiveQuery actually runs your queries for you, so you need to start it as part of your application.
def Demo.Supervisor do
 ...

 @impl true
 def init(_opts) do
 children = [
 ...
 {LiveQuery, name: Demo.LiveQuery},
 ...
]

 ...
 end
end
Now when someone visits the users index page, and the controller's index action is invoked our users list will be returned.
What's cool is that this list will only exist at most once in memory at any given time.
So, if lots of people visit the users index page at the same time, we don't have to worry about excess load on our database, or excess memory usage in our application.
Now, you might say, this is fine, but it seems like the controller is doing a lot of work just to get a list of users.
This is where LiveQuery client libraries come in.
LiveQuery is consumer agnostic which is part of what makes it so powerful. You can write a query definition once, and then use it anywhere.
However, it also means that you have to write a lot of boilerplate when you consume queries.
Client libraries hide this boilerplate behind a simple API designed for a given consumer.
Using LiveQuery.Client (coming soon) we can rewrite our controller like this:
def DemoWeb.UsersController do
 use MyAppWeb, :controller

 def index(conn, _params) do
 users = LiveQuery.Client.fetch!(Demo.LiveQuery, query_def: Demo.Users)
 render(conn, :index, users: users)
 end
end
This is much simpler, and you still get all the reuse and generalization benefits of LiveQuery.
Hopefully, this example has given you a taste of what LiveQuery can do.
You can explore individual function and module documentation for more details.

 Summary

 Functions

 child_spec(opts)

 Used when running LiveQuery underneath a supervisor. Works the same way GenServer.child_spec/1 does.

 link(name, opts)

 Link a client process to a query.
If the query process is not running, it will be started, but not initialized (that only happens once a client tries to read the query).
Once at least one client process is linked to a query, you can rely on the query existing until all client processes are unlink from it.
If you link a client process to a query and the client processes dies, the query will be unlinked from the client process automatically.

 read(name, opts)

 Read the value of a query.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.
If the query is running, a LiveQuery.Protocol.Data struct will be returned.
If the query hasn't yet been initialized, it will be initialized before returning the value.

 register_callback(name, opts)

 Register a callback to be invoked with a LiveQuery.Protocol.DataChanged struct when a query's value changes.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.
Callbacks allow consumers to inject logic into the query's lifecycle.
Commonly this is used to have the query notify the consumer when it's value changes.
All registered callbacks are automatically unregistered when their client process is unlinked.

 start_link(opts)

 Starts a LiveQuery.

 unlink(name, opts)

 Unlink a client process from a query.
If the query has no more clients, it will be stopped.
Unlinking a client process from a query that it is not already linked to is a no-op.

 unregister_all_callbacks(name, opts)

 Unregisters all callbacks from a query for a given client process.
Identical to calling unregister_callback/2 for all callbacks that have been registered for a given client process.

 unregister_callback(name, opts)

 Unregister a callback from a query.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.

Functions

 Link to this function

 child_spec(opts)

 View Source

Used when running LiveQuery underneath a supervisor. Works the same way GenServer.child_spec/1 does.

 Link to this function

 link(name, opts)

 View Source

Link a client process to a query.
If the query process is not running, it will be started, but not initialized (that only happens once a client tries to read the query).
Once at least one client process is linked to a query, you can rely on the query existing until all client processes are unlink from it.
If you link a client process to a query and the client processes dies, the query will be unlinked from the client process automatically.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:query_def - the query definition (can be anything that implements the LiveQuery.Query.DefLike protocol)
	:query_config - configuration for the query
	:client_pid - the pid of the process that is linking to the query (usually yourself)

 Link to this function

 read(name, opts)

 View Source

Read the value of a query.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.
If the query is running, a LiveQuery.Protocol.Data struct will be returned.
If the query hasn't yet been initialized, it will be initialized before returning the value.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:selector - the function used to transform the query's value before returning it

 Link to this function

 register_callback(name, opts)

 View Source

Register a callback to be invoked with a LiveQuery.Protocol.DataChanged struct when a query's value changes.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.
Callbacks allow consumers to inject logic into the query's lifecycle.
Commonly this is used to have the query notify the consumer when it's value changes.
All registered callbacks are automatically unregistered when their client process is unlinked.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:client_pid - the client process that is registering the callback (usually yourself)
	:cb_key - uniquely identifies the callback so it can later be removed
	:cb - the function to be invoked when the query's value changes

 Link to this function

 start_link(opts)

 View Source

Starts a LiveQuery.
	:opts - options concerning the query being linked	:name - the name of the LiveQuery system

 Link to this function

 unlink(name, opts)

 View Source

Unlink a client process from a query.
If the query has no more clients, it will be stopped.
Unlinking a client process from a query that it is not already linked to is a no-op.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:client_pid - the pid of the process that is linking to the query (usually yourself)

 Link to this function

 unregister_all_callbacks(name, opts)

 View Source

Unregisters all callbacks from a query for a given client process.
Identical to calling unregister_callback/2 for all callbacks that have been registered for a given client process.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:client_pid - the client process that is registering the callback (usually yourself)

 Link to this function

 unregister_callback(name, opts)

 View Source

Unregister a callback from a query.
If the query is not running, a LiveQuery.Protocol.NoQuery struct will be returned.
	:name - the name of the LiveQuery system
	:opts - options concerning the query being linked	:query_key - the key used to identify the query in the LiveQuery system
	:client_pid - the client process that is registering the callback (usually yourself)
	:cb_key - uniquely identifies the callback (passed in when the query was registered)

LiveQuery.Protocol.CallbackRegistered

Sent in response to a LiveQuery.Protocol.RegisterCallback call.
The callback's return value is discarded by the query.
The cb_key is used to identify the callback when unregistering it. It is namespaced to the client_pid.
That is, different clients can register callbacks with the same cb_key at the same time and they will not interfere with each other.

LiveQuery.Protocol.CallbackUnregistered

Sent in response to a LiveQuery.Protocol.UnegisterCallback call.
Additionally, a list of these are returned in response to a LiveQuery.Protocol.UnegisterAllCallbacks call.
The cb_key is the same one used to identify the callback when registering it.

LiveQuery.Protocol.Data

Returned in response to a LiveQuery.Protocol.Read call (when the query exists).

LiveQuery.Protocol.DataChanged

Given to a callback when the data for a query changes.

LiveQuery.Protocol.Link

Link a client process to a query.
Once linked to a query, the client will be monitored, and the query will be guaranteed to exist so long as the client is alive and has manually unlinked from the query.

 Summary

 Functions

 new(struct)

 Create a new LiveQuery.Protocol.Link struct safely.
This validates the created struct will be considered valid by LiveQuery.
Prefer using this function over literal struct creation when possible.

Functions

 Link to this function

 new(struct)

 View Source

Create a new LiveQuery.Protocol.Link struct safely.
This validates the created struct will be considered valid by LiveQuery.
Prefer using this function over literal struct creation when possible.

LiveQuery.Protocol.Linked

Returned in response to a LiveQuery.Protocol.Link call.

LiveQuery.Protocol.NoQuery

Returned whenever a operation is attepted against a query that doesn't exist.
The only exception is LiveQuery.Protocol.Link and LiveQuery.Protocol.Unlink.

LiveQuery.Protocol.Read

Read the value of a query (the query's init function will be called if it hasn't been called yet).
The selector function will be called with the query's value and before the result is returned.

 Summary

 Functions

 new(struct)

 Create a new LiveQuery.Protocol.Read struct.
If selector is not provided the indentity function will be used by default.

Functions

 Link to this function

 new(struct)

 View Source

Create a new LiveQuery.Protocol.Read struct.
If selector is not provided the indentity function will be used by default.

LiveQuery.Protocol.RegisterCallback

TODO

 Summary

 Functions

 new(struct)

 TODO

Functions

 Link to this function

 new(struct)

 View Source

TODO

LiveQuery.Protocol.Unlink

TODO

 Summary

 Functions

 new(struct)

 TODO

Functions

 Link to this function

 new(struct)

 View Source

TODO

LiveQuery.Protocol.Unlinked

TODO

LiveQuery.Protocol.UnregisterAllCallbacks

TODO

 Summary

 Functions

 new(opts)

 TODO

Functions

 Link to this function

 new(opts)

 View Source

TODO

LiveQuery.Protocol.UnregisterCallback

TODO

 Summary

 Functions

 new(opts)

 TODO

Functions

 Link to this function

 new(opts)

 View Source

TODO

LiveQuery.Query.Def behaviour

This module defines the LiveQuery.Query.Def behaviour and struct.
The behaviour can be used to make a module-base query definition.
The struct can be used as a query definition itself.

 Summary

 Types

 data()

 t()

 Callbacks

 handle_call(msg, from, state)

 handle_cast(msg, state)

 handle_info(msg, state)

 init(state)

 Functions

 __using__(opts)

 Just adds the LiveQuery.Query.Def behaviour to your module for you.
Modules which implement this behaviour can be used as a query definition.

 new(opts)

 Creates a new LiveQuery.Query.Def struct which implements the LiveQuery.Query.DefLike protocol.

Types

 Link to this type

 data()

 View Source

 @type data() :: any()

 Link to this type

 t()

 View Source

 @type t() :: %LiveQuery.Query.Def{
 handle_call:
 (msg :: any(),
 from :: GenServer.from(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 {:noreply, data()} | {:reply, any(), data()})
 | nil,
 handle_cast:
 (msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 data())
 | nil,
 handle_info:
 (msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 data())
 | nil,
 init: (state :: %{key: any(), config: map()} -> data())
}

Callbacks

 Link to this callback

 handle_call(msg, from, state)

 View Source

 (optional)

 @callback handle_call(
 msg :: any(),
 from :: GenServer.from(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: {:noreply, data()} | {:reply, any(), data()}

 Link to this callback

 handle_cast(msg, state)

 View Source

 (optional)

 @callback handle_cast(
 msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: data()

 Link to this callback

 handle_info(msg, state)

 View Source

 (optional)

 @callback handle_info(
 msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: data()

 Link to this callback

 init(state)

 View Source

 @callback init(state :: %{key: any(), config: map()}) :: data()

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Just adds the LiveQuery.Query.Def behaviour to your module for you.
Modules which implement this behaviour can be used as a query definition.

 Link to this function

 new(opts)

 View Source

 @spec new(%{
 :init => (state :: %{key: any(), config: map()} -> data()),
 optional(:handle_call) =>
 (msg :: any(),
 from :: GenServer.from(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 {:noreply, data()} | {:reply, any(), data()}),
 optional(:handle_cast) =>
 (msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 data()),
 optional(:handle_info) =>
 (msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()} ->
 data())
}) :: t()

Creates a new LiveQuery.Query.Def struct which implements the LiveQuery.Query.DefLike protocol.

LiveQuery.Query.DefLike protocol

A query definition defines how to load and maintain a query.
It's the blueprint of a query.
Anything that implements the LiveQuery.Query.DefLike protocol can be used as a query definition.

 Summary

 Types

 data()

 t()

 Functions

 handle_call(self, msg, from, state)

 Your query process is like a GenServer.
You can handle calls, but you're limited in what you can return since queries don't allow for handle_continue.

 handle_cast(self, msg, state)

 Your query process is like a GenServer.
You can handle casts, but you're limited in what you can return since queries don't allow for handle_continue.
You must return your query's new value.

 handle_info(self, msg, state)

 Your query process is like a GenServer.
You can handle messages, but you're limited in what you can return since queries don't allow for handle_continue.
You must return your query's new value.

 init(self, state)

 Called when the query is initialized.
This is where the query should be loaded and any subscriptions should be setup.

Types

 Link to this type

 data()

 View Source

 @type data() :: any()

 Link to this type

 t()

 View Source

 @type t() :: term()

Functions

 Link to this function

 handle_call(self, msg, from, state)

 View Source

 @spec handle_call(
 self :: t(),
 msg :: any(),
 from :: GenServer.from(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: {:noreply, data()} | {:reply, any(), data()}

Your query process is like a GenServer.
You can handle calls, but you're limited in what you can return since queries don't allow for handle_continue.

 Link to this function

 handle_cast(self, msg, state)

 View Source

 @spec handle_cast(
 self :: t(),
 msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: data()

Your query process is like a GenServer.
You can handle casts, but you're limited in what you can return since queries don't allow for handle_continue.
You must return your query's new value.

 Link to this function

 handle_info(self, msg, state)

 View Source

 @spec handle_info(
 self :: t(),
 msg :: any(),
 state :: %{:key => any(), :config => map(), optional(:data) => data()}
) :: data()

Your query process is like a GenServer.
You can handle messages, but you're limited in what you can return since queries don't allow for handle_continue.
You must return your query's new value.

 Link to this function

 init(self, state)

 View Source

 @spec init(
 self :: t(),
 state :: %{key: any(), config: map()}
) :: data()

Called when the query is initialized.
This is where the query should be loaded and any subscriptions should be setup.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

