

    

        live_react

        v1.0.0



    


  

    Table of contents

    
      



      	README


      	Installation


      	Deployment


      	Development


      	Server Side Rendering (SSR)


      	Change Log





        	
          Modules
          


      	LiveReact


      	LiveReact.Reload


      	LiveReact.SSR


      	LiveReact.SSR.NodeJS


      	LiveReact.SSR.ViteJS


      	LiveReact.Test





        



          	
            Mix Tasks
            

                	mix live_react.setup


            

          


      

    

  

    
README
    

[image: Github CI]
[image: Hex.pm]
[image: Hexdocs.pm]
[image: GitHub]
LiveReact
React inside Phoenix LiveView.
[image: logo]

  
    
  
  Features


	⚡ End-To-End Reactivity with LiveView
	🔋 Server-Side Rendered (SSR) React
	🦄 Tailwind Support
	💀 Dead View Support
	🐌 Lazy-loading React Components
	🦥 Slot Interoperability
	🚀 Amazing DX with Vite


  
    
  
  Resources


	Demo
	HexDocs
	HexPackage
	Phoenix LiveView
	Installation
	Deployment
	Development
	SSR


  
    
  
  Example


Visit the demo website to see examples of what you can do with LiveReact.
You can also check out the PhoenixAnalytics project for a real-world example.

  
    
  
  Why LiveReact


Phoenix LiveView enables rich, real-time user experiences with server-rendered HTML.
It works by communicating any state changes through a websocket and updating the DOM in realtime.
You can get a really good user experience without ever needing to write any client side code.
LiveReact builds on top of Phoenix LiveView to allow for easy client side state management while still allowing for communication over the websocket.

  
    
  
  Installation


see Installation

  
    
  
  Roadmap 🎯


	[ ] useLiveForm - an utility to efforlessly use Ecto changesets & server-side validation, similar to HEEX
	[ ] Add support for Phoenix streams as props


  
    
  
  Credits


I was inspired by the following libraries:
	LiveVue
	LiveSvelte

I had a need for a similar library for React and so I created LiveReact 👍


  

    
Installation
    

LiveReact replaces hex esbuild with Vite for both client side code and SSR to achieve a better development experience. Why ?
	Vite provides a best-in-class Hot-Reload functionality and offers many benefits not present in esbuild
	hex esbuild package doesn't support plugins, while it's possible to do ssr with hex esbuild (check v0.2.0-rc-0) the SSR in development is broken.
	the integration to react and ssr is more documented with Vite

In production, we'll use elixir-nodejs for SSR. If you don't need SSR, you can disable it with one line of code. TypeScript will be supported as well.

  
    
  
  Steps


	install nodejs (I recommend mise)

	Add live_react to your list of dependencies in mix.exs and run mix deps.get


def deps do
  [
    {:live_react, "~> 1.0.0"},
    {:nodejs, "~> 3.1.2"} # if you want to use SSR in production
  ]
end
	Add a config entry to your config/dev.exs

config :live_react,
  vite_host: "http://localhost:5173",
  ssr_module: LiveReact.SSR.ViteJS,
  ssr: true
	Add a config entry to your config/prod.exs

config :live_react,
  ssr_module: LiveReact.SSR.NodeJS,
  ssr: true # or false if you don't want SSR in production
	Add import LiveReact in html_helpers/0 inside /lib/<app_name>_web.ex like so:

# /lib/<app_name>_web.ex

defp html_helpers do
  quote do

    # ...

    import LiveReact # <-- Add this line

    # ...

  end
end
	LiveReact comes with a handy mix task to setup all the required files. It won't alter any files you already have in your project, you need to adjust them on your own by looking at the sources. Additional instructions how to adjust package.json can be found at the end of this page.

It will create:
	package.json
	vite, typescript and postcss configs
	server entrypoint
	react components root

	Run the following in your terminal

mix deps.get
mix live_react.setup
npm install --prefix assets

	Add the following to your assets/js/app.js file

...
import topbar from "topbar" // instead of ../vendor/topbar
import { getHooks } from  "live_react";
import components from "../react-components";
import "../css/app.css" // the css file is handled by vite

const hooks = {
  // ... your other hooks
  ...getHooks(components),
};

...

let liveSocket = new LiveSocket("/live", Socket, {
  hooks: hooks, // <- pass the hooks
  longPollFallbackMs: 2500,
  params: { _csrf_token: csrfToken },
});
...
	For tailwind support, make some addition to content in the assets/tailwind.config.js file

content: [
  ...
    "./react-components/**/*.jsx", // <- if you are using jsx
    "./react-components/**/*.tsx" // <- if you are using tsx
],

	Let's update root.html.heex to use Vite files in development. There's a handy wrapper for it.

<LiveReact.Reload.vite_assets assets={["/js/app.js", "/css/app.css"]}>
  <link phx-track-static rel="stylesheet" href={~p"/assets/app.css"} />
  <script type="module" phx-track-static type="text/javascript" src={~p"/assets/app.js"}>
  </script>
</LiveReact.Reload.vite_assets>
	Update mix.exs aliases and remove tailwind and esbuild packages

defp aliases do
[
  setup: ["deps.get", "assets.setup", "assets.build"],
  "assets.setup": ["cmd --cd assets npm install"],
  "assets.build": [
    "cmd --cd assets npm run build",
    "cmd --cd assets npm run build-server"
  ],
  "assets.deploy": [
    "cmd --cd assets npm run build",
    "cmd --cd assets npm run build-server",
    "phx.digest"
  ]
]
end

defp deps do
  [
    # remove these lines, we don't need esbuild or tailwind here anymore
    # {:esbuild, "~> 0.8", runtime: Mix.env() == :dev},
    # {:tailwind, "~> 0.2", runtime: Mix.env() == :dev},
  ]
end
	Remove esbuild and tailwind config from config/config.exs

	Update watchers in config/dev.exs to look like this


config :my_app, MyAppWeb.Endpoint,
  # ...
  watchers: [
    npm: ["run", "dev", cd: Path.expand("../assets", __DIR__)]
  ]
	To make SSR working with LiveReact.SSR.NodeJS in production, you have to add this entry to your application.ex supervision tree to run the NodeJS server

If you don't want SSR in production, you can skip this step.
children = [
  ...
  {NodeJS.Supervisor, [path: LiveReact.SSR.NodeJS.server_path(), pool_size: 4]},
  # note Adjust the pool_size depending of the machine
]
	Confirm everything is working by rendering the default React component anywhere in your Dead or Live Views

<.react name="Simple" />
	(Optional) enable stateful hot reload of phoenix LiveViews - it allows for stateful reload across the whole stack 🤯. Just adjust your dev.exs to look like this - add notify section and remove live|components from patterns.

# Watch static and templates for browser reloading.
config :my_app, MyAppWeb.Endpoint,
  live_reload: [
    notify: [
      live_view: [
        ~r"lib/my_app_web/core_components.ex$",
        ~r"lib/my_app_web/(live|components)/.*(ex|heex)$"
      ]
    ],
    patterns: [
      ~r"priv/static/(?!uploads/).*(js|css|png|jpeg|jpg|gif|svg)$",
      ~r"lib/my_app_web/controllers/.*(ex|heex)$"
    ]
  ]
Profit! 💸

  
    
  
  Adjusting your own package.json


Install these packages
cd assets

# vite
npm install -D vite @vitejs/plugin-react

# tailwind
npm install -D tailwindcss autoprefixer postcss @tailwindcss/forms

# typescript
npm install -D typescript @types/react @types/react-dom

# runtime dependencies
npm install --save react react-dom topbar ../deps/live_react ../deps/phoenix ../deps/phoenix_html ../deps/phoenix_live_view

# remove topbar from vendor, since we'll use it from node_modules
rm vendor/topbar.js

and add these scripts used by watcher and mix assets.build command
{
  "private": true,
  "type": "module",
  "scripts": {
    "dev": "vite --host -l warn",
    "build": "tsc && vite build",
    "build-server": "tsc && vite build --ssr js/server.js --out-dir ../priv/react-components --minify esbuild && echo '{\"type\": \"module\" } ' > ../priv/react-components/package.json"
  }
}


  

    
Deployment
    

Without SSR
With SSR

  
    
  
  Without SSR


The following steps are needed to deploy to Fly.io. This guide assumes that you'll be using Fly Postgres as your database. Further guidance on how to deploy to Fly.io can be found here.
	Generate a Dockerfile:

mix phx.gen.release --docker

	Modify the generated Dockerfile to install curl, which is used to install nodejs (version 19 or greater), and also add a step to install our npm dependencies:

# ./Dockerfile

...

# install build dependencies
- RUN apt-get update -y && apt-get install -y build-essential git \
+ RUN apt-get update -y && apt-get install -y build-essential git curl \
    && apt-get clean && rm -f /var/lib/apt/lists/*_*

+ # install nodejs for build stage
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs

...

COPY assets assets

+ # install all npm packages in assets directory
+ RUN cd /app/assets && npm install
Note: nodejs is installed in the build stage. This is because we need nodejs to install our npm dependencies.
	Launch your app with the Fly.io CLI:

fly launch

	When prompted to tweak settings, choose y:

? Do you want to tweak these settings before proceeding? (y/N) y

This will launch a new window where you can tweak your launch settings. In the database section, choose Fly Postgres and enter a name for your database. You may also want to change your database to the development configuration to avoid extra costs. You can leave the rest of the settings as-is unless you want to change them.
Deployment will continue once you hit confirm.
	Once the deployment completes, run the following command to see your deployed app!

fly apps open


  
    
  
  With SSR


See the SSR guide first to setup your project.
The following steps are needed to deploy to Fly.io. This guide assumes that you'll be using Fly Postgres as your database. Further guidance on how to deploy to Fly.io can be found here.
	Generate a Dockerfile:

mix phx.gen.release --docker

	Modify the generated Dockerfile to install curl, which is used to install nodejs (version 19 or greater), and also add a step to install our npm dependencies:

# ./Dockerfile

...

# install build dependencies
- RUN apt-get update -y && apt-get install -y build-essential git \
+ RUN apt-get update -y && apt-get install -y build-essential git curl \
    && apt-get clean && rm -f /var/lib/apt/lists/*_*

+ # install nodejs for build stage
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs

...

COPY assets assets

+ # install all npm packages in assets directory
+ RUN cd /app/assets && npm install

...

# start a new build stage so that the final image will only contain
# the compiled release and other runtime necessities
FROM ${RUNNER_IMAGE}

RUN apt-get update -y && \
-  apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates \
+  apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates curl \
   && apt-get clean && rm -f /var/lib/apt/lists/*_*

+ # install nodejs for production environment
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs

...
Note: nodejs is installed BOTH in the build stage and in the final image. This is because we need nodejs to install our npm dependencies and also need it when running our app.
	Launch your app with the Fly.io CLI:

fly launch

	When prompted to tweak settings, choose y:

? Do you want to tweak these settings before proceeding? (y/N) y

This will launch a new window where you can tweak your launch settings. In the database section, choose Fly Postgres and enter a name for your database. You may also want to change your database to the development configuration to avoid extra costs. You can leave the rest of the settings as-is unless you want to change them.
Deployment will continue once you hit confirm.
	Once the deployment completes, run the following command to see your deployed app!

fly apps open



  

    
Development
    

The easiest way to get started with development is to clone live_react and run the examples
git clone https://github.com/mrdotb/live_react.git
cd live_react_examples



  

    
Server Side Rendering (SSR)
    

Disclaimer SSR for React is not a simple topic and there is a lot of issue than can arise depending on what React components you are using. It also consume more ressource since a nodejs worker is needed for the rendering. This is a simple implementation that works for the components and library I have tested.

  
    
  
  Project setup


⚠️ Warning: Server-side rendering (SSR) requires a Node.js worker. With a pool_size of 1 and the Phoenix app, you need at least 512MiB of memory. Otherwise, the instance may experience out-of-memory (OOM) errors or severe slowness.
SSR requires Node.js to render the javascript on server side. Add nodejs to your mix file.
defp deps do
  [
    {:nodejs, "~> 3.1"},
    ...
  ]
end
Add NodeJs.Supervisor to your application.ex
def start(_type, _args) do
  children = [
    ...
    {NodeJS.Supervisor, [path: LiveReact.SSR.NodeJS.server_path(), pool_size: 4]},
  ]
end
Add a config entry to your config/prod.exs
config :live_react,
  ssr_module: LiveReact.SSR.NodeJS,
  ssr: true
For complete deployment follow the SSR deployment guide


  

    
Change Log
    

All notable changes to this project will be documented in this file.
See Conventional Commits for commit guidelines.

  
    
  
  v1.0.0 (2025-03-10)



  
    
  
  Breaking Changes:


	vitejs: switch from Mix Esbuild to Vite.js


  
    
  
  Features:


	add tests based on the one from live_vue
	add SSR support
	support inner_block slot
	context provider for live_react
	add typescript support


  
    
  
  v1.0.0-rc.4 (2025-01-22)



  
    
  
  Features:


	add tests based on the one from live_vue


  
    
  
  Bug Fixes:


	Ensure app.ts entrypoints can be used with @react-refresh


  
    
  
  v1.0.0-rc.3 (2024-12-08)



  
    
  
  Features:


	support inner_block slot


  
    
  
  v1.0.0-rc.2 (2024-12-01)



  
    
  
  Features:


	Added SSR duration logging to example app


  
    
  
  Bug Fixes:


	rename react folder to react-components to prevent Vite error


  
    
  
  v1.0.0-rc.1 (2024-10-12)



  
    
  
  Bug Fixes:


	missing files in mix.exs to ship the js


  
    
  
  v1.0.0-rc.0 (2024-10-05)



  
    
  
  Breaking Changes:


	vitejs: switch from Mix Esbuild to Vite.js


  
    
  
  v0.2.0-rc.0 (2024-09-17)



  
    
  
  Features


	Add SSR support


  
    
  
  Bug Fixes:


	ssr: remove compiler warning when using live_react without SSR


  
    
  
  v0.1.0 (2024-06-29)


Initial release


  

    
LiveReact 
    



      
See READ.md for installation instructions and examples.

      


      
        Summary


  
    Functions
  


    
      
        react(assigns)

      


        Render a React component.



    





      


      
        Functions

        


  
    
      
    
    
      react(assigns)



        
          
        

    

  


  

Render a React component.

  


        

      


  

    
LiveReact.Reload 
    



      
Utilities for easier integration with Vite in development

      


      
        Summary


  
    Functions
  


    
      
        vite_assets(assigns)

      


        Renders the vite assets in development, and in production falls back to normal compiled assets



    





      


      
        Functions

        


  
    
      
    
    
      vite_assets(assigns)



        
          
        

    

  


  

Renders the vite assets in development, and in production falls back to normal compiled assets

  
    
  
  Attributes


	assets (:list) (required)


  
    
  
  Slots


	inner_block (required) - what should be rendered when Vite path is not defined.


  


        

      


  

    
LiveReact.SSR behaviour
    



      
A behaviour for rendering React components server-side.
To define a custom renderer, change the application config in config.exs:
config :live_react, ssr_module: MyCustomSSRModule
Exposes a telemetry span for each render under key [:live_react, :ssr]

      


      
        Summary


  
    Types
  


    
      
        component_name()

      


    


    
      
        props()

      


    


    
      
        render_response()

      


        A render response which should have shape



    


    
      
        slots()

      


    





  
    Callbacks
  


    
      
        render(component_name, props, slots)

      


    





  
    Functions
  


    
      
        render(name, props, slots)

      


    





      


      
        Types

        


  
    
      
    
    
      component_name()



        
          
        

    

  


  

      

          @type component_name() :: String.t()


      



  



  
    
      
    
    
      props()



        
          
        

    

  


  

      

          @type props() :: %{optional(String.t() | atom()) => any()}


      



  



  
    
      
    
    
      render_response()



        
          
        

    

  


  

      

          @type render_response() :: %{optional(String.t() | atom()) => any()}


      


A render response which should have shape
%{
  html: string,
}

  



  
    
      
    
    
      slots()



        
          
        

    

  


  

      

          @type slots() :: %{optional(String.t()) => any()}


      



  


        

      

      
        Callbacks

        


  
    
      
    
    
      render(component_name, props, slots)



        
          
        

    

  


  

      

          @callback render(component_name(), props(), slots()) :: render_response() | no_return()


      



  


        

      

      
        Functions

        


  
    
      
    
    
      render(name, props, slots)



        
          
        

    

  


  

      

          @spec render(component_name(), props(), slots()) :: render_response() | no_return()


      



  


        

      


  

    
LiveReact.SSR.NodeJS 
    



      
Implements SSR by using NodeJS package.
Under the hood, it invokes "render" function exposed by server.js file.
You can see how server.js is created by looking at assets.deploy command
and package.json build-server script.

      


      
        Summary


  
    Functions
  


    
      
        render(name, props, slots)

      


        Callback implementation for LiveReact.SSR.render/3.



    


    
      
        server_path()

      


    





      


      
        Functions

        


  
    
      
    
    
      render(name, props, slots)



        
          
        

    

  


  

Callback implementation for LiveReact.SSR.render/3.

  



  
    
      
    
    
      server_path()



        
          
        

    

  


  


  


        

      


  

    
LiveReact.SSR.ViteJS 
    



      
Implements SSR by making a POST request to http://{:vite_host}/ssr_render.
ssr_render is implemented as a Vite plugin. You have to add it to the vite.config.js plugins section.
import liveReactPlugin from "live_react/vite-plugin";

{
  publicDir: "static",
  plugins: [react(), liveReactPlugin()],
  // ...
}

      


      
        Summary


  
    Functions
  


    
      
        render(name, props, slots)

      


        Callback implementation for LiveReact.SSR.render/3.



    


    
      
        vite_path(path)

      


        A handy utility returning path relative to Vite JS host.



    





      


      
        Functions

        


  
    
      
    
    
      render(name, props, slots)



        
          
        

    

  


  

Callback implementation for LiveReact.SSR.render/3.

  



  
    
      
    
    
      vite_path(path)



        
          
        

    

  


  

A handy utility returning path relative to Vite JS host.

  


        

      


  

    
LiveReact.Test 
    



      
Helpers for testing LiveReact components and views.

  
    
  
  Overview


LiveReact testing differs from traditional Phoenix LiveView testing in how components
are rendered and inspected:
	In Phoenix LiveView testing, you use Phoenix.LiveViewTest.render_component/2
to get the final rendered HTML
	In LiveReact testing, render_component/2 returns an unrendered LiveReact root
element containing the React component's configuration

This module provides helpers to extract and inspect React component data from the
LiveReact root element, including:
	Component name and ID
	Props passed to the component
	Event handlers and their operations
	Server-side rendering (SSR) status
	Slot content
	CSS classes


  
    
  
  Examples


# Render a LiveReact component and inspect its properties
{:ok, view, _html} = live(conn, "/")
react = LiveReact.Test.get_react(view)

# Basic component info
assert react.component == "MyComponent"
assert react.props["title"] == "Hello"

# Event handlers
assert react.handlers["click"] == JS.push("click")

# SSR status and styling
assert react.ssr == true
assert react.class == "my-custom-class"

      


      
        Summary


  
    Functions
  


    
      
        get_react(view, opts \\ [])

      


        Extracts React component information from a LiveView or HTML string.



    





      


      
        Functions

        


    

  
    
      
    
    
      get_react(view, opts \\ [])



        
          
        

    

  


  

Extracts React component information from a LiveView or HTML string.
When multiple React components are present, you can specify which one to extract using
either the :name or :id option.
Returns a map containing the component's configuration:
	:component - The React component name (from v-component attribute)
	:id - The unique component identifier (auto-generated or explicitly set)
	:props - The decoded props passed to the component
	:handlers - Map of event handlers (v-on:*) and their operations
	:slots - Base64 encoded slot content
	:ssr - Boolean indicating if server-side rendering was performed
	:class - CSS classes applied to the component root element


  
    
  
  Options


	:name - Find component by name (from v-component attribute)
	:id - Find component by ID


  
    
  
  Examples


# From a LiveView, get first React component
{:ok, view, _html} = live(conn, "/")
react = LiveReact.Test.get_react(view)

# Get specific component by name
react = LiveReact.Test.get_react(view, name: "MyComponent")

# Get specific component by ID
react = LiveReact.Test.get_react(view, id: "my-component-1")

  


        

      


  

    
mix live_react.setup 
    



      
Copies files from assets/copy of the live_react dependency to phoenix project assets folder

      




  OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();




