

 LiveStyle

 v0.13.0

 Table of contents

 	LiveStyle

 	Changelog

 	LICENSE

 	Guides

 	Getting Started

 	Design Tokens

 	Styling Components

 	Theming

 	Advanced Features

 	Configuration

 	
 Modules

 	LiveStyle

 	LiveStyle.Attrs

 	LiveStyle.CSSValue

 	LiveStyle.Class

 	LiveStyle.Class.DeclarationMerger

 	LiveStyle.Class.Include

 	LiveStyle.Class.Processor.Conditional

 	LiveStyle.Class.Processor.Dynamic

 	LiveStyle.Class.Processor.PseudoElement

 	LiveStyle.Class.Processor.Simple

 	LiveStyle.Compiler

 	LiveStyle.Compiler.CSS

 	LiveStyle.Compiler.CSS.Classes

 	LiveStyle.Compiler.CSS.DynamicProperties

 	LiveStyle.Compiler.CSS.Keyframes

 	LiveStyle.Compiler.CSS.Pipeline

 	LiveStyle.Compiler.CSS.Plugin

 	LiveStyle.Compiler.CSS.PositionTry

 	LiveStyle.Compiler.CSS.ThemeClasses

 	LiveStyle.Compiler.CSS.Vars

 	LiveStyle.Compiler.CSS.ViewTransitionClasses

 	LiveStyle.Compiler.CSS.Writer

 	LiveStyle.Config

 	LiveStyle.Config.Shorthand

 	LiveStyle.Config.Validation

 	LiveStyle.Consts

 	LiveStyle.Dev

 	LiveStyle.Hash

 	LiveStyle.Hash.Murmur

 	LiveStyle.Keyframes

 	LiveStyle.Manifest

 	LiveStyle.Manifest.ClassEntry

 	LiveStyle.Manifest.KeyframesEntry

 	LiveStyle.Manifest.PositionTryEntry

 	LiveStyle.Manifest.ThemeClassEntry

 	LiveStyle.Manifest.VarEntry

 	LiveStyle.Manifest.ViewTransitionClassEntry

 	LiveStyle.Marker

 	LiveStyle.MediaQuery.Transform

 	LiveStyle.PositionTry

 	LiveStyle.Property

 	LiveStyle.Property.Validation

 	LiveStyle.PropertyMetadata

 	LiveStyle.PropertyMetadata.Parser

 	LiveStyle.Pseudo

 	LiveStyle.Pseudo.Sort

 	LiveStyle.Registry

 	LiveStyle.Runtime

 	LiveStyle.Runtime.Dynamic

 	LiveStyle.Runtime.PropertyMerger

 	LiveStyle.Runtime.RefResolver

 	LiveStyle.Selector.Prefixer

 	LiveStyle.ShorthandBehavior

 	LiveStyle.ShorthandBehavior.AcceptShorthands

 	LiveStyle.ShorthandBehavior.FlattenShorthands

 	LiveStyle.ShorthandBehavior.ForbidShorthands

 	LiveStyle.Storage

 	LiveStyle.TestCase

 	LiveStyle.ThemeClass

 	LiveStyle.Types

 	LiveStyle.Utils

 	LiveStyle.Vars

 	LiveStyle.ViewTransitionClass

 	LiveStyle.When

 	
 Mix Tasks

 	mix compile.live_style

 	mix live_style

 	mix live_style.audit

 	mix live_style.gen.css

 	mix live_style.inspect

 	mix live_style.setup_tests

 LiveStyle

Atomic CSS-in-Elixir for Phoenix LiveView, inspired by Meta's StyleX.
LiveStyle provides a type-safe, composable styling system with:
	Atomic CSS: Each property-value pair becomes a single class
	Deterministic hashing: Same styles always produce same class names
	CSS Variables: Type-safe design tokens with vars/1
	Constants: Static values inlined at compile time with consts/1
	Theming: Override variables with theme/2
	@layer support: CSS cascade layers for predictable specificity
	Last-wins merging: Like StyleX, later styles override earlier ones

Installation
Add live_style to your dependencies in mix.exs:
def deps do
 [
 {:live_style, "~> 0.13.0"}
]
end
See the Getting Started guide for complete setup instructions.
Quick Example
defmodule MyAppWeb.Components.Button do
 use Phoenix.Component
 use LiveStyle

 class :base,
 display: "inline-flex",
 align_items: "center",
 padding: "8px 16px",
 border_radius: "6px"

 class :primary,
 background_color: "#4f46e5",
 color: "white",
 ":hover": [background_color: "#4338ca"]

 def button(assigns) do
 ~H"""
 <button {css([:base, :primary])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
 end
end
Guides
	Getting Started - Installation and setup
	Design Tokens - CSS variables, constants, and keyframes
	Styling Components - Defining and composing styles
	Theming - Creating and applying themes
	Advanced Features - Contextual selectors, view transitions, anchor positioning
	Configuration - Shorthand behaviors and options

Key Concepts
Design Tokens
Use vars for values that change (colors, themed tokens) and consts for static values:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars primary: "#4f46e5",
 gray_900: "#111827"
end

defmodule MyAppWeb.Spacing do
 use LiveStyle

 consts sm: "8px",
 md: "16px"
end

defmodule MyAppWeb.Animations do
 use LiveStyle

 keyframes :fade_in,
 from: [opacity: "0"],
 to: [opacity: "1"]
end
Component Styles
Reference tokens with var for colors and const for static values:
defmodule MyAppWeb.Card do
 use LiveStyle

 class :card,
 padding: const({MyAppWeb.Spacing, :md}),
 border_radius: "12px",
 color: var({MyAppWeb.Colors, :gray_900})
end
Theming
Create theme variations (only works with vars):
defmodule MyAppWeb.Semantic do
 use LiveStyle

 vars text_primary: var({MyAppWeb.Colors, :gray_900}),
 fill_page: "#ffffff"

 theme_class :dark,
 text_primary: "#ffffff",
 fill_page: var({MyAppWeb.Colors, :gray_900})
end

In your template
<html {css(@theme == :dark && theme_class({MyAppWeb.Semantic, :dark}))}>
Pseudo-classes & Media Queries
class :link,
 color: [
 default: "blue",
 ":hover": "darkblue"
]

class :container,
 padding: [
 default: const({MyAppWeb.Spacing, :md}),
 "@media (min-width: 768px)": "24px"
]
Why LiveStyle?
vs Tailwind CSS
	Type-safe tokens: Design tokens are Elixir values, not magic strings
	No purging complexity: Only styles you use are generated
	Elixir-native: Conditional logic uses && and ||, not string concatenation
	Scoped theming: Override tokens for subtrees without global CSS

vs Inline Styles
	Pseudo-classes: :hover, :focus, etc. work naturally
	Media queries: Responsive design without JavaScript
	Performance: Atomic classes are cached and deduplicated
	DevTools: Inspect class names instead of inline style blobs

Inspired by StyleX
LiveStyle brings Meta's StyleX philosophy to Phoenix LiveView:
	Atomic CSS for minimal bundle size
	Last-wins merging for predictable composition
	Deterministic class names for caching
	CSS variables for theming

Optional Integrations
def deps do
 [
 {:live_style, "~> 0.13.0"},
 # Automatic vendor prefixing
 {:autoprefixer_ex, "~> 0.1.0"},
 # Deprecation warnings for CSS properties
 {:css_compat_data_ex, "~> 0.1.0"}
]
end
License
MIT License - see LICENSE for details.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.13.0] - 2026-01-03
Added
	LiveStyle.install_and_run/2 for Phoenix endpoint watcher integration	Follows the same pattern as Tailwind and esbuild
	Watches manifest file for changes and regenerates CSS automatically
	Configure in config/dev.exs under watchers
	See Getting Started guide for setup instructions

Changed
	BREAKING: Renamed definition macros for consistency
	theme/2 → theme_class/2
	view_transition/2 → view_transition_class/2
	Both now match their reference forms (theme_class/1, view_transition_class/1)

	BREAKING: Default manifest path changed from priv/live_style_manifest.etf to _build/live_style/manifest.etf
	Manifest is now in dedicated subdirectory for faster file watching
	Automatically cleaned by mix clean
	No longer needs to be gitignored (already in _build/)
	Override with config :live_style, manifest_path: "custom/path.etf"

	Consolidated storage modules into single LiveStyle.Storage module
	Removed: Storage.Adapter, Storage.Cache, Storage.FileAdapter, Storage.IO, Storage.Lock, Storage.Path, Storage.ProcessState, Storage.TableOwner
	Simpler architecture with direct file operations and directory-based locking

Fixed
	File watcher now detects manifest changes on macOS
	Atomic writes use rename, which triggers :renamed events instead of :modified
	Watch mode now handles :renamed and :moved events in addition to :modified/:created
	Added 50ms debouncing to coalesce rapid file events into single rebuild

	Theme variables now use correct CSS variable prefix from config
	Previously theme overrides used hardcoded --v prefix instead of --x (from Config.class_name_prefix())
	This caused themes to define different variables than base vars, breaking theme switching

	StyleX-compatible property merging behavior
	default condition now uses just the property name (e.g., color) instead of color::default
	Each property key is completely independent - only exact key matches conflict
	color and color:::hover are separate keys that coexist

[0.11.1] - 2026-01-02
Fixed
	Updated all documentation examples to use MyAppWeb namespace (Phoenix convention)
	Fixed LiveStyle.CSS.Property references to LiveStyle.PropertyType in design-tokens guide
	Updated default output path to priv/static/assets/css/live.css (Phoenix-compatible structure)
	Updated watcher configuration for development
	Fixed benchmark file reference to LiveStyle.Compiler.CSS

Documentation
	Improved Getting Started guide with esbuild CSS configuration
	Added development watcher setup instructions
	Updated configuration guide with Phoenix-compatible paths
	Standardized all code examples to keyword list syntax

[0.11.0] - 2025-01-01
Changed
	BREAKING: Simplified API by removing css_ prefix from all macros:
	css_class/2 → class/2
	css_vars/2 → vars/1 (namespace is now the module)
	css_consts/2 → consts/1 (namespace is now the module)
	css_keyframes/2 → keyframes/2
	css_theme/3 → theme/2 (namespace is now the module)
	css_view_transition/2 → view_transition_class/2
	css_position_try/2 → position_try/2
	css_var/1 → var/1 (2-tuple {Module, :name} instead of 3-tuple)
	css_const/1 → const/1 (2-tuple {Module, :name} instead of 3-tuple)

	BREAKING: Unified module system - use use LiveStyle instead of:
	use LiveStyle.Sheet (removed)
	use LiveStyle.Tokens (removed)

	BREAKING: Token references now use 2-tuples instead of 3-tuples:
Before
css_var({MyApp.Tokens, :colors, :primary})
css_const({MyApp.Tokens, :spacing, :md})

After
var({MyApp.Colors, :primary})
const({MyApp.Spacing, :md})

Internal
	Major codebase restructuring for better organization:	Moved compiler-related code into lib/live_style/compiler/
	Renamed LiveStyle.Data → LiveStyle.PropertyMetadata
	Renamed LiveStyle.Types → LiveStyle.PropertyType
	Renamed LiveStyle.Value → LiveStyle.CSSValue
	Consolidated manifest and utility modules

	Added comprehensive snapshot tests for CSS output verification
	Added LiveStyle.Registry macro for DRY manifest registration
	Improved conditional detection for magic string keys

[0.10.0] - 2025-12-23
Removed
	Removed nested at-rule map syntax in class/2 (top-level keys like "@media (...)" => %{...}); use per-property conditional values instead.

[0.9.0] - 2024-12-21
Added
	css/2 macro with :style option for merging additional inline styles:
<div {css([:card], style: [
 view_transition_class: css_view_transition(:card),
 view_transition_name: "card-#{@id}"
])}>

	Comprehensive documentation for Phoenix LiveView View Transitions integration:
	Complete JavaScript adapter code (createViewTransitionDom)
	Reusable ViewTransition component with colocated hook
	Step-by-step integration guide
	Key insights for correct timing and element structure

	Documentation for CSS Scroll-Driven Animations:
	Scroll progress timelines (animation-timeline: scroll())
	View progress timelines (animation-timeline: view())
	Named view timelines for parallax effects
	Horizontal scroll progress with named scroll timelines
	Animation range control

	LiveStyle.Dev module with development helpers for inspecting styles:
	class_info/2 - Returns detailed info about a class (CSS, properties, values)
	list/1,2 - Lists all class names in a module (with :static/:dynamic filtering)
	diff/2 - Shows how multiple classes merge with property-level detail
	css/2 - Returns raw CSS output for classes
	tokens/1 - Shows all tokens defined in a module
	pp/2, pp_list/1 - Pretty-print helpers for console output

	mix live_style.audit task to find potentially unused class definitions:
	Scans codebase for css_class/2 definitions
	Searches for references in .ex, .exs, and .heex files
	Reports classes with no apparent references
	Supports --format json for tooling integration

	mix live_style.inspect task to inspect class definitions from CLI:
	Shows generated CSS and property breakdown
	Supports inspecting multiple classes with merged result
	--css flag for raw CSS output

Changed
	css_view_transition/1 macro now returns compile-time values instead of runtime lookups

Fixed
	View transition class references are now resolved at compile time for better performance

[0.7.0] - 2024-12-20
Changed
	BREAKING: CSS layers behavior now matches StyleX defaults:
	use_css_layers: false (default) - Uses :not(#\#) selector hack for specificity (StyleX default)
	use_css_layers: true - Groups rules by priority in @layer priorityN blocks (StyleX useLayers: true)
	Removed use_priority_layers config option (no longer needed)

	BREAKING: Renamed shorthand behavior config and modes:
	Config key: shorthand_strategy → shorthand_behavior
	:keep_shorthands → :accept_shorthands
	:reject_shorthands → :forbid_shorthands
	:expand_to_longhands → :flatten_shorthands

	BREAKING: Renamed shorthand modules:
	LiveStyle.Shorthand.Strategy → LiveStyle.ShorthandBehavior
	LiveStyle.Shorthand.Strategy.KeepShorthands → LiveStyle.ShorthandBehavior.AcceptShorthands
	LiveStyle.Shorthand.Strategy.ExpandToLonghands → LiveStyle.ShorthandBehavior.FlattenShorthands
	LiveStyle.Shorthand.Strategy.RejectShorthands → LiveStyle.ShorthandBehavior.ForbidShorthands

	BREAKING: Renamed config function:
	shorthand_strategy/0 → LiveStyle.Config.shorthand_behavior/0

	Renamed internal terminology from "null" to "nil" (Elixir idiom):
	%{null: true} → %{unset: true} in atomic class maps
	:__null__ → :__unset__ sentinel atom

	CSS variable prefix now uses configurable class_name_prefix instead of hardcoded --x-

Added
	CSS property validation with "did you mean?" suggestions for typos
	validate_properties: true config option (default: true)
	unknown_property_level: :warn - :error, :warn, or :ignore
	vendor_prefix_level: :warn - warns when vendor prefixes are used unnecessarily
	deprecated_property_level: :warn - warns when deprecated properties are used
	deprecated?: &MyApp.CSS.deprecated?/1 - configurable deprecation check function

	Configurable CSS prefixing via prefix_css config option
	prefix_css: &MyApp.CSS.prefix/2 - function to add vendor prefixes
	LiveStyle.Config.apply_prefix_css/2 - applies configured prefixer

	Automatic selector prefixing for pseudo-elements (e.g., ::thumb, ::placeholder)
	Generates vendor-prefixed variants automatically

Fixed
	Validation warnings now appear on recompile (file/line info threaded through call chain)
	RTL type spec now correctly accepts nil for selector_suffix parameter
	Support for comma-separated keyframe keys like "0%, 100%"

Internal
	Extracted SRP-focused modules from monolithic LiveStyle.Class and LiveStyle.CSS
	Optimized Property.Validation.known? with pattern matching (~7% faster)
	Optimized Selector.Prefixer.prefix with binary slicing (~43% faster)
	Extracted LiveStyle.Hash.Murmur module for MurmurHash3 implementation
	Removed specific package references from documentation (now uses generic examples)

[0.6.2] - 2024-12-19
Changed
	BREAKING: Renamed all macros to use css_ prefix for consistency with StyleX naming:
	style/2 → css_class/2
	defvars/2 → css_vars/2
	defconsts/2 → css_consts/2
	defkeyframes/2 → css_keyframes/2
	keyframes/1 → css_keyframes/1 (reference form)
	var/1 → css_var/1
	const/1 → css_const/1
	create_theme/3 → css_theme/3
	position_try/1 → css_position_try/1
	view_transition/2 → css_view_transition/2
	view_transition_class/1 → css_view_transition/1 (reference form)

	BREAKING: Moved tooling functions out of LiveStyle:
	run/2 → LiveStyle.Compiler.run/2
	install_and_run/2 → LiveStyle.Compiler.Runner.install_and_run/2
	write_css/1 → LiveStyle.Compiler.Writer.write_css/1

Update your Phoenix watcher config:
Before
watchers: [live_style: {LiveStyle, :install_and_run, [:default, ~w(--watch)]}]

After
watchers: [live_style: {LiveStyle.Compiler, :run, [:default, ~w(--watch)]}]

	Removed manifest_path/0, style_resolution/0, output_path/0, config_for!/1 delegates from LiveStyle

	Config functions now accessed via LiveStyle.Config module directly

Added
	LiveStyle.Compiler module for all tooling/compilation functions

[0.6.0] - 2024-12-17
Changed
	BREAKING: Default shorthand behavior changed to :accept_shorthands for more intuitive CSS behavior (last style wins)
	Simplified props/1 API - now only accepts a single value or a list (removed variadic props/2-5)

Added
	LiveStyle.ShorthandBehavior behaviour for custom shorthand handling strategies
	LiveStyle.ShorthandBehavior.AcceptShorthands, FlattenShorthands, ForbidShorthands implementations
	LiveStyle.Storage module for file-based manifest storage
	LiveStyle.Config module for unified configuration management with per-process overrides
	LiveStyle.Compiler.Writer.write_css/1 function for writing CSS with change detection

Removed
	Removed legacy backward compatibility code for old style reference formats
	Removed unused variadic props/2-5 functions

Internal
	All tests now run with async: true using in-memory storage
	Deduplicated code across compiler, watcher, and style resolution modules
	Improved test isolation with LiveStyle.TestCase and LiveStyle.TestHelper

[0.5.0] - 2024-12-17
Changed
	BREAKING: css_keyframes/1 now takes only frames and returns the generated name (matching StyleX API)
Before (0.4.x)
keyframes :spin, from: [...], to: [...]
style :spinner, animation_name: :spin

After (0.5.0+)
css_keyframes :spin,
 from: [...],
 to: [...]

css_class :spinner,
 animation_name: css_keyframes(:spin)

	BREAKING: css_view_transition/1 now takes only styles and returns the generated class name

	Keyframe names now use x<hash>-B format (matching StyleX) instead of k<hash>

Added
	css_position_try/2 macro for CSS Anchor Positioning (@position-try at-rules)	Creates fallback positioning options for anchor-positioned elements
	Returns a dashed-ident string (e.g., "--x1a2b3c4") for use with position_try_fallbacks
	Validates that only allowed properties are used (position, inset, margin, size, self-alignment)
	Supports RTL/LTR transformations for logical properties

[0.4.1] - 2024-12-17
Added
	Tuple list syntax support for computed keys as an alternative to map syntax:# Now you can use tuple lists with computed keys
css_class :responsive,
 font_size: [
 {:default, "1rem"},
 {css_const({MyApp.Tokens, :breakpoint, :lg}), "1.5rem"}
]

Fixed
	CI now only checks formatting on Elixir 1.17 to avoid formatter version differences

[0.4.0] - 2024-12-17
Added
	Keyword list syntax support for all macros as an alternative to map syntax
	normalize_to_map/1 helper function for recursively converting keyword lists to maps
	Dedicated test file for keyword syntax coverage

Changed
	All style macros now accept both map syntax (%{key: value}) and keyword list syntax (key: value)
	Documentation updated with keyword list examples throughout

Notes
	Keyword list syntax is more idiomatic Elixir and recommended for most use cases
	For computed keys, use either map syntax with => or tuple list syntax [{key, value}]

[0.3.0] - 2024-12-17
Added
	LiveStyle.ViewTransitions module for CSS View Transitions API support:	css_view_transition/2 macro for defining transitions by name pattern
	Automatic keyframe name resolution in view transition styles
	Support for :old, :new, :group, :image_pair pseudo-element keys
	Support for :only-child variants (:old_only_child, :new_only_child, etc.)
	Media query conditions (e.g., prefers-reduced-motion)
	Compile-time validation for keyframe references in animation_name

Changed
	css_keyframes/2 now defines a function that returns the hashed keyframe name	Allows keyframes to be used in both styles and view transitions
	Example: MyApp.Tokens.spin() returns "x1a2b3c4-B"

[0.2.0] - 2024-12-17
Added
	LiveStyle.When module with contextual selectors (inspired by StyleX's stylex.when.*):	ancestor/1,2 - style when ancestor has pseudo-state
	descendant/1,2 - style when descendant has pseudo-state
	sibling_before/1,2 - style when preceding sibling has pseudo-state
	sibling_after/1,2 - style when following sibling has pseudo-state
	any_sibling/1,2 - style when any sibling has pseudo-state

	LiveStyle.default_marker/0 - returns the default marker class for contextual selectors
	LiveStyle.marker/1 - creates unique marker classes for custom contexts
	Nested pseudo-class conditions - combine selectors like :nth-child(2):where(.marker:hover *)

[0.1.0] - 2024-12-16
Added
	Initial release of LiveStyle
	css_class/2 macro for declaring named styles with CSS declarations
	css_keyframes/2 macro for defining CSS animations
	css_var/1 macro for referencing CSS custom properties
	fallback/1 macro for CSS fallback values
	css_vars/2 macro for defining CSS custom properties (design tokens)
	css_consts/2 macro for defining compile-time constants
	css_theme/3 macro for creating scoped theme overrides
	LiveStyle.Types module with type helpers for CSS @property rules:	color/1, length/1, angle/1, integer/1, number/1, time/1, percentage/1

	__include__ key for style composition (external modules and self-references)
	StyleX-inspired condition-in-value syntax for pseudo-classes and media queries
	Pseudo-element support (::before, ::after, etc.)
	Atomic CSS generation with deterministic class name hashing
	CSS @layer support for predictable specificity
	Mix compiler (Mix.Tasks.Compile.LiveStyle) for automatic CSS generation
	Mix task (mix live_style.gen.css) for manual CSS generation
	Development watcher (LiveStyle.Watcher) for hot reloading
	CSS variable reference validation at compile time
	File-based manifest locking for parallel compilation safety
	Configurable output_path for CSS file location
	Configurable storage for manifest storage backend

 LICENSE

MIT License

Copyright (c) 2025 Aaron Reisman

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Getting Started

This guide walks you through setting up LiveStyle in a Phoenix application.
Installation
1. Add Dependencies
Add live_style to your dependencies in mix.exs:
def deps do
 [
 {:live_style, "~> 0.13.0"},
 # Optional: for automatic vendor prefixing
 {:autoprefixer_ex, "~> 0.1.0"},
 # Optional: for deprecation warnings
 {:css_compat_data_ex, "~> 0.1.0"}
]
end
2. Add the LiveStyle Compiler
In mix.exs, add :live_style to your compilers:
def project do
 [
 # ...
 compilers: [:phoenix_live_view] ++ Mix.compilers() ++ [:live_style]
]
end
3. Configure Esbuild for CSS
Phoenix uses esbuild for JavaScript. Add a separate profile for CSS bundling in config/config.exs:
config :esbuild,
 version: "0.25.4",
 my_app: [
 args:
 ~w(js/app.js --bundle --target=es2022 --outdir=../priv/static/assets/js --external:/fonts/* --external:/images/*),
 cd: Path.expand("../assets", __DIR__),
 env: %{"NODE_PATH" => Path.expand("../deps", __DIR__)}
],
 css: [
 args: ~w(css/app.css --bundle --outdir=../priv/static/assets/css),
 cd: Path.expand("../assets", __DIR__)
]
4. Configure LiveStyle
Add to config/config.exs:
Configure LiveStyle
Use MFA tuples instead of function captures to avoid compile-order issues
config :live_style,
 # Optional: automatic vendor prefixing
 prefix_css: {AutoprefixerEx, :prefix_css},
 # Optional: deprecation warnings
 deprecated?: {CSSCompatDataEx, :deprecated?},
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]

Optional: configure browser targets for autoprefixing
config :autoprefixer_ex,
 browserslist: ["defaults"]
5. Add LiveStyle Watcher for Hot Reload
Add the LiveStyle watcher to your config/dev.exs. This follows the same pattern as esbuild and Tailwind:
config :my_app, MyAppWeb.Endpoint,
 watchers: [
 esbuild: {Esbuild, :install_and_run, [:my_app, ~w(--sourcemap=inline --watch)]},
 esbuild_css: {Esbuild, :install_and_run, [:css, ~w(--watch)]},
 live_style: {LiveStyle, :install_and_run, [:default, ~w(--watch)]}
]
The watcher monitors the manifest file for changes. When you save a file:
	Phoenix triggers recompilation
	The @before_compile hook updates the manifest
	The watcher detects the change and regenerates CSS
	Phoenix live_reload refreshes your browser

6. Update Build Aliases
In mix.exs, update your aliases:
defp aliases do
 [
 setup: ["deps.get", "assets.setup", "assets.build"],
 "assets.setup": ["esbuild.install --if-missing"],
 "assets.build": ["compile", "esbuild my_app", "esbuild css", "live_style default"],
 "assets.deploy": [
 "live_style default",
 "esbuild my_app --minify",
 "esbuild css --minify",
 "phx.digest"
]
]
end
7. Include CSS in Layout
Add the stylesheets to your root layout (lib/my_app_web/components/layouts/root.html.heex):
<link phx-track-static rel="stylesheet" href={~p"/assets/css/app.css"} />
<link phx-track-static rel="stylesheet" href={~p"/assets/css/live.css"} />
<script defer phx-track-static type="text/javascript" src={~p"/assets/js/app.js"}></script>
8. Add CSS Reset (Optional but Recommended)
Create a base CSS reset in assets/css/app.css:
/*
 * CSS Reset and base styles.
 * Wrapped in @layer reset so LiveStyle rules take precedence.
 */

@layer reset {
 *,
 *::before,
 *::after {
 box-sizing: border-box;
 }

 * {
 margin: 0;
 padding: 0;
 }

 body {
 min-height: 100vh;
 line-height: 1.5;
 -webkit-font-smoothing: antialiased;
 }

 img, picture, video, canvas, svg {
 display: block;
 max-width: 100%;
 }

 input, button, textarea, select {
 font: inherit;
 }

 /* Phoenix LiveView compatibility */
 [data-phx-main],
 [data-phx-session] {
 display: contents;
 }
}
9. Test Setup (If Needed)
If your tests define LiveStyle modules (e.g., test fixtures with use LiveStyle),
add the test setup task to your aliases:
defp aliases do
 [
 # ...
 test: ["live_style.setup_tests", "test"]
]
end
Quick Start
Here's a complete example of a styled button component:
defmodule MyAppWeb.Components.Button do
 use Phoenix.Component
 use LiveStyle

 class :base,
 display: "flex",
 align_items: "center",
 padding: "8px 16px",
 border_radius: "8px",
 border: "none",
 cursor: "pointer"

 class :primary,
 background_color: "#4f46e5",
 color: "white"

 class :secondary,
 background_color: "#e5e7eb",
 color: "#1f2937"

 def button(assigns) do
 assigns = assign_new(assigns, :variant, fn -> :primary end)

 ~H"""
 <button {css([:base, @variant])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
 end
end
Use it in your templates:
<.button>Primary Button</.button>
<.button variant={:secondary}>Secondary Button</.button>
Module Organization
LiveStyle uses a module-as-namespace pattern. Each module defines its own tokens or styles.
Design Tokens
For centralized design tokens, create separate modules for each token type. Use vars for values that might be themed (colors) and consts for static values:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars [
 white: "#ffffff",
 black: "#000000",
 gray_900: "#111827",
 indigo_600: "#4f46e5"
]
end

defmodule MyAppWeb.Spacing do
 use LiveStyle

 consts [
 sm: "8px",
 md: "16px",
 lg: "24px"
]
end

defmodule MyAppWeb.Radius do
 use LiveStyle

 consts [
 sm: "4px",
 md: "8px",
 lg: "12px"
]
end

defmodule MyAppWeb.Animations do
 use LiveStyle

 keyframes :spin,
 from: [transform: "rotate(0deg)"],
 to: [transform: "rotate(360deg)"]
end
Component Styles
For component-specific styles, use var for colors/themed values and const for static values:
defmodule MyAppWeb.Button do
 use Phoenix.Component
 use LiveStyle

 class :base,
 display: "inline-flex",
 padding: const({MyAppWeb.Spacing, :md}),
 border_radius: const({MyAppWeb.Radius, :md})

 class :primary,
 background_color: var({MyAppWeb.Colors, :indigo_600}),
 color: var({MyAppWeb.Colors, :white})

 def button(assigns) do
 ~H"""
 <button {css([:base, :primary])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
 end
end
Next Steps
	Design Tokens - Learn about CSS variables, constants, and keyframes
	Styling Components - Deep dive into class and composition
	Theming - Create and apply themes
	Configuration - Configure shorthand behaviors and other options

 Design Tokens

Design tokens are the foundational values of your design system: colors, spacing, typography, and more. LiveStyle provides a structured way to define and reference these tokens.
Overview
LiveStyle uses a module-as-namespace pattern for tokens:
	CSS Variables (vars) - Values that become CSS custom properties (use for colors and themed values)
	Constants (consts) - Compile-time values inlined directly into CSS (use for static values)
	Keyframes (keyframes) - Animation definitions
	Typed Variables - Variables with CSS type information for animation

When to Use Variables vs Constants
	Use vars	Use consts
	Colors (for theming)	Spacing scales (unless themeable)
	Semantic tokens (themed)	Font families
	Values animated via @property	Font sizes/weights
	Values that change at runtime	Border radii
		Shadows
		Breakpoints
		Z-index values

Rule of thumb: If the value might change with a theme or needs to be animated, use vars. Otherwise, use consts for better performance.
CSS Variables
Define CSS custom properties with vars. Each module defines its own tokens:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars [
 white: "#ffffff",
 black: "#000000",
 gray_50: "#f9fafb",
 gray_900: "#111827",
 indigo_600: "#4f46e5",
 indigo_700: "#4338ca"
]
end

defmodule MyAppWeb.Semantic do
 use LiveStyle

 vars [
 text_primary: var({MyAppWeb.Colors, :gray_900}),
 text_inverse: var({MyAppWeb.Colors, :white}),
 fill_primary: var({MyAppWeb.Colors, :indigo_600})
]
end
Referencing Variables
Use var/1 to reference variables in your styles:
defmodule MyAppWeb.Card do
 use LiveStyle

 class :card,
 background_color: var({MyAppWeb.Colors, :white}),
 color: var({MyAppWeb.Semantic, :text_primary})
end
Constants
Constants are compile-time values inlined directly into CSS. Define each category in its own module:
defmodule MyAppWeb.Spacing do
 use LiveStyle

 consts [
 xs: "4px",
 sm: "8px",
 md: "16px",
 lg: "24px",
 xl: "32px"
]
end

defmodule MyAppWeb.FontSize do
 use LiveStyle

 consts [
 sm: "0.875rem",
 base: "1rem",
 lg: "1.125rem",
 xl: "1.25rem"
]
end

defmodule MyAppWeb.Radius do
 use LiveStyle

 consts [
 sm: "4px",
 md: "8px",
 lg: "12px",
 full: "9999px"
]
end

defmodule MyAppWeb.Shadow do
 use LiveStyle

 consts [
 sm: "0 1px 2px 0 rgb(0 0 0 / 0.05)",
 md: "0 4px 6px -1px rgb(0 0 0 / 0.1)"
]
end

defmodule MyAppWeb.Breakpoints do
 use LiveStyle

 consts [
 sm: "@media (min-width: 640px)",
 md: "@media (min-width: 768px)",
 lg: "@media (min-width: 1024px)",
 xl: "@media (min-width: 1280px)"
]
end

defmodule MyAppWeb.ZIndex do
 use LiveStyle

 consts [
 dropdown: "1000",
 modal: "2000",
 toast: "3000"
]
end
Using Constants in Styles
Reference constants with const/1:
defmodule MyAppWeb.Button do
 use LiveStyle

 class :button,
 padding: const({MyAppWeb.Spacing, :md}),
 font_size: const({MyAppWeb.FontSize, :base}),
 border_radius: const({MyAppWeb.Radius, :md})
end
Constants in Media Queries
defmodule MyAppWeb.Container do
 use LiveStyle

 class :container,
 padding: [
 default: const({MyAppWeb.Spacing, :md}),
 "@media #{const({MyAppWeb.Breakpoints, :md})}": const({MyAppWeb.Spacing, :lg}),
 "@media #{const({MyAppWeb.Breakpoints, :lg})}": const({MyAppWeb.Spacing, :xl})
]
end
Keyframes
Define CSS @keyframes animations:
defmodule MyAppWeb.Animations do
 use LiveStyle

 keyframes :spin, [
 from: [transform: "rotate(0deg)"],
 to: [transform: "rotate(360deg)"]
]

 keyframes :pulse, [
 "0%": [opacity: "1"],
 "50%": [opacity: "0.5"],
 "100%": [opacity: "1"]
]

 keyframes :bounce, [
 "0%, 100%": [
 transform: "translateY(-25%)",
 animation_timing_function: "cubic-bezier(0.8, 0, 1, 1)"
],
 "50%": [
 transform: "translateY(0)",
 animation_timing_function: "cubic-bezier(0, 0, 0.2, 1)"
]
]
end
Using Keyframes
Reference keyframes with keyframes/1:
defmodule MyAppWeb.Spinner do
 use LiveStyle

 class :spinner,
 animation: "#{keyframes({MyAppWeb.Animations, :spin})} 1s linear infinite"

 class :pulsing,
 animation: "#{keyframes({MyAppWeb.Animations, :pulse})} 2s ease-in-out infinite"
end
Typed Variables
For animating CSS properties like gradients, specify the CSS type using LiveStyle.Types. This generates CSS @property rules that enable browsers to interpolate these values:
defmodule MyAppWeb.Animation do
 use LiveStyle
 import LiveStyle.Types

 vars rotation: angle("0deg"),
 progress: percentage("0%")
end
Available Types
	Function	CSS Syntax
	color/1	<color>
	length/1	<length>
	angle/1	<angle>
	integer/1	<integer>
	number/1	<number>
	time/1	<time>
	percentage/1	<percentage>

Recommended Token Structure
A recommended structure for larger applications:
lib/my_app/tokens/
├── colors.ex # MyAppWeb.Colors - raw color palette
├── semantic.ex # MyAppWeb.Semantic - themed semantic tokens
├── spacing.ex # MyAppWeb.Spacing - spacing scale
├── font_size.ex # MyAppWeb.FontSize - typography sizes
├── radius.ex # MyAppWeb.Radius - border radii
├── shadow.ex # MyAppWeb.Shadow - box shadows
├── breakpoints.ex # MyAppWeb.Breakpoints - media queries
├── z_index.ex # MyAppWeb.ZIndex - z-index values
└── animations.ex # MyAppWeb.Animations - keyframes
Example Colors module:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars [
 white: "#ffffff",
 black: "#000000",
 gray_50: "#f9fafb",
 gray_100: "#f3f4f6",
 gray_900: "#111827",
 indigo_500: "#6366f1",
 indigo_600: "#4f46e5"
]
end
Example Semantic module with theme:
defmodule MyAppWeb.Semantic do
 use LiveStyle

 vars [
 text_primary: var({MyAppWeb.Colors, :gray_900}),
 text_inverse: var({MyAppWeb.Colors, :white}),
 fill_page: var({MyAppWeb.Colors, :white}),
 fill_surface: var({MyAppWeb.Colors, :gray_50}),
 fill_primary: var({MyAppWeb.Colors, :indigo_600})
]

 theme_class :dark, [
 text_primary: var({MyAppWeb.Colors, :gray_50}),
 text_inverse: var({MyAppWeb.Colors, :gray_900}),
 fill_page: var({MyAppWeb.Colors, :gray_900}),
 fill_surface: var({MyAppWeb.Colors, :gray_900}),
 fill_primary: var({MyAppWeb.Colors, :indigo_500})
]
end
Next Steps
	Styling Components - Use tokens in component styles
	Theming - Override semantic tokens with themes

 Styling Components

This guide covers how to define and compose styles for your Phoenix components.
Basic Usage
Use class/2 to define named styles:
defmodule MyAppWeb.Button do
 use Phoenix.Component
 use LiveStyle

 class :base,
 display: "inline-flex",
 align_items: "center",
 justify_content: "center",
 padding: "8px 16px",
 border_radius: "6px",
 font_weight: "500",
 cursor: "pointer"

 class :primary,
 background_color: "#4f46e5",
 color: "white"

 def button(assigns) do
 ~H"""
 <button {css([:base, :primary])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
 end
end
Using Tokens
Reference tokens using var for colors/themed values and const for static values:
defmodule MyAppWeb.Card do
 use LiveStyle

 class :card,
 # Static values use const
 padding: const({MyAppWeb.Spacing, :md}),
 border_radius: const({MyAppWeb.Radius, :lg}),
 font_size: const({MyAppWeb.FontSize, :base}),
 box_shadow: const({MyAppWeb.Shadow, :md}),
 # Colors use var (for theming)
 background_color: var({MyAppWeb.Semantic, :fill_surface}),
 color: var({MyAppWeb.Semantic, :text_primary})
end
Pseudo-classes and States
Group conditions for a property using a list of key-value pairs:
class :link,
 color: [
 default: var({MyAppWeb.Semantic, :text_link}),
 ":hover": var({MyAppWeb.Colors, :indigo_700}),
 ":focus": var({MyAppWeb.Colors, :indigo_800})
],
 text_decoration: [
 default: "none",
 ":hover": "underline"
]

class :input,
 border_color: [
 default: var({MyAppWeb.Semantic, :border_default}),
 ":focus": var({MyAppWeb.Semantic, :border_focus}),
 ":disabled": var({MyAppWeb.Colors, :gray_200})
]
Media Queries
Responsive styles follow the same pattern:
class :container,
 padding: [
 default: const({MyAppWeb.Spacing, :md}),
 "@media (min-width: 768px)": const({MyAppWeb.Spacing, :lg}),
 "@media (min-width: 1024px)": const({MyAppWeb.Spacing, :xl})
],
 max_width: [
 default: "100%",
 "@media (min-width: 1280px)": "1280px"
]
Using breakpoint constants with string interpolation:
class :grid,
 display: "grid",
 grid_template_columns: [
 default: "1fr",
 "@media #{const({MyAppWeb.Breakpoints, :md})}": "repeat(2, 1fr)",
 "@media #{const({MyAppWeb.Breakpoints, :lg})}": "repeat(3, 1fr)"
]
Pseudo-elements
class :required_field,
 position: "relative",
 "::before": [
 content: "'*'",
 color: var({MyAppWeb.Colors, :red_500}),
 position: "absolute",
 left: "-1em"
]

class :custom_checkbox,
 "::after": [
 content: "''",
 display: "block",
 width: "16px",
 height: "16px",
 background_color: [
 default: "transparent",
 ":checked": var({MyAppWeb.Semantic, :fill_primary})
]
]
Style Composition
Include from Other Modules
defmodule MyAppWeb.BaseStyles do
 use LiveStyle

 class :button_base,
 display: "inline-flex",
 padding: const({MyAppWeb.Spacing, :md}),
 border: "none",
 cursor: "pointer"
end

defmodule MyAppWeb.Button do
 use LiveStyle

 class :primary, [
 include({MyAppWeb.BaseStyles, :button_base}),
 background_color: var({MyAppWeb.Semantic, :fill_primary}),
 color: var({MyAppWeb.Semantic, :text_inverse})
]

 class :secondary, [
 include({MyAppWeb.BaseStyles, :button_base}),
 background_color: var({MyAppWeb.Semantic, :fill_secondary}),
 color: var({MyAppWeb.Semantic, :text_primary})
]
end
Self-Reference (Same Module)
defmodule MyAppWeb.Card do
 use LiveStyle

 class :base,
 border_radius: const({MyAppWeb.Radius, :lg}),
 padding: const({MyAppWeb.Spacing, :md}),
 background_color: var({MyAppWeb.Semantic, :fill_card})

 class :elevated, [
 include(:base),
 box_shadow: const({MyAppWeb.Shadow, :md})
]

 class :outlined, [
 include(:base),
 border_width: "1px",
 border_style: "solid",
 border_color: var({MyAppWeb.Semantic, :border_default})
]
end
Conditional Styles
Use Elixir's boolean logic for conditional class application:
def button(assigns) do
 ~H"""
 <button {css([
 :base,
 @variant == :primary && :primary,
 @variant == :secondary && :secondary,
 @disabled && :disabled,
 @size == :small && :small
])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
end
Dynamic Styles
For styles that depend on runtime values, use a function:
defmodule MyAppWeb.Components do
 use LiveStyle

 class :dynamic_opacity, fn opacity ->
 [opacity: opacity]
 end

 class :dynamic_color, fn r, g, b ->
 [color: "rgb(#{r}, #{g}, #{b})"]
 end

 class :dynamic_size, fn width, height ->
 [width: "#{width}px", height: "#{height}px"]
 end
end
Use dynamic styles with css/1:
<div {css([{:dynamic_opacity, 0.5}])}>
 Faded content
</div>

<div {css([{:dynamic_color, [255, 0, 0]}])}>
 Red text
</div>
Merging Static and Dynamic Styles
<div {css([
 :card,
 :elevated,
 {:dynamic_opacity, @opacity},
 @is_active && :active
])}>
 Card content
</div>
The list can contain:
	Atoms (static style names)
	{atom, args} tuples (dynamic styles with arguments)
	nil or false (ignored, useful for conditionals)

Fallback Values
Use fallback/1 for CSS fallbacks:
class :sticky_header,
 position: fallback(["sticky", "-webkit-sticky", "fixed"])

class :modern_layout,
 display: fallback(["grid", "flex"])
Cross-Module Style Access
Access styles from other modules in templates using tuple syntax:
<button {css({MyAppWeb.Button, :primary})}>
 Click me
</button>
Next Steps
	Theming - Create theme variations
	Advanced Features - Contextual selectors and view transitions

 Theming

LiveStyle provides a powerful theming system that allows you to override CSS variables for different contexts, such as dark mode or high contrast themes.
The Theming Pattern
The standard pattern uses two layers:
	Colors - Raw color palette using vars (hex values)
	Semantic tokens - Abstract meanings that reference colors via var (themed)

This separation keeps color values in one place while allowing themes to swap which colors semantic tokens point to.
Note: Only values defined with vars can be themed. Many teams keep spacing/typography/radii as consts, but if you want themeable spacing scales (e.g. compact/cozy), define them with vars and override with theme_class.

Defining Themes
Using the module-as-namespace pattern, define colors in one module and semantic tokens in another:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars [
 white: "#ffffff",
 black: "#000000",
 gray_50: "#f9fafb",
 gray_100: "#f3f4f6",
 gray_800: "#1f2937",
 gray_900: "#111827",
 indigo_500: "#6366f1",
 indigo_600: "#4f46e5"
]
end

defmodule MyAppWeb.Semantic do
 use LiveStyle

 vars [
 text_primary: var({MyAppWeb.Colors, :gray_900}),
 text_secondary: var({MyAppWeb.Colors, :gray_800}),
 text_inverse: var({MyAppWeb.Colors, :white}),
 fill_page: var({MyAppWeb.Colors, :white}),
 fill_surface: var({MyAppWeb.Colors, :gray_50}),
 fill_primary: var({MyAppWeb.Colors, :indigo_600}),
 fill_primary_hover: var({MyAppWeb.Colors, :indigo_500})
]

 # Dark theme overrides
 theme_class :dark, [
 text_primary: var({MyAppWeb.Colors, :gray_50}),
 text_secondary: var({MyAppWeb.Colors, :gray_100}),
 text_inverse: var({MyAppWeb.Colors, :gray_900}),
 fill_page: var({MyAppWeb.Colors, :gray_900}),
 fill_surface: var({MyAppWeb.Colors, :gray_800}),
 fill_primary: var({MyAppWeb.Colors, :indigo_500}),
 fill_primary_hover: var({MyAppWeb.Colors, :indigo_600})
]
end

defmodule MyAppWeb.Spacing do
 use LiveStyle

 consts [
 sm: "8px",
 md: "16px",
 lg: "24px"
]
end

defmodule MyAppWeb.Radius do
 use LiveStyle

 consts [
 md: "8px",
 lg: "12px"
]
end
Using Semantic Tokens
Components reference semantic tokens for colors, constants for static values:
defmodule MyAppWeb.Card do
 use LiveStyle

 class :card,
 # Colors use var (themed)
 background_color: var({MyAppWeb.Semantic, :fill_surface}),
 color: var({MyAppWeb.Semantic, :text_primary}),
 # Static values use const (not themed)
 padding: const({MyAppWeb.Spacing, :md}),
 border_radius: const({MyAppWeb.Radius, :lg})
end

defmodule MyAppWeb.Button do
 use LiveStyle

 class :primary,
 background_color: var({MyAppWeb.Semantic, :fill_primary}),
 color: var({MyAppWeb.Semantic, :text_inverse}),
 padding: const({MyAppWeb.Spacing, :md}),
 border_radius: const({MyAppWeb.Radius, :md}),
 ":hover": [
 background_color: var({MyAppWeb.Semantic, :fill_primary_hover})
]
end
Components don't need to know about themes - they just use semantic tokens for colors.
Applying Themes
Use theme_class/1 to apply a theme to a subtree:
<div class={theme_class({MyAppWeb.Semantic, :dark})}>
 <!-- All children use dark theme colors -->
 <.card>
 <p>This card uses dark theme colors</p>
 <.button>Dark button</.button>
 </.card>
</div>
App-Wide Theme Toggle
Apply the theme at the root level:
<!-- In root.html.heex -->
<html class={@theme == :dark && theme_class({MyAppWeb.Semantic, :dark})}>
 <head>
 <!-- ... -->
 </head>
 <body {css({MyAppWeb.Layout, :body})}>
 <%= @inner_content %>
 </body>
</html>
Respecting System Preference
For automatic system preference, use JavaScript to detect and set a class on the <html> element:
// Check system preference
if (window.matchMedia('(prefers-color-scheme: dark)').matches) {
 document.documentElement.classList.add('dark-theme');
}
Then apply the theme conditionally in your template.
Multiple Themes
Define multiple themes for different contexts:
defmodule MyAppWeb.Colors do
 use LiveStyle

 vars [
 white: "#ffffff",
 black: "#000000",
 gray_900: "#111827",
 yellow_400: "#facc15"
]
end

defmodule MyAppWeb.Semantic do
 use LiveStyle

 vars [
 text_primary: var({MyAppWeb.Colors, :gray_900}),
 fill_page: var({MyAppWeb.Colors, :white})
]

 # Dark theme
 theme_class :dark, [
 text_primary: var({MyAppWeb.Colors, :white}),
 fill_page: var({MyAppWeb.Colors, :gray_900})
]

 # High contrast theme
 theme_class :high_contrast, [
 text_primary: var({MyAppWeb.Colors, :black}),
 fill_page: var({MyAppWeb.Colors, :white})
]

 # Special promotion theme
 theme_class :promo, [
 text_primary: var({MyAppWeb.Colors, :black}),
 fill_page: var({MyAppWeb.Colors, :yellow_400})
]
end
Use different themes in different parts of your app:
<main>
 <!-- Default theme -->
 <.hero />

 <!-- Promotional section -->
 <section class={theme_class({MyAppWeb.Semantic, :promo})}>
 <.promo_banner />
 </section>

 <!-- Footer with dark theme -->
 <footer class={theme_class({MyAppWeb.Semantic, :dark})}>
 <.footer_content />
 </footer>
</main>
Nested Themes
Themes can be nested - inner themes override outer ones:
<div class={theme_class({MyAppWeb.Semantic, :dark})}>
 <!-- Dark theme -->
 <.card>Dark card</.card>

 <div class={theme_class({MyAppWeb.Semantic, :high_contrast})}>
 <!-- High contrast theme (overrides dark) -->
 <.card>High contrast card</.card>
 </div>
</div>
Theme-Aware Components
Sometimes you need different behavior based on the active theme. While components shouldn't need to know about themes for basic styling (that's what semantic tokens are for), you might need theme awareness for:
	Icons that need different assets
	Complex components with non-CSS differences

For these cases, pass the theme as a prop:
def logo(assigns) do
 ~H"""

 """
end

defp logo_src(:dark), do: ~p"/images/logo-light.svg"
defp logo_src(_), do: ~p"/images/logo-dark.svg"
Best Practices
	Use semantic tokens for colors - Don't reference color primitives directly in components
	Use constants for static values - Spacing, typography, radii don't need theming
	Keep primitives stable - Themes override semantics, not primitives
	Name semantically - Use fill_primary not fill_blue
	Test all themes - Ensure components look good in every theme
	Consider accessibility - Ensure sufficient contrast in all themes

Next Steps
	Advanced Features - Contextual selectors and view transitions
	Configuration - CSS layers and other options

 Advanced Features

This guide covers LiveStyle's advanced features: contextual selectors, view transitions, and CSS anchor positioning.
Contextual Selectors (LiveStyle.When)
Style elements based on ancestor, descendant, or sibling state.
Basic Usage
defmodule MyAppWeb.Card do
 use Phoenix.Component
 use LiveStyle
 alias LiveStyle.When

 class :card_content,
 transform: [
 {:default, "translateX(0)"},
 {When.ancestor(":hover"), "translateX(10px)"}
],
 opacity: [
 {:default, "1"},
 {When.ancestor(":focus-within"), "0.8"}
]

 def render(assigns) do
 ~H"""
 <div class={LiveStyle.default_marker()}>
 <div {css(:card_content)}>
 Hover the parent to move me
 </div>
 </div>
 """
 end
end
Note: When using computed keys like When.ancestor(":hover"), you must use tuple syntax {key, value} instead of keyword syntax.

Available Selectors
	Function	Description	Use Case
	ancestor(pseudo)	Style when ancestor has state	Child reacts to parent hover
	descendant(pseudo)	Style when descendant has state	Parent reacts to child focus
	sibling_before(pseudo)	Style when preceding sibling has state	Next sibling reacts
	sibling_after(pseudo)	Style when following sibling has state	Previous sibling reacts
	any_sibling(pseudo)	Style when any sibling has state	Any sibling interaction

Custom Markers
Use custom markers to create independent sets of contextual selectors:
defmodule MyAppWeb.Table do
 use Phoenix.Component
 use LiveStyle
 alias LiveStyle.When

 @row_marker LiveStyle.marker(:row)
 @row_hover When.ancestor(":hover", @row_marker)

 class :cell,
 opacity: [
 {:default, "1"},
 {When.ancestor(":hover"), "0.3"}, # Dim when container hovered
 {@row_hover, "1"}, # Restore for hovered row
 {":hover", "1"} # Restore for direct hover
],
 background_color: [
 {:default, "transparent"},
 {@row_hover, "#e0e7ff"}
]

 def render(assigns) do
 ~H"""
 <div class={LiveStyle.default_marker()}>
 <table>
 <tr :for={row <- @rows} class={@row_marker}>
 <td :for={cell <- row} {css(:cell)}>
 <%= cell %>
 </td>
 </tr>
 </table>
 </div>
 """
 end
end
Nested Conditions
Combine pseudo-classes with contextual selectors:
class :cell,
 background_color: [
 {:default, "transparent"},
 {":nth-child(2)", [
 {:default, nil},
 {When.ancestor(":has(td:nth-of-type(2):hover)"), "#e0e7ff"}
]}
]
View Transitions
LiveStyle provides first-class support for the View Transitions API.
Defining Transitions
defmodule MyAppWeb.Animations do
 use LiveStyle

 # Define keyframes
 keyframes :scale_in,
 from: [opacity: "0", transform: "scale(0.8)"],
 to: [opacity: "1", transform: "scale(1)"]

 keyframes :scale_out,
 from: [opacity: "1", transform: "scale(1)"],
 to: [opacity: "0", transform: "scale(0.8)"]

 keyframes :slide_from_right,
 from: [transform: "translateX(100%)"],
 to: [transform: "translateX(0)"]

 keyframes :slide_to_left,
 from: [transform: "translateX(0)"],
 to: [transform: "translateX(-100%)"]

 # Define view transitions
 view_transition_class :card,
 old: [
 animation_name: keyframes(:scale_out),
 animation_duration: "200ms",
 animation_fill_mode: "both"
],
 new: [
 animation_name: keyframes(:scale_in),
 animation_duration: "200ms",
 animation_fill_mode: "both"
]

 view_transition_class :slide,
 old: [
 animation_name: keyframes(:slide_to_left),
 animation_duration: "300ms"
],
 new: [
 animation_name: keyframes(:slide_from_right),
 animation_duration: "300ms"
]
end

defmodule MyAppWeb.ViewTransitions do
 use LiveStyle

 view_transition_class :card,
 old: [
 animation_name: keyframes({MyAppWeb.Animations, :scale_out}),
 animation_duration: "200ms",
 animation_fill_mode: "both"
],
 new: [
 animation_name: keyframes({MyAppWeb.Animations, :scale_in}),
 animation_duration: "200ms",
 animation_fill_mode: "both"
]
end
Available Pseudo-elements
	Key	CSS Selector	Description
	:old	::view-transition-old(name)	Outgoing snapshot
	:new	::view-transition-new(name)	Incoming snapshot
	:group	::view-transition-group(name)	Container for old/new
	:image_pair	::view-transition-image-pair(name)	Wrapper for snapshots
	:old_only_child	::view-transition-old(name):only-child	Element being removed
	:new_only_child	::view-transition-new(name):only-child	Element being added

Respecting Reduced Motion
view_transition_class :card,
 old: [
 animation_name: [
 default: keyframes(:scale_out),
 "@media (prefers-reduced-motion: reduce)": "none"
],
 animation_duration: "200ms"
],
 new: [
 animation_name: [
 default: keyframes(:scale_in),
 "@media (prefers-reduced-motion: reduce)": "none"
],
 animation_duration: "200ms"
]
Phoenix LiveView Integration
View Transitions require JavaScript integration to work with Phoenix LiveView. The key insight is that view-transition-name must be applied before startViewTransition() captures the old state snapshot.
Step 1: Create the View Transitions Adapter
Create assets/js/view-transitions.js:
/**
 * Phoenix LiveView View Transitions Adapter
 *
 * Integrates the CSS View Transitions API with Phoenix LiveView.
 * Works with LiveView 1.1.18+ which provides the `onDocumentPatch` DOM callback.
 */

// Global state for hooks
window.__viewTransitionPending = false
window.__vtCounter = 0

export function createViewTransitionDom(options = {}) {
 const existingDom = options.dom || {}
 const animateMode = options.animate || "always"

 // State for explicit mode
 let transitionTypes = []
 let explicitTransitionPending = false

 // Listen for explicit transition events from LiveView
 window.addEventListener("phx:start-view-transition", (e) => {
 const opts = e.detail || {}
 if (opts.types && Array.isArray(opts.types)) {
 transitionTypes.push(...opts.types)
 }
 explicitTransitionPending = true
 window.__viewTransitionPending = true
 })

 return {
 ...existingDom,

 onDocumentPatch(start) {
 const existingOnDocumentPatch = existingDom.onDocumentPatch

 const update = () => {
 const types = transitionTypes
 transitionTypes = []
 explicitTransitionPending = false

 if (existingOnDocumentPatch) {
 existingOnDocumentPatch(start)
 } else {
 start()
 }

 window.__viewTransitionPending = false
 }

 // Check if we should animate
 const shouldAnimate = animateMode === "always" || explicitTransitionPending

 if (!shouldAnimate || !document.startViewTransition) {
 update()
 return
 }

 window.__viewTransitionPending = true

 // Start the view transition
 try {
 document.startViewTransition({
 update,
 types: transitionTypes.length ? transitionTypes : ["same-document"],
 })
 } catch (error) {
 // Firefox 144+ doesn't support callbackOptions yet
 document.startViewTransition(update)
 }
 },

 onBeforeElUpdated(fromEl, toEl) {
 if (existingDom.onBeforeElUpdated) {
 return existingDom.onBeforeElUpdated(fromEl, toEl)
 }
 return true
 }
 }
}

export default createViewTransitionDom
Step 2: Configure LiveSocket
In your assets/js/app.js:
import { Socket } from "phoenix"
import { LiveSocket } from "phoenix_live_view"
import { createViewTransitionDom } from "./view-transitions"

// Recommended: animate all DOM patches automatically
const liveSocket = new LiveSocket("/live", Socket, {
 params: { _csrf_token: csrfToken },
 dom: createViewTransitionDom({ animate: "always" })
})
Animation Modes:
	animate: "always" (default) - Every LiveView DOM patch is wrapped in a view transition. Elements with view-transition-name animate automatically. This is the recommended mode as it requires no server-side coordination.

	animate: "explicit" - Only patches preceded by a push_event("start-view-transition", ...) are animated. Use this for fine-grained control.

Step 3: Create a ViewTransition Component
Create a reusable component that manages view-transition-name via a hook:
defmodule MyAppWeb.ViewTransition do
 use Phoenix.Component

 @doc """
 Renders the hook definition. Include once in your root layout.
 """
 def hook_definition(assigns) do
 assigns = assign_new(assigns, :id, fn -> "view-transition-hook-def" end)

 ~H"""
 <div id={@id} style="display:none;">
 <script :type={Phoenix.LiveView.ColocatedHook} name=".ViewTransition">
 export default {
 mounted() {
 // Generate unique name if not provided
 if (!this.el.__vtName) {
 this.el.__vtName = this.el.dataset.viewTransitionName || `_vt_${window.__vtCounter++}_`;
 }
 // Apply immediately so transitions work on first interaction
 this.el.style.viewTransitionName = this.el.__vtName;
 if (this.el.dataset.viewTransitionClass) {
 this.el.style.viewTransitionClass = this.el.dataset.viewTransitionClass;
 }
 },

 updated() {
 // Keep name applied (morphdom may remove it)
 this.el.style.viewTransitionName = this.el.__vtName;
 if (this.el.dataset.viewTransitionClass) {
 this.el.style.viewTransitionClass = this.el.dataset.viewTransitionClass;
 }
 }
 }
 </script>
 </div>
 """
 end

 attr :id, :string, required: true
 attr :"view-transition-name", :string, default: nil
 attr :"view-transition-class", :string, default: nil
 attr :rest, :global
 slot :inner_block, required: true

 @doc """
 Renders a view transition wrapper.

 Apply styles directly to the wrapper - don't use `display: contents`
 as it breaks view transition snapshots.
 """
 def view_transition(assigns) do
 ~H"""
 <div
 id={@id}
 phx-hook=".ViewTransition"
 data-view-transition-name={assigns[:"view-transition-name"]}
 data-view-transition-class={assigns[:"view-transition-class"]}
 {@rest}
 >
 {render_slot(@inner_block)}
 </div>
 """
 end
end
Step 4: Use in Your LiveView
First, include the hook definition once in your root layout:
<!-- In root.html.heex -->
<MyAppWeb.ViewTransition.hook_definition />
Then use the component in your LiveViews:
defmodule MyAppWeb.TodoLive do
 use MyAppWeb, :live_view
 use LiveStyle
 import MyAppWeb.ViewTransition

 # Define your item styles
 class :todo_item,
 padding: "1rem",
 border_bottom: "1px solid #eee"

 # Define your transition styles
 view_transition_class :todo_item,
 group: [
 animation_duration: ".3s",
 animation_timing_function: "ease-out"
]

 def render(assigns) do
 ~H"""

 <.view_transition
 :for={todo <- @todos}
 id={"todo-#{todo.id}"}
 {css(:todo_item)}
 view-transition-class={view_transition_class(:todo_item)}
 >
 <%= todo.text %>
 </.view_transition>

 """
 end
end
Step 5: Write Your Event Handlers
With animate: "always" mode, your event handlers are simple - no push_event needed:
def handle_event("shuffle", _params, socket) do
 {:noreply, assign(socket, items: Enum.shuffle(socket.assigns.items))}
end

def handle_event("add_item", %{"text" => text}, socket) do
 new_item = %{id: System.unique_integer(), text: text}
 {:noreply, assign(socket, items: socket.assigns.items ++ [new_item])}
end

def handle_event("delete_item", %{"id" => id}, socket) do
 items = Enum.reject(socket.assigns.items, &(&1.id == id))
 {:noreply, assign(socket, items: items)}
end
Every DOM patch automatically triggers a view transition. Elements with view-transition-name will animate smoothly.
Explicit Mode (Optional)
If you prefer fine-grained control, use animate: "explicit" and push events:
def handle_event("shuffle", _params, socket) do
 {:noreply,
 socket
 |> assign(items: Enum.shuffle(socket.assigns.items))
 |> push_event("start-view-transition", %{types: ["shuffle"]})}
end
Key Insights
	Use animate: "always": This is the simplest approach - every DOM patch animates automatically. No server-side coordination needed.

	Apply names on mount: The view-transition-name must be set before startViewTransition() captures the old state. The hook applies it immediately in mounted().

	Don't use display: contents: It removes the element from the box tree and breaks view transition snapshots. Apply styles directly to the wrapper.

	Use :only-child for enter/exit: When elements are added or removed, use ::view-transition-new(name):only-child for enter animations and ::view-transition-old(name):only-child for exit animations.

	Avoid animations when unchanged: If you define custom old/new animations, they play even when elements don't change. Use :group for duration/easing on elements that move, and reserve old/new for actual enter/exit animations.

Browser Support
View Transitions are supported in Chrome 111+, Edge 111+, Safari 18+, and Firefox 144+. They gracefully degrade in unsupported browsers.
Scroll-Driven Animations
LiveStyle supports Scroll-Driven Animations - CSS animations that progress based on scroll position rather than time.
Scroll Progress Timeline
Animate based on scroll position of the document or a scrollable container:
defmodule MyAppWeb.ScrollProgress do
 use LiveStyle

 # Keyframes for the progress bar
 keyframes :grow_progress,
 from: [transform: "scaleX(0)"],
 to: [transform: "scaleX(1)"]

 # Reading progress bar at top of page
 class :progress_bar,
 position: "fixed",
 top: "0",
 left: "0",
 width: "100%",
 height: "4px",
 background: "linear-gradient(90deg, #4f46e5, #7c3aed)",
 transform_origin: "left",
 # Scroll-driven animation
 animation_name: keyframes(:grow_progress),
 animation_timeline: "scroll()",
 animation_timing_function: "linear"
end
The scroll() function creates an anonymous scroll progress timeline that tracks the nearest scrollable ancestor (or the document).
View Progress Timeline
Animate based on an element's visibility within the viewport:
defmodule MyAppWeb.RevealOnScroll do
 use LiveStyle

 keyframes :reveal,
 from: [opacity: "0", transform: "translateY(50px)"],
 to: [opacity: "1", transform: "translateY(0)"]

 class :reveal_card,
 animation_name: keyframes(:reveal),
 animation_timeline: "view()",
 animation_range: "entry 0% cover 40%",
 animation_fill_mode: "both"
end
The view() function tracks when the element enters and exits the viewport.
Named View Timelines for Parallax
For parallax effects where a child animates based on its parent's visibility, use named view timelines:
defmodule MyAppWeb.Parallax do
 use LiveStyle

 # Parallax animation - shifts background position as container scrolls
 keyframes :parallax_shift,
 from: [background_position: "center 100%"],
 to: [background_position: "center 0%"]

 # Container defines the named view timeline
 class :parallax_container,
 position: "relative",
 height: "400px",
 overflow: "hidden",
 # Define a named view timeline on the container
 view_timeline_name: "--parallax-container",
 view_timeline_axis: "block"

 # Child references the named timeline
 class :parallax_bg,
 position: "absolute",
 inset: "0",
 # Gradient taller than container for parallax movement
 background: "linear-gradient(135deg, #667eea 0%, #764ba2 50%, #667eea 100%)",
 background_size: "100% 200%",
 animation_name: keyframes(:parallax_shift),
 # Reference the container's timeline (not view())
 animation_timeline: "--parallax-container",
 animation_fill_mode: "both",
 animation_duration: "1ms"
end
Why use named timelines for parallax?
The view() function tracks when the animated element itself enters the viewport. For absolutely positioned children inside a container with overflow: hidden, the browser can't properly track the child's visibility. By defining the timeline on the container and referencing it from the child, the animation is driven by the container's visibility instead.
Horizontal Scroll Timeline
Track horizontal scroll progress with named scroll timelines:
defmodule MyAppWeb.HorizontalScroll do
 use LiveStyle

 keyframes :grow_progress,
 from: [transform: "scaleX(0)"],
 to: [transform: "scaleX(1)"]

 class :horizontal_scroll_wrapper,
 overflow_x: "auto",
 # Define a named scroll timeline for horizontal axis
 scroll_timeline_name: "--horizontal-scroll",
 scroll_timeline_axis: "x"

 class :horizontal_progress_bar,
 width: "100%",
 height: "4px",
 background: "linear-gradient(90deg, #10b981, #059669)",
 transform_origin: "left",
 # Reference the named scroll timeline
 animation_name: keyframes(:grow_progress),
 animation_timeline: "--horizontal-scroll",
 animation_timing_function: "linear",
 animation_duration: "1ms"
end
Animation Range
Control when the animation starts and ends with animation_range:
Start at 0% of entry, end at 40% of cover
animation_range: "entry 0% cover 40%"

Full range from entry to exit
animation_range: "entry exit"

Start when 25% visible, end when 75% visible
animation_range: "cover 25% cover 75%"
Range keywords:
	entry - Element entering the viewport
	exit - Element exiting the viewport
	cover - Element covering the viewport
	contain - Element contained within viewport

Browser Support
Scroll-driven animations are supported in Chrome 115+, Edge 115+, and Safari 18+. They require no JavaScript - the browser handles all animation timing based on scroll position.
CSS Anchor Positioning
LiveStyle supports CSS Anchor Positioning for advanced positioning scenarios like tooltips and popovers.
Basic Usage
defmodule MyAppWeb.Tooltip do
 use LiveStyle

 class :trigger,
 anchor_name: "--tooltip-trigger"

 class :tooltip,
 position: "absolute",
 position_anchor: "--tooltip-trigger",
 top: "anchor(bottom)",
 left: "anchor(center)",
 transform: "translateX(-50%)"
end
Position Fallbacks
Use position_try/2 for fallback positions when the preferred position doesn't fit:
defmodule MyAppWeb.Tokens do
 use LiveStyle

 position_try :flip_to_top,
 bottom: "anchor(top)",
 left: "anchor(center)"

 position_try :flip_to_left,
 right: "anchor(left)",
 top: "anchor(center)"
end

defmodule MyAppWeb.Tooltip do
 use LiveStyle

 class :tooltip,
 position: "absolute",
 position_anchor: "--trigger",
 top: "anchor(bottom)",
 left: "anchor(center)",
 position_try_fallbacks: "#{position_try({MyAppWeb.Tokens, :flip_to_top})}, #{position_try({MyAppWeb.Tokens, :flip_to_left})}"
end
Inline Position Try
For simple cases, use inline position try:
class :tooltip,
 position: "absolute",
 position_anchor: "--trigger",
 top: "anchor(bottom)",
 position_try_fallbacks: position_try(
 bottom: "anchor(top)",
 left: "anchor(center)"
)
Allowed Properties
Only positioning-related properties are allowed in position_try:
	Anchor: position_anchor, position_area
	Inset: top, right, bottom, left, inset, inset_block, inset_inline
	Margin: margin, margin_top, margin_right, etc.
	Size: width, height, min_width, max_height, block_size, inline_size
	Alignment: align_self, justify_self, place_self

Browser Support
CSS Anchor Positioning is available in Chromium 125+ (June 2024). Firefox and Safari don't yet support this feature. Consider feature detection or fallback positioning.
Combining Features
These features can be combined for powerful effects:
defmodule MyAppWeb.Dropdown do
 use Phoenix.Component
 use LiveStyle
 alias LiveStyle.When

 @trigger_marker LiveStyle.marker(:trigger)

 class :menu,
 position: "absolute",
 position_anchor: "--dropdown-trigger",
 top: "anchor(bottom)",
 opacity: [
 {:default, "0"},
 {When.sibling_before(":focus", @trigger_marker), "1"}
],
 transform: [
 {:default, "translateY(-10px)"},
 {When.sibling_before(":focus", @trigger_marker), "translateY(0)"}
],
 transition: "opacity 200ms, transform 200ms"

 def dropdown(assigns) do
 ~H"""
 <div>
 <button class={[@trigger_marker]} style="anchor-name: --dropdown-trigger">
 Menu
 </button>
 <div {css(:menu)}>
 <%= render_slot(@inner_block) %>
 </div>
 </div>
 """
 end
end
Next Steps
	Configuration - Shorthand behaviors and CSS layers

 Configuration

This guide covers LiveStyle's configuration options, including shorthand behaviors, CSS layers, and other settings.
Basic Configuration
Configure LiveStyle in config/config.exs:
config :live_style,
 # CSS output profile
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
],

 # Optional integrations (use MFA tuples to avoid compile-order issues)
 prefix_css: {AutoprefixerEx, :prefix_css},
 deprecated?: {CSSCompatDataEx, :deprecated?},

 # Behavior options
 shorthand_behavior: :accept_shorthands,
 use_css_layers: false
Shorthand Behaviors
LiveStyle supports three behaviors for handling CSS shorthand properties like margin, padding, border, etc.
:accept_shorthands (Default)
Keeps shorthands intact and allows all shorthand properties. Uses internal nil resets for cascade control:
config :live_style,
 shorthand_behavior: :accept_shorthands
This works as expected
class :card,
 margin: "16px",
 margin_top: "8px" # Overrides only top margin
This is the recommended setting for most projects. It matches how CSS naturally works - later declarations override earlier ones.
:flatten_shorthands
Expands shorthand properties to their longhand equivalents:
config :live_style,
 shorthand_behavior: :flatten_shorthands
This:
class :card, margin: "16px"

Becomes:
class :card,
 margin_top: "16px",
 margin_right: "16px",
 margin_bottom: "16px",
 margin_left: "16px"
Use this mode when you need maximum predictability in how styles compose, at the cost of more verbose CSS output.
:forbid_shorthands
Raises compile-time errors for certain disallowed shorthands:
config :live_style,
 shorthand_behavior: :forbid_shorthands
These raise compile errors:
class :button, border: "1px solid red"
Error: Use border_width, border_style, border_color instead

class :card, background: "red url(...)"
Error: Use background_color, background_image instead
Use this mode for large codebases where you want to enforce explicit property declarations.
CSS Layers
LiveStyle uses CSS specificity techniques to ensure later styles always win, regardless of declaration order.
Default Behavior (use_css_layers: false)
By default, LiveStyle uses CSS specificity techniques to ensure later styles always win:
config :live_style,
 use_css_layers: false # default
CSS Layers (use_css_layers: true)
Alternatively, use CSS @layer to control cascade precedence:
config :live_style,
 use_css_layers: true
This places all LiveStyle rules in a live_style layer. Make sure your reset/base styles are in a lower-priority layer:
/* app.css */
@layer reset, live_style;

@layer reset {
 * { box-sizing: border-box; }
}
CSS Prefixing
Enable automatic vendor prefixing with autoprefixer_ex:
Add to deps
{:autoprefixer_ex, "~> 0.1.0"}

Configure
config :live_style,
 prefix_css: {AutoprefixerEx, :prefix_css}

config :autoprefixer_ex,
 browserslist: ["defaults"]
LiveStyle will automatically add vendor prefixes based on your browser targets:
Input
class :flex, display: "flex"

Output includes vendor prefixes like -webkit-box, -ms-flexbox, etc.
Deprecation Warnings
Enable deprecation warnings with css_compat_data_ex:
Add to deps
{:css_compat_data_ex, "~> 0.1.0"}

Configure
config :live_style,
 deprecated?: {CSSCompatDataEx, :deprecated?}
You'll get compile-time warnings for deprecated CSS properties:
warning: CSS property "box-align" is deprecated
 lib/my_app_web/components/button.ex:15
CSS Validation
LiveStyle validates CSS property names at compile time with "did you mean?" suggestions:
class :card, backgorund_color: "red"
Error: Unknown CSS property "backgorund_color". Did you mean "background_color"?
Output Profiles
Define multiple output profiles for different builds:
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
],
 admin: [
 output: "priv/static/assets/css/admin.css",
 cd: Path.expand("..", __DIR__)
]
Generate CSS for a specific profile:
mix live_style admin

Or in aliases:
defp aliases do
 [
 "assets.build": [
 "esbuild my_app",
 "esbuild css",
 "live_style default",
 "live_style admin"
]
]
end
Development Watcher
Add the watcher to your Phoenix endpoint for automatic CSS regeneration:
config/dev.exs
config :my_app, MyAppWeb.Endpoint,
 watchers: [
 esbuild: {Esbuild, :install_and_run, [:my_app, ~w(--sourcemap=inline --watch)]},
 esbuild_css: {Esbuild, :install_and_run, [:css, ~w(--watch)]},
 live_style: {LiveStyle, :install_and_run, [:default, ~w(--watch)]}
]
The watcher monitors the LiveStyle manifest and regenerates CSS when styles change. Requires the file_system dependency (included with phoenix_live_reload).
Test Configuration
For tests that define LiveStyle modules, add the setup task:
defp aliases do
 [
 test: ["live_style.setup_tests", "test"]
]
end
This ensures test modules are compiled and registered before tests run.
Environment-Specific Configuration
Override settings per environment:
config/dev.exs
config :live_style,
 # More verbose output in dev
 shorthand_behavior: :accept_shorthands

config/prod.exs
config :live_style,
 # Stricter in production
 shorthand_behavior: :forbid_shorthands
All Configuration Options
	Option	Type	Default	Description
	default	keyword	required	Default output profile
	shorthand_behavior	atom	:accept_shorthands	How to handle CSS shorthands
	use_css_layers	boolean	false	Use CSS @layer instead of specificity hack
	prefix_css	function	nil	Function for vendor prefixing
	deprecated?	function	nil	Function to check property deprecation

Profile Options
	Option	Type	Description
	output	string	Path to write CSS file
	cd	string	Base directory for relative paths

LiveStyle

LiveStyle - Compile-time CSS-in-Elixir for Phoenix LiveView.
All style definitions compile away to string constants. At runtime,
only class name strings exist - no function calls or manifest lookups.
Basic Usage
defmodule MyAppWeb.Button do
 use Phoenix.Component
 use LiveStyle

 # Define CSS variables
 vars primary: "#3b82f6",
 white: "#ffffff"

 # Define a theme that overrides variables
 theme_class :dark,
 primary: "#60a5fa",
 white: "#1f2937"

 # Define keyframes
 keyframes :spin,
 from: [transform: "rotate(0deg)"],
 to: [transform: "rotate(360deg)"]

 # Define classes
 class :base,
 display: "inline-flex",
 padding: "0.5rem 1rem"

 class :styled,
 background_color: var(:primary),
 color: var(:white)

 def render(assigns) do
 ~H"""
 <button {css([:base, :styled])}>
 <%= render_slot(@inner_block) %>
 </button>
 """
 end
end
Reference Syntax
Cross-module references:
	var({Module, :name}) - Reference a CSS variable
	const({Module, :name}) - Reference a compile-time constant
	keyframes({Module, :name}) - Reference a keyframes animation
	theme_class({Module, :name}) - Reference a theme class
	position_try({Module, :name}) - Reference a position-try rule
	view_transition_class({Module, :name}) - Reference a view transition

Local references (within the same module):
	var(:name)
	keyframes(:name)
	theme_class(:name)

Public API Functions
	LiveStyle.default_marker/0 - Get the default marker class for contextual selectors
	LiveStyle.marker/1 - Get a custom marker class

See the README for comprehensive documentation and examples.

 Summary

 Functions

 class(name, declarations)

 Defines a style class with CSS declarations.

 const(ref)

 References a constant, returning its raw value.

 consts(consts_list)

 Defines compile-time constants (no CSS output).

 css(name)

 Returns CSS attributes for spreading in HEEx templates.

 css(refs, opts)

 Returns CSS attributes with additional inline styles merged in.

 default_marker()

 Returns the default marker class name for use with LiveStyle.When selectors.

 fallback(values)

 Creates fallback values for CSS properties (StyleX firstThatWorks equivalent).

 include(ref)

 Includes styles from another class.

 install_and_run(profile \\ :default, args \\ [])

 Runs LiveStyle CSS generation, installing dependencies if needed.

 keyframes(ref)

 keyframes(name, frames)

 Defines a keyframes animation (2-arg form) or references one (1-arg form).

 marker(name)

 Returns a marker class name for use with LiveStyle.When selectors.

 position_try(ref)

 position_try(name, declarations)

 Defines or references a @position-try rule for anchor positioning.

 run(profile \\ :default, args \\ [])

 Runs LiveStyle CSS generation.

 theme_class(ref)

 References a theme, returning the class name.

 theme_class(name, overrides)

 Defines a theme class (variable overrides).

 var(ref)

 References a CSS variable, returning var(--vhash).

 vars(vars_list)

 Defines CSS custom properties (variables).

 view_transition_class(ref)

 References a view transition, returning the view-transition-class value.

 view_transition_class(name, styles)

 Defines a view transition class.

 Functions

 class(name, declarations)

 (macro)

Defines a style class with CSS declarations.
Static classes
class :button,
 display: "flex",
 padding: "8px 16px"
With variable references
class :themed,
 color: var({MyAppWeb.Tokens, :white})
Conditional styles (pseudo-classes, media queries)
class :interactive,
 color: [
 default: "blue",
 ":hover": "darkblue",
 "@media (prefers-color-scheme: dark)": "lightblue"
]
Conditional syntax (StyleX-style)
LiveStyle follows modern StyleX conditional syntax: conditions live inside each
property's value (keyword list), rather than using top-level at-rule keys.
class :responsive_card,
 padding: [
 default: "1rem",
 "@container (min-width: 400px)": "2rem",
 "@media (min-width: 768px)": "3rem"
]
Dynamic classes (StyleX-style with CSS variables)
Dynamic classes use a function that declares which properties can be set at runtime.
The CSS is generated with var(--x-property) references, and at runtime only
the CSS variable values are set via inline style.
Single parameter
class :dynamic_opacity, fn opacity -> [opacity: opacity] end

Multiple parameters
class :dynamic_size, fn width, height -> [width: width, height: height] end
Usage:
<div {css([:base, {:dynamic_opacity, "0.5"}])}>
<div {css([:base, {:dynamic_size, ["100px", "200px"]}])}>

 const(ref)

 (macro)

References a constant, returning its raw value.
Local reference
const(:breakpoint_lg)
Cross-module reference
const({MyAppWeb.Tokens, :breakpoint_lg})

 consts(consts_list)

 (macro)

Defines compile-time constants (no CSS output).
Examples
consts breakpoint_sm: "@media (max-width: 640px)",
 breakpoint_lg: "@media (min-width: 1025px)",
 z_modal: "50",
 z_tooltip: "100"

 css(name)

 (macro)

Returns CSS attributes for spreading in HEEx templates.
Returns %LiveStyle.Attrs{} for use with the spread syntax {css(...)}
in templates. This handles both static and dynamic styles that set CSS
variables via inline style.
Examples
Single ref
<div {css(:button)}>

List of refs with conditionals
<div {css([:base, @active && :active])}>

Dynamic styles
<div {css([{:dynamic_color, @color}])}>

With additional inline styles
<div {css([:card], style: [view_transition_name: "card-1"])}>

With view transitions
<div {css([:card], style: [
 view_transition_class: view_transition_class(:card),
 view_transition_name: "card-#{@id}"
])}>

 css(refs, opts)

 (macro)

Returns CSS attributes with additional inline styles merged in.
The second argument is a keyword list with a :style key containing
additional CSS properties to merge into the inline style.
Options
	:style - A keyword list of CSS properties to merge.
Property names should be atoms (snake_case).

Examples
With view transition styles
<div {css([:card], style: [
 view_transition_class: view_transition_class(:card),
 view_transition_name: "card-#{@id}"
])}>

With arbitrary inline styles
<div {css([:base], style: [opacity: "0.5", transform: "scale(1.1)"])}>

 default_marker()

Returns the default marker class name for use with LiveStyle.When selectors.
Example
<div class={default_marker()}>
 <div {css(:card)}>Hover parent to move me</div>
</div>

 fallback(values)

 @spec fallback(list()) :: {:__fallback__, list()}

Creates fallback values for CSS properties (StyleX firstThatWorks equivalent).
This function handles two cases:
	Regular fallbacks - Multiple declarations for browser compatibility:
 class :sticky,
 position: fallback(["sticky", "fixed"])
 # Generates: .class{position:fixed;position:sticky}

	CSS variable fallbacks - Nested var() with fallback values:
 class :themed,
 background_color: fallback(["var(--bg-color)", "#808080"])
 # Generates: .class{background-color:var(--bg-color, #808080)}

Values are tried in order - first value has highest priority.
For CSS variables, they are nested: var(--a, var(--b, fallback)).
Examples
Browser fallbacks (position: sticky not supported everywhere)
class :sticky,
 position: fallback(["sticky", "fixed"])

CSS variable with fallback
class :themed,
 color: fallback(["var(--theme-color)", "blue"])

Multiple CSS variables with final fallback
class :multi_theme,
 color: fallback(["var(--primary)", "var(--fallback)", "black"])

 include(ref)

 @spec include(atom() | {module(), atom()}) ::
 {:__include__, atom() | {module(), atom()}}

Includes styles from another class.
Used inside class/2 definitions for style composition. Included styles
are merged with the current class using last-wins semantics - properties
defined after include() override properties from included classes.
Examples
Include a local class
class :primary, [
 include(:base),
 background_color: "blue"
]

Include from another module
class :themed, [
 include({OtherModule, :base}),
 color: "white"
]

Multiple includes
class :fancy, [
 include(:base),
 include(:rounded),
 include({SharedStyles, :animated}),
 border_radius: "12px"
]

 install_and_run(profile \\ :default, args \\ [])

 @spec install_and_run(atom(), [String.t()]) :: non_neg_integer()

Runs LiveStyle CSS generation, installing dependencies if needed.
This follows the same pattern as Tailwind.install_and_run/2 and
Esbuild.install_and_run/2, making it suitable for use as a Phoenix
endpoint watcher.
Setup
Add to your config/dev.exs:
config :my_app, MyAppWeb.Endpoint,
 watchers: [
 esbuild: {Esbuild, :install_and_run, [:my_app, ~w(--sourcemap=inline --watch)]},
 live_style: {LiveStyle, :install_and_run, [:default, ~w(--watch)]}
]
Examples
LiveStyle.install_and_run(:default, ~w(--watch))

 keyframes(ref)

 (macro)

 keyframes(name, frames)

 (macro)

Defines a keyframes animation (2-arg form) or references one (1-arg form).
Definition (2 args)
keyframes :spin,
 from: [transform: "rotate(0deg)"],
 to: [transform: "rotate(360deg)"]

keyframes :fade_in,
 "0%": [opacity: "0"],
 "100%": [opacity: "1"]
Local reference (1 arg)
keyframes(:spin)
Cross-module reference
keyframes({MyAppWeb.Tokens, :spin})

 marker(name)

 (macro)

Returns a marker class name for use with LiveStyle.When selectors.
Custom markers allow you to have multiple independent sets of contextual selectors
in the same component tree.
Examples
Local marker (same module)
marker(:row)

Cross-module marker
marker({OtherModule, :row})
Usage
<tr class={marker(:row)}>
 <td {css(:cell)}>...</td>
</tr>

 position_try(ref)

 (macro)

 position_try(name, declarations)

 (macro)

Defines or references a @position-try rule for anchor positioning.
Definition (2 args)
position_try :bottom_fallback,
 top: "anchor(bottom)",
 left: "anchor(left)"
Local reference (1 arg atom)
position_try(:bottom_fallback)
Cross-module reference (1 arg tuple)
position_try({MyAppWeb.Tokens, :bottom_fallback})

 run(profile \\ :default, args \\ [])

 @spec run(atom(), [String.t()]) :: non_neg_integer()

Runs LiveStyle CSS generation.
This is typically called by the mix task or the watcher. Returns 0 on success.
Options
	--watch - Watch for manifest changes and regenerate CSS automatically

Examples
LiveStyle.run(:default, [])
LiveStyle.run(:default, ~w(--watch))

 theme_class(ref)

 (macro)

References a theme, returning the class name.
Local reference
theme_class(:dark)
Cross-module reference
theme_class({MyAppWeb.Tokens, :dark})

 theme_class(name, overrides)

 (macro)

Defines a theme class (variable overrides).
Similar to StyleX's createTheme, this creates a class that overrides
CSS variables defined with vars.
Examples
First define your variables
vars white: "#ffffff",
 primary: "#3b82f6"

Then create a theme that overrides those variables
theme_class :dark,
 white: "#000000",
 primary: "#8ab4f8"

 var(ref)

 (macro)

References a CSS variable, returning var(--vhash).
When used as a value, returns var(--vhash) for CSS variable references.
When used as a map key in keyframes, the var() wrapper is automatically
stripped to produce valid CSS (matching StyleX behavior).
Local reference (same module)
var(:white)
Cross-module reference
var({MyAppWeb.Tokens, :white})
Using in keyframes (animating typed variables)
keyframes :rotate,
 from: [{var({Tokens, :angle}), "0deg"}],
 to: [{var({Tokens, :angle}), "360deg"}]

 vars(vars_list)

 (macro)

Defines CSS custom properties (variables).
Examples
vars white: "#ffffff",
 primary: "#3b82f6",
 spacing_sm: "0.5rem",
 spacing_lg: "2rem"
For typed variables that can be animated, use LiveStyle.Types:
import LiveStyle.Types

vars angle: angle("0deg"),
 hue: percentage("0%")

 view_transition_class(ref)

 (macro)

References a view transition, returning the view-transition-class value.
Returns the hashed class name that should be used with the CSS view-transition-class
property. You control when and where to apply view-transition-name via inline styles.
Local reference
view_transition_class(:card)
=> "x9fx6z8"
Cross-module reference
view_transition_class({Tokens, :card})
=> "x9fx6z8"
Usage in templates
Use with inline styles to control view transitions:
<div style={"view-transition-class: #{view_transition_class(:card)}; view-transition-name: card-#{@id}"}>
Or use css/2 with the style option for merging with other styles:
<div {css([:card_styles], style: [view_transition_class: view_transition_class(:card), view_transition_name: "card-#{@id}"])}>

 view_transition_class(name, styles)

 (macro)

Defines a view transition class.
Examples
view_transition_class :card_transition,
 old: [animation_name: keyframes(:fade_out), animation_duration: "250ms"],
 new: [animation_name: keyframes(:fade_in), animation_duration: "250ms"]

LiveStyle.Attrs

A struct representing HTML attributes for styled elements.
This struct implements Phoenix.HTML.Safe and can be spread directly
into HEEx templates:
~H"""<button {css([:base, :primary])}>Click me</button>"""
Fields
	:class - Space-separated class names (string)
	:style - Inline styles for dynamic values (string or nil)
	:prop_classes - Property-to-class mappings for merging (internal use)

 Summary

 Types

 prop_classes()

 t()

 Functions

 class_string(attrs)

 Extracts just the class string from an Attrs struct.

 to_list(attrs)

 Converts the Attrs struct to a keyword list suitable for spreading into HTML elements.

 Types

 prop_classes()

 @type prop_classes() :: [{atom() | String.t(), String.t() | :__unset__}]

 t()

 @type t() :: %LiveStyle.Attrs{
 class: String.t() | nil,
 prop_classes: prop_classes() | nil,
 style: String.t() | nil
}

 Functions

 class_string(attrs)

 @spec class_string(t()) :: String.t()

Extracts just the class string from an Attrs struct.

 to_list(attrs)

 @spec to_list(t()) :: keyword()

Converts the Attrs struct to a keyword list suitable for spreading into HTML elements.
When spreading onto a component, the full Attrs struct is passed as the class value
so that property classes can be merged. When rendering to HTML, Phoenix.HTML.Safe
converts the struct to just the class string.
Examples
iex> LiveStyle.Attrs.to_list(%LiveStyle.Attrs{class: "btn", style: nil})
[class: %LiveStyle.Attrs{class: "btn", style: nil, prop_classes: nil}]

iex> LiveStyle.Attrs.to_list(%LiveStyle.Attrs{class: "btn", style: "--x: 1"})
[class: %LiveStyle.Attrs{class: "btn", style: "--x: 1", prop_classes: nil}, style: "--x: 1"]

LiveStyle.CSSValue

CSS value normalization and transformation.
Follows StyleX's transform-value.js and normalize-value.js approach.
Delegates property checks to LiveStyle.Property for centralized
compile-time generated lookups.
Regex patterns are compiled at module level for efficiency.

 Summary

 Functions

 normalize(value)

 Normalizes a CSS value string.

 to_css(v, property)

 Converts a value to its CSS string representation.

 to_css_property(key)

 Converts an Elixir property key to CSS property name.

 Functions

 normalize(value)

 @spec normalize(String.t()) :: String.t()

Normalizes a CSS value string.
Applies StyleX's normalize-value.js pipeline:
	Normalize whitespace
	Normalize timings (500ms -> .5s)
	Remove leading zeros (0.5 -> .5)
	Normalize zero dimensions (0px -> 0)
	Normalize empty string quotes ('' -> "")

 to_css(v, property)

 @spec to_css(any(), String.t() | nil) :: String.t()

Converts a value to its CSS string representation.
Examples
iex> LiveStyle.CSSValue.to_css(10, "padding")
"10px"

iex> LiveStyle.CSSValue.to_css(0.5, "opacity")
"0.5"

iex> LiveStyle.CSSValue.to_css("0.5s", "transition-duration")
".5s"

 to_css_property(key)

 @spec to_css_property(atom() | String.t()) :: String.t()

Converts an Elixir property key to CSS property name.
Examples
iex> LiveStyle.CSSValue.to_css_property(:background_color)
"background-color"

iex> LiveStyle.CSSValue.to_css_property("margin-top")
"margin-top"

LiveStyle.Class

Style class definition and lookup for LiveStyle.
This is an internal module that handles the processing of class/2 declarations.
You typically don't use this module directly - instead use LiveStyle with
the class/2 macro.
Responsibilities
	Defining static and dynamic style classes
	Looking up class entries by module and name
	Orchestrating declaration processing via specialized processors

Internal API Example
Static class (called by class macro)
LiveStyle.Class.define(MyModule, :button, [display: "flex", padding: "8px"])

Dynamic class
LiveStyle.Class.define_dynamic(MyModule, :opacity, [:opacity])

Fetch
LiveStyle.Class.fetch!(MyModule, :button)
=> %{class_string: "x1234 x5678", atomic_classes: [...], ...}

 Summary

 Functions

 batch_define(manifest, module, name, declarations, opts \\ [])

 Defines a static style class directly in a manifest (for batch operations).

 batch_define_dynamic(manifest, module, name, all_props)

 Defines a dynamic style class directly in a manifest (for batch operations).

 define(module, name, declarations, opts \\ [])

 Defines a static style class.

 define_dynamic(module, name, all_props)

 Defines a dynamic style class.

 fetch!(name)

 Fetches a Class by reference.

 ref(name)

 Gets the Class reference value.

 Functions

 batch_define(manifest, module, name, declarations, opts \\ [])

 @spec batch_define(LiveStyle.Manifest.t(), module(), atom(), keyword(), keyword()) ::
 LiveStyle.Manifest.t()

Defines a static style class directly in a manifest (for batch operations).
This is used by @before_compile to batch all class definitions in a single
manifest update, reducing lock contention during compilation.
Returns the updated manifest.

 batch_define_dynamic(manifest, module, name, all_props)

 @spec batch_define_dynamic(LiveStyle.Manifest.t(), module(), atom(), [atom()]) ::
 LiveStyle.Manifest.t()

Defines a dynamic style class directly in a manifest (for batch operations).
This is used by @before_compile to batch all class definitions in a single
manifest update, reducing lock contention during compilation.
Returns the updated manifest.

 define(module, name, declarations, opts \\ [])

 @spec define(module(), atom(), keyword(), keyword()) :: :ok

Defines a static style class.
Parameters
	module - The module defining the class
	name - The class name (atom)
	declarations - Keyword list of CSS property declarations
	opts - Options including :file and :line for validation warnings

Example
LiveStyle.Class.define(MyModule, :button, [display: "flex"])

 define_dynamic(module, name, all_props)

 @spec define_dynamic(module(), atom(), [atom()]) :: :ok

Defines a dynamic style class.
Dynamic classes use CSS variables that are set at runtime via inline styles.
Parameters
	module - The module defining the class
	name - The class name (atom)
	all_props - List of all CSS properties in the class

Example
LiveStyle.Class.define_dynamic(MyModule, :opacity, [:opacity])

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a Class by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the Class reference value.

LiveStyle.Class.DeclarationMerger

Merges CSS declarations with conditional value handling.
This module handles the merging of property values following StyleX semantics:
	Simple values override previous values
	Conditional values (lists with :default, pseudo-classes, media queries) merge
	Mixed simple/conditional values integrate properly

Merge Semantics
	Simple + Simple: Last value wins
	Conditional + Conditional: Lists are merged (keys combined)
	Simple + Conditional: Simple becomes the :default of existing conditions
	Conditional + Simple: New simple overwrites :default, conditions preserved

 Summary

 Functions

 merge(acc, prop, value)

 Merges a property value into an accumulator.

 Functions

 merge(acc, prop, value)

 @spec merge(list(), atom() | String.t(), term()) :: list()

Merges a property value into an accumulator.
The accumulator is a tuple list where keys can be atoms (CSS property names)
or strings (CSS custom properties via var()). Conditional values also use
tuple lists since their keys can be atoms, strings, or complex terms.
Parameters
	acc - Current accumulator (list of {prop, value} tuples)
	prop - Property name (atom or string for custom properties)
	value - New value to merge

Returns
Updated accumulator with merged property.

LiveStyle.Class.Include

Style include resolution for LiveStyle.
Handles include/1 calls in style declarations, allowing styles to be
composed from other styles in the same module or external modules. This follows
StyleX's style composition pattern with last-wins semantics.
Usage
defmodule MyAppWeb.Button do
 use LiveStyle

 class :base,
 display: "flex",
 padding: "8px"

 class :primary, [
 include(:base),
 background_color: "blue",
 color: "white"
]
end
The :primary class includes all declarations from :base, then merges
its own declarations on top. Properties in the including class override
properties from included classes (last-wins semantics).
Cross-module Includes
Include styles from other modules using a tuple:
class :themed_button, [
 include({MyAppWeb.BaseStyles, :btn_base}),
 color: var({MyAppWeb.Tokens, :text_primary})
]
Multiple Includes
Include multiple classes - they are processed in order:
class :fancy_button, [
 include(:base),
 include(:rounded),
 include({SharedStyles, :animated}),
 background: "linear-gradient(...)"
]
Important Notes
	Local includes must reference classes defined earlier in the same module
	External module includes require the referenced module to be compiled first
	Include resolution is recursive - included classes can themselves include other classes

 Summary

 Functions

 resolve(declarations, caller_module, manifest \\ nil)

 Resolves include entries in style declarations.

 Functions

 resolve(declarations, caller_module, manifest \\ nil)

 @spec resolve(keyword(), atom(), LiveStyle.Manifest.t() | nil) :: keyword()

Resolves include entries in style declarations.
Include entries can be:
	:rule_name - include from the same module
	{Module, :rule_name} - include from another module

The includes are processed in order, then remaining declarations are merged
on top, giving later declarations precedence (last-wins semantics).
Parameters
	declarations - The style declarations to resolve
	caller_module - The module defining the style
	manifest - Optional manifest to look up local includes (for batch processing)

LiveStyle.Class.Processor.Conditional

Processes conditional CSS declarations into atomic classes.
This module handles declarations with conditional values like pseudo-classes,
media queries, and other at-rules. For example:
[color: [default: "red", ":hover": "blue", "@media (min-width: 768px)": "green"]]
Responsibilities
	Expanding shorthand properties for conditional values
	Applying StyleX's "last media query wins" transformation
	Flattening nested conditional lists
	Generating atomic class entries for each condition

 Summary

 Functions

 transform(declarations, opts \\ [])

 Processes a list of conditional declarations into atomic class entries.

 Functions

 transform(declarations, opts \\ [])

 @spec transform(
 list(),
 keyword()
) :: list()

Processes a list of conditional declarations into atomic class entries.
Returns a list of {css_prop, %{classes: [...]}} tuples containing
the class entries for each condition.
Example
iex> transform([{:color, [default: "red", ":hover": "blue"]}])
[
 {"color", %{
 classes: [
 {:default, %{class: "x1234", value: "red", ...}},
 {":hover", %{class: "x5678", value: "blue", ...}}
]
 }}
]

LiveStyle.Class.Processor.Dynamic

Processes dynamic CSS declarations into atomic classes.
Dynamic classes use CSS variables that are set at runtime via inline styles.
For example, with the default prefix "x", a dynamic opacity class generates CSS like:
.x1234 { opacity: var(--x-opacity); }
The actual value is then set at runtime: style="--x-opacity: 0.5"
The CSS variable prefix is derived from the configured class_name_prefix.

 Summary

 Functions

 transform(props)

 Processes a list of property atoms into dynamic atomic class entries.

 Functions

 transform(props)

 @spec transform([atom()]) :: {list(), String.t()}

Processes a list of property atoms into dynamic atomic class entries.
Returns a tuple of {atomic_classes, class_string} where:
	atomic_classes is a list of {css_prop, entry} tuples with pre-built CSS
	class_string is the space-separated string of all class names

LiveStyle.Class.Processor.PseudoElement

Processes pseudo-element CSS declarations into atomic classes.
This module handles declarations for pseudo-elements like ::before and ::after.
For example: ["::after": [content: "''", display: "block"]]
It also handles conditional values within pseudo-elements:
["::before": [color: [default: "red", ":hover": "blue"]]]
Responsibilities
	Detecting and extracting pseudo-element declarations
	Processing nested properties within pseudo-elements
	Handling conditional values within pseudo-elements
	Generating atomic class entries with pseudo-element selectors

 Summary

 Functions

 transform(declarations, opts \\ [])

 Processes a list of pseudo-element declarations into atomic class entries.

 Functions

 transform(declarations, opts \\ [])

 @spec transform(
 list(),
 keyword()
) :: list()

Processes a list of pseudo-element declarations into atomic class entries.
Returns a list of {key, entry} tuples where each key is a combination of
CSS property and pseudo-element selector.
Example
iex> transform([{"::after", [content: "''", display: "block"]}])
[
 {"content::after", %{class: "x1234", value: "''", ...}},
 {"display::after", %{class: "x5678", value: "block", ...}}
]

LiveStyle.Class.Processor.Simple

Processes simple (non-conditional) CSS declarations into atomic classes.
This module handles the expansion and processing of straightforward CSS property
declarations like [display: "flex", padding: "8px"], converting them into
atomic CSS classes with proper hashing and metadata.
Responsibilities
	Expanding shorthand properties via ShorthandBehavior
	Handling nil values (StyleX unset markers)
	Processing fallback values (arrays and fallback)
	Generating atomic class entries with component parts for CSS generation

 Summary

 Functions

 transform(declarations, opts \\ [])

 Processes a list of simple (non-conditional) declarations into atomic class entries.

 Functions

 transform(declarations, opts \\ [])

 @spec transform(
 list(),
 keyword()
) :: list()

Processes a list of simple (non-conditional) declarations into atomic class entries.
Returns a list of {css_prop, entry} tuples containing:
	:class - The generated class name
	:value - The CSS value
	:priority - Priority for ordering
	:selector_suffix - Optional selector suffix
	:at_rule - Optional at-rule

LTR/RTL CSS is regenerated on demand during CSS rendering.
Options
	:file - Source file path for validation warnings
	:line - Source line number for validation warnings

Example
iex> transform([{:display, "flex"}, {:padding, "8px"}])
[
 {"display", [class: "x1234", value: "flex", priority: 3000]},
 {"padding", [class: "x5678", value: "8px", priority: 3000]}
]

LiveStyle.Compiler

Compiler utilities for LiveStyle.
This module provides functions for working with compiled LiveStyle output,
including CSS generation and class resolution.
CSS Generation
css = LiveStyle.Compiler.generate_css()
=> "@layer live_style { .x1234{display:flex} ... }"
Class Resolution (useful for testing)
Get attrs for a module's styles
attrs = LiveStyle.Compiler.get_css(MyComponent, [:button])

Get class string only
class = LiveStyle.Compiler.get_css_class(MyComponent, [:button])

 Summary

 Functions

 generate_css()

 Generates CSS from all registered styles.

 get_css(module, refs)

 Gets CSS attrs from a module that uses LiveStyle.

 get_css_class(module, refs)

 Gets the class string from a module that uses LiveStyle.

 Functions

 generate_css()

 @spec generate_css() :: String.t()

Generates CSS from all registered styles.
Reads the manifest and generates the complete CSS output.
Useful for testing and build tooling.
Example
css = LiveStyle.Compiler.generate_css()
=> "@layer live_style { .x1234{display:flex} ... }"

 get_css(module, refs)

 @spec get_css(module(), list()) :: LiveStyle.Attrs.t()

 @spec get_css(module(), atom()) :: LiveStyle.Attrs.t()

Gets CSS attrs from a module that uses LiveStyle.
Useful for testing and introspection.
Example
defmodule MyComponent do
 use LiveStyle
 class :button, display: "flex"
end

In tests:
%LiveStyle.Attrs{class: class} = LiveStyle.Compiler.get_css(MyComponent, [:button])

 get_css_class(module, refs)

 @spec get_css_class(module(), list()) :: String.t()

 @spec get_css_class(module(), atom()) :: String.t()

Gets the class string from a module that uses LiveStyle.
Useful for testing and introspection.
Example
defmodule MyComponent do
 use LiveStyle
 class :button, display: "flex"
end

In tests:
class = LiveStyle.Compiler.get_css_class(MyComponent, [:button])

LiveStyle.Compiler.CSS

CSS compilation from LiveStyle manifest.
This is an internal module responsible for compiling the final CSS output
from the manifest. You typically don't use this module directly.
Generated CSS Structure
The CSS output includes (in order, matching StyleX):
	@property rules - For typed CSS variables
	@property rules - For dynamic CSS variables (with inherits: false)
	@keyframes animations - With RTL variants when needed
	CSS custom properties - :root { --var: value; }
	@position-try rules - For CSS Anchor Positioning
	View transition rules - ::view-transition-* pseudo-elements
	Atomic style rules - Sorted by priority, with RTL overrides
	Theme override rules - .theme-class { --var: override; }

Extending the Pipeline
Add custom plugins via configuration:
config :live_style,
 css_plugins: [
 {250, MyAppWeb.CSS.CustomPlugin}
]
See LiveStyle.Compiler.CSS.Plugin for details.
Configuration
CSS output can be configured via LiveStyle.Config:
	use_css_layers: true - Group rules by priority in @layer priorityN blocks (StyleX useLayers: true)
	use_css_layers: false (default) - Use :not(#\#) selector hack (StyleX default)

Writing CSS
Use the mix tasks (mix live_style or mix compile.live_style) to generate CSS files.

 Summary

 Functions

 compile(manifest)

 Compiles complete CSS from the manifest.

 prefix_selector(selector)

 Expands selectors to include vendor-prefixed variants.

 write(path, opts \\ [])

 Writes CSS to a file if it has changed.

 Functions

 compile(manifest)

 @spec compile(LiveStyle.Manifest.t()) :: String.t()

Compiles complete CSS from the manifest.
Runs all registered plugins in priority order and joins their output.

 prefix_selector(selector)

 @spec prefix_selector(String.t()) :: String.t()

Expands selectors to include vendor-prefixed variants.
Delegates to LiveStyle.Selector.Prefixer.prefix/1.
See LiveStyle.Selector.Prefixer for the full list of supported selectors.

 write(path, opts \\ [])

 @spec write(
 String.t(),
 keyword()
) :: {:ok, :written | :unchanged} | {:error, term()}

Writes CSS to a file if it has changed.
Delegates to LiveStyle.Compiler.CSS.Writer.write/2.

LiveStyle.Compiler.CSS.Classes

Generates CSS rules from the manifest's class entries.
This module handles the generation of the main CSS rules for style classes,
including:
	LTR and RTL rule generation
	CSS layer wrapping (optional, matching StyleX's useLayers option)
	Selector building with specificity bumping
	Fallback value processing
	Selector prefixing (e.g., ::thumb, ::placeholder)

Configuration
Behavior is controlled by LiveStyle.Config:
	use_css_layers: true - Group rules by priority in @layer priorityN blocks (StyleX useLayers: true)
	use_css_layers: false (default) - Use :not(#\#) selector hack (StyleX default)

 Summary

 Functions

 generate(manifest)

 Generates all CSS rules from the manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generates all CSS rules from the manifest.
Returns a string containing all CSS rules, wrapped in layers if configured.

LiveStyle.Compiler.CSS.DynamicProperties

Generates @property rules for dynamic CSS variables.
Dynamic classes use CSS variables that are set at runtime via inline styles.
To prevent these variables from being inherited by pseudo-elements (which can
cause unexpected behavior), we generate @property rules with inherits: false.
This matches StyleX's behavior where dynamic styles generate:
@property --x-opacity { syntax: "*"; inherits: false; }
Why inherits: false?
Without this, a pseudo-element like ::before would inherit the CSS variable
value from its parent, which may not be the intended behavior for dynamic styles.
Setting inherits: false ensures each element must explicitly set the variable.

 Summary

 Functions

 generate(manifest)

 Generates @property rules for all dynamic CSS variables in the manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generates @property rules for all dynamic CSS variables in the manifest.
Returns a string containing all @property rules, or empty string if none.

LiveStyle.Compiler.CSS.Keyframes

CSS @keyframes generation for LiveStyle.
This module handles generating @keyframes rules from the manifest,
including RTL variants for animations that use logical properties.
Output Format
Keyframes are output in minified StyleX format:
@keyframes xabc123-B{from{opacity:0;}to{opacity:1;}}
RTL variants are wrapped in html[dir="rtl"]:
html[dir="rtl"]{@keyframes xabc123-B{from{margin-right:0;}to{margin-right:10px;}}}

 Summary

 Functions

 generate(manifest)

 Generate @keyframes CSS from manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generate @keyframes CSS from manifest.

LiveStyle.Compiler.CSS.Pipeline

CSS generation pipeline.
This module orchestrates the transformation from manifest to final CSS output,
including optional stats header.
Pipeline Stages
	Read manifest from storage
	Generate CSS via formatters
	Optionally prepend stats comment

Usage
Generate CSS from current manifest
css = LiveStyle.Compiler.CSS.Pipeline.generate()

Generate without stats
css = LiveStyle.Compiler.CSS.Pipeline.generate(stats: false)

Generate from specific manifest
css = LiveStyle.Compiler.CSS.Pipeline.generate(manifest: my_manifest)

 Summary

 Functions

 generate(opts \\ [])

 Generates CSS content from the manifest.

 stats(manifest)

 Returns statistics about the manifest.

 Functions

 generate(opts \\ [])

 @spec generate(keyword()) :: String.t()

Generates CSS content from the manifest.
Options
	:manifest - Use a specific manifest (default: reads from storage)
	:stats - Include stats comment header (default: true)

Returns
The complete CSS string ready to be written to a file.

 stats(manifest)

 @spec stats(LiveStyle.Manifest.t()) :: keyword()

Returns statistics about the manifest.
Useful for logging after CSS generation.

LiveStyle.Compiler.CSS.Plugin behaviour

Behaviour for CSS plugins in the compilation pipeline.
Each plugin is responsible for generating a specific type of CSS output
from the manifest (e.g., variables, keyframes, atomic rules).
Implementing a Plugin
defmodule MyAppWeb.CSS.CustomPlugin do
 @behaviour LiveStyle.Compiler.CSS.Plugin

 @impl true
 def generate(manifest) do
 # Generate CSS from manifest
 "/* custom CSS */"
 end
end
Registering Plugins
Add custom plugins to the pipeline via configuration:
config :live_style,
 css_plugins: [
 {100, MyAppWeb.CSS.CustomPlugin}
]
The tuple format is {priority, module} where lower priority runs first.
Default Plugins
The default pipeline (in order):
	LiveStyle.Compiler.CSS.Vars - @property rules for typed vars (priority 100)
	LiveStyle.Compiler.CSS.DynamicProperties - @property rules for dynamic vars (priority 150)
	LiveStyle.Compiler.CSS.Vars - :root variables (priority 200)
	LiveStyle.Compiler.CSS.Keyframes - @keyframes (priority 300)
	LiveStyle.Compiler.CSS.PositionTry - @position-try (priority 400)
	LiveStyle.Compiler.CSS.ViewTransitionClasses - view transitions (priority 500)
	LiveStyle.Compiler.CSS.Classes - style classes (priority 600)
	LiveStyle.Compiler.CSS.ThemeClasses - theme overrides (priority 700)

 Summary

 Callbacks

 generate(t)

 Generates CSS output from the manifest.

 Functions

 custom_plugins()

 Returns custom plugins from configuration.

 default_plugins()

 Returns the default plugin pipeline.

 plugins()

 Returns the list of registered plugins, sorted by priority.

 Callbacks

 generate(t)

 @callback generate(LiveStyle.Manifest.t()) :: String.t()

Generates CSS output from the manifest.
Returns a CSS string (may be empty if no relevant content).

 Functions

 custom_plugins()

 @spec custom_plugins() :: [{integer(), {module(), atom()}}]

Returns custom plugins from configuration.
Custom plugins can be specified as:
	{priority, module} - calls module.generate/1
	{priority, {module, :function}} - calls module.function/1

 default_plugins()

 @spec default_plugins() :: [{integer(), {module(), atom()}}]

Returns the default plugin pipeline.
The order matches StyleX:
	@property rules (typed vars)
	@property rules (dynamic vars)
	@keyframes animations
	:root variables
	@position-try rules
	View transition rules
	Atomic style rules
	Theme override rules

 plugins()

 @spec plugins() :: [{integer(), {module(), atom()}}]

Returns the list of registered plugins, sorted by priority.
Each entry is a {priority, {module, function}} tuple.

LiveStyle.Compiler.CSS.PositionTry

Generates CSS @position-try rules from the manifest.
This module handles generation of CSS Anchor Positioning @position-try rules,
which define fallback positions for anchored elements.
Entry Format
Entries from the position_try macro have the format:
[ident: "--xabc123", declarations: [top: "0", left: "anchor(left)"]]

 Summary

 Functions

 generate(manifest)

 Generates all @position-try CSS rules from the manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generates all @position-try CSS rules from the manifest.
Returns a string containing all position-try rules, or an empty string
if there are no position-try entries.

LiveStyle.Compiler.CSS.ThemeClasses

CSS theme override generation for LiveStyle.
This module handles generating theme class override rules from the manifest.
Theme classes allow overriding CSS variable values when the theme class is applied.
Output Format
Theme rules use high-specificity selectors to override variable values:
.t12345,.t12345:root{--v67890:blue;}
Conditional theme values are wrapped in at-rules:
@media (prefers-color-scheme: dark){.t12345,.t12345:root{--v67890:darkblue;}}

 Summary

 Functions

 generate(manifest)

 Generate theme CSS from manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generate theme CSS from manifest.

LiveStyle.Compiler.CSS.Vars

CSS custom property (variable) generation for LiveStyle.
This module handles generating CSS output for:
	@property rules (for typed CSS variables)
	CSS custom property declarations in :root

@property Rules
Typed variables get @property rules for animation support:
@property --color { syntax: "<color>"; inherits: true; initial-value: blue }
CSS Variable Rules
Variables are grouped by their at-rule conditions:
:root{--v12345:blue;--v67890:red;}
@media (prefers-color-scheme: dark){:root{--v12345:lightblue;}}
StyleX Compatibility
Output follows StyleX's minified format:
	No spaces around colons or semicolons
	No newlines between declarations

 Summary

 Functions

 generate_properties(manifest)

 Generate @property rules for typed CSS variables.

 generate_vars(manifest)

 Generate CSS custom property declarations.

 Functions

 generate_properties(manifest)

 @spec generate_properties(LiveStyle.Manifest.t()) :: String.t()

Generate @property rules for typed CSS variables.
Returns a string of @property rules, one per line.

 generate_vars(manifest)

 @spec generate_vars(LiveStyle.Manifest.t()) :: String.t()

Generate CSS custom property declarations.
Groups variables by their at-rule conditions and generates :root blocks.

LiveStyle.Compiler.CSS.ViewTransitionClasses

Generates CSS view transition rules from the manifest.
This module handles generation of ::view-transition-* pseudo-element rules
for the View Transitions API.
Supported Pseudo-Elements
	::view-transition-group(*.name) - The group container
	::view-transition-image-pair(*.name) - Container for old/new images
	::view-transition-old(*.name) - The outgoing snapshot
	::view-transition-new(*.name) - The incoming snapshot

Output Format
Generates minified CSS in StyleX format:
::view-transition-old(*.fade){animation-duration:.5s}::view-transition-new(*.fade){...}

 Summary

 Functions

 generate(manifest)

 Generates all view transition CSS rules from the manifest.

 Functions

 generate(manifest)

 @spec generate(LiveStyle.Manifest.t()) :: String.t()

Generates all view transition CSS rules from the manifest.
Returns a string containing all view transition rules, or an empty string
if there are no view transition entries.

LiveStyle.Compiler.CSS.Writer

File writing operations for LiveStyle CSS output.
This module handles writing CSS content to files with change detection
to avoid unnecessary writes.
Responsibilities
	Writing CSS content to files
	Change detection (skip write if content unchanged)
	Directory creation

For CSS generation, see LiveStyle.Compiler.CSS.Pipeline.

 Summary

 Functions

 write(path, opts \\ [])

 Writes CSS to a file if it has changed.

 write_content(path, css)

 Writes CSS content directly to a file.

 write_if_changed(path, content)

 Writes content to a file only if it differs from existing content.

 Functions

 write(path, opts \\ [])

 @spec write(
 String.t(),
 keyword()
) :: {:ok, :written | :unchanged} | {:error, term()}

Writes CSS to a file if it has changed.
Generates CSS from the current manifest and writes it to the specified path.
Options
	:stats - Include a stats comment at the top of the file (default: true)

Returns
	{:ok, :written} - File was written (content changed or file didn't exist)
	{:ok, :unchanged} - File exists with identical content, no write performed
	{:error, reason} - An error occurred during write

Example
LiveStyle.Compiler.CSS.Writer.write("priv/static/live.css")
LiveStyle.Compiler.CSS.Writer.write("priv/static/live.css", stats: false)

 write_content(path, css)

 @spec write_content(String.t(), String.t()) ::
 {:ok, :written | :unchanged} | {:error, term()}

Writes CSS content directly to a file.
Use this when you already have the CSS content and don't need generation.
Returns
	{:ok, :written} - File was written
	{:ok, :unchanged} - File exists with identical content
	{:error, reason} - An error occurred

 write_if_changed(path, content)

 @spec write_if_changed(String.t(), String.t()) ::
 {:ok, :written | :unchanged} | {:error, term()}

Writes content to a file only if it differs from existing content.
Creates parent directories if they don't exist.
Returns
	{:ok, :written} - File was written
	{:ok, :unchanged} - File exists with identical content
	{:error, reason} - An error occurred

LiveStyle.Config

Configuration management for LiveStyle.
This module provides access to all LiveStyle configuration options.
Complex configuration logic is split into focused submodules:
	LiveStyle.Config.Validation - property validation settings
	LiveStyle.Config.Shorthand - shorthand expansion behavior

Profiles
You can define multiple LiveStyle profiles. By default, there is a
profile called :default which you can configure:
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]
Global Configuration
There are several global configurations for the LiveStyle application:
	:manifest_path - path where the manifest file is stored
(default: "_build/live_style_manifest.etf")

	:shorthand_behavior - the shorthand expansion behavior
(default: LiveStyle.ShorthandBehavior.AcceptShorthands)
Can be specified as:
	An atom: :accept_shorthands, :flatten_shorthands, :forbid_shorthands
	A module: LiveStyle.ShorthandBehavior.AcceptShorthands
	A tuple with options: {MyCustomBehavior, some_option: true}

	:class_name_prefix - prefix for generated class names
(default: "x")

	:debug_class_names - include property names in class names
(default: false)

	:font_size_px_to_rem - convert font-size px values to rem
(default: false)

	:font_size_root_px - root font size for px to rem conversion
(default: 16)

	:use_css_layers - use CSS @layer for specificity control (default: false).
When true, groups rules by priority into @layer priorityN blocks
(matching StyleX's useLayers: true).
When false, uses :not(#\#) selector hack instead (matching StyleX's default)

	:validate_properties - validate CSS property names at compile time (default: true)

	:unknown_property_level - how to handle unknown CSS properties (default: :warn)
	:error - raise compile-time error
	:warn - emit warning with "did you mean?" suggestions
	:ignore - silently ignore

	:vendor_prefix_level - how to handle unnecessary vendor prefixes (default: :warn)
	:warn - emit warning suggesting to use the unprefixed property
	:ignore - silently allow

	:deprecated_property_level - how to handle deprecated CSS properties (default: :warn)
	:warn - emit warning about deprecated property
	:ignore - silently allow

	:prefix_css - function to add vendor prefixes to CSS (default: nil)
	Example: &MyAppWeb.CSS.prefix/2 - should take (property, value) and return CSS string

	:deprecated? - function to check if a property is deprecated (default: nil)
	Example: &MyAppWeb.CSS.deprecated?/1 - should take property name and return boolean

Example Configuration
config/config.exs
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]

Custom manifest path
config :live_style,
 manifest_path: "custom/manifest.etf"

config/dev.exs
config :live_style,
 debug_class_names: true
Compile-Time Only
All style-affecting configuration is compile-time only (like StyleX's Babel plugin config).
Changing these settings requires recompiling your LiveStyle modules.

 Summary

 Functions

 apply_prefix_css(property, value)

 Applies the configured prefix_css function to a property-value pair.

 class_name_prefix()

 Returns the configured class name prefix.

 config_for!(profile)

 Returns the configuration for the given profile.

 debug_class_names?()

 Returns whether debug class names are enabled.

 deprecated?()

 Returns the deprecated? function for checking deprecated CSS properties.

 deprecated_property_level()

 Returns the level of deprecated property handling.

 font_size_px_to_rem?()

 Returns whether font-size px to rem conversion is enabled.

 font_size_root_px()

 Returns the root font size in pixels for px to rem conversion.

 output_path()

 Returns the configured output path for CSS.

 prefix_css()

 Returns the prefix_css function for adding vendor prefixes.

 shorthand_behavior()

 Returns the configured shorthand expansion behavior and options.

 unknown_property_level()

 Returns the level of unknown property handling.

 use_css_layers?()

 Returns whether CSS layers should be used for specificity control.

 validate_properties?()

 Returns whether property validation is enabled.

 vendor_prefix_level()

 Returns the level of vendor prefix property handling.

 Functions

 apply_prefix_css(property, value)

 @spec apply_prefix_css(String.t(), String.t()) :: String.t()

Applies the configured prefix_css function to a property-value pair.
Returns the CSS string. If no prefix_css is configured, returns
the standard "property:value" format.

 class_name_prefix()

 @spec class_name_prefix() :: String.t()

Returns the configured class name prefix.
Default is "x" (matching StyleX). This prefix is used for all generated
class names, variable names, keyframe names, etc.

 config_for!(profile)

Returns the configuration for the given profile.
Raises if the profile does not exist.
Example
LiveStyle.Config.config_for!(:default)
#=> [output: "priv/static/assets/css/live.css", cd: "/path/to/project"]

 debug_class_names?()

 @spec debug_class_names?() :: boolean()

Returns whether debug class names are enabled.
When enabled, class names include the property name for easier debugging:
	Disabled: x1a2b3c4
	Enabled: backgroundColor-x1a2b3c4

Default is false. Enable in development for easier debugging:
config :live_style, debug_class_names: true

 deprecated?()

Returns the deprecated? function for checking deprecated CSS properties.
Used during validation to check if properties are deprecated. Should be a
function that takes a property name and returns a boolean (or nil if unknown).
Default is nil (no deprecation checking).
Configuration
config :live_style, deprecated?: &MyAppWeb.CSS.deprecated?/1
Function Signature
@spec deprecated?(String.t()) :: boolean() | nil

 deprecated_property_level()

Returns the level of deprecated property handling.
When a deprecated CSS property is used (e.g., clip), this setting
controls the behavior. Requires the deprecated? config to be set.
	:warn (default) - Log a warning about the deprecated property
	:ignore - Silently allow deprecated properties

Example:
config :live_style, deprecated_property_level: :ignore

 font_size_px_to_rem?()

 @spec font_size_px_to_rem?() :: boolean()

Returns whether font-size px to rem conversion is enabled.
When enabled, numeric font-size values in px are converted to rem for
better accessibility (respects user's browser font size settings).
Default is false. Enable for accessibility:
config :live_style,
 font_size_px_to_rem: true,
 font_size_root_px: 16 # optional, default is 16

 font_size_root_px()

 @spec font_size_root_px() :: number()

Returns the root font size in pixels for px to rem conversion.
Default is 16 (browser default). Used when font_size_px_to_rem is enabled.

 output_path()

Returns the configured output path for CSS.
This is a convenience function that returns the default profile's output path.
For profile-specific paths, use config_for!/1.

 prefix_css()

Returns the prefix_css function for adding vendor prefixes.
Called during CSS generation to add vendor prefixes. Should be a function
that takes (property, value) and returns a CSS string with any needed prefixes.
Default is nil (no prefixing).
Configuration
config :live_style, prefix_css: &MyAppWeb.CSS.prefix/2
Function Signature
@spec prefix_css(String.t(), String.t()) :: String.t()
Example Implementation
def prefix_css("user-select", value) do
 "-webkit-user-select:#{value};user-select:#{value}"
end
def prefix_css(property, value), do: "#{property}:#{value}"

 shorthand_behavior()

Returns the configured shorthand expansion behavior and options.
Returns a tuple of {module, opts} where opts is a keyword list.
Examples
Default
shorthand_behavior() #=> {LiveStyle.ShorthandBehavior.AcceptShorthands, []}

Using atom shortcut
shorthand_behavior() #=> {LiveStyle.ShorthandBehavior.FlattenShorthands, []}

Custom behavior with options
shorthand_behavior() #=> {MyCustomBehavior, [strict: true]}

 unknown_property_level()

Returns the level of unknown property handling.
	:warn (default) - Log a warning with suggestions
	:error - Raise a CompileError
	:ignore - Silently allow unknown properties

Example:
config :live_style, unknown_property_level: :error

 use_css_layers?()

Returns whether CSS layers should be used for specificity control.
When enabled, CSS rules are grouped by priority level into separate
@layer priorityN blocks. This matches StyleX's useLayers: true behavior.
Priority levels are calculated as div(priority, 1000):
	Priority 0-999 → @layer priority1 (non-style rules like @property, @keyframes)
	Priority 1000-1999 → @layer priority2 (shorthand of shorthands)
	Priority 2000-2999 → @layer priority3 (shorthand of longhands)
	Priority 3000-3999 → @layer priority4 (regular properties)
	Priority 4000-4999 → @layer priority5 (physical longhands)
	Priority 5000+ → @layer priority6+ (pseudo-elements)

When disabled (default), uses the :not(#\#) selector hack instead,
matching StyleX's default behavior.
Enable for StyleX useLayers: true compatibility:
config :live_style, use_css_layers: true

 validate_properties?()

Returns whether property validation is enabled.
When enabled, LiveStyle validates CSS property names at compile time and
warns or errors on unknown properties with "did you mean?" suggestions.
Custom properties (starting with --) are always allowed.
Default is true. Disable if you need to use non-standard properties:
config :live_style, validate_properties: false

 vendor_prefix_level()

Returns the level of vendor prefix property handling.
When a vendor-prefixed property is used (e.g., -webkit-mask-image) and
the configured prefix_css would add that prefix automatically for the
standard property (e.g., mask-image), this setting controls the behavior.
	:warn (default) - Log a warning suggesting to use the standard property
	:ignore - Silently allow vendor-prefixed properties

Example:
config :live_style, vendor_prefix_level: :ignore

LiveStyle.Config.Shorthand

Configuration for CSS shorthand property handling.
Controls how LiveStyle expands shorthand properties like margin, padding, etc.
This is compile-time configuration (like StyleX Babel plugin config).

 Summary

 Functions

 shorthand_behavior()

 Returns the configured shorthand expansion behavior and options.

 Functions

 shorthand_behavior()

 @spec shorthand_behavior() :: {module(), keyword()}

Returns the configured shorthand expansion behavior and options.
Returns a tuple of {module, opts} where opts is a keyword list.
Examples
Default
shorthand_behavior() #=> {LiveStyle.ShorthandBehavior.AcceptShorthands, []}

Using atom shortcut
shorthand_behavior() #=> {LiveStyle.ShorthandBehavior.FlattenShorthands, []}

Custom behavior with options
shorthand_behavior() #=> {MyCustomBehavior, [strict: true]}

LiveStyle.Config.Validation

Configuration for CSS property validation.
Controls how LiveStyle validates property names and handles
unknown, vendor-prefixed, and deprecated properties.
All configuration is compile-time only (like StyleX Babel plugin config).
Changing these settings requires recompilation.

 Summary

 Functions

 deprecated?()

 Returns the deprecated? function for checking deprecated CSS properties.

 deprecated_property_level()

 Returns the level of deprecated property handling.

 unknown_property_level()

 Returns the level of unknown property handling.

 validate_properties?()

 Returns whether property validation is enabled.

 vendor_prefix_level()

 Returns the level of vendor prefix property handling.

 Functions

 deprecated?()

 @spec deprecated?() :: (String.t() -> boolean() | nil) | {module(), atom()} | nil

Returns the deprecated? function for checking deprecated CSS properties.
Used during validation to check if properties are deprecated. Should be a
function that takes a property name and returns a boolean (or nil if unknown).
Default is nil (no deprecation checking).
Configuration
config :live_style, deprecated?: &MyAppWeb.CSS.deprecated?/1
Function Signature
@spec deprecated?(String.t()) :: boolean() | nil

 deprecated_property_level()

 @spec deprecated_property_level() :: :warn | :ignore

Returns the level of deprecated property handling.
When a deprecated CSS property is used (e.g., clip), this setting
controls the behavior. Requires the deprecated? config to be set.
	:warn (default) - Log a warning about the deprecated property
	:ignore - Silently allow deprecated properties

Example:
config :live_style, deprecated_property_level: :ignore

 unknown_property_level()

 @spec unknown_property_level() :: :warn | :error | :ignore

Returns the level of unknown property handling.
	:warn (default) - Log a warning with suggestions
	:error - Raise a CompileError
	:ignore - Silently allow unknown properties

Example:
config :live_style, unknown_property_level: :error

 validate_properties?()

 @spec validate_properties?() :: boolean()

Returns whether property validation is enabled.
When enabled, LiveStyle validates CSS property names at compile time and
warns or errors on unknown properties with "did you mean?" suggestions.
Custom properties (starting with --) are always allowed.
Default is true. Disable if you need to use non-standard properties:
config :live_style, validate_properties: false

 vendor_prefix_level()

 @spec vendor_prefix_level() :: :warn | :ignore

Returns the level of vendor prefix property handling.
When a vendor-prefixed property is used (e.g., -webkit-mask-image) and
the configured prefix_css would add that prefix automatically for the
standard property (e.g., mask-image), this setting controls the behavior.
	:warn (default) - Log a warning suggesting to use the standard property
	:ignore - Silently allow vendor-prefixed properties

Example:
config :live_style, vendor_prefix_level: :ignore

LiveStyle.Consts

Compile-time constants support for LiveStyle.
Constants are values defined at compile time that can be referenced
in style rules. Unlike CSS variables, constants don't generate any
CSS output - they're purely for code organization and reuse.
Examples
defmodule MyAppWeb.Tokens do
 use LiveStyle

 consts breakpoint_sm: "@media (max-width: 640px)",
 breakpoint_lg: "@media (min-width: 1025px)",
 z_modal: "50",
 z_tooltip: "100"
end

Reference in classes
defmodule MyAppWeb.Components do
 use LiveStyle

 class :responsive,
 const({MyAppWeb.Tokens, :breakpoint_sm}) => [display: "none"]
end

 Summary

 Functions

 define(module, consts)

 Defines compile-time constants.

 fetch!(name)

 Fetches a Constant by reference.

 ref(name)

 Gets the Constant reference value.

 Functions

 define(module, consts)

 @spec define(
 module(),
 keyword()
) :: [{atom(), String.t()}]

Defines compile-time constants.
Called internally by the consts macro.
Returns a list of {name, value} tuples for storage in module attributes.

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a Constant by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

 @spec ref(atom() | {module(), atom()}) :: String.t()

Gets the Constant reference value.

LiveStyle.Dev

Development helpers for inspecting and debugging LiveStyle classes.
Note: Functions use show instead of inspect to avoid conflicts with Kernel.inspect/2.
This module provides IEx-friendly functions for exploring style definitions,
understanding how classes merge, and viewing generated CSS.
Usage in IEx
iex> LiveStyle.Dev.show(MyAppWeb.Button, :primary)
:primary
class: x1234 x5678

 background-color: x1234
 color: x5678

iex> LiveStyle.Dev.diff(MyAppWeb.Button, [:base, :primary])
:base
 display: x9abc
 padding: xdef0

:primary
 background-color: x1234
 color: x5678

Merged:
 class: x9abc xdef0 x1234 x5678

iex> LiveStyle.Dev.css(MyAppWeb.Button, [:primary])
".x1234:not(#\\#){background-color:blue}
.x5678:not(#\\#){color:white}"

iex> LiveStyle.Dev.list(MyAppWeb.Button)
[:base, :primary, :secondary, :dynamic_opacity]
Note
These functions read from the compiled manifest. Make sure your modules
are compiled before using these helpers.

 Summary

 Functions

 css(module, class_atoms)

 Returns the generated CSS for the given classes.

 diff(module, class_refs)

 Shows what each class contributes and the merged result.

 list(module)

 Lists all class names defined in a module.

 pp(module, class_name)

 Pretty-prints a class to the console.

 show(module, class_name)

 Shows a single class definition, displaying its properties and generated CSS.

 Functions

 css(module, class_atoms)

 @spec css(module(), [atom()]) :: String.t()

Returns the generated CSS for the given classes.
Returns the raw CSS rules as a string, useful for debugging
what CSS is actually generated for your styles.
Example
iex> LiveStyle.Dev.css(MyAppWeb.Button, [:primary])
".x1234:not(#\\#){background-color:blue}
.x5678:not(#\\#){color:white}"

 diff(module, class_refs)

 @spec diff(module(), [atom() | {atom(), any()}]) :: :ok

Shows what each class contributes and the merged result.
Useful for understanding how multiple classes combine and which
properties override others.
Example
iex> LiveStyle.Dev.diff(MyAppWeb.Button, [:base, :primary])
:base
 display: x9abc
 padding: xdef0

:primary
 background-color: x1234
 color: x5678

Merged:
 class: x9abc xdef0 x1234 x5678

 list(module)

 @spec list(module()) :: [atom()]

Lists all class names defined in a module.
Returns a list of atoms representing the class names.
Example
iex> LiveStyle.Dev.list(MyAppWeb.Button)
[:base, :primary, :secondary]

 pp(module, class_name)

 @spec pp(module(), atom()) :: :ok

Pretty-prints a class to the console.
Alias for show/2 for convenience.

 show(module, class_name)

 @spec show(module(), atom()) :: :ok

Shows a single class definition, displaying its properties and generated CSS.
Prints formatted output to the console showing:
	The generated class string
	Each CSS property and its atomic class name
	Whether the class is dynamic

Example
iex> LiveStyle.Dev.show(MyAppWeb.Button, :primary)
:primary
class: x1234 x5678

 background-color: x1234
 color: x5678

LiveStyle.Hash

Hash generation primitives for LiveStyle.
Uses MurmurHash2 algorithm (matching StyleX) for class name generation.
Output is base36 encoded for compact class names.
The class name prefix can be configured via:
config :live_style, class_name_prefix: "x"
Default is "x" (matching StyleX).
Artifact-Specific Hashing
Each artifact module (Keyframes, Vars, Theme, etc.) has its own private
ident/1 function that calls Hash.create_hash/1 for content-based hashing.

 Summary

 Functions

 atomic_class(property, value, pseudo_element, selector_suffix, at_rule)

 Generates an atomic class name for a CSS property/value pair.

 class_name(property, value, pseudos, at_rules)

 Generates a CSS class name from property, value, pseudos, and at-rules.

 class_prefix()

 Returns the class name prefix from config (default "x").

 create_hash(str)

 Creates a hash string using MurmurHash2, encoded in base36.
This matches StyleX's hash function.

 Functions

 atomic_class(property, value, pseudo_element, selector_suffix, at_rule)

 @spec atomic_class(
 String.t(),
 String.t(),
 String.t() | nil,
 String.t() | nil,
 String.t() | nil
) :: String.t()

Generates an atomic class name for a CSS property/value pair.
Parameters
	property - CSS property name (e.g., "color")
	value - CSS value (e.g., "red")
	pseudo_element - Pseudo-element selector (e.g., "::before") or nil
	selector_suffix - Pseudo-class selector (e.g., ":hover") or nil
	at_rule - At-rule wrapper (e.g., "@media (min-width: 800px)") or nil

Examples
iex> LiveStyle.Hash.atomic_class("color", "red", nil, nil, nil)
"x1abc234"

iex> LiveStyle.Hash.atomic_class("color", "blue", nil, ":hover", nil)
"x2def567"

 class_name(property, value, pseudos, at_rules)

 @spec class_name(String.t(), String.t(), [String.t()], [String.t()]) :: String.t()

Generates a CSS class name from property, value, pseudos, and at-rules.
This matches StyleX's convertStyleToClassName hash generation:
	Input: dashedKey + valueAsString + modifierHashString
	Hash: MurmurHash2 with seed 1
	Output: classNamePrefix + base36(hash)

Examples
iex> LiveStyle.Hash.class_name("display", "flex", [], [])
"xabcdef"

iex> LiveStyle.Hash.class_name("color", "red", [":hover"], [])
"x123456"

 class_prefix()

 @spec class_prefix() :: String.t()

Returns the class name prefix from config (default "x").

 create_hash(str)

 @spec create_hash(String.t()) :: String.t()

Creates a hash string using MurmurHash2, encoded in base36.
This matches StyleX's hash function.

LiveStyle.Hash.Murmur

MurmurHash2 32-bit implementation for LiveStyle.
This is a port of the JavaScript MurmurHash2 implementation used by StyleX.
The algorithm produces stable, well-distributed 32-bit hashes suitable for
generating short, unique class names.
Algorithm
MurmurHash2 is a non-cryptographic hash function designed for speed.
It processes input in 4-byte chunks and produces a 32-bit hash.
JavaScript Compatibility
This implementation carefully matches JavaScript's bitwise semantics:
	32-bit signed integer conversions (like |0)
	Unsigned right shift (>>>)
	Multiplication with implicit truncation

Example
iex> LiveStyle.Hash.Murmur.hash("hello", 1)
613153351

 Summary

 Functions

 hash(str, seed \\ 0)

 Computes the MurmurHash2 32-bit hash of a string.

 Functions

 hash(str, seed \\ 0)

 @spec hash(String.t(), non_neg_integer()) :: non_neg_integer()

Computes the MurmurHash2 32-bit hash of a string.
Parameters
	str - The string to hash
	seed - The seed value (default: 0)

Returns
A 32-bit unsigned integer hash value.
Examples
iex> LiveStyle.Hash.Murmur.hash("hello")
1335831723

iex> LiveStyle.Hash.Murmur.hash("hello", 1)
613153351

LiveStyle.Keyframes

CSS @keyframes animation support for LiveStyle.
This is an internal module that handles the processing of keyframes/2 definitions.
You typically don't use this module directly - instead use LiveStyle with
the keyframes/2 macro.
Features
	Content-based hashing for deterministic animation names
	Frame ordering (from/to/percentage-based)
	StyleX-compatible CSS generation

Example
Define keyframes in a tokens module:
defmodule MyAppWeb.Animations do
 use LiveStyle

 keyframes :spin,
 from: [transform: "rotate(0deg)"],
 to: [transform: "rotate(360deg)"]

 keyframes :fade_in,
 "0%": [opacity: "0"],
 "100%": [opacity: "1"]
end
Reference in a style class:
class :spinner,
 animation: "#{keyframes({MyAppWeb.Animations, :spin})} 1s linear infinite"

 Summary

 Functions

 define(module, name, frames)

 Defines a keyframes animation and stores it in the manifest.

 fetch!(name)

 Fetches a Keyframes by reference.

 ref(name)

 Gets the Keyframes reference value.

 Functions

 define(module, name, frames)

 @spec define(module(), atom(), keyword()) :: {atom(), keyword()}

Defines a keyframes animation and stores it in the manifest.
Parameters
	module - The module defining the keyframes
	name - The atom name for the keyframes
	frames - A map or keyword list of frame definitions

Returns
{name, entry} tuple for storage in module attributes.

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a Keyframes by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the Keyframes reference value.

LiveStyle.Manifest

Manifest structure and operations for LiveStyle.
The manifest stores all CSS artifacts organized by type:
	vars: CSS custom properties
	consts: Compile-time constants (no CSS output)
	keyframes: @keyframes animations
	position_try: @position-try rules
	view_transition_classes: View transition classes
	classes: Style classes (atomic CSS)
	theme_classes: Variable override themes

Each entry is keyed by a fully-qualified name like "MyAppWeb.Tokens.color.white"
for namespaced items or "MyAppWeb.Tokens.spin" for non-namespaced items.
Entry Types
Each entry type has a corresponding module with constructors and accessors:
	LiveStyle.Manifest.VarEntry - CSS custom properties
	LiveStyle.Manifest.KeyframesEntry - @keyframes animations
	LiveStyle.Manifest.ThemeClassEntry - Theme class variable overrides
	LiveStyle.Manifest.PositionTryEntry - @position-try rules
	LiveStyle.Manifest.ViewTransitionClassEntry - View transition classes
	LiveStyle.Manifest.ClassEntry - Style classes (static and dynamic)

 Summary

 Types

 class_entry()

 const_entry()

 keyframes_entry()

 position_try_entry()

 t()

 theme_class_entry()

 var_entry()

 view_transition_class_entry()

 Functions

 current?(arg1)

 Checks if the manifest version is current.

 current_version()

 Returns the current manifest version.

 empty()

 ensure_keys(manifest)

 get_class(manifest, key)

 get_const(manifest, key)

 get_keyframes(manifest, key)

 get_position_try(manifest, key)

 get_theme_class(manifest, key)

 get_var(manifest, key)

 get_view_transition_class(manifest, key)

 key(module, name)

 put_class(manifest, key, entry)

 put_const(manifest, key, entry)

 put_keyframes(manifest, key, entry)

 put_position_try(manifest, key, entry)

 put_theme_class(manifest, key, entry)

 put_var(manifest, key, entry)

 put_view_transition_class(manifest, key, entry)

 Types

 class_entry()

 @type class_entry() :: LiveStyle.Manifest.ClassEntry.t()

 const_entry()

 @type const_entry() :: String.t()

 keyframes_entry()

 @type keyframes_entry() :: LiveStyle.Manifest.KeyframesEntry.t()

 position_try_entry()

 @type position_try_entry() :: LiveStyle.Manifest.PositionTryEntry.t()

 t()

 @type t() :: %{
 version: pos_integer(),
 vars: [{String.t(), var_entry()}],
 consts: [{String.t(), const_entry()}],
 keyframes: [{String.t(), keyframes_entry()}],
 position_try: [{String.t(), position_try_entry()}],
 view_transition_classes: [{String.t(), view_transition_class_entry()}],
 classes: [{String.t(), class_entry()}],
 theme_classes: [{String.t(), theme_class_entry()}]
}

 theme_class_entry()

 @type theme_class_entry() :: LiveStyle.Manifest.ThemeClassEntry.t()

 var_entry()

 @type var_entry() :: LiveStyle.Manifest.VarEntry.t()

 view_transition_class_entry()

 @type view_transition_class_entry() :: LiveStyle.Manifest.ViewTransitionClassEntry.t()

 Functions

 current?(arg1)

 @spec current?(t()) :: boolean()

Checks if the manifest version is current.

 current_version()

 @spec current_version() :: pos_integer()

Returns the current manifest version.

 empty()

 @spec empty() :: t()

 ensure_keys(manifest)

 @spec ensure_keys(term()) :: t()

 get_class(manifest, key)

 get_const(manifest, key)

 get_keyframes(manifest, key)

 get_position_try(manifest, key)

 get_theme_class(manifest, key)

 get_var(manifest, key)

 get_view_transition_class(manifest, key)

 key(module, name)

 @spec key(module(), atom()) :: String.t()

 put_class(manifest, key, entry)

 put_const(manifest, key, entry)

 put_keyframes(manifest, key, entry)

 put_position_try(manifest, key, entry)

 put_theme_class(manifest, key, entry)

 put_var(manifest, key, entry)

 put_view_transition_class(manifest, key, entry)

LiveStyle.Manifest.ClassEntry

Entry structure for style classes.
There are two variants:
	Static classes: have declarations
	Dynamic classes: have all_props

 Summary

 Types

 dynamic_entry()

 static_entry()

 t()

 Functions

 all_props(entry)

 Gets all_props from a dynamic class entry.
Raises if called on a static entry.

 atomic_classes(entry)

 Gets the atomic classes from an entry.

 class_string(entry)

 Gets the class string from an entry.

 declarations(entry)

 Gets the declarations from a static class entry.
Raises if called on a dynamic entry.

 dynamic?(entry)

 Returns true if this is a dynamic class entry.

 new_dynamic(class_string, atomic_classes, all_props)

 Creates a new dynamic class entry.

 new_static(class_string, atomic_classes, declarations)

 Creates a new static class entry.

 Types

 dynamic_entry()

 @type dynamic_entry() :: [
 class_string: String.t(),
 atomic_classes: list(),
 all_props: [atom()]
]

 static_entry()

 @type static_entry() :: [
 class_string: String.t(),
 atomic_classes: list(),
 declarations: keyword()
]

 t()

 @type t() :: static_entry() | dynamic_entry()

 Functions

 all_props(entry)

 @spec all_props(dynamic_entry()) :: [atom()]

Gets all_props from a dynamic class entry.
Raises if called on a static entry.

 atomic_classes(entry)

 @spec atomic_classes(t()) :: list()

Gets the atomic classes from an entry.

 class_string(entry)

 @spec class_string(t()) :: String.t()

Gets the class string from an entry.

 declarations(entry)

 @spec declarations(static_entry()) :: keyword()

Gets the declarations from a static class entry.
Raises if called on a dynamic entry.

 dynamic?(entry)

 @spec dynamic?(t()) :: boolean()

Returns true if this is a dynamic class entry.

 new_dynamic(class_string, atomic_classes, all_props)

 @spec new_dynamic(String.t(), list(), [atom()]) :: dynamic_entry()

Creates a new dynamic class entry.
Parameters
	class_string - The space-separated class names
	atomic_classes - List of atomic class definitions
	all_props - All properties this dynamic class can set

Examples
ClassEntry.new_dynamic("x1abc", [...], [:opacity])

 new_static(class_string, atomic_classes, declarations)

 @spec new_static(String.t(), list(), keyword()) :: static_entry()

Creates a new static class entry.
Parameters
	class_string - The space-separated class names
	atomic_classes - List of atomic class definitions
	declarations - The original style declarations

Examples
ClassEntry.new_static("x1abc x2def", [...], [display: "flex"])

LiveStyle.Manifest.KeyframesEntry

Entry structure for @keyframes animations.

 Summary

 Types

 t()

 Functions

 frames(entry)

 Gets the frames from a keyframes entry.

 ident(entry)

 Gets the ident from a keyframes entry.

 new(ident, frames)

 Creates a new keyframes entry.

 Types

 t()

 @type t() :: [ident: String.t(), frames: list()]

 Functions

 frames(entry)

 @spec frames(t()) :: list()

Gets the frames from a keyframes entry.

 ident(entry)

 @spec ident(t()) :: String.t()

Gets the ident from a keyframes entry.

 new(ident, frames)

 @spec new(String.t(), list()) :: t()

Creates a new keyframes entry.
Parameters
	ident - The CSS animation name (e.g., "x1abc123")
	frames - The keyframe definitions

Examples
KeyframesEntry.new("x1abc123", ["0%": [opacity: 0], "100%": [opacity: 1]])

LiveStyle.Manifest.PositionTryEntry

Entry structure for @position-try rules.

 Summary

 Types

 t()

 Functions

 declarations(entry)

 Gets the declarations from a position-try entry.

 ident(entry)

 Gets the ident from a position-try entry.

 new(ident, declarations)

 Creates a new position-try entry.

 Types

 t()

 @type t() :: [ident: String.t(), declarations: keyword()]

 Functions

 declarations(entry)

 @spec declarations(t()) :: keyword()

Gets the declarations from a position-try entry.

 ident(entry)

 @spec ident(t()) :: String.t()

Gets the ident from a position-try entry.

 new(ident, declarations)

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new position-try entry.
Parameters
	ident - The CSS dashed-ident name (e.g., "--x1abc123")
	declarations - The position-try declarations

Examples
PositionTryEntry.new("--x1abc123", [top: "anchor(bottom)", left: "anchor(left)"])

LiveStyle.Manifest.ThemeClassEntry

Entry structure for theme variable overrides.

 Summary

 Types

 t()

 Functions

 ident(entry)

 Gets the ident from a theme entry.

 new(ident, overrides)

 Creates a new theme entry.

 overrides(entry)

 Gets the overrides from a theme entry.

 Types

 t()

 @type t() :: [ident: String.t(), overrides: list()]

 Functions

 ident(entry)

 @spec ident(t()) :: String.t()

Gets the ident from a theme entry.

 new(ident, overrides)

 @spec new(String.t(), list()) :: t()

Creates a new theme entry.
Parameters
	ident - The theme CSS class name (e.g., "x1abc123")
	overrides - List of {var_ident, value} tuples

Examples
ThemeClassEntry.new("x1abc123", [{"--x-color-primary", "darkblue"}])

 overrides(entry)

 @spec overrides(t()) :: list()

Gets the overrides from a theme entry.

LiveStyle.Manifest.VarEntry

Entry structure for CSS custom properties (variables).

 Summary

 Types

 t()

 Functions

 ident(entry)

 Gets the ident from a var entry.

 new(ident, value, type \\ nil)

 Creates a new var entry.

 type(entry)

 Gets the type info from a var entry.

 value(entry)

 Gets the value from a var entry.

 Types

 t()

 @type t() :: [ident: String.t(), value: String.t() | list(), type: keyword() | nil]

 Functions

 ident(entry)

 @spec ident(t()) :: String.t()

Gets the ident from a var entry.

 new(ident, value, type \\ nil)

 @spec new(String.t(), String.t() | list(), keyword() | nil) :: t()

Creates a new var entry.
Parameters
	ident - The CSS variable identifier (e.g., "--x1abc123")
	value - The variable value (string or list for conditional values)
	type - Optional typed property info (syntax, initial, inherits)

Examples
VarEntry.new("--x1abc123", "blue")
VarEntry.new("--x1abc123", "16px", [syntax: "<length>", initial: "0px", inherits: true])

 type(entry)

 @spec type(t()) :: keyword() | nil

Gets the type info from a var entry.

 value(entry)

 @spec value(t()) :: String.t() | list()

Gets the value from a var entry.

LiveStyle.Manifest.ViewTransitionClassEntry

Entry structure for view transitions.

 Summary

 Types

 t()

 Functions

 ident(entry)

 Gets the ident from a view transition entry.

 new(ident, styles)

 Creates a new view transition entry.

 styles(entry)

 Gets the styles from a view transition entry.

 Types

 t()

 @type t() :: [ident: String.t(), styles: keyword()]

 Functions

 ident(entry)

 @spec ident(t()) :: String.t()

Gets the ident from a view transition entry.

 new(ident, styles)

 @spec new(
 String.t(),
 keyword()
) :: t()

Creates a new view transition entry.
Parameters
	ident - The CSS class name (e.g., "x1abc123")
	styles - The view transition styles (keyed by pseudo-element)

Examples
ViewTransitionClassEntry.new("x1abc123", [
 old: [animation_name: "fadeOut"],
 new: [animation_name: "fadeIn"]
])

 styles(entry)

 @spec styles(t()) :: keyword()

Gets the styles from a view transition entry.

LiveStyle.Marker

Marker class generation for contextual selectors.
Markers are special CSS classes used with LiveStyle.When to create contextual
selectors that style elements based on ancestor, descendant, or sibling state.
Usage
Use LiveStyle.default_marker/0 or LiveStyle.marker/1 from the main
LiveStyle module.
Example
defmodule MyComponent do
 use Phoenix.Component
 use LiveStyle
 alias LiveStyle.When

 class :card,
 transform: [
 {:default, "translateX(0)"},
 {When.ancestor(":hover"), "translateX(10px)"}
]

 def render(assigns) do
 ~H"""
 <div {css(default_marker())}>
 <div {css(:card)}>Hover parent to move me</div>
 </div>
 """
 end
end
Custom Markers
For multiple independent sets of contextual selectors, use custom markers:
class :cell,
 background: [
 {:default, "transparent"},
 {When.ancestor(":hover", marker(:row)), "#eee"}
]

In template:
<tr {css(marker(:row))}>
 <td {css(:cell)}>...</td>
</tr>
Cross-Module Markers
Use {Module, :name} syntax to reference markers from other modules:
In template:
<tr {css(marker({OtherModule, :row}))}>
Different modules using the same marker name get independent markers:
In ComponentA
marker(:row) # Different from ComponentB's :row

In ComponentB
marker(:row) # Different from ComponentA's :row

 Summary

 Types

 t()

 Functions

 default()

 Returns the default marker for use with LiveStyle.When selectors.

 to_class(class)

 Extracts the class string from a marker (struct or string).

 Types

 t()

 @type t() :: %LiveStyle.Marker{class: String.t()}

 Functions

 default()

 @spec default() :: t()

Returns the default marker for use with LiveStyle.When selectors.
This matches StyleX's stylex.defaultMarker() behavior.
Example
<div {css(default_marker())}>
 <div {css(:card)}>Hover parent to move me</div>
</div>

 to_class(class)

 @spec to_class(t() | String.t()) :: String.t()

Extracts the class string from a marker (struct or string).
Used by LiveStyle.When to get the class name for CSS selectors.

LiveStyle.MediaQuery.Transform

Implements StyleX's lastMediaQueryWinsTransform algorithm.
This transforms media queries so that later queries win over earlier ones
by adding upper bounds to earlier min-width queries and lower bounds to
earlier max-width queries.
Example transformation for min-width queries:
 :default => 'red'
 '@media (min-width: 1000px)' => 'blue'
 '@media (min-width: 2000px)' => 'purple'
Becomes:
 :default => 'red'
 '@media (min-width: 1000px) and (max-width: 1999.99px)' => 'blue'
 '@media (min-width: 2000px)' => 'purple'
Example transformation for max-width queries:
 :default => 'red'
 '@media (max-width: 900px)' => 'blue'
 '@media (max-width: 500px)' => 'purple'
Becomes:
 :default => 'red'
 '@media (min-width: 500.01px) and (max-width: 900px)' => 'blue'
 '@media (max-width: 500px)' => 'purple'
Regex patterns compiled at module level for efficiency.

 Summary

 Functions

 transform(value_list)

 Transform a conditional value to implement "last media query wins" semantics.

 Functions

 transform(value_list)

Transform a conditional value to implement "last media query wins" semantics.
Takes a list like:
 [{:default, "red"}, {"@media (min-width: 1000px)", "blue"}, {"@media (min-width: 2000px)", "purple"}]
And returns a sorted list:
 [{:default, "red"}, {"@media (min-width: 1000px) and (max-width: 1999.99px)", "blue"}, {"@media (min-width: 2000px)", "purple"}]

LiveStyle.PositionTry

CSS Anchor Positioning @position-try rule support.
This module handles @position-try at-rules for CSS Anchor Positioning,
which provides fallback positioning for anchored elements.
Browser Support
CSS Anchor Positioning is available in Chromium 125+ (June 2024).
Firefox and Safari do not yet support this feature.
Usage
Define position-try rules in a tokens module or inline:
defmodule MyAppWeb.Positioning do
 use LiveStyle

 position_try :bottom_fallback,
 top: "anchor(bottom)",
 left: "anchor(center)"
end
Or use inline in a style class:
class :tooltip,
 position: "absolute",
 position_anchor: "--trigger",
 position_try_fallbacks: position_try(
 bottom: "anchor(top)",
 left: "anchor(center)"
)
Allowed Properties
Only positioning-related properties are allowed in @position-try rules:
	Position anchor: position_anchor, position_area
	Inset: top, right, bottom, left, inset, inset_block, inset_inline
	Margin: margin, margin_top, margin_inline_start, etc.
	Size: width, height, min_width, max_height, block_size, inline_size
	Self-alignment: align_self, justify_self, place_self

RTL Handling
Position-try rules use CSS properties that are either:
	Physical (top, left, width, height) - no RTL transformation needed
	Logical (inset-inline-start, margin-block) - browser handles RTL automatically

 Summary

 Functions

 define(module, name, declarations)

 Defines a named position-try rule and stores it in the manifest.
Called from the position_try/2 macro.

 define_anonymous(module, declarations)

 Defines an anonymous position-try rule and stores it in the manifest.
Called from the position_try/1 macro with inline declarations.

 fetch!(name)

 Fetches a Position-try by reference.

 ref(name)

 Gets the Position-try reference value.

 Functions

 define(module, name, declarations)

 @spec define(module(), atom(), keyword()) :: {atom(), keyword()}

Defines a named position-try rule and stores it in the manifest.
Called from the position_try/2 macro.
Returns {name, entry} tuple for storage in module attributes.

 define_anonymous(module, declarations)

 @spec define_anonymous(
 module(),
 keyword()
) :: String.t()

Defines an anonymous position-try rule and stores it in the manifest.
Called from the position_try/1 macro with inline declarations.
Returns the generated ident (CSS dashed-ident name).

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a Position-try by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the Position-try reference value.

LiveStyle.Property

CSS property information and lookups.
This module provides compile-time generated function clauses for efficient
property lookups, following the pattern used by the unicode library.
All property data is loaded from external files at compile time via
LiveStyle.PropertyMetadata, enabling:
	O(1) pattern-matched lookups instead of runtime lookups
	Automatic recompilation when data files change
	Single source of truth for property metadata

Property Categories
CSS properties are categorized by their specificity level:
	:shorthands_of_shorthands - Affect many properties (e.g., margin, padding)
	:shorthands_of_longhands - Expand to fewer properties (e.g., margin-block)
	:longhand_logical - Logical longhand properties (default)
	:longhand_physical - Physical longhand properties (e.g., margin-top)

Examples
iex> LiveStyle.Property.category("margin")
:shorthands_of_shorthands

iex> LiveStyle.Property.category("color")
:longhand_logical

 Summary

 Functions

 category(arg1)

 Returns the category of a CSS property.

 disallowed_shorthand?(arg1)

 Returns true if the property is a disallowed shorthand in strict mode.

 position_try?(arg1)

 Returns true if the property is allowed in @position-try rules.

 position_try_properties()

 Returns all position-try properties as a MapSet.

 rtl_value?(arg1)

 Returns true if the property needs value flipping in RTL mode.

 unit_suffix(property)

 Returns the appropriate unit suffix for a numeric value of this property.

 Functions

 category(arg1)

 @spec category(String.t()) :: atom()

Returns the category of a CSS property.
Categories determine property priority in the generated CSS.
Categories
	:shorthands_of_shorthands - Priority 1000 (e.g., margin, padding)
	:shorthands_of_longhands - Priority 2000 (e.g., margin-block, border-color)
	:longhand_logical - Priority 3000 (default for unlisted properties)
	:longhand_physical - Priority 4000 (e.g., margin-top, width)

Examples
iex> LiveStyle.Property.category("margin")
:shorthands_of_shorthands

iex> LiveStyle.Property.category("border-color")
:shorthands_of_longhands

iex> LiveStyle.Property.category("color")
:longhand_logical

iex> LiveStyle.Property.category("width")
:longhand_physical

 disallowed_shorthand?(arg1)

 @spec disallowed_shorthand?(String.t()) :: boolean()

Returns true if the property is a disallowed shorthand in strict mode.
Examples
iex> LiveStyle.Property.disallowed_shorthand?("background")
true

iex> LiveStyle.Property.disallowed_shorthand?("margin")
false

 position_try?(arg1)

 @spec position_try?(String.t()) :: boolean()

Returns true if the property is allowed in @position-try rules.
Examples
iex> LiveStyle.Property.position_try?("top")
true

iex> LiveStyle.Property.position_try?("width")
true

iex> LiveStyle.Property.position_try?("color")
false

 position_try_properties()

Returns all position-try properties as a MapSet.

 rtl_value?(arg1)

 @spec rtl_value?(String.t()) :: boolean()

Returns true if the property needs value flipping in RTL mode.
Properties like float, clear have values that need to be flipped
(e.g., start -> right in RTL). Note that text-align is NOT included
because browsers handle start/end natively.
Examples
iex> LiveStyle.Property.rtl_value?("float")
true

iex> LiveStyle.Property.rtl_value?("clear")
true

iex> LiveStyle.Property.rtl_value?("color")
false

 unit_suffix(property)

 @spec unit_suffix(String.t() | nil) :: String.t()

Returns the appropriate unit suffix for a numeric value of this property.
Examples
iex> LiveStyle.Property.unit_suffix("width")
"px"

iex> LiveStyle.Property.unit_suffix("opacity")
""

iex> LiveStyle.Property.unit_suffix("animation-duration")
"ms"

LiveStyle.Property.Validation

CSS property validation with "did you mean?" suggestions.
Validates property names at compile time and provides helpful suggestions
for typos using string similarity matching. Also warns when vendor-prefixed
properties are used that could be handled automatically by prefix_css,
and when deprecated properties are used.
Configuration
Property validation can be configured in your config.exs:
Enable validation (default: true in dev/test, false in prod)
config :live_style, validate_properties: true

Treat unknown properties as errors (default: :warn)
config :live_style, unknown_property_level: :error # :error | :warn | :ignore

Treat unnecessary vendor prefixes as warnings (default: :warn)
config :live_style, vendor_prefix_level: :warn # :warn | :ignore

Treat deprecated properties as warnings (default: :warn)
config :live_style, deprecated_property_level: :warn # :warn | :ignore

Configure deprecation checking function (any function that returns boolean)
config :live_style, deprecated?: &MyAppWeb.CSS.deprecated?/1
Examples
This will warn with a suggestion:
class :button,
 opactiy: 0.5 # Warning: Unknown CSS property 'opactiy'. Did you mean 'opacity'?

This will warn about vendor prefix:
class :button,
 "-webkit-mask-image": "url(...)" # Warning: Use 'mask-image' instead...

This will warn about deprecated property:
class :button,
 clip: "rect(0,0,0,0)" # Warning: CSS property 'clip' is deprecated...

Custom properties are always allowed:
class :button,
 "--my-custom-prop": "value" # OK

 Summary

 Functions

 find_suggestions(property)

 Finds similar property names for a given unknown property.

 known?(property)

 Checks if a property is a known CSS property.

 known_properties()

 Returns the set of known CSS properties.

 validate(property)

 Validates a property name and returns suggestions if unknown.

 validate!(property, opts \\ [])

 Validates a property and raises or warns based on configuration.

 Functions

 find_suggestions(property)

 @spec find_suggestions(String.t()) :: [String.t()]

Finds similar property names for a given unknown property.
Uses Jaro-Winkler distance for fuzzy matching.
Returns up to 3 suggestions with similarity > 0.8.

 known?(property)

 @spec known?(String.t()) :: boolean()

Checks if a property is a known CSS property.
Custom properties (starting with --) are always considered valid.

 known_properties()

 @spec known_properties() :: MapSet.t(String.t())

Returns the set of known CSS properties.

 validate(property)

 @spec validate(String.t()) :: :ok | {:unknown, [String.t()]}

Validates a property name and returns suggestions if unknown.
Returns:
	:ok if the property is known
	{:unknown, suggestions} if unknown, with up to 3 similar property names

Examples
iex> LiveStyle.Property.Validation.validate("opacity")
:ok

iex> LiveStyle.Property.Validation.validate("opactiy")
{:unknown, ["opacity"]}

iex> LiveStyle.Property.Validation.validate("--custom")
:ok

 validate!(property, opts \\ [])

 @spec validate!(
 String.t(),
 keyword()
) :: :ok

Validates a property and raises or warns based on configuration.
Called during compilation to catch typos early. Also checks for
vendor-prefixed properties that have standard equivalents, and
warns about deprecated properties.

LiveStyle.PropertyMetadata

Compile-time CSS property metadata loading for LiveStyle.
This module loads and caches CSS property data from text files at compile time,
making it available as module attributes for efficient runtime access.
Uses @external_resource tracking for automatic recompilation when
data files change (like the unicode library).

 Summary

 Functions

 disallowed_shorthands()

 disallowed_shorthands_with_messages()

 expand_to_longhands_expansions()

 keep_shorthands_expansions()

 logical_to_ltr()

 logical_to_rtl()

 logical_value_to_ltr()

 logical_value_to_rtl()

 position_try_properties()

 property_priorities()

 pseudo_priorities()

 rtl_value_properties()

 shorthand_properties()

 time_properties()

 unitless_properties()

 Functions

 disallowed_shorthands()

 disallowed_shorthands_with_messages()

 expand_to_longhands_expansions()

 keep_shorthands_expansions()

 logical_to_ltr()

 logical_to_rtl()

 logical_value_to_ltr()

 logical_value_to_rtl()

 position_try_properties()

 property_priorities()

 pseudo_priorities()

 rtl_value_properties()

 shorthand_properties()

 time_properties()

 unitless_properties()

LiveStyle.PropertyMetadata.Parser

Parses data files for LiveStyle CSS property metadata.
Uses compile-time data loading with @external_resource tracking
for automatic recompilation when data files change.
Inspired by the unicode library's approach to data parsing.
Note on String.to_atom Usage
This module uses String.to_atom/1 in several places. This is safe because:
	It runs only at compile time, not at runtime
	The input comes from static data files bundled with the library
	The set of atoms is finite and bounded by the data files
	No user input ever reaches these functions

The atoms are category names, function names, and type identifiers that are
known at compile time and used for pattern matching in generated code.

 Summary

 Functions

 data_dir()

 Returns the path to the data directory.

 data_path(filename)

 Returns the full path to a data file.

 disallowed_shorthands()

 Parses disallowed shorthands from data file.
Returns a MapSet of property names disallowed in strict mode.

 disallowed_shorthands_with_messages()

 Parses disallowed shorthands with their error messages from data file.
Returns a list of {property, message} tuples.

 expand_to_longhands_expansions()

 Parses longhand expansion definitions from data file.
Returns a list of {property, {pattern, longhands}} tuples.

 keep_shorthands_expansions()

 Parses simple expansion definitions from data file.
Returns a list of {function_name, [{property, value_type}, ...]} tuples.

 logical_properties()

 Parses logical properties mappings from data file.
Returns lists of tuples for LTR and RTL transformations.

 logical_values()

 Parses logical values mappings from data file.
Returns lists of tuples for LTR and RTL value transformations.

 position_try_properties()

 Parses position-try properties from data file.
Returns a MapSet of properties allowed in @position-try rules.

 property_priorities()

 Parses property priorities from data file.
Returns a list of {property, category} tuples.

 pseudo_priorities()

 Parses pseudo-class priorities from data file.
Returns a list of {selector, priority} tuples.

 rtl_value_properties()

 Parses RTL value properties from data file.
Returns a MapSet of properties that need value flipping in RTL.

 selector_expansions()

 Parses selector expansions from data file.
Returns a list of {selector, variants} tuples.

 shorthand_properties()

 Parses shorthand expansions from data file.
Returns a list of {property, expansion_fn} tuples.

 time_properties()

 Parses time properties from data file.
Returns a MapSet of property names (in kebab-case) that use time units.

 unitless_properties()

 Parses unitless properties from data file.
Returns a MapSet of property names (in kebab-case) that don't take units.

 Functions

 data_dir()

Returns the path to the data directory.

 data_path(filename)

Returns the full path to a data file.

 disallowed_shorthands()

Parses disallowed shorthands from data file.
Returns a MapSet of property names disallowed in strict mode.

 disallowed_shorthands_with_messages()

Parses disallowed shorthands with their error messages from data file.
Returns a list of {property, message} tuples.

 expand_to_longhands_expansions()

Parses longhand expansion definitions from data file.
Returns a list of {property, {pattern, longhands}} tuples.
Format: property ; pattern ; longhand-1, longhand-2, ...
Used to generate both get_longhand_properties/1 and do_expand_to_longhands/4.

 keep_shorthands_expansions()

Parses simple expansion definitions from data file.
Returns a list of {function_name, [{property, value_type}, ...]} tuples.
Format: source-property ; target-property:value-type, ...
The data file contains pure CSS property relationships.
The code derives function names: expand_<source-property>

 logical_properties()

Parses logical properties mappings from data file.
Returns lists of tuples for LTR and RTL transformations.

 logical_values()

Parses logical values mappings from data file.
Returns lists of tuples for LTR and RTL value transformations.

 position_try_properties()

Parses position-try properties from data file.
Returns a MapSet of properties allowed in @position-try rules.

 property_priorities()

Parses property priorities from data file.
Returns a list of {property, category} tuples.
Category names use kebab-case in the data file and are converted
to snake_case atoms during parsing.

 pseudo_priorities()

Parses pseudo-class priorities from data file.
Returns a list of {selector, priority} tuples.

 rtl_value_properties()

Parses RTL value properties from data file.
Returns a MapSet of properties that need value flipping in RTL.

 selector_expansions()

Parses selector expansions from data file.
Returns a list of {selector, variants} tuples.
Format: standard-selector ; variant-1 ; variant-2 ; ...
Used for cross-browser selector prefixing (e.g., ::placeholder, :fullscreen).

 shorthand_properties()

Parses shorthand expansions from data file.
Returns a list of {property, expansion_fn} tuples.
The data file contains pure CSS property relationships:
	property - has its own expansion function
	property ; canonical - is an alias for canonical property

The code derives function names: expand_<property> or expand_<canonical>

 time_properties()

Parses time properties from data file.
Returns a MapSet of property names (in kebab-case) that use time units.

 unitless_properties()

Parses unitless properties from data file.
Returns a MapSet of property names (in kebab-case) that don't take units.

LiveStyle.Pseudo

CSS pseudo-class and pseudo-element information and lookups.
This module provides compile-time generated function clauses for efficient
pseudo-class priority lookups, following the pattern used by the unicode library.
All pseudo data is loaded from external files at compile time via
LiveStyle.PropertyMetadata, enabling:
	O(1) pattern-matched lookups instead of runtime lookups
	Automatic recompilation when data files change
	Single source of truth for pseudo metadata

Pseudo-Class Priority System
Pseudo-classes have priorities that determine their order in the cascade:
	Lower priority pseudos are applied first
	Higher priority pseudos override lower ones
	:hover (130) < :focus (150) < :active (170)

Pseudo-Element Priority
Pseudo-elements (::before, ::after, etc.) add a base priority of 5000,
which can be combined with pseudo-class priorities.
Examples
iex> LiveStyle.Pseudo.priority(":hover")
130

iex> LiveStyle.Pseudo.priority(":focus")
150

iex> LiveStyle.Pseudo.element_priority()
5000

 Summary

 Functions

 calculate_priority(selector)

 Calculate the total priority for a selector suffix.

 element?(key)

 Checks if the given selector is a pseudo-element (starts with ::).

 element_priority()

 Returns the base priority added for pseudo-elements.

 priorities()

 Returns all pseudo-class priorities as a map.

 priority(arg1)

 Returns the priority of a single pseudo-class.

 Functions

 calculate_priority(selector)

 @spec calculate_priority(String.t() | nil) :: integer()

Calculate the total priority for a selector suffix.
Handles:
	Single pseudo-classes (:hover)
	Combined pseudo-classes (:hover:active)
	Pseudo-elements (::before)
	Pseudo-elements with pseudo-classes (::before:hover)
	Complex selectors (:where(.marker:hover *))

Examples
iex> LiveStyle.Pseudo.calculate_priority(":hover")
130

iex> LiveStyle.Pseudo.calculate_priority(":hover:active")
300

iex> LiveStyle.Pseudo.calculate_priority("::before")
5000

iex> LiveStyle.Pseudo.calculate_priority("::before:hover")
5130

 element?(key)

 @spec element?(String.t() | atom() | nil) :: boolean()

Checks if the given selector is a pseudo-element (starts with ::).
Examples
iex> LiveStyle.Pseudo.element?("::before")
true

iex> LiveStyle.Pseudo.element?(":hover")
false

iex> LiveStyle.Pseudo.element?(nil)
false

 element_priority()

 @spec element_priority() :: integer()

Returns the base priority added for pseudo-elements.
Examples
iex> LiveStyle.Pseudo.element_priority()
5000

 priorities()

Returns all pseudo-class priorities as a map.

 priority(arg1)

 @spec priority(String.t()) :: integer()

Returns the priority of a single pseudo-class.
Uses compile-time generated function clauses for O(1) pattern matching.
Examples
iex> LiveStyle.Pseudo.priority(":hover")
130

iex> LiveStyle.Pseudo.priority(":active")
170

iex> LiveStyle.Pseudo.priority(":unknown")
40

LiveStyle.Pseudo.Sort

Sorting functions for CSS pseudo-classes and pseudo-elements.
This module implements StyleX-compatible sorting for pseudo selectors:
	Pseudo-elements (::before, ::after) act as separators and maintain position
	Pseudo-classes between pseudo-elements are grouped and sorted alphabetically
	default always comes first among pseudo-classes

Examples
iex> LiveStyle.Pseudo.Sort.sort([":hover", ":active"])
[":active", ":hover"]

iex> LiveStyle.Pseudo.Sort.sort_combined(":hover:active")
":active:hover"

 Summary

 Functions

 sort(pseudos)

 Sorts pseudos matching StyleX's sortPseudos behavior exactly.

 sort_combined(combined)

 Splits a combined pseudo string into individual pseudos and sorts them.

 Functions

 sort(pseudos)

 @spec sort([String.t()]) :: [String.t()]

Sorts pseudos matching StyleX's sortPseudos behavior exactly.
StyleX's algorithm:
	Pseudo-elements (::before, ::after) act as separators and stay in their original position
	Pseudo-classes between pseudo-elements are grouped and sorted alphabetically
	'default' always comes first among pseudo-classes

Examples
iex> LiveStyle.Pseudo.Sort.sort([":hover", ":active"])
[":active", ":hover"]

iex> LiveStyle.Pseudo.Sort.sort(["::before", ":hover"])
["::before", ":hover"]

iex> LiveStyle.Pseudo.Sort.sort([":hover", "::before", ":active"])
[":hover", "::before", ":active"]

 sort_combined(combined)

 @spec sort_combined(String.t() | nil) :: String.t() | nil

Splits a combined pseudo string into individual pseudos and sorts them.
StyleX sorts pseudo-classes alphabetically when combined, but pseudo-elements
stay in their original position.
Examples
iex> LiveStyle.Pseudo.Sort.sort_combined(":hover:active")
":active:hover"

iex> LiveStyle.Pseudo.Sort.sort_combined("::before:hover")
"::before:hover"

LiveStyle.Registry

Shared fetch/define pattern for LiveStyle registries.
This module provides a macro that generates the common fetch/1, fetch!/1,
and ref/1 functions used across LiveStyle's definition modules.
Usage
defmodule LiveStyle.Vars do
 use LiveStyle.Registry,
 entity_name: "CSS variable",
 manifest_type: :var,
 ref_field: :ident

 # Module-specific code...
end
Generated Functions
	fetch/1 - Returns {:ok, entry} or {:error, reason}
	fetch!/1 - Returns entry or raises
	ref/1 - Extracts the ref_field from the entry
	store_entry/2 - Helper to store entries in manifest (private)

LiveStyle.Runtime

Runtime helpers for LiveStyle style resolution.
This module handles runtime operations for resolving style references:
	Class string resolution from refs
	Property-based merging (StyleX behavior)
	Dynamic rule processing
	Cross-module reference resolution

Note: Class reference validation is done at compile time by the
class/2 and css/1 macros in LiveStyle.

 Summary

 Functions

 resolve_attrs(module, refs, opts)

 Resolve a list of refs into an Attrs struct with class and style.

 resolve_class_string(module, refs)

 Resolve a list of refs into a class string.

 Functions

 resolve_attrs(module, refs, opts)

 @spec resolve_attrs(module(), list(), keyword() | nil) :: LiveStyle.Attrs.t()

Resolve a list of refs into an Attrs struct with class and style.
Handles both static rules and dynamic rules with CSS variables.
Optionally merges additional inline styles from the opts parameter.
Options
	:style - A keyword list or map of CSS properties to merge into the style.

Validation is done at compile time by the css/1 macro.

 resolve_class_string(module, refs)

 @spec resolve_class_string(module(), list()) :: String.t()

Resolve a list of refs into a class string.
Later refs override earlier ones (StyleX merge behavior).
Validation is done at compile time by the class/2 macro.

LiveStyle.Runtime.Dynamic

Runtime support for dynamic CSS classes.
Dynamic classes have their property_classes embedded at compile time (like StyleX),
and only the CSS variable values are computed at runtime.

 Summary

 Functions

 compute_var_list(all_props, values, module, name, has_computed)

 Computes the CSS variable list for a dynamic class.

 Functions

 compute_var_list(all_props, values, module, name, has_computed)

 @spec compute_var_list(list(), term(), module(), atom(), boolean()) :: list()

Computes the CSS variable list for a dynamic class.
Property classes are stored in @__property_classes__ at compile time,
so we only need to compute the CSS variable values at runtime.
Returns a list of {css_var_name, value} tuples for inline styles.

LiveStyle.Runtime.PropertyMerger

Merges property classes with last-wins semantics.
This module handles the StyleX-compatible merging behavior where:
	Later values override earlier ones for the same property
	:__unset__ removes a property from the accumulator

Merge Semantics
Property classes follow StyleX's merging rules:
	Each CSS property is tracked independently
	The last class for a property wins
	:__unset__ explicitly removes a property

 Summary

 Types

 accumulator()

 prop_classes()

 Functions

 merge(prop_classes, acc)

 Merges property classes into an accumulator.

 merge_prop(arg, acc)

 Merges a single property class into the accumulator.

 to_class_list(acc)

 Extracts the final class list from the accumulator.

 Types

 accumulator()

 @type accumulator() :: [{atom() | String.t(), String.t() | :__unset__}]

 prop_classes()

 @type prop_classes() :: [{atom() | String.t(), String.t() | :__unset__}]

 Functions

 merge(prop_classes, acc)

 @spec merge(prop_classes(), accumulator()) :: accumulator()

Merges property classes into an accumulator.
Parameters
	prop_classes - List of {property, classstring} tuples (or :_unset)
	acc - Current accumulator

Returns
Updated accumulator with merged classes.

 merge_prop(arg, acc)

 @spec merge_prop(
 {atom() | String.t(), String.t() | :__unset__},
 accumulator()
) :: accumulator()

Merges a single property class into the accumulator.
StyleX-compatible behavior: each property key is completely independent.
Only exact key matches conflict - "color" and "color::default" are separate keys.

 to_class_list(acc)

 @spec to_class_list(accumulator()) :: [String.t()]

Extracts the final class list from the accumulator.
Filters out :unset and nil values.

LiveStyle.Runtime.RefResolver

Resolves style references to property class lists.
This module handles the lookup of style references across different formats:
	Atom refs (local to module)
	Module tuple refs (cross-module)
	Dynamic refs (runtime values)

Reference Types
	Atom ref - :button - looks up in the module's property_classes
	Module tuple - {OtherModule, :button} - looks up in another module
	Dynamic ref - {:button, args} - evaluates at runtime with args

Return Values
All resolve functions return a tagged tuple:
	{:static, prop_classes} - Static class list
	{:dynamic, prop_classes, var_list} - Dynamic with property classes and CSS variables
	:skip - Reference should be skipped

 Summary

 Types

 prop_classes()

 resolve_result()

 Functions

 resolve(module, ref, property_classes)

 Resolves a reference to property classes.

 Types

 prop_classes()

 @type prop_classes() :: [{atom(), String.t() | :__unset__}]

 resolve_result()

 @type resolve_result() ::
 {:static, prop_classes()} | {:dynamic, prop_classes(), list()} | :skip

 Functions

 resolve(module, ref, property_classes)

 @spec resolve(module(), term(), keyword()) :: resolve_result()

Resolves a reference to property classes.
Parameters
	module - The module context for resolution
	ref - The reference to resolve
	property_classes_map - The module's property classes lookup

Returns
A tagged tuple indicating the type of resolution result.

LiveStyle.Selector.Prefixer

Expands CSS selectors to include vendor-prefixed variants for cross-browser compatibility.
This module handles selector prefixing for pseudo-elements and pseudo-classes that
require vendor prefixes in different browsers. It mirrors the behavior of autoprefixer's
selector hacks.
Supported Selectors
Pseudo-elements
	::thumb → ::-webkit-slider-thumb, ::-moz-range-thumb, ::-ms-thumb
	::placeholder → ::-webkit-input-placeholder, ::-moz-placeholder, :-ms-input-placeholder
	::file-selector-button → ::-webkit-file-upload-button

Pseudo-classes
	:fullscreen → :-webkit-full-screen, :-moz-full-screen
	:autofill → :-webkit-autofill
	:placeholder-shown → :-moz-placeholder-shown

Examples
iex> LiveStyle.Selector.Prefixer.prefix(".btn::placeholder")
".btn::-webkit-input-placeholder, .btn::-moz-placeholder, .btn:-ms-input-placeholder, .btn::placeholder"

iex> LiveStyle.Selector.Prefixer.prefix(".btn:fullscreen")
".btn:-webkit-full-screen, .btn:-moz-full-screen, .btn:fullscreen"
Configuration
Selector prefixing is always enabled. Unlike property prefixing which depends on
browserslist configuration, selector prefixing provides maximum compatibility by
default since the prefixed selectors don't add significant overhead.

 Summary

 Functions

 prefix(selector)

 Expands a CSS selector to include vendor-prefixed variants.

 Functions

 prefix(selector)

 @spec prefix(String.t()) :: String.t()

Expands a CSS selector to include vendor-prefixed variants.
If the selector contains any of the handled pseudo-elements or pseudo-classes,
it will be expanded to a comma-separated list of all variants.
Selectors that don't need prefixing are returned unchanged.
Examples
iex> LiveStyle.Selector.Prefixer.prefix(".x123::thumb")
".x123::-webkit-slider-thumb, .x123::-moz-range-thumb, .x123::-ms-thumb"

iex> LiveStyle.Selector.Prefixer.prefix(".x123::placeholder")
".x123::-webkit-input-placeholder, .x123::-moz-placeholder, .x123:-ms-input-placeholder, .x123::placeholder"

iex> LiveStyle.Selector.Prefixer.prefix(".x123:hover")
".x123:hover"

iex> LiveStyle.Selector.Prefixer.prefix(".x123:fullscreen")
".x123:-webkit-full-screen, .x123:-moz-full-screen, .x123:fullscreen"

LiveStyle.ShorthandBehavior behaviour

Behaviour and dispatch for shorthand expansion.
LiveStyle supports three built-in behaviors for handling CSS shorthand properties:
	LiveStyle.ShorthandBehavior.AcceptShorthands (default) - Keeps shorthand properties with nil resets
	LiveStyle.ShorthandBehavior.FlattenShorthands - Expands shorthands to their longhand equivalents
	LiveStyle.ShorthandBehavior.ForbidShorthands - Forbids disallowed shorthand properties at compile time

You can also provide a custom module that implements this behaviour.
Configuration
Using atom shortcuts
config :live_style,
 shorthand_behavior: :accept_shorthands

Using module directly
config :live_style,
 shorthand_behavior: LiveStyle.ShorthandBehavior.FlattenShorthands

Custom behavior with options
config :live_style,
 shorthand_behavior: {MyCustomBehavior, strict: true}
Implementing a Custom Behavior
To implement a custom behavior, create a module that implements the
LiveStyle.ShorthandBehavior behaviour. Property keys are CSS strings
(e.g., "margin-top", "background-color").
defmodule MyCustomBehavior do
 @behaviour LiveStyle.ShorthandBehavior

 @impl true
 def expand_declaration(css_property, value) do
 # Return list of {css_property_string, value} tuples
 [{css_property, value}]
 end

 @impl true
 def expand_shorthand_conditions(css_property, conditions) do
 # Return list of {css_property_string, conditions_map} tuples
 [{css_property, conditions}]
 end
end

 Summary

 Callbacks

 expand_declaration(t, any)

 expand_shorthand_conditions(t, keyword)

 Functions

 backend()

 Returns the configured behavior module and options.

 backend_module()

 Returns just the configured behavior module.

 expand_declaration(css_property, value)

 Expands a declaration using the configured behavior.

 expand_shorthand_conditions(css_property, conditions)

 Expands shorthand conditions using the configured behavior.

 Callbacks

 expand_declaration(t, any)

 @callback expand_declaration(String.t(), any()) :: [{String.t(), any()}]

 expand_shorthand_conditions(t, keyword)

 @callback expand_shorthand_conditions(
 String.t(),
 keyword()
) :: [{String.t(), any()}]

 Functions

 backend()

Returns the configured behavior module and options.
Returns a tuple of {module, opts}.

 backend_module()

Returns just the configured behavior module.

 expand_declaration(css_property, value)

Expands a declaration using the configured behavior.
Takes a CSS property string (e.g., "margin", "background-color") and value.
Returns a list of {css_property_string, value} tuples.

 expand_shorthand_conditions(css_property, conditions)

Expands shorthand conditions using the configured behavior.
Takes a CSS property string and a conditions map.
Returns a list of {css_property_string, conditions_map} tuples.

LiveStyle.ShorthandBehavior.AcceptShorthands

Keeps shorthand properties intact with nil resets for longhands.
This is the default behavior. Shorthand properties are preserved,
but conflicting longhand properties are reset to nil to ensure
deterministic cascade behavior.
How It Works
When you use a shorthand like margin: "10px", this behavior:
	Keeps the shorthand as the main value
	Returns the shorthand without nil resets (nils are filtered out)

This ensures that later longhands properly override earlier shorthands
through CSS cascade, while keeping the output minimal.
Example
iex> AcceptShorthands.expand_declaration("margin", "10px")
[{"margin", "10px"}]
Data-Driven Expansions
Expansion mappings are loaded at compile time from data/keep_shorthands_expansions.txt.
This data defines which properties are related to each shorthand and need nil resets
for cascade control.

LiveStyle.ShorthandBehavior.FlattenShorthands

Expands shorthand properties to their constituent longhands.
This behavior fully expands shorthand properties to their individual
longhand properties. For example, margin: "10px 20px" becomes
four separate margin properties.
More verbose CSS output but predictable specificity.
How It Works
When you use a shorthand like margin: "10px 20px", this behavior:
	Parses the multi-value input (CSS box model: top right bottom left)
	Returns individual longhand properties with their computed values

Example
iex> FlattenShorthands.expand_declaration("margin", "10px 20px")
[
 {"margin-top", "10px"},
 {"margin-right", "20px"},
 {"margin-bottom", "10px"},
 {"margin-left", "20px"}
]
Data-Driven Expansions
Expansion patterns are loaded at compile time from data/expand_to_longhands_expansions.txt.
This data defines the multi-value parsing pattern and target longhands for each
supported shorthand property.
Supported patterns:
	4-value - CSS box model (margin, padding, border-width, etc.)
	2-value - Two values (gap, overflow, margin-block, etc.)
	border-radius - Special handling for slash syntax
	list-style - Special parsing for type/position/image

LiveStyle.ShorthandBehavior.ForbidShorthands

Forbids disallowed shorthand properties at compile time.
This behavior raises compile-time errors for shorthand properties that
are ambiguous or could cause cascade issues (like border, background,
animation). Other shorthands like margin, padding pass through.
Error messages are defined in data/disallowed_shorthands.txt to keep
the data centralized and easily maintainable.
Example
iex> ForbidShorthands.expand("margin", "10px")
[{"margin", "10px"}]

iex> ForbidShorthands.expand("border", "1px solid black")
** (ArgumentError) 'border' is not supported...

LiveStyle.Storage

File-based storage for the LiveStyle manifest.
Provides simple file-based manifest persistence using atomic file operations
and file locking for safe concurrent access during compilation.
How It Works
	Reads/writes go directly to the manifest file
	Directory-based file locking prevents race conditions during parallel compilation
	Atomic file operations (write to temp, rename) prevent corruption
	Per-process state provides test isolation

Configuration
Configure the manifest path in your config:
config :live_style,
 manifest_path: "_build/live_style/manifest.etf"
The default path is "_build/live_style/manifest.etf".

 Summary

 Functions

 clear()

 Clears the manifest, resetting to empty state.

 clear_path()

 Clears the per-process path override.

 fork()

 Forks the current manifest into this process for test isolation.

 path()

 Returns the current manifest path.

 process_active?()

 Returns whether this process has an active local manifest.

 read()

 Reads the manifest from storage.

 set_path(path)

 Sets the manifest path for the current process.

 update(fun)

 Atomically updates the manifest.

 write(manifest)

 Writes the manifest to storage.

 Functions

 clear()

 @spec clear() :: :ok

Clears the manifest, resetting to empty state.

 clear_path()

 @spec clear_path() :: :ok

Clears the per-process path override.

 fork()

 @spec fork() :: :ok

Forks the current manifest into this process for test isolation.
After calling this, all operations use the process-local copy.

 path()

 @spec path() :: String.t()

Returns the current manifest path.

 process_active?()

 @spec process_active?() :: boolean()

Returns whether this process has an active local manifest.

 read()

 @spec read() :: LiveStyle.Manifest.t()

Reads the manifest from storage.
Returns an empty manifest if storage is empty or uninitialized.

 set_path(path)

 @spec set_path(String.t()) :: :ok

Sets the manifest path for the current process.

 update(fun)

 @spec update((LiveStyle.Manifest.t() -> LiveStyle.Manifest.t())) :: :ok

Atomically updates the manifest.
The update function receives the current manifest and returns the new manifest.
Uses file locking to prevent race conditions during parallel compilation.

 write(manifest)

 @spec write(LiveStyle.Manifest.t()) :: :ok

Writes the manifest to storage.

LiveStyle.TestCase

Base test case for LiveStyle tests.
This module provides a consistent test environment with:
	Isolated manifest per test (for async test safety)

Usage
defmodule MyTest do
 use LiveStyle.TestCase

 test "example" do
 css = LiveStyle.Compiler.generate_css()
 end
end
How Test Isolation Works
Each test process receives its own copy of the manifest via Storage.fork/0.
This ensures:
	Tests can modify the manifest without affecting other tests
	The shared manifest file remains pristine for module compilation
	No race conditions between test execution and test file loading

Options
	:async - Whether tests can run in parallel (default: true)

Configuration
All LiveStyle configuration is compile-time only (like StyleX's Babel plugin config).
Set configuration in config/config.exs or config/test.exs:
config :live_style,
 class_name_prefix: "x",
 use_css_layers: false,
 debug_class_names: true

LiveStyle.ThemeClass

CSS theme support for variable overrides.
Similar to StyleX's createTheme, this module handles creating theme classes
that override CSS variables defined with vars.
How Themes Work
Themes generate a CSS class that overrides CSS variable values. When applied
to an element, all descendants inherit the overridden values.
/* Generated theme class */
.t1abc23 {
 --v2def45: #000000;
 --v3ghi67: #ffffff;
}
Examples
defmodule MyAppWeb.Tokens do
 use LiveStyle

 # Define variables
 vars text_primary: "#111827",
 fill_page: "#ffffff"

 # Create a dark theme that overrides those variables
 theme_class :dark,
 text_primary: "#f9fafb",
 fill_page: "#111827"
end
Applying Themes
Use theme_class/1 to get the theme class name:
Apply to a container
<div class={theme_class({MyAppWeb.Tokens, :dark})}>
 <!-- Children use dark theme -->
</div>

Conditional theming
<div class={@dark_mode && theme_class({MyAppWeb.Tokens, :dark})}>
 ...
</div>
Theme Scope
Themes are scoped to their container and all descendants.

 Summary

 Functions

 define(module, name, overrides)

 Defines a theme with variable overrides and stores it in the manifest.

 fetch!(name)

 Fetches a Theme class by reference.

 ref(name)

 Gets the Theme class reference value.

 Functions

 define(module, name, overrides)

 @spec define(module(), atom(), keyword()) :: {atom(), keyword()}

Defines a theme with variable overrides and stores it in the manifest.
Called internally by the theme macro.
Returns {name, entry} tuple for storage in module attributes.

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a Theme class by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the Theme class reference value.

LiveStyle.Types

Typed CSS custom property helpers for @property rule generation.
These functions create type specifications for CSS custom properties,
enabling smooth transitions and animations on custom properties.
This module aligns with StyleX's stylex.types API.
Examples
import LiveStyle.Types

vars [
 rotation: angle("0deg"),
 progress: percentage("0%"),
 scale: number(1)
]
Generated CSS
@property --rotation {
 syntax: "<angle>";
 inherits: true;
 initial-value: 0deg;
}

 Summary

 Types

 property_type()

 Functions

 angle(initial)

 Angle type (<angle>).

 any(initial)

 Any type (*).

 color(initial)

 Color type (<color>).

 custom(syntax, initial)

 Creates a property with a custom syntax.

 custom_ident(initial)

 Custom identifier type (<custom-ident>).

 image(initial)

 Image type (<image>).

 integer(initial)

 Integer type (<integer>).

 length(initial)

 Length type (<length>).

 length_percentage(initial)

 Length or percentage type (<length-percentage>).

 no_inherit(property)

 Creates a non-inheriting property type.

 number(initial)

 Number type (<number>).

 percentage(initial)

 Percentage type (<percentage>).

 resolution(initial)

 Resolution type (<resolution>).

 string(initial)

 String type (<string>).

 time(initial)

 Time type (<time>).

 transform_function(initial)

 Transform function type (<transform-function>).

 transform_list(transforms)

 Transform list type (<transform-list>).

 url(initial)

 URL type (<url>).

 Types

 property_type()

 @type property_type() :: [
 syntax: String.t(),
 initial: String.t() | number(),
 inherits: boolean()
]

 Functions

 angle(initial)

 @spec angle(String.t()) :: property_type()

Angle type (<angle>).
Accepts values like 0deg, 90deg, 0.5turn.

 any(initial)

 @spec any(String.t()) :: property_type()

Any type (*).
Accepts any value. Note: properties with * syntax cannot be animated.

 color(initial)

 @spec color(String.t()) :: property_type()

Color type (<color>).
Accepts any valid CSS color value.

 custom(syntax, initial)

 @spec custom(String.t(), String.t() | number()) :: property_type()

Creates a property with a custom syntax.
Use this for complex or union types.
Examples
Types.custom("<length> | auto", "auto")

 custom_ident(initial)

 @spec custom_ident(String.t()) :: property_type()

Custom identifier type (<custom-ident>).
Accepts custom identifiers (unquoted strings).

 image(initial)

 @spec image(String.t()) :: property_type()

Image type (<image>).
Accepts url(), gradient functions, etc.

 integer(initial)

 @spec integer(integer()) :: property_type()

Integer type (<integer>).
Accepts whole numbers only.

 length(initial)

 @spec length(String.t()) :: property_type()

Length type (<length>).
Accepts values like 0px, 1rem, 10vh.

 length_percentage(initial)

 @spec length_percentage(String.t()) :: property_type()

Length or percentage type (<length-percentage>).
Accepts lengths or percentages.

 no_inherit(property)

 @spec no_inherit(property_type()) :: property_type()

Creates a non-inheriting property type.
By default, all properties inherit. Use this to create one that doesn't.
Examples
Types.length("0px") |> Types.no_inherit()

 number(initial)

 @spec number(number()) :: property_type()

Number type (<number>).
Accepts any numeric value (integers or decimals).

 percentage(initial)

 @spec percentage(String.t()) :: property_type()

Percentage type (<percentage>).
Accepts percentage values like 50%, 100%.

 resolution(initial)

 @spec resolution(String.t()) :: property_type()

Resolution type (<resolution>).
Accepts values like 96dpi, 2dppx.

 string(initial)

 @spec string(String.t()) :: property_type()

String type (<string>).
Accepts quoted string values.

 time(initial)

 @spec time(String.t()) :: property_type()

Time type (<time>).
Accepts values like 0ms, 1s, 300ms.

 transform_function(initial)

 @spec transform_function(String.t()) :: property_type()

Transform function type (<transform-function>).
Accepts a single transform function like rotate(45deg).

 transform_list(transforms)

 @spec transform_list([String.t()]) :: property_type()

Transform list type (<transform-list>).
Accepts a list of transform functions.
Examples
Types.transform_list([
 Functions.rotate(Units.deg(45)),
 Functions.scale(1.5)
])

 url(initial)

 @spec url(String.t()) :: property_type()

URL type (<url>).
Accepts URL values.

LiveStyle.Utils

Common utility functions shared across LiveStyle modules.

 Summary

 Functions

 find_last_index(list, pred)

 Finds the last index in a list where the predicate returns true.

 format_declarations(declarations, opts \\ [])

 Formats CSS declarations as a minified string.

 merge_declarations(base, overrides)

 Merges two declaration lists with last-wins semantics.

 sort_conditional_value(value)

 Recursively sorts conditional list keys for deterministic iteration order.

 split_css_value(value)

 Splits a CSS value string on whitespace, respecting parentheses nesting.

 tuple_get(list, key, default \\ nil)

 Gets a value from a tuple list by key.

 tuple_merge(list1, list2)

 Merges two tuple lists with last-wins semantics for duplicate keys.

 tuple_put(list, key, value)

 Puts a value in a tuple list, replacing any existing entry with the same key.

 tuple_put_new(list, key, value)

 Puts a value in a tuple list only if the key doesn't already exist.

 tuple_sort_by_key(list)

 Sorts a tuple list by key for deterministic iteration.

 validate_keyword_list!(value)

 Validates that the input is a keyword list (not a map).

 Functions

 find_last_index(list, pred)

 @spec find_last_index(list(), (any() -> boolean())) :: integer()

Finds the last index in a list where the predicate returns true.
Returns -1 if no element matches.
Examples
iex> LiveStyle.Utils.find_last_index([1, 2, 3, 2], &(&1 == 2))
3

iex> LiveStyle.Utils.find_last_index([1, 2, 3], &(&1 == 5))
-1

 format_declarations(declarations, opts \\ [])

 @spec format_declarations(keyword(), keyword()) :: String.t()

Formats CSS declarations as a minified string.
Converts a map of property/value pairs to minified CSS format (prop:value;).
Options
	:sort - Whether to sort properties alphabetically. Defaults to true.
Set to false to preserve insertion order (for StyleX parity with keyframes
and view-transitions which use JavaScript's Object.entries order).

 merge_declarations(base, overrides)

 @spec merge_declarations(list(), list()) :: list()

Merges two declaration lists with last-wins semantics.
Keys from the second list override keys from the first list.
Order is preserved: base keys first (excluding overridden), then override keys.
Supports both keyword lists (atom keys) and general tuple lists (string keys
for CSS custom properties).
Examples
iex> LiveStyle.Utils.merge_declarations([a: 1, b: 2], [b: 3, c: 4])
[a: 1, b: 3, c: 4]

 sort_conditional_value(value)

 @spec sort_conditional_value(term()) :: term()

Recursively sorts conditional list keys for deterministic iteration order.
Conditional values are keyword lists with keys like :default, "@media ...", etc.
Sorting once at storage time avoids repeated sorting during CSS generation.
Special structures (like fallback tuples and typed var maps) are preserved as-is.
Maps are NOT supported for conditional values - use keyword lists instead.

 split_css_value(value)

 @spec split_css_value(String.t()) :: [String.t()]

Splits a CSS value string on whitespace, respecting parentheses nesting.
This is used for parsing shorthand properties where values may contain
functions like rgb(), calc(), etc.

 tuple_get(list, key, default \\ nil)

 @spec tuple_get([{term(), term()}], term(), term()) :: term()

Gets a value from a tuple list by key.
Similar to Keyword.get/3 but works with any key type.
Examples
iex> LiveStyle.Utils.tuple_get([{:a, 1}, {:b, 2}], :a)
1

iex> LiveStyle.Utils.tuple_get([{:a, 1}], :b)
nil

iex> LiveStyle.Utils.tuple_get([{:a, 1}], :b, :default)
:default

 tuple_merge(list1, list2)

 @spec tuple_merge([{term(), term()}], [{term(), term()}]) :: [{term(), term()}]

Merges two tuple lists with last-wins semantics for duplicate keys.
Values from the second list override values from the first list.
Examples
iex> LiveStyle.Utils.tuple_merge([{:a, 1}, {:b, 2}], [{:b, 3}, {:c, 4}])
[{:a, 1}, {:b, 3}, {:c, 4}]

 tuple_put(list, key, value)

 @spec tuple_put([{term(), term()}], term(), term()) :: [{term(), term()}]

Puts a value in a tuple list, replacing any existing entry with the same key.
Similar to List.keystore/4 but with a simpler API. Maintains insertion order
by appending new keys at the end.
Examples
iex> LiveStyle.Utils.tuple_put([{:a, 1}], :b, 2)
[{:a, 1}, {:b, 2}]

iex> LiveStyle.Utils.tuple_put([{:a, 1}, {:b, 2}], :a, 3)
[{:a, 3}, {:b, 2}]

 tuple_put_new(list, key, value)

 @spec tuple_put_new([{term(), term()}], term(), term()) :: [{term(), term()}]

Puts a value in a tuple list only if the key doesn't already exist.
Similar to Keyword.put_new/3 but works with any key type.
Appends at the end to maintain insertion order.
Examples
iex> LiveStyle.Utils.tuple_put_new([{:a, 1}], :b, 2)
[{:a, 1}, {:b, 2}]

iex> LiveStyle.Utils.tuple_put_new([{:a, 1}], :a, 2)
[{:a, 1}]

 tuple_sort_by_key(list)

 @spec tuple_sort_by_key([{term(), term()}]) :: [{term(), term()}]

Sorts a tuple list by key for deterministic iteration.
Keys are converted to strings for comparison to handle mixed atom/string keys.
Examples
iex> LiveStyle.Utils.tuple_sort_by_key([{:b, 2}, {:a, 1}])
[{:a, 1}, {:b, 2}]

 validate_keyword_list!(value)

 @spec validate_keyword_list!(keyword()) :: keyword()

Validates that the input is a keyword list (not a map).
Maps are not supported because they don't preserve insertion order,
which is required for StyleX-compatible CSS output.
Raises ArgumentError if a map is passed.

LiveStyle.Vars

CSS custom properties (variables) support.
This module handles:
	CSS custom properties (variables) defined with vars
	Typed variables with @property rules for animation support

For compile-time constants, see LiveStyle.Consts.
Examples
defmodule MyAppWeb.Tokens do
 use LiveStyle

 vars primary: "#3b82f6",
 secondary: "#8b5cf6",
 spacing_sm: "8px"
end

Reference in another module
defmodule MyAppWeb.Components do
 use LiveStyle

 class :button,
 color: var({MyAppWeb.Tokens, :primary}),
 padding: var({MyAppWeb.Tokens, :spacing_sm})
end

 Summary

 Functions

 define(module, vars)

 Defines CSS custom properties.

 fetch!(name)

 Fetches a CSS variable by reference.

 ref(name)

 Gets the CSS variable reference value.

 var(name)

 Gets the CSS variable reference wrapped in var() for use in style definitions.

 Functions

 define(module, vars)

 @spec define(
 module(),
 keyword()
) :: [{atom(), keyword()}]

Defines CSS custom properties.
Called internally by the vars macro.
Returns a list of {name, entry} tuples for storage in module attributes.

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a CSS variable by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the CSS variable reference value.

 var(name)

 @spec var(atom() | {module(), atom()}) :: String.t()

Gets the CSS variable reference wrapped in var() for use in style definitions.
This is a convenience function equivalent to "var(#{ref(name)})".
Examples
class :themed,
 color: Vars.var({MyAppWeb.Tokens, :primary})
 # => "var(--vabc123)"

Within the defining module:
class :themed,
 color: Vars.var(:primary)
 # => "var(--vabc123)"

LiveStyle.ViewTransitionClass

CSS View Transitions API support.
View transitions enable smooth animations between different DOM states.
This module handles the generation and storage of view transition class rules
with content-based hashing (StyleX-compatible).
Browser Support
View Transitions are supported in Chrome 111+, Edge 111+, and Safari 18+.
Animations gracefully degrade in unsupported browsers.
Usage
Define view transitions in a tokens module:
defmodule MyAppWeb.Transitions do
 use LiveStyle

 keyframes :scale_in,
 from: [opacity: "0", transform: "scale(0.8)"],
 to: [opacity: "1", transform: "scale(1)"]

 keyframes :scale_out,
 from: [opacity: "1", transform: "scale(1)"],
 to: [opacity: "0", transform: "scale(0.8)"]

 view_transition_class :card,
 old: [
 animation_name: keyframes(:scale_out),
 animation_duration: "200ms"
],
 new: [
 animation_name: keyframes(:scale_in),
 animation_duration: "200ms"
]
end
Apply in templates using css/2 with the style option:
<div {css([:card_styles], style: [
 view_transition_class: view_transition_class(:card),
 view_transition_name: "card-#{@id}"
])}>
Or directly in inline styles:
<div style={"view-transition-class: #{view_transition_class(:card)}; view-transition-name: card-#{@id}"}>
Available Pseudo-element Keys
	:old - ::view-transition-old(name)
	:new - ::view-transition-new(name)
	:group - ::view-transition-group(name)
	:image_pair - ::view-transition-image-pair(name)

Phoenix LiveView Integration
For Phoenix LiveView 1.1.18+, enable view transitions with onDocumentPatch:
const liveSocket = new LiveSocket("/live", Socket, {
 dom: {
 onDocumentPatch(proceed) {
 if (document.startViewTransition) {
 document.startViewTransition(proceed)
 } else {
 proceed()
 }
 }
 }
})

 Summary

 Functions

 define(module, name, styles)

 Defines a named view transition and stores it in the manifest.

 fetch!(name)

 Fetches a View transition class by reference.

 ref(name)

 Gets the View transition class reference value.

 Functions

 define(module, name, styles)

 @spec define(module(), atom(), keyword()) :: {atom(), keyword()}

Defines a named view transition and stores it in the manifest.
Returns {name, entry} tuple for storage in module attributes.

 fetch!(name)

 @spec fetch!(atom() | {module(), atom()}) :: term()

Fetches a View transition class by reference.
Returns the entry. Raises if not found.

 ref(name)

 @spec ref(atom() | {module(), atom()}) :: term()

Gets the View transition class reference value.

LiveStyle.When

Contextual selectors for styling elements based on ancestor, descendant, or sibling state.
These functions generate CSS selectors that allow you to style an element based on
the state of related elements in the DOM tree. They work by using marker classes
that you apply to the elements you want to observe.
Browser Support
Some selectors (sibling_after/2, any_sibling/2, and descendant/2) rely on
the CSS :has() selector. Check browser support at https://caniuse.com/css-has
Using Markers
To use these selectors, you must mark the element being observed with a marker class.
Use LiveStyle.default_marker/0 for the default marker, or LiveStyle.marker/1
for custom markers.
Example
defmodule MyComponent do
 use Phoenix.Component
 use LiveStyle
 alias LiveStyle.When

 # Computed keys require tuple syntax
 class :card,
 transform: [
 {:default, "translateX(0)"},
 {When.ancestor(":hover"), "translateX(10px)"}
]

 def render(assigns) do
 ~H"""
 <div class={LiveStyle.default_marker()}>
 <div {css(:card)}>Hover parent to move me</div>
 </div>
 """
 end
end
Syntax Note
When using LiveStyle.When functions as keys, you must use tuple syntax
instead of keyword list syntax. This is an Elixir language requirement -
keyword lists can only have literal atoms as keys.
Correct - tuple list syntax
class :card,
 opacity: [
 {:default, "1"},
 {When.ancestor(":hover"), "0.5"}
]

 Summary

 Functions

 ancestor(pseudo)

 Creates a selector that styles an element when an ancestor has the given pseudo-state.

 ancestor(pseudo, marker)

 any_sibling(pseudo)

 Creates a selector that styles an element when any sibling has the given pseudo-state.

 any_sibling(pseudo, marker)

 descendant(pseudo)

 Creates a selector that styles an element when a descendant has the given pseudo-state.

 descendant(pseudo, marker)

 sibling_after(pseudo)

 Creates a selector that styles an element when a following sibling has the given pseudo-state.

 sibling_after(pseudo, marker)

 sibling_before(pseudo)

 Creates a selector that styles an element when a preceding sibling has the given pseudo-state.

 sibling_before(pseudo, marker)

 Functions

 ancestor(pseudo)

Creates a selector that styles an element when an ancestor has the given pseudo-state.
The selector matches when any ancestor with the marker class has the specified
pseudo-class active (e.g., :hover, :focus).
Parameters
	pseudo - The pseudo selector (e.g., ":hover", ":focus")
	marker - Optional custom marker class name. Defaults to the configured default marker.

Example
class :item,
 opacity: [
 {:default, "1"},
 {When.ancestor(":hover"), "0.5"}
]
Generates CSS like: .class:where(.{prefix}-default-marker:hover *) { opacity: 0.5; }

 ancestor(pseudo, marker)

 any_sibling(pseudo)

Creates a selector that styles an element when any sibling has the given pseudo-state.
The selector matches when any sibling element (before or after) has the
specified pseudo-class active.
Parameters
	pseudo - The pseudo selector (e.g., ":hover", ":focus")
	marker - Optional custom marker class name. Defaults to the configured default marker.

Example
class :tab,
 opacity: [
 {:default, "1"},
 {When.any_sibling(":hover"), "0.7"}
]
Generates CSS like: .class:where(.{prefix}-default-marker:hover ~ *, :has(~ .{prefix}-default-marker:hover)) { opacity: 0.7; }

 any_sibling(pseudo, marker)

 descendant(pseudo)

Creates a selector that styles an element when a descendant has the given pseudo-state.
The selector matches when any descendant with the marker class has the specified
pseudo-class active.
Parameters
	pseudo - The pseudo selector (e.g., ":hover", ":focus")
	marker - Optional custom marker class name. Defaults to the configured default marker.

Example
class :container,
 border_color: [
 {:default, "gray"},
 {When.descendant(":focus"), "blue"}
]
Generates CSS like: .class:where(:has(.{prefix}-default-marker:focus)) { border-color: blue; }

 descendant(pseudo, marker)

 sibling_after(pseudo)

Creates a selector that styles an element when a following sibling has the given pseudo-state.
The selector matches when a sibling element that comes after this element
in the DOM has the specified pseudo-class active.
Parameters
	pseudo - The pseudo selector (e.g., ":hover", ":focus")
	marker - Optional custom marker class name. Defaults to the configured default marker.

Example
class :label,
 color: [
 {:default, "black"},
 {When.sibling_after(":focus"), "blue"}
]
Generates CSS like: .class:where(:has(~ .{prefix}-default-marker:focus)) { color: blue; }

 sibling_after(pseudo, marker)

 sibling_before(pseudo)

Creates a selector that styles an element when a preceding sibling has the given pseudo-state.
The selector matches when a sibling element that comes before this element
in the DOM has the specified pseudo-class active.
Parameters
	pseudo - The pseudo selector (e.g., ":hover", ":focus")
	marker - Optional custom marker class name. Defaults to the configured default marker.

Example
class :item,
 background_color: [
 {:default, "white"},
 {When.sibling_before(":hover"), "lightblue"}
]
Generates CSS like: .class:where(.{prefix}-default-marker:hover ~ *) { background-color: lightblue; }

 sibling_before(pseudo, marker)

mix compile.live_style

Mix compiler that generates CSS from LiveStyle definitions.
This compiler runs after the standard Elixir compiler and generates
the CSS file from the manifest that was populated during compilation.
Installation
Add to your mix.exs:
def project do
 [
 compilers: Mix.compilers() ++ [:live_style],
 # ...
]
end
Configuration
Configure in your config/config.exs:
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]
What It Does
	Writes the generated CSS to the configured output path
	Reports statistics (vars, keyframes, rules)

Output
The compiler outputs a message like:
LiveStyle: 42 vars, 3 keyframes, 128 rules → priv/static/assets/css/live.css
Related Tasks
	mix live_style.gen.css - Force regenerate CSS with recompilation
	mix live_style default - Run with profile configuration

mix live_style

Invokes LiveStyle CSS generation with the given profile and args.
Usage
$ mix live_style PROFILE [ARGS]

Examples
Generate CSS once
$ mix live_style default

Watch mode for development
$ mix live_style default --watch
Profile Configuration
The profile must be defined in your config files:
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]
Arguments
	--watch - Watch for changes and regenerate CSS automatically

Task Options
Options for the Mix task itself (must be given before the profile):
	--runtime-config - Load the runtime configuration before executing

Example:
$ mix live_style --runtime-config default

Development Watcher
For development, it's typically easier to configure a watcher in your
Phoenix endpoint instead of running this task manually:
config/dev.exs
config :my_app, MyAppWeb.Endpoint,
 watchers: [
 live_style: {LiveStyle, :install_and_run, [:default, ~w(--watch)]}
]

mix live_style.audit

Audits LiveStyle class definitions to find potentially unused classes.
This task scans your codebase for class/2 definitions and checks if
they are referenced anywhere in templates or code.
Usage
mix live_style.audit
mix live_style.audit --path lib/my_app_web
Options
	--path - Directory to scan (default: "lib")
	--format - Output format: "text" or "json" (default: "text")

How It Works
	Finds all modules that use LiveStyle
	Extracts class names defined via class/2
	Searches for references to those classes in .ex, .exs, and .heex files
	Reports classes that have no apparent references

Limitations
	Dynamic class references (e.g., css(assigns.variant)) cannot be detected
	Classes referenced via variables may show as unused
	This is a heuristic tool - manual review is recommended before removing classes

Examples
$ mix live_style.audit

Scanning lib/ for LiveStyle classes...

Found 3 potentially unused classes:

 MyAppWeb.CoreComponents
 :deprecated_button (lib/my_app_web/components/core_components.ex:45)
 :old_card (lib/my_app_web/components/core_components.ex:89)

 MyAppWeb.Layouts
 :legacy_header (lib/my_app_web/components/layouts.ex:12)

$ mix live_style.audit --format json
[{"module":"MyAppWeb.CoreComponents","class":"deprecated_button","file":"...","line":45}]

mix live_style.gen.css

Generates the LiveStyle CSS file with a forced recompilation.
This task clears the manifest, forces a recompilation of all modules,
and generates fresh CSS. Use this when you need to ensure the CSS is
fully regenerated from scratch.
For regular development, the LiveStyle compiler (mix compile) or the
watcher (in config/dev.exs) handles CSS generation automatically.
Usage
mix live_style.gen.css
Options
	--output, -o - Output file path (overrides configured output_path)

Examples
Generate CSS to default location
mix live_style.gen.css

Generate to custom location
mix live_style.gen.css -o assets/css/styles.css
When to Use
Use this task when:
	Setting up LiveStyle for the first time
	CSS appears stale or incorrect
	Debugging CSS generation issues
	Building for production (though mix compile usually suffices)

Configuration
Configure the default output path in your config/config.exs:
config :live_style,
 default: [
 output: "priv/static/assets/css/live.css",
 cd: Path.expand("..", __DIR__)
]
Integration
Add the generated CSS to your root layout:
<link rel="stylesheet" href={~p"/assets/css/live.css"} />

mix live_style.inspect

Inspects LiveStyle class definitions, showing generated CSS and properties.
Usage
mix live_style.inspect MyAppWeb.Button primary
mix live_style.inspect MyAppWeb.Button base primary
mix live_style.inspect MyAppWeb.Button --list
Options
	--css - Show raw CSS output instead of property breakdown
	--list - List all class definitions in the module

Examples
$ mix live_style.inspect MyAppWeb.CoreComponents btn_base

:btn_base
class: x1a2b3c4 x5d6e7f8

 display: x1a2b3c4
 padding: x5d6e7f8

$ mix live_style.inspect MyAppWeb.CoreComponents btn_base btn_primary --css
.x1a2b3c4:not(#\#){display:flex}
.x5d6e7f8:not(#\#){padding:8px 16px}

$ mix live_style.inspect MyAppWeb.CoreComponents --list
Classes in MyAppWeb.CoreComponents:
 :btn_base
 :btn_primary
 :btn_secondary

mix live_style.setup_tests

Pre-compiles test files to register LiveStyle modules in the manifest.
Why This Is Needed
Source files (.ex) are compiled by Mix before your app runs, so their LiveStyle
definitions are in the manifest when needed. Test files (.exs) are different -
they're evaluated by ExUnit at runtime, which can cause race conditions where
tests start before all test modules have registered their styles.
This task compiles test files in a subprocess to populate the manifest before
ExUnit starts, ensuring all LiveStyle definitions are available.
When You Need This
Only add this task if your tests define LiveStyle modules. For example:
defmodule MyAppWeb.ComponentTest do
 use ExUnit.Case

 # This module needs to be in the manifest before tests run
 defmodule TestStyles do
 use LiveStyle
 class :test_button, color: "red"
 end

 test "renders with correct class" do
 # Test uses TestStyles
 end
end
If your tests only use styles defined in lib/ (not define new ones), you
don't need this task.
Setup
Add this task to your test alias in mix.exs:
defp aliases do
 [
 test: ["live_style.setup_tests", "test"]
]
end
Usage
The task runs automatically before tests via the alias:
mix test
Or run manually:
mix live_style.setup_tests

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

