

 live_table

 v0.2.0

 Table of contents

 	Live Table

 	Exports

 	
 Modules

 	LiveTable

 	LiveTable.Boolean

 	LiveTable.Range

 	LiveTable.Select

Live Table

 LiveTable is a powerful Phoenix LiveView component library that provides dynamic, interactive tables with built-in support for sorting, filtering, pagination, and data export capabilities.
 Makes use of Oban, NimbleCSV and Typst to handle exports.
 You can find a table with 1 Million rows here

 Features

	Advanced Filtering System
	Text search across multiple fields
	Range filters for numbers, dates, and datetimes
	Boolean filters with custom conditions
	Select filters with static and dynamic options
	Multi-column filtering support

	Smart Sorting
	Multi-column sorting
	Sortable associated fields
	Customizable sort directions
	Shift-click support for multi-column sorting

	Flexible Pagination
	Configurable page sizes
	Dynamic page navigation
	Efficient database querying

	Export Capabilities
	CSV export with background processing
	PDF export using Typst
	Custom file naming and formatting
	Progress tracking for large exports

	Real-time Updates
	LiveView integration
	Instant filter feedback
	Background job status updates

 Installation

 Add live_table to your list of dependencies in mix.exs:
 def deps do
 [
 {:live_table, "~> 0.2.0"}
]

 Configuration

 Configure LiveTable in your config/config.exs:
 config :live_table,
 repo: YourApp.Repo,
 pubsub: YourApp.PubSub,
 components: YourApp.Components # Optional, defaults to LiveTable.Components

 JavaScript Setup

 Add the following to your assets/js/app.js:
 import { TableHooks } from "../../deps/live_table/priv/static/live-table.js"
 let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 hooks: TableHooks
 })

 CSS Setup

Add the following to your assets/tailwind.config.js:
content: [
 // Other paths
 "../deps/live_table/priv/static/*.js",
 "../deps/live_table/**/*.*ex"
]
And add the following to your assets/css/app.css:
@import "../../deps/live_table/priv/static/live-table.css";

 Oban

Configure your Oban instance and queues in your config/config.exs:
config/config.exs
config :live_table, Oban,
 repo: YourApp.Repo,
 engine: Oban.Engines.Basic,
 notifier: Oban.Notifiers.Postgres,
 plugins: [Oban.Plugins.Pruner],
 queues: [exports: 10]
 # the queue named `exports` will be used for export jobs
Oban Web: Optional
You can configure oban web in your router to monitor the background jobs.
 # lib/your_app_web/router.ex
 import Oban.Web.Router

 scope "/", YouAppWeb do
 # your other routes
 oban_dashboard("/oban")
 end
Note: Remember to add exports to your list of allowed static_paths in lib/app_web.ex

def static_paths, do: ~w(assets fonts images favicon.ico exports robots.txt)

 Basic Usage

 In your LiveView add the line use LiveTable.LiveResource:
 Define your fields and filters as required.
 #/app_web/live/user_live/index.ex
 defmodule MyAppWeb.UserLive.Index do
 use MyAppWeb, :live_view
 use LiveTable.LiveResource, resource: "users", schema: User # Add this line

 # Define fields
 def fields do
 [
 id: %{label: "ID", sortable: true},
 name: %{label: "Name", sortable: true, searchable: true},
 email: %{label: "Email", sortable: true, searchable: true},

 # Include fields from associations
 supplier: %{
 label: "Supplier",
 sortable: true,
 searchable: true,
 assoc: {:supplier, :name}
 }
]
 end

 # Define filters
 def filters do
 [
 # Boolean filter
 active: Boolean.new(:active, "active", %{
 label: "Active Users",
 condition: dynamic([q], q.active == true)
 }),

 # Range filter
 age: Range.new(:age, "age", %{
 type: :number,
 label: "Age Range",
 min: 0,
 max: 100
 }),

 # Select filter with dynamic options
 supplier: Select.new({:suppliers, :name}, "supplier", %{
 label: "Supplier",
 options_source: {YourApp.Suppliers, :search_suppliers, []}
 })
]
 end
 #/app_web/live/user_live/index.html.heex
 # in your view:
 <.live_table
 fields={fields()}
 filters={filters()}
 options={@options}
 streams={@streams}
 />
Note: Using shift + click on a column header will sort by multiple columns.

 Filter Types

 Boolean Filter

 Boolean.new(:active, "active_filter", %{
 label: "Show Active Only",
 condition: dynamic([p], p.active == true)
 })

 Range Filter

 Range.new(:price, "price_range", %{
 type: :number,
 label: "Price Range",
 min: 0,
 max: 1000,
 step: 10
 })

 Select Filter

 Select.new(:category, "category_select", %{
 label: "Category",
 options: [
 %{label: "Electronics", value: [1, "Electronics"]},
 %{label: "Books", value: [2, "Books"]}
]
 })

 Defining your fields

 Normal Fields

 The fields you want should be defined under the fields() function. This function needs to be passed to the live_table component in the template.
 A basic guide to defining fields is as follows:
 Define them as a keyword list, with the key being the name of the field (which will appear in the url and be used to reference the field) and a map of options which will contain more data about the field.
 For eg,
 def fields() do
 [
 id: %{label: "ID", sortable: true},
 name: %{label: "Name", sortable: true, searchable: true},
 email: %{label: "Email", sortable: true, searchable: true},
]
 end
 The map contains the label, and config for sort and search. The label will be the column header in the table and the exported CSV/PDF.
 Only fields with sortable: true will have a sortable link generated as the column header.
 All fields with searchable: true will be searched from the search bar using the ILIKE operator.

 Associated Fields

 For associated fields, you can use the assoc key to specify the association, with a tuple containing the table name and the field.
 For eg,
 def fields() do
 [
 id: %{label: "ID", sortable: true},
 supplier: %{
 label: "Supplier",
 sortable: true,
 searchable: true,
 assoc: {:supplier, :name}
 },
 supplier_description: %{
 label: "Supplier Email",
 assoc: {:suppliers, :contact_info},
 searchable: false,
 sortable: true
 },
 category_name: %{
 label: "Category Name",
 assoc: {:category, :name},
 searchable: false,
 sortable: false
 },
 image: %{
 label: "Image",
 sortable: false,
 searchable: false,
 assoc: {:image, :url}
 },
]
 end
 Be it any type of association, you can join using the assoc key.

 Computed Fields

 You can also define computed fields, which are fields that are not present in the database but are computed using a function.
 This is useful in cases like calculating the total price of a product based on the quantity and price.
 Such fields require a computed: key, which should get a dynamic query expression.
 Since it is a dynamic query, you can use it to alias associated fields and use them inside the fragment.
 For eg,
 def fields() do
 [
 amount: %{
 label: "Amount",
 sortable: true,
 searchable: false,
 computed: dynamic([resource: r, suppliers: s, categories: c], fragment("? * ?", r.price, r.stock_quantity))
 }
]
 end
 If the field has not already been joined by a previous field, you can join it in the computed field itself.
 For eg,
 def fields() do
 [
 amount: %{
 label: "Amount",
 sortable: true,
 searchable: false,
 assoc: {:image, :url}
 computed: dynamic([resource: r, images: i], fragment("? * ?", r.price, r.stock_quantity)),
 }
]
 end

 Defining your filters

 Your filters should be defined under the filters() function. This function needs to be passed to the live_table component in the template.
 A basic guide to defining them is as follows:
 Define them as a keyword list, with the key being the name of the filter (which will appear in the url and be used to reference the filter) and a map of options which will contain more info about the filter.
 Each filter is defined by a struct of the corresponding filter type. The struct should be created using the new() function of the filter type.
 The struct takes 3 arguments, the field the filter should act on, a key referencing the filter(to be used in the url), and a map of options which will contain more info about the filter.
 As a general rule of thumb, the field should be the name of the field as an atom(in case of a normal field) or a tuple containing the table name and the field name(in case of an associated field).
 A detailed guide for defining each type of filter has been provided in its corresponding module.

 License

 MIT License. See LICENSE file for details.

 Contributing

	Fork the repository
	Create your feature branch (git checkout -b feature/amazing-feature)
	Commit your changes (git commit -m 'Add amazing feature')
	Push to the branch (git push origin feature/amazing-feature)
	Open a Pull Request

Exports

 Export Support

LiveTable supports both CSV and PDF exports with background processing.
It uses Oban to handle bakground jobs, so that export file can be prepared without hanging the LiveView.
	CSV exports are handled by LiveTable.CsvGenerator.
Makes use of NimbleCSV under the hood.
	PDF exports use Typst for formatting and generation. Handled by LiveTable.PdfGenerator

The headers are the same as that rendered by the table. By default, all records are exported without pagination.

 Configuration

 Oban

Configure your Oban instance and queues in your config.exs:
config/config.exs
config :live_table, Oban,
 repo: YourApp.Repo,
 engine: Oban.Engines.Basic,
 notifier: Oban.Notifiers.Postgres,
 plugins: [Oban.Plugins.Pruner],
 queues: [exports: 10]
 # the queue named `exports` will be used for export jobs
Oban Web: Optional
You can configure oban web in your router to monitor the background jobs.
 # lib/your_app_web/router.ex
 import Oban.Web.Router

 scope "/", YouAppWeb do
 # your other routes
 oban_dashboard("/oban")
 end
Note: Remember to add exports to your list of allowed static paths in lib/app_web.ex

def static_paths, do: ~w(assets fonts images favicon.ico exports robots.txt)

 CSV Exports

LiveTable uses NimbleCSV in conjunction with Oban for handling CSV exports.
Records are streamed inside of a Repo.transaction/2 function using Repo.stream/2,
so that no more than a 1000 records are loaded into memory at a time.
This makes it extremely efficient and blazing fast for exporting large datasets, all the while remaining scalable.

 PDF Exports

LiveTable uses Typst in conjunction with Oban for handling PDF exports.
Typst is a Rust based typesetting engine that generates PDFs from .tp files
This makes it extremely fast and well suited to handle large datasets.
Records are streamed inside of a Repo.transaction/2 function using Repo.stream/2,
so that no more than a 500 records are loaded into memory at a time.
Note: LiveTable uses System.cmd/2 to compile the .tp file into a PDF. Ensure that you have typst installed on your system.

LiveTable

 LiveTable is a powerful Phoenix LiveView component library that provides dynamic, interactive tables with built-in support for sorting, filtering, pagination, and data export capabilities.
 Makes use of Oban, NimbleCSV and Typst to handle exports.
You can find a table with 1 Million rows here

 Features

	Advanced Filtering System
	Text search across multiple fields
	Range filters for numbers, dates, and datetimes
	Boolean filters with custom conditions
	Select filters with static and dynamic options
	Multi-column filtering support

	Smart Sorting
	Multi-column sorting
	Sortable associated fields
	Customizable sort directions
	Shift-click support for multi-column sorting

	Flexible Pagination
	Configurable page sizes
	Dynamic page navigation
	Efficient database querying

	Export Capabilities
	CSV export with background processing
	PDF export using Typst
	Custom file naming and formatting
	Progress tracking for large exports

	Real-time Updates
	LiveView integration
	Instant filter feedback
	Background job status updates

 Installation

 Add live_table to your list of dependencies in mix.exs:
 def deps do
 [
 {:live_table, "~> 0.2.0"}
]

 Configuration

 Configure LiveTable in your config/config.exs:
 config :live_table,
 repo: YourApp.Repo,
 pubsub: YourApp.PubSub,
 components: YourApp.Components # Optional, defaults to LiveTable.Components

 JavaScript Setup

 Add the following to your assets/js/app.js:
 import { TableHooks } from "../../deps/live_table/priv/static/live-table.js"
 let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 hooks: TableHooks
 })

 CSS Setup

Add the following to your assets/tailwind.config.js:
content: [
 // Other paths
 "../deps/live_table/priv/static/*.js",
 "../deps/live_table/**/*.*ex"
]
And add the following to your assets/css/app.css:
@import "../../deps/live_table/priv/static/live-table.css";

 Oban

Configure your Oban instance and queues in your config/config.exs:
config/config.exs
config :live_table, Oban,
 repo: YourApp.Repo,
 engine: Oban.Engines.Basic,
 notifier: Oban.Notifiers.Postgres,
 plugins: [Oban.Plugins.Pruner],
 queues: [exports: 10]
 # the queue named `exports` will be used for export jobs
Oban Web: Optional
You can configure oban web in your router to monitor the background jobs.
 # lib/your_app_web/router.ex
 import Oban.Web.Router

 scope "/", YouAppWeb do
 # your other routes
 oban_dashboard("/oban")
 end
Note: Remember to add exports to your list of allowed static_paths in lib/app_web.ex

def static_paths, do: ~w(assets fonts images favicon.ico exports robots.txt)

 Basic Usage

 In your LiveView add the line use LiveTable.LiveResource:
 Define your fields and filters as required.
 #/app_web/live/user_live/index.ex
 defmodule MyAppWeb.UserLive.Index do
 use MyAppWeb, :live_view
 use LiveTable.LiveResource, resource: "users", schema: User # Add this line

 # Define fields
 def fields do
 [
 id: %{label: "ID", sortable: true},
 name: %{label: "Name", sortable: true, searchable: true},
 email: %{label: "Email", sortable: true, searchable: true},

 # Include fields from associations
 supplier: %{
 label: "Supplier",
 sortable: true,
 searchable: true,
 assoc: {:supplier, :name}
 }
]
 end

 # Define filters
 def filters do
 [
 # Boolean filter
 active: Boolean.new(:active, "active", %{
 label: "Active Users",
 condition: dynamic([q], q.active == true)
 }),

 # Range filter
 age: Range.new(:age, "age", %{
 type: :number,
 label: "Age Range",
 min: 0,
 max: 100
 }),

 # Select filter with dynamic options
 supplier: Select.new({:suppliers, :name}, "supplier", %{
 label: "Supplier",
 options_source: {YourApp.Suppliers, :search_suppliers, []}
 })
]
 end
 #/app_web/live/user_live/index.html.heex
 # in your view:
 <.live_table
 fields={fields()}
 filters={filters()}
 options={@options}
 streams={@streams}
 />
Note: Using shift + click on a column header will sort by multiple columns.

 Filter Types

 Boolean Filter

 Boolean.new(:active, "active_filter", %{
 label: "Show Active Only",
 condition: dynamic([p], p.active == true)
 })

 Range Filter

 Range.new(:price, "price_range", %{
 type: :number,
 label: "Price Range",
 min: 0,
 max: 1000,
 step: 10
 })

 Select Filter

 Select.new(:category, "category_select", %{
 label: "Category",
 options: [
 %{label: "Electronics", value: [1, "Electronics"]},
 %{label: "Books", value: [2, "Books"]}
]
 })

 Defining your fields

 Normal Fields

 The fields you want should be defined under the fields() function. This function needs to be passed to the live_table component in the template.
 A basic guide to defining fields is as follows:
 Define them as a keyword list, with the key being the name of the field (which will appear in the url and be used to reference the field) and a map of options which will contain more data about the field.
 For eg,
 def fields() do
 [
 id: %{label: "ID", sortable: true},
 name: %{label: "Name", sortable: true, searchable: true},
 email: %{label: "Email", sortable: true, searchable: true},
]
 end
 The map contains the label, and config for sort and search. The label will be the column header in the table and the exported CSV/PDF.
 Only fields with sortable: true will have a sortable link generated as the column header.
 All fields with searchable: true will be searched from the search bar using the ILIKE operator.

 Associated Fields

 For associated fields, you can use the assoc key to specify the association, with a tuple containing the table name and the field.
 For eg,
 def fields() do
 [
 id: %{label: "ID", sortable: true},
 supplier: %{
 label: "Supplier",
 sortable: true,
 searchable: true,
 assoc: {:supplier, :name}
 },
 supplier_description: %{
 label: "Supplier Email",
 assoc: {:suppliers, :contact_info},
 searchable: false,
 sortable: true
 },
 category_name: %{
 label: "Category Name",
 assoc: {:category, :name},
 searchable: false,
 sortable: false
 },
 image: %{
 label: "Image",
 sortable: false,
 searchable: false,
 assoc: {:image, :url}
 },
]
 end
 Be it any type of association, you can join using the assoc key.

 Computed Fields

 You can also define computed fields, which are fields that are not present in the database but are computed using a function.
 This is useful in cases like calculating the total price of a product based on the quantity and price.
 Such fields require a computed: key, which should get a dynamic query expression.
 Since it is a dynamic query, you can use it to alias associated fields and use them inside the fragment.
 For eg,
 def fields() do
 [
 amount: %{
 label: "Amount",
 sortable: true,
 searchable: false,
 computed: dynamic([resource: r, suppliers: s, categories: c], fragment("? * ?", r.price, r.stock_quantity))
 }
]
 end
 If the field has not already been joined by a previous field, you can join it in the computed field itself.
 For eg,
 def fields() do
 [
 amount: %{
 label: "Amount",
 sortable: true,
 searchable: false,
 assoc: {:image, :url}
 computed: dynamic([resource: r, images: i], fragment("? * ?", r.price, r.stock_quantity)),
 }
]
 end

 Defining your filters

 Your filters should be defined under the filters() function. This function needs to be passed to the live_table component in the template.
 A basic guide to defining them is as follows:
 Define them as a keyword list, with the key being the name of the filter (which will appear in the url and be used to reference the filter) and a map of options which will contain more info about the filter.
 Each filter is defined by a struct of the corresponding filter type. The struct should be created using the new() function of the filter type.
 The struct takes 3 arguments, the field the filter should act on, a key referencing the filter(to be used in the url), and a map of options which will contain more info about the filter.
 As a general rule of thumb, the field should be the name of the field as an atom(in case of a normal field) or a tuple containing the table name and the field name(in case of an associated field).
 A detailed guide for defining each type of filter has been provided in its corresponding module.

 License

 MIT License. See LICENSE file for details.

 Contributing

	Fork the repository
	Create your feature branch (git checkout -b feature/amazing-feature)
	Commit your changes (git commit -m 'Add amazing feature')
	Push to the branch (git push origin feature/amazing-feature)
	Open a Pull Request

LiveTable.Boolean

 A module for handling boolean (checkbox) filters in LiveTable.
 This module provides functionality for creating and managing boolean filters implemented
 as checkboxes in the LiveTable interface. It's designed to handle simple true/false
 filtering scenarios with customizable options and conditions.

 Options

The boolean filter accepts the following options:
	:label - The text label displayed next to the checkbox
	:condition - The Ecto query condition to be applied when the checkbox is checked (a dynamic query)
	:class - Optional CSS classes for the checkbox

 Examples

Creating a basic boolean filter for active status
Boolean.new(:active, "active_filter", %{
 label: "Show Active Only",
 condition: dynamic([p], p.active == true)
})

Creating a boolean filter with a complex condition
Boolean.new(:premium, "premium_filter", %{
 label: "Premium Users",
 condition: dynamic([p], p.subscription_level == "premium" and p.active == true)
})
Since the condition is a dynamic query, you can give conditions using joined fields as well.
Boolean.new(
 :supplier_email,
 "supplier",
 %{
 label: "Email",
 condition: dynamic([p, s], s.contact_info == "procurement@autopartsdirect.com")
 }
)
Note: Remember to use aliases in the same order you defined your fields.

LiveTable.Range

A module for handling range-based filters in LiveTable.
This module provides functionality for creating and managing range filters that can handle
numeric values, dates, and datetimes. It supports creating range sliders with customizable
options and appearances.
Makes use of nouislider under the hood for creating the range slider.
See the noUiSlider documentation for more details
on customizing the slider behavior and appearance.
Note: Requires the TableHooks to be imported in your app.js

 Options

The module accepts the following options:
	:type - The type of range filter (:number, :date, or :datetime)
	:label - The label text for the range filter
	:unit - The unit to display after the label (optional)
	:css_classes - CSS classes for the main container
	:slider_classes - CSS classes for the slider element
	:label_classes - CSS classes for the label element

For default values, see: LiveTable.Range source code

 Types Support

The module supports three types of range filters:
	:number - For numeric ranges
	:date - For date ranges
	:datetime - For datetime ranges

 :number

For numeric ranges with configurable min, max and step values:
Range.new(:price, "price_range", %{
 type: :number,
 label: "Price",
 default_min: 0,
 default_max: 1000,
 step: 10
})
Renders a range filter with from 0 to 1000 with a step of 10.

 :date

For date ranges with customizable date boundaries:
Range.new(:created_at, "date_range", %{
 type: :date,
 label: "Creation Date",
 default_min: ~D[2024-01-01],
 default_max: ~D[2024-12-31]
})
Renders a date range filter with dates from 2024-01-01 to 2024-12-31.

 :datetime

For datetime ranges with configurable datetime boundaries:
Range.new(:updated_at, "datetime_range", %{
 type: :datetime,
 label: "Last Updated",
 default_min: ~N[2024-01-01 00:00:00],
 default_max: ~N[2024-12-31 23:59:59],
 step: 3600 # Step in seconds
})
Renders a datetime range filter with dates from 2024-01-01 00:00:00 to 2024-12-31 23:59:59.
Remember to pass the datetime values in `NaiveDateTime` format.

 Examples

Creating a numeric range filter
Range.new(:price, "price_range", %{
 type: :number,
 label: "Price Range",
 unit: "$",
 min: 0,
 max: 1000,
 step: 10
})

Creating a date range filter
Range.new(:created_at, "date_range", %{
 type: :date,
 label: "Date Range",
 min: ~D[2024-01-01],
 max: ~D[2024-12-31]
})
If you want to use the range filter with a joined schema, you can pass the field as a tuple, with the table name and the field-
Range.new({:suppliers, :created_at}, "created_at", %{
 type: :date,
 label: "Supplier Creation",
 min: ~D[2024-01-01],
 max: ~D[2024-12-31],
})

 TODO:

	[] Set slider value based on URL params
	[] Format the slider appearance. Apply classes at Preline UI
	[] Add support for customizing the range slider appearance(The slider classes should apply to the slider element)

LiveTable.Select

 A module for handling select-based filters in LiveTable.
 This module provides functionality for creating and managing select filters that can handle
 single or multiple selections. It supports both static options and dynamic option loading,
 with customizable appearances and templates.

 Options

 The module accepts the following options:
	:label - The label text for the select filter
	:options - Static list of options for the select
	:options_source - Function or module for dynamic option loading
	:option_template - Custom template for rendering options
	:selected - List of pre-selected values
	:loading_text - Text to display while loading options
	:prompt - Prompt text for the select
	:placeholder - Placeholder text for the select
	:css_classes - CSS classes for the main container
	:label_classes - CSS classes for the label element
	:select_classes - CSS classes for the select element

 For default values, see: LiveTable.Select source code

 Working with Options

 There are two ways to configure and display options in the select filter:

 1. Static Options

 The simplest approach using a predefined list of options:
 Select.new(:status, "status_select", %{
 label: "Status",
 options: [
 %{label: "Active", value: [1, "Currently active"]},
 %{label: "Pending", value: [2, "Awaiting processing"]},
 %{label: "Archived", value: [3, "No longer active"]}
]
 })

 2. Dynamic Options via options_source

Load options dynamically using a function or module. Used for fetching new options based on typed input.
Uses apply/3 under the hood to apply the function. Uses live-select-change event to update the options.
 # Point to your custom function
 Select.new({:suppliers, :name}, "supplier_name", %{
 label: "Supplier",
 options_source: {Demo.Catalog, :search_suppliers, []} # Same as you'd use for `apply/3`
 })

 # in your context module
 def search_suppliers(text) do
 Supplier
 |> where([c], ilike(c.name, ^"%#{text}%"))
 |> select([c], {c.name, [c.id, c.contact_info]})
 |> Repo.all()
 end
 You could write your function to have other args passed to it as well. Just make sure the first arg is the text.
 It must return a tuple, with the first element being the label and the second being the value(or a list of fields).

 Option Templates

 You can provide custom templates for rendering options in two ways:
	Using the default template format for options with label and value pairs
	Providing a custom template function through the :option_template option

 Default Template

 The default template expects options in the format:
 %{label: label, value: [id, description]}
 The default template can be seen at git link

 Custom Template

 Custom templates can be provided as functions that take an option map and return rendered HTML:
 def custom_template(option) do
 assigns = %{option: option}
 ~H"""
 <div class="flex flex-col">
 <%= @option.label %> inas
 <%= @option.value |> Enum.at(0) %>
 </div>
 """
 end

 # in your filter definition
 Select.new({:suppliers, :name}, "supplier_name", %{
 label: "Supplier",
 placeholder: "Search for suppliers...",
 options_source: {Demo.Catalog, :search_suppliers, []}
 option_template: &custom_template/1
 })
 Each method can be combined with others - for example, you could use dynamic or static options with
 custom templates.

 Examples

If the field you want to use is part of the base schema(given to LiveResource), you can simply pass the field name as an atom.
 # Creating a basic select filter
 Select.new(:category, "category_select", %{
 label: "Category",
 options: [
 %{label: "Electronics", value: [1, "Electronics"]},
 %{label: "Books", value: [2, "Books"]}
]
 })
 If its part of a joined schema, you can pass it as a tuple, with the table name and field name as shown-
 # Creating a select filter with options loaded from database
 Select.new({:suppliers, :name}, "supplier_name", %{
 label: "Supplier",
 options_source: {Demo.Catalog, :search_suppliers, []}
 })
 # Advanced example with all options
 Select.new({:category, :name}, "category_name", %{
 label: "Category",
 placeholder: "Search for categories...",
 options_source: {Demo.Catalog, :search_categories, [optional args]}
 option_template: &custom_template/1,
 })
 Currently, nested relations are not supported.

 TODO:

	[] Interface the select classes with the live-select component.
	[] Update state from URL params.
	[] Add support for multiple option selection.
	[] Move away from live_select

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

