

 live_view_native

 v0.1.0

 [image: Logo]

 Table of contents

 	Introduction

 	Overview

 	Installation

 	Your First Native LiveView

 	Troubleshooting

 	Common Features

 	Template Syntax

 	Modifiers

 	Render Patterns

 	Handling Events

 	Modules

 	LiveViewNative

 	LiveViewNative.Component

 	LiveViewNative.LiveComponent

 	LiveViewNative.LiveSession

 	LiveViewNative.LiveView

 	LiveViewNative.TagEngine

 	LiveViewNative.Templates

 	Mix Tasks

 	mix lvn.install

Overview

LiveView Native is a framework for building native applications using Elixir and Phoenix LiveView. It allows a single application to serve a multitude of clients by transforming platform-specific template code into native user interfaces. Here's a basic example that serves web, iOS, iPadOS and macOS clients natively:
Source
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 # This UI renders on the iPhone / iPad app
 ~SWIFTUI"""
 <VStack>
 <Text>
 Hello native!
 </Text>
 </VStack>
 """
 end

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello web!

 </div>
 """
 end
end
iOS
[image: Hello World - iOS]
iPadOS
[image: Hello World - iPadOS]
macOS
[image: Hello World - macOS]
Web
[image: Hello World - Web]
By using LiveView Native in an existing Phoenix project, developers are able to deliver rich, real-time UIs for a multitude of web and non-web clients generated entirely by the server. Live sessions, state, event callbacks and glue code can be shared across all target platforms, with each platform having its own custom-tailored template or function component.
LiveView Native officially supports using LiveView for the following native clients:
	iOS 16+
	macOS 13+
	watchOS 9+
	Android

LiveView Native requires some foundational knowledge to use. You should already be familiar with Elixir, the Phoenix Framework and Phoenix LiveView. If you're looking to learn more about any of these subjects, there are a lot of great resources available. Some recommended materials include the Elixir guides, Elixir learning resources page, Phoenix guides, Phoenix community page and the Phoenix LiveView HexDocs.
With those prerequisites out of the way, let's get LiveView Native installed!

Installation

There are a few steps that must be completed before you can use LiveView Native. This document covers them, which are as follows:
	Setup a Phoenix project with the minimum required versions of Elixir, Phoenix and LiveView.
	Add LiveView Native to your mix.exs dependencies.
	Add any number of platform libraries to enable support for native clients.
	Fetch dependencies.
	Enable LiveView Native within your app.

1. Prepare your Phoenix app
To use LiveView Native, you must have an existing Phoenix project. If you don't have one, follow the Up and Running section of the official Phoenix guide to create one.
Next, make sure your project meets the following requirements:
	it uses Elixir 1.15 or greater — to enforce this, update your mix.exs:
def project do
 [
 # ...
 elixir: "~> 1.15",
 # ...
]
end

	it uses Phoenix >= 1.7 and Phoenix LiveView >= 0.18 — your mix.exs should partially resemble this:
def deps do
 [
 {:phoenix, "~> 1.7"},
 {:phoenix_live_view, "~> 0.18"},
 # other dependencies here...
]
end

If your project doesn't meet this criteria then it will need to be upgraded. Some helpful resources for this include the Elixir installation page, Phoenix installation page, as well as the changelogs for Elixir, Phoenix and Phoenix LiveView.
2. Add LiveView Native
Once you've met the requirements to use LiveView Native, simply add it to your list of dependencies in your project's mix.exs:
def deps do
 [
 # other dependencies here...
 {:live_view_native, "~> 0.1"}
]
end
3. Add platform libraries
The :live_view_native dependency isn't useful on its own. You'll also need to add any platform libraries you want your project to be compatible with. Platform libraries provide the native implementations that allow those platforms' clients to connect to your app and render LiveView paths as native user interfaces.
This guide only covers installation for the officially supported platforms, SwiftUI (iOS, macOS and watchOS) and Jetpack (Android). For information on using a third-party platform, consult that library's documentation.
SwiftUI
Adds compatibility for iOS 16+, macOS 13+ and watchOS 9+.
def deps do
 [
 # other dependencies here...
 {:live_view_native_swift_ui, "~> 0.1"}
]
end
Jetpack
Adds compatibility for Android.
Warning
The Jetpack client is under development and is not yet usable in end-user applications.
For more information, check the repo for live_view_native_jetpack here.

def deps do
 [
 # other dependencies here...
 {:live_view_native_jetpack, "~> 0.0.0"}
]
end
4. Fetch dependencies
Next, fetch any new dependencies you added to your mix.exs.
mix deps.get

5. Enable LiveView Native
LiveView Native includes a Mix task that can automatically handle the process of configuring your project to support it. If that is not to your liking, manual setup is also an option. This guide includes instructions for both of these approaches.
Automatic
Within your project directory, run the following command:
mix lvn.install

This command will prompt you to answer a few questions. If everything goes well, you should see a message that your project has been configured to use LiveView Native.
Manual
After adding the :live_view_native Hex package and any platform libraries, define a key-value configuration in your Config file (this is typically found in config/config.exs). This configuration expects a :plugins option which takes a list of any platform libraries you want your application to support. Platform libraries are represented by their top-level namespace module:
config.exs

Use LiveView Native to add support for native platforms
config :live_view_native,
 plugins: [
 # other plugins here...
 LiveViewNativeSwiftUi,
 LiveViewNativeJetpack
]
Next, create a project for each platform's native client using the official tools provided by each platform.
Post-Installation
Once LiveView Native is installed and your application is properly configured, you should be able to run your
Phoenix app in development as usual:
iex -S mix phx.server

To confirm that LiveView Native has been properly installed, call the following function in an IEx
session. It should return a map describing all of the native platform libraries that have been installed
for your app.
iex(1)> LiveViewNative.platforms()
Confirm that each platform listed (excluding web) has a platform-specific client app (i.e. Xcode,
Android Studio, etc.) for connecting to your LiveView Native backend. If you used mix lvn.install
to enable LiveView Native, these project files will be placed in the native/ directory of your app.
If everything looks good, continue on to writing your first native LiveView.

Your First Native LiveView

Now that you've installed LiveView Native, its time to create a LiveView
that uses it. This guide explains how to create a basic LiveView module that can serve different
templates to both web and native platforms while sharing non-template code between them.
A basic LiveView
Info
For more information on LiveView in general, see the docs for Phoenix.LiveView here.

To begin, create a new LiveView module and add it to your Phoenix router. The path for this LiveView
should be identical to the path you chose when setting up your native client app (this defaults to "/",
when using mix lvn.install to install LiveView Native).
First create a new LiveView somewhere in your app that inherits LiveViewNative.LiveView, like so:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello web!

 </div>
 """
 end
end
Then, add it to your app's router:
lib/my_app_web/router.ex
defmodule MyAppWeb.Router do
 use MyAppWeb, :router

 ### Pipelines, etc.

 scope "/", MyAppWeb do
 pipe_through :browser

 ### Other routes...

 live "/", HelloLive
 end

 ### Routes for LiveDashboard, Swoosh, etc.
end
Then, run your app and navigate to your local development server in a web browser.
You should see the LiveView you created.
[image: Hello World - Web]
A native LiveView
To support non-web platforms using LiveView Native, simply provide a template for each
platform you want to support. This is done by extending LiveView's standard render/1 callback.
Each platform will have its own custom :platform_id, render sigil and HEEx syntax, which are
all pulled in by the LiveViewNative.LiveView macro inherited toward the top of your LiveView.
The following example demonstrates handling the :swiftui platform for LiveView Native apps
with the :live_view_native_swift_ui dependency, which covers iOS, iPadOS and macOS support:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 # This UI renders on the iPhone / iPad app
 ~SWIFTUI"""
 <VStack>
 <Text>
 Hello native!
 </Text>
 </VStack>
 """
 end

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello web!

 </div>
 """
 end
end
Loading the native project at native/swiftui/MyApp/MyApp.xcodeproj and running it in
Simulator will render the native template in various devices for the SwiftUI platform:
iOS
[image: Hello World - iOS]
iPadOS
[image: Hello World - iPadOS]
macOS
[image: Hello World - macOS]
Web
[image: Hello World - Web]
If everything looks as it should, congratulations! Your app is now using LiveView Native to
serve multiple platform-specific templates to both web and non-web clients.
What's next?
If you've reached this section of the guide, you should have a cursory understanding of LiveView
Native, how to install it in an existing Phoenix project and how to write a basic "Hello World"
LiveView that renders a different UI for web and non-web clients.
To use LiveView Native to its full potential, you will need to dig deeper into the following subjects:
	LiveView Native features and concepts
	Additional libraries for the platform(s) your app supports
	Building UIs for the platform(s) your app support

This guide will cover the first point in the pages to follow. For the other two, you will need to consult the
relevant documentation, guides and supporting literature for the platform(s) you want your app to serve. Below
are some recommended resources for the SwiftUI and Jetpack platforms:
SwiftUI
Covers iOS 16+, macOS 13+ and watchOS 9+.
	Platform library HexDocs
	Swift library docs
	SwiftUI docs
	SwiftUI tutorials
	Xcode docs

Jetpack
Covers Android.
	Platform library HexDocs
	Jetpack Compose tutorial

Troubleshooting

Sometimes you might get blocked by a compiler error or other issue during installation. If this happens, you might try clearing your build directory and recompiling from a clean state. To do this, run the following commands from your project's root directory:
rm -rf _build
rm -rf deps
mix deps.get
mix compile

This should ideally resolve without error. If it doesn't, feel free to submit an issue on the GitHub repo for this library or ask in the #liveview-native channel of Elixir Slack; a member of the LiveView Native core team or other community member should be able to help you troubleshoot the problem.

Template Syntax

LiveView Native platforms use EEx templates which resemble the native APIs they're based
on as closely as possible. This is in contrast to frameworks that provide custom element
names which then get translated to native components.
Consider the following example for a SwiftUI view. It is represented in LiveView Native using
all of the same elements like List, HStack, etc. To do this we adapt the original SwiftUI
element and attribute names to the semantics of the EEx syntax using ~SWIFTUI, like so:
Elixir
LiveView Native components for SwiftUI use SwiftUI-like syntax.
defmodule MyAppWeb.MyComponents do
 use Phoenix.LiveView
 use LiveViewNative.Component

 def album_detail(%{platform_id: :swiftui} = assigns) do
 ~SWIFTUI"""
 <List>
 <%= for song <- @album.songs do %>
 <HStack>
 <Image name={@album.cover} />
 <VStack alignment="leading">
 <Text modifiers={font_weight(:bold)}><%= song.title %></Text>
 <Text><%= song.artist.name %></Text>
 </VStack>
 </HStack>
 <% end %>
 </List>
 """
 end
end
Swift
The same component would be represented in SwiftUI like this:
import SwiftUI

struct AlbumDetail: View {
 var album: Album

 var body: some View {
 List(album.songs) { song in
 HStack {
 Image(album.cover)
 VStack(alignment: .leading) {
 Text(song.title)
 .fontWeight(.bold)
 Text(song.artist.name)
 }
 }
 }
 }
}
Here we can observe various semantic changes to port SwiftUI code to EEx:
	SwiftUI view names are used as elements, like List and VStack.	The argument syntax (i.e. alignment: .leading to alignment="leading") is adapted as well.

	The struct value album is an assign, @album, instead.
	Instead of passing album.songs as an argument, we use a comprehension.	<Text> elements take their arguments as values, similar to HTML.

	We can't call a function on an element like in SwiftUI, so the .fontWeight(.bold) modifier function is called as font_weight(:bold) and passed to the modifiers attribute.

These conventions can generally be applied to all sorts of examples when using LiveView Native to build SwiftUI views.
Because LiveView Native is modular, each platform library will have its own way of "bridging the gap" between the Elixir
side of your app and the native side.
Officially supported platform libraries are designed with general platform-parity in mind; while some light abstractions
may be used in cases where the native syntax doesn't map perfectly onto LiveView templates, any names of elements,
attributes, structs, enums, types, etc. are typically carried over in identical or approximate (i.e. camel case to
snake case) form.
For more information on writing platform-specific template code, consult the documentation for each platform you want
your app to support.
SwiftUI
Covers iOS 16+, macOS 13+ and watchOS 9+.
	Platform library HexDocs
	Swift library docs
	SwiftUI docs
	SwiftUI tutorials
	Xcode docs

Jetpack
Covers Android.
	Platform library HexDocs
	Jetpack Compose tutorial

Modifiers

Platform libraries may provide any number of modifiers for customizing the look and feel of native
elements. These modifiers are automatically available as functions when rendering platform-specific
templates in a module that uses one of the following macros:
	LiveViewNative.LiveView
	LiveViewNative.LiveComponent
	LiveViewNative.Component

Modifiers are typically used to adjust styling (colors, typography, etc.), presentation, interactivity
and other properties of the native UI you're targeting.
Modifier functions
Here's a simple example of calling modifier functions inline for elements with the modifiers attribute in SwiftUI:
Source

defmodule MyAppWeb.ModifiersExampleLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 # This UI renders on the iPhone / iPad app
 ~SWIFTUI"""
 <VStack>
 <Text>This text is normal</Text>
 <Text modifiers={font_weight(:bold)}>This text is bold</Text>
 <Spacer modifiers={frame(height: 16)} />
 <HStack>
 <Image system-name="heart.fill" modifiers={
 background(alignment: :center, content: :heart_bg)
 |> foreground_style({:color, :white})
 }>
 <Circle template={:heart_bg} modifiers={
 frame(width: 32, height: 32)
 |> foreground_style({:color, :red})
 } />
 </Image>
 </HStack>
 </VStack>
 """
 end
end
Result
[image: Modifiers example]
Modifier functions may have different arities and take different types of arguments, which are generally based on the
original APIs they're based on. All modifier functions return a %LiveViewNativePlatform.Env{} struct (same as the
@native assign) which can be passed to other modifier functions, effectively allowing them to be chained together.
For more information of which modifiers a platform supports and how to use them, check the documentation for that
platform as well as the relevant source material for that platform.
Modifier Classes
Using a lot of modifiers in your templates can cause them to become overly verbose and difficult to maintain over
time. You also might want to share modifiers between many different views and elements instead of copying them
across templates. Modifier classes solve both of these problems by letting you decouple your modifiers from your
templates.
Here's the previous example, adjusted to use modifier classes defined in a separate module:
modifiers_example_live.ex
defmodule MyAppWeb.ModifiersExampleLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 import MyAppWeb.Modclasses, only: [modclass: 3]

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 ~SWIFTUI"""
 <VStack>
 <Text>This text is normal</Text>
 <Text modclass="bold">This text is bold</Text>
 <Spacer modclass="spacer" />
 <HStack>
 <Image modclass="heart" system-name="heart.fill">
 <Circle modclass="heart_bg" template={:heart_bg} />
 </Image>
 </HStack>
 </VStack>
 """
 end
end
modclasses.ex
defmodule MyAppWeb.Modclasses do
 use LiveViewNative.Modclasses, platform: :swiftui

 def modclass(native, "bold", _assigns) do
 font_weight(native, :bold)
 end

 def modclass(native, "spacer", _assigns) do
 frame(native, height: 16)
 end

 def modclass(native, "heart", _assigns) do
 native
 |> background(alignment: :center, content: :heart_bg)
 |> foreground_style({:color, :white})
 end

 def modclass(native, "heart_bg", _assigns) do
 native
 |> frame(width: 32, height: 32)
 |> foreground_style({:color, :red})
 end
end
Result
[image: Modifiers example]
An element can have any number of modifier classes, providing some composability for modifier functions:
modifiers_example_live.ex
defmodule MyAppWeb.ModifiersExampleLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 import MyAppWeb.Modclasses, only: [modclass: 3]

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 ~SWIFTUI"""
 <VStack>
 <Text>This text is normal</Text>
 <Text modclass="bold">This text is bold</Text>
 <Text modclass="italic">This text is bold</Text>
 <Text modclass="bold italic">This text is bold and italic</Text>
 </VStack>
 """
 end
end
modclasses.ex
defmodule MyAppWeb.Modclasses do
 use LiveViewNative.Modclasses, platform: :swiftui

 def modclass(native, "bold", _assigns) do
 font_weight(native, :bold)
 end

 def modclass(native, "italic", _assigns) do
 italic(native, %{})
 end
end
Result
[image: Modclasses example]
Modclasses within templates are translated at compile-time to their inline counterparts, so passing an assign or other
dynamic value to the modclass attribute won't work. To support dynamic modifier classes that reference assigns or the
modifier name itself, define any conditional logic within modclass/3.

Render Patterns

There are multiple ways to render native UIs with LiveView Native. This document covers various
patterns and when you might use them.
render/1 function clauses
The most common pattern that is often used throughout this guide is the function clause pattern.
Each function clause matches on the :platform_id, allowing each platform to define its own UI:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 # This UI renders on the iPhone / iPad app
 ~SWIFTUI"""
 <VStack>
 <Text>
 Hello native!
 </Text>
 </VStack>
 """
 end

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello web!

 </div>
 """
 end
end
Function components
Platform-specific components can also be defined. For example:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.SharedComponents do
 use Phoenix.Component
 use LiveViewNative.Component

 import ElixirconfChatWeb.Modclasses.SwiftUi, only: [modclass: 3]

 def logo(%{platform_id: :swiftui} = assigns) do
 ~SWIFTUI"""
 <VStack>
 <Image name="Logo" />
 <Text><%= @title %></Text>
 </VStack>
 """
 end

 def logo(%{} = assigns) do
 ~H"""
 <VStack>

 <h1><%= @title %></h1>
 </VStack>
 """
 end
end
External template files
If you would prefer to break your render function out into separate template files, you can
conditionally render platform-specific templates using the render_native/1 macro. External
template files are namespaced according to their :platform_id:
hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{} = assigns) do
 render_native(assigns)
 end
end
hello_live.html.heex
<div id="template-web">
 <div class="text-slate-800 bg-slate-50 h-screen w-screen grid grid-cols-1 gap-1 content-center items-center text-center">
 <div class="font-semibold mb-1">A web template, courtesy of hello_live.html.heex</div>
 </div>
</div>
hello_live.swiftui.heex
<VStack id="template-ios">
 <HStack modifiers={padding(5)}>
 <Text>A SwiftUI template, courtesy of hello_live.swiftui.heex</Text>
 </HStack>
</VStack>
Targeting specific devices
Conditional rendering based on device type is also supported, depending on the platform library you're using.
The following example for the SwiftUI platform renders different text on various devices:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.SharedComponents do
 use Phoenix.Component
 use LiveViewNative.Component

 import ElixirconfChatWeb.Modclasses.SwiftUi, only: [modclass: 3]

 def logo(%{platform_id: :swiftui} = assigns) do
 ~SWIFTUI"""
 <VStack>
 <%= case @native.platform_config.user_interface_idiom do %>
 <% "mac" -> %>
 <Text>Hello macOS!</Text>
 <% "pad" -> %>
 <Text>Hello iPadOS!</Text>
 <% "watch" -> %>
 <Text>Hello watchOS!</Text>
 <% "tv" -> %>
 <Text>Hello tvOS!</Text>
 <% _ -> %>
 <Text>Hello iOS!</Text>
 <% end %>
 </VStack>
 """
 end
end

Handling Events

Events are a common part of any LiveView application. On the server, LiveView Native handles events identically to LiveView
on the web. How the client handles events depends on the native platform and its respective client implementation. This
document provides some general information on events regardless of platform.
Translated Bindings
Platforms may translate Phoenix bindings to their native counterparts
where it makes sense. The most common example of this is phx-click which listens for tap events on SwiftUI and Jetpack
targets.
On the server, events are handled using standard LiveView callbacks like handle_event/3 regardless of what platform they
come from. Callbacks can also be shared across platforms, assuming the events and their params are compatible. Here is a
basic example of sharing a handle_event/3 callback in this way:
hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def mount(_params, _session, socket) do
 {:ok, assign(socket, name: "World")}
 end

 @impl true
 def render(%{platform_id: :swiftui} = assigns) do
 # This UI renders on the iPhone / iPad app
 ~SWIFTUI"""
 <VStack>
 <Text phx-click="click_test">Hello <%= @name %>!</Text>
 </VStack>
 """
 end

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello <%= @name %>!

 </div>
 """
 end

 @impl true
 def handle_event("click_test", _params, socket) do
 # This event can be called from both SwiftUI and the web
 {:noreply, assign(socket, name: "José")}
 end
end
In this example, clicking the "Hello World" button changes it to say "Hello José" on both the web and iOS.
The same handle_event/3 callback is fired in both cases.
Change Events
In LiveView Native, elements can support client-side changes to their value outside of a <form>.
Synchronizing the values must be handled manually by the LiveView using change events.
Client-side changes
Use the phx-change attribute to respond to client-side changes to an element's value.
<TextField text={@text} phx-change="value-changed" />
A handle_event/3 implementation with the name "value-changed" will be called anytime the user changes the text of the TextField.
def handle_event("value-changed", new_value, socket) do
 {:noreply, assign(socket, text: new_value)}
end
The phx-debounce, phx-throttle, and phx-target attributes can be used to configure the event.
Refer to the documentation for an element to find out if it supports client-side changes.
Server-side changes
Each element has an attribute that controls its value.
For example, TextField in the SwiftUI client uses the attribute text.
See the documentation for an element to find out what attribute it uses.
Whenever the attribute's value is changed, the client will update to display the new value.
No change event is sent when the server updates the value.
Modifier change events
Some modifiers have values that can be changed by the client.
To receive change events on these modifiers, pass a LiveViewNativePlatform.Modifier.Types.Event to the change argument.
sheet(is_presented: @show, change: "presentation-changed")
Provide a map to change for more advanced configuration.
sheet(is_presented: @show, change: %{ event: "presentation-changed", debounce: 2000, target: @myself })
A change event will be sent with every argument of the modifier that can be change-tracked.
def handle_event("presentation-changed", %{ "is_presented" => show }, socket) do
 {:noreply, assign(socket, show: show)}
end
In the example above, the server can show/hide the sheet by setting the show assign.
When the user swipes down on the sheet to close it, the "presentation-changed" event will be called with the value false.
See the documentation for a modifier to find out which arguments can be change-tracked.

LiveViewNative

A module providing supporting functions for LiveView Native.

 Summary

 Functions

 platform(platform_id)

 Returns an environment struct for a LiveView Native platform given its
platform_id or :error if not found.

 platform!(platform_id)

 Returns an environment struct for a LiveView Native platform given its
platform_id or raises if not found.

 platforms()

 Returns a list of environment structs for all LiveView Native platforms.

Functions

 Link to this function

 platform(platform_id)

 @spec platform(atom()) ::
 {:ok,
 %LiveViewNativePlatform.Env{
 custom_modifiers: term(),
 eex_engine: term(),
 modifiers: term(),
 modifiers_struct: term(),
 platform_config: term(),
 platform_id: term(),
 platform_modifiers: term(),
 render_macro: term(),
 tag_handler: term(),
 template_extension: term(),
 template_namespace: term()
 }}
 | :error

Returns an environment struct for a LiveView Native platform given its
platform_id or :error if not found.
Used to introspect platforms at compile-time or runtime.

 Link to this function

 platform!(platform_id)

 @spec platform!(atom()) :: %LiveViewNativePlatform.Env{
 custom_modifiers: term(),
 eex_engine: term(),
 modifiers: term(),
 modifiers_struct: term(),
 platform_config: term(),
 platform_id: term(),
 platform_modifiers: term(),
 render_macro: term(),
 tag_handler: term(),
 template_extension: term(),
 template_namespace: term()
}

Returns an environment struct for a LiveView Native platform given its
platform_id or raises if not found.
Same as platform/1 but raises RuntimeError instead of returning
:error if no platform exists for the given platform_id

 Link to this function

 platforms()

 @spec platforms() :: [
 %LiveViewNativePlatform.Env{
 custom_modifiers: term(),
 eex_engine: term(),
 modifiers: term(),
 modifiers_struct: term(),
 platform_config: term(),
 platform_id: term(),
 platform_modifiers: term(),
 render_macro: term(),
 tag_handler: term(),
 template_extension: term(),
 template_namespace: term()
 }
]

Returns a list of environment structs for all LiveView Native platforms.

LiveViewNative.Component

Upgrades a Phoenix Component to a native Phoenix Component.
To use, inherit with use LiveViewNative.Component
like so:
Example:
defmodule MyApp.MyComponent do
 use MyAppWeb, :live_component
 use LiveViewNative.Component

 # ...
end

LiveViewNative.LiveComponent

Upgrades a Live Component to a native Live Component.
To use, inherit with use LiveViewNative.LiveComponent
like so:
defmodule MyApp.MyComponent do
 use MyAppWeb, :live_component
 use LiveViewNative.LiveComponent

 # ...
end

LiveViewNative.LiveSession

Conducts platform detection on socket connections and applies
native assigns.

 Summary

 Functions

 on_mount(atom, params, session, socket)

Functions

 Link to this function

 on_mount(atom, params, session, socket)

LiveViewNative.LiveView

Upgrades a LiveView to a native LiveView.
To use, inherit with use LiveViewNative.LiveView
like so:
Example:
defmodule MyApp.MyLive do
 use MyAppWeb, :live_view
 use LiveViewNative.LiveView

 # ...
end

LiveViewNative.TagEngine

An implementation of Phoenix.LiveView.TagEngine that omits
HTML-centric template rules.

 Summary

 Functions

 classify_type(name)

 Callback implementation for Phoenix.LiveView.TagEngine.classify_type/1.

 void?(_)

 Callback implementation for Phoenix.LiveView.TagEngine.void?/1.

Functions

 Link to this function

 classify_type(name)

Callback implementation for Phoenix.LiveView.TagEngine.classify_type/1.

 Link to this function

 void?(_)

Callback implementation for Phoenix.LiveView.TagEngine.void?/1.

LiveViewNative.Templates

Provides functionality for preprocessing LiveView Native
templates.

 Summary

 Functions

 precompile(expr)

Functions

 Link to this function

 precompile(expr)

mix lvn.install

Installer Mix task for LiveView Native: mix lvn.install

 Summary

 Functions

 run(_)

 Callback implementation for Mix.Task.run/1.

Functions

 Link to this function

 run(_)

Callback implementation for Mix.Task.run/1.

 OEBPS/assets/images/hello-iphone.png
iPhone 14 Pro

Hello native!

OEBPS/assets/images/modclasses-example.png
iPhone 14 Pro

This text is normal
This text s bold
This text is bold
This text is bold and italic

OEBPS/assets/images/hello-ipad.png
iPad Pro (11-inch)

T11PM Mo Sep 4 = 100 mm

Hello native!

OEBPS/assets/images/modifiers-example.png
iPhone 14 Pro

This text is normal
This text is bold

o

OEBPS/assets/images/logo.png

OEBPS/assets/images/hello-web.png
MyApp - Phoenix Framework

c localhost:

Hello web!

OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

OEBPS/assets/images/hello-mac.png
LR] MyApp

Hello native!

