

 live_view_native_platform

 v0.2.0

 [image: Logo]

 Table of contents

 	Overview

 	Creating a Platform Library

 	Modules

 	LiveViewNativePlatform.Env

 	LiveViewNativePlatform.Kit

 	LiveViewNativePlatform.Modifier

 	LiveViewNativePlatform.ModifiersStack

Overview

LiveView Native Platform is an auxillary library to LiveView Native. It defines protocols, macros and other supporting code for developers to add LiveView Native support to their own native clients.
This library provides the serverside glue between Phoenix applications using live_view_native and platform libraries (like live_view_native_swift_ui and live_view_native_jetpack).
Warning
This dependency is intended for library developers and shouldn't be used for end-user developers who want to use LiveView Native within their application.
For information on using LiveView Native within an application, check the HexDocs for the live_view_native library here.

Getting Started
Platform libraries for LiveView Native have two essential layers; the serverside Elixir code that the live_view_native library knows how to interface with, and the clientside code that provides compatibility with Phoenix LiveView backends. This library and documentation only focuses on the serverside responsibilities of a platform library.
For information on the clientside implementation needed to support LiveView Native, see liveview-native-core. It provides platform-agnostic implementations of morphdom, Phoenix sockets and other essential glue code that one could use to build a LiveView Native compatible client.
To use LiveView Native Platform in your platform library, simply include it as a dependency in your mix.exs:
def deps do
 [
 # other dependencies here...
 {:live_view_native_platform, "~> 0.1.0"}
]
end
You do not need to pull in any Phoenix, LiveView or other dependencies in your platform library; this library does not depend on them and end-user applications who are using live_view_native will already have those dependencies in their project.
After running mix deps.get, you can continue on to creating a platform library.

Creating a Platform Library

To create a platform library that can be used as a dependency within a LiveView Native application, a few requirements must be met:
	Your library must have a top-level module with use LiveViewNativePlatform.
	Your top-level module must define a platforms/0 function which returns a list of platform modules.
	Your library must have at least one platform module that implements the LiveViewNativePlatform.Kit protocol.

This document briefly covers each of these requirements.
Info
For an example of a LiveView Native platform library, look through the source code of live_view_native_swift_ui here.

Top-level module
The top-level module of your library must inherit the LiveViewNativePlatform macro and define a platforms/0 callback. Here's a basic example of what that might look like:
defmodule LiveViewNativeExampleLib do
 use LiveViewNativePlatform

 def platforms,
 do: [
 LiveViewNativeExampleLib.Platform
]
end
This is the entry point of your platform library. At compile-time, a LiveView Native application will look for any modules that inherit the LiveViewNativePlatform macro and call platforms/0 on all of them. The returned list of platforms is used to tell the application which platforms are available and describe how they will be used in an application.
Implementing a Kit
Each platform module returned by platforms/0 in the previous step must implement the LiveViewNativePlatform.Kit protocol. This protocol expects one function called compile/1 to be implemented, which returns a %LiveViewNativePlatform.Env{} struct. This struct has the following properties:
	custom_modifiers: A list of custom modifiers, defined by the end-user.
	eex_engine: The EEx engine to use for compiling templates. Defaults to Phoenix.LiveView.TagEngine.
	modifiers_struct: The module to use for modifier structs. Defaults to LiveViewNativePlatform.GenericModifiers.
	modifiers: An empty struct with the modifiers_struct module.
	platform_config: The module to use for platform configuration structs. This is typically used to store platform-specific information sent by the client, like OS name, version, device type, etc.
	platform_id: A unique platform ID.
	platform_modifiers: A keyword list of modifier names and their associated modifier schema modules. Defaults to an empty list.
	render_macro: A macro or sigil to use for rendering function components for this platform.
	tag_handler: A tag handler module to use for parsing templates. This is only relevant when eex_engine is Phoenix.LiveView.TagEngine. Defaults to LiveViewNative.TagEngine.
	template_extension: A unique file extension to use for external template files. Defaults to "#{platform_id}.heex"
	template_namespace: Your library's top-level module name.

Most of these fields are optional and many of them are dynamically set at runtime when your platform library is used in end-user applications. Instead of returning a struct directly, it is recommended to use LiveViewNativePlatform.Env.define/2 to only set the fields you need. Here is an example:
defmodule LiveViewNativeExampleLib.Platform do
 defstruct [
 :os_version,
 :simulator_opts,
 :another_custom_field,
 # etc...
]

 defimpl LiveViewNativePlatform.Kit do
 require Logger

 def compile(_config) do
 LiveViewNativePlatform.Env.define(:example_lib, # A unique ID to identify your platform by
 render_macro: :sigil_EXAMPLE, # This will allow rendering platform-specific with `~EXAMPLE""`
 otp_app: :live_view_native_example_lib # This is used to infer other values in the struct
)
 end
 end
end
This will allow LiveView Native applications to use your platform library, like so:
lib/my_app_web/live/hello_live.ex
defmodule MyAppWeb.HelloLive do
 use Phoenix.LiveView
 use LiveViewNative.LiveView

 @impl true
 def render(%{platform_id: :example_lib} = assigns) do
 # This UI renders on your custom client
 # Note: This is pseudocode; your native platform's template syntax will vary.
 ~EXAMPLE"""
 <NativeContainerElement>
 <NativeContainerText>
 Hello native!
 </NativeContainerText>
 </NativeContainerElement>
 """
 end

 @impl true
 def render(%{} = assigns) do
 # This UI renders on the web
 ~H"""
 <div class="flex w-full h-screen items-center">

 Hello web!

 </div>
 """
 end
end
A client can connect to a LiveView Native application that supports your platform library by passing its unique platform ID as the _platform connection param (this is handled by LiveViewNative.LiveSession). So in this example, connecting to http://localhost:4000?_platform=example_lib will render the ~EXAMPLE"" template and connecting to http://localhost:4000 will render the web template.
Modifiers
LiveView Native Platform supports modifiers for platforms that use them, like SwiftUI and Jetpack Compose. Your native platform might not have a need for modifiers; if not, you can ignore modifiers entirely in your platform library implementation.
If you want to use modifiers in your platform library, consider looking at how the live_view_native_swift_ui platform library does it as a reference. The modifiers_struct set on your %LiveViewNativePlatform.Env{} will need to implement the following protocols to fully support modifiers:
	LiveViewNativePlatform.ModifiersStack
	Jason.Encoder
	Phoenix.HTML.Safe

Conclusion
This document outlined the bare minimum requirements for a platform library to be used within a LiveView Native application. More advanced topics, such as building a client library with LiveView compatibility, how to integrate liveview-native-core into your client library using FFI, and native platform development in general, are beyond the scope of this library and guide.

LiveViewNativePlatform.Env

Provides information about a LiveView Native platform.

 Anchor for this section

 Summary

 Functions

 define(platform_id, opts \\ [])

 Define a new LiveView Native Platform. This function should only be called at compile-time.

 Anchor for this section

Functions

 Link to this function

 define(platform_id, opts \\ [])

Define a new LiveView Native Platform. This function should only be called at compile-time.

LiveViewNativePlatform.Kit protocol

Protocol for representing a LiveView Native platform or add-on.

 Anchor for this section

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 compile(struct)

 Returns a struct containing information about the kit

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: term()

All the types that implement this protocol.

 Anchor for this section

Functions

 Link to this function

 compile(struct)

Returns a struct containing information about the kit

LiveViewNativePlatform.Modifier

Supporting functionality and macros for modifiers.

 Anchor for this section

 Summary

 Functions

 change_event()

 Generates a field for storing modifier events triggered with phx-change.

 modifier_schema(modifier_name)

 Defines a modifier schema that takes no parameters.

 modifier_schema(modifier_name, list)

 Defines a modifier schema.

 Anchor for this section

Functions

 Link to this macro

 change_event()

 (macro)

Generates a field for storing modifier events triggered with phx-change.

 Link to this macro

 modifier_schema(modifier_name)

 (macro)

Defines a modifier schema that takes no parameters.

 Link to this macro

 modifier_schema(modifier_name, list)

 (macro)

Defines a modifier schema.

LiveViewNativePlatform.ModifiersStack protocol

Protocol for representing a chain of applied modifiers.

 Anchor for this section

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 append(struct, modifiers)

 Appends a modifier to the modifiers stack

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: term()

All the types that implement this protocol.

 Anchor for this section

Functions

 Link to this function

 append(struct, modifiers)

Appends a modifier to the modifiers stack

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

OEBPS/assets/images/logo.png

