

 LiveVue

 v0.5.3

 Table of contents

 	LiveVue

 	Installation

 	Changelog

 	

 	Modules

 	LiveVue

 	LiveVue.Components

 	LiveVue.Reload

 	LiveVue.SSR

 	LiveVue.SSR.NodeJS

 	LiveVue.SSR.ViteJS

 	Mix Tasks

 	mix live_vue.setup

LiveVue

[image: Hex.pm]
[image: Hexdocs.pm]
[image: GitHub]
LiveVue
Vue inside Phoenix LiveView with seamless end-to-end reactivity.
[image: logo]

 Resources

	 HexDocs
	 HexPackage
	 Phoenix LiveView

 Table of content

	 Features
	 Resources
	 Example
	 Installation
	 Usage
	 Deployment
	 FAQ

 Features

	 ⚡ End-To-End Reactivity with LiveView
	 🔋 Server-Side Rendered (SSR) Vue
	 🐌 Lazy-loading Vue Components
	 🪄 Sigil as an Alternative LiveView DSL
	 🦄 Tailwind Support
	 💀 Dead View Support
	 🦥 Slot Interoperability
	 🚀 Amazing DX with Vite

 Example

After installation, you can use Vue components in the same way as you'd use functional LiveView components. You can even handle Vue events with JS hooks! All the phx-click, phx-change attributes works inside Vue components as well.
<script setup lang="ts">
import {ref} from "vue"
const props = defineProps<{count: number}>()
const emit = defineEmits<{inc: [{value: number}]}>()
const diff = ref<string>("1")
</script>

<template>
 Current count
 <div class="text-2xl text-bold">{{ props.count }}</div>
 <label class="block mt-8">Diff: </label>
 <input v-model="diff" class="my-4" type="range" min="1" max="10" />

 <button
 @click="emit('inc', {value: parseInt(diff)})"
 class="bg-black text-white rounded p-2"
 >
 Increase counter by {{ diff }}
 </button>
</template>
defmodule LiveVueExamplesWeb.LiveCounter do
 use LiveVueExamplesWeb, :live_view

 def render(assigns) do
 ~H"""
 <.vue
 count={@count}
 v-component="Counter"
 v-socket={@socket}
 v-on:inc={JS.push("inc")}
 />
 """
 end

 def mount(_params, _session, socket) do
 {:ok, assign(socket, :count, 0)}
 end

 def handle_event("inc", %{"value" => diff}, socket) do
 {:noreply, update(socket, :count, &(&1 + diff))}
 end
end

 Why?

Phoenix Live View makes it possible to create rich, interactive web apps without writing JS.
But once you'll need to do anything even slightly complex on the client-side, you'll end up writing lots of imperative, hard-to-maintain hooks.
LiveVue allows to create hybrid apps, where part of the session state is on the server and part on the client.

 Reasons why you'd like to use LiveVue

	 Your hooks are starting to look like jQuery
	 You have a complex local state
	 You'd like to use a massive Vue ecosystem
	 You want transitions, graphs etc.
	 You simply like Vue 😉

 Installation

See Installation.

 Usage

By default, vue components should be placed either inside assets/vue directory or colocated with your Elixir files. You can configure that behaviour by changing assets/vue/index.js and use LiveVue.Components, vue_root: ["your/vue/dir"].

 Basic usage

To render vue component from HEEX, you have to use <.vue> function with these attributes:
	Attribute	Example	Required	Description
	v-component	v-component="Counter", v-component="helpers/modal"	yes	Name of the component to render. Must match key defined in components passed to getHooks. By default you can use both filename or a full file path without extension, relative to assets/vue or lib/my_app_web
	v-socket	v-socket={@socket}	Yes in LiveView	Used to determine if SSR is needed. Should be always included in LiveViews
	v-ssr	v-ssr={true}	no	Defaults to Application.get_env(:live_vue, :ssr, true)
	v-on:event={@handler}	v-on:close={JS.toggle()}	no	Handle component event by invoking JS hook. @handler has to come from JS module. See Usage section for more.
	prop={@value}	name="liveVue", count={@count}, {%{count: 123}}	no	All other attributes will be passed to vue component as props. Values have to be serializable to JSON, so structures have to implement Jason.Encoder protocol.

 Shortcut

Instead of writing <.vue v-component="Counter"> you can use shortcut <.Counter>. Function names are generated based on filenames of found .vue files, so assets/vue/helpers/nested/Modal.vue will generate helper <.Modal>. If there are multiple .vue files with equal names, use <.vue v-component="path/to/file">

 Passing props

You pass props in the same way as with functional components in Elixir. All 3 examples does exactly the same.
<.vue
 count={@count}
 name={@name}
 v-component="Counter"
 v-socket={@socket}
/>

<.vue
 v-component="Counter"
 v-socket={@socket}
 {%{count: @count, name: @name}}
/>

<.Counter
 count={@count}
 name={@name}
 v-socket={@socket}
/>

 Handling events

All regular phoenix hooks like phx-click, phx-submit work as expected.
To keep components DRY you can define vue handlers using v-on:eventname={JS.handler()} syntax.
All attributes starting with v-on: are attached as emit handlers to Vue components and executed in the same way as Phoenix does it.
JS.push("someName") is a special case - if JS.push defines no value, it will be replaced by the emit payload.
<.vue v-on:submit={JS.push("submit")} v-component="SomeForm" v-socket={@socket} />
<.vue
 v-on:shoot={JS.push("shoot")}
 v-on:close={JS.hide()}
 v-component="SomeGame"
 v-socket={@socket}
/>

 Passing slots

You can even pass slots to the vue component! They're passed to vue as raw HTML, so hooks in the slots won't work. Each slot is wrapped in a div due to technical limitations.
	 Default slot can be passed as :inner_block and rendered inside Vue components as <slot />.
	 Named slots can be passed by using <:slot_name>Content</:slot_name> syntax are rendered using <slot name="slot_name" /> syntax.
	 Slots will be kept in sync, as expected.

An example:
<.Card title="The coldest sunset" v-socket={@socket}>
 <p>This is card content passed from phoenix!</p>
 <p>Even icons are working! <.icon name="hero-information-circle-mini" /></p>
 <:footer>And this is a footer from phoenix</:footer>
</.Card>
<template>
 <slot></slot>
 Footer:
 <slot name="footer"></slot>
</template>

 Dead views vs Live views

You can use <.vue> components in dead views. Of course, there will be no updates on assign changes, since there is no websocket connection established to support it.
v-socket={@socket} is not required in dead views.

 Note on SSR

Vue SSR is compiled down into string concatenation, so it's quite fast 😉
In development it's recommended to use config :live_vue, ssr_module: LiveVue.SSR.ViteJS. It does HTTP call to vite /ssr_render endpoint added by LiveVue plugin, which in turn uses vite ssrLoadModule for efficient compilation.
In production it's recommended to use config :live_vue, ssr_module: LiveVue.SSR.NodeJS which uses NodeJS package directly talking with a JS process with a in-memory server bundle. By default, SSR bundle is saved to priv/vue/server.js.

 Handling custom Phoenix events client side

You can use function useLiveVue to access root phoenix element where Vue component was routed.
API of that object is described in Phoenix docs.
Example
<script>
import {useLiveVue} from "live_vue"

const hook = useLiveVue()

hook.pushEvent("hello", {value: "from Vue"})
</script>

 Using ~V sigil to inline Vue components

We can go one step further and use LiveVue as an alternative to the standard LiveView DSL. This idea is taken from LiveSvelte.
Take a look at the following example:
defmodule ExampleWeb.LiveSigil do
 use ExampleWeb, :live_view

 def render(assigns) do
 ~V"""
 <script setup lang="ts">
 import {ref} from "vue"
 const props = defineProps<{count: number}>()
 const diff = ref<number>(1)
 </script>

 <template>
 Current count
 <div class="text-2xl text-bold">{{ props.count }}</div>
 <label class="block mt-8">Diff: </label>
 <input v-model="diff" class="mt-4" type="range" min="1" max="10">

 <button
 phx-click="inc"
 :phx-value-diff="diff"
 class="mt-4 bg-black text-white rounded p-2 block">
 Increase counter {{ diff }}
 </button>
 </template>
 """
 end

 def mount(_params, _session, socket) do
 {:ok, assign(socket, count: 0)}
 end

 def handle_event("inc", %{"diff" => diff}, socket) do
 {:noreply, update(socket, :count, &(&1 + String.to_integer(diff)))}
 end
end
Use the ~V sigil instead of ~H and your LiveView will be Vue instead of an HEEx template.

 Lazy loading Vue Components

Lazy loading Vue components is fully supported. You just need to return function returning promise in components passed to getHooks(components).
It can be done by using eager: false in import.meta.glob('./yourdir/*.vue', { eager: false, import: 'default' }) or by explicitly constructing components object. If SSR is enabled, all related JS and CSS files will be preloaded in HTML.
import component1 from "./Component1.vue"
import component2 from "./Component2.vue"
const entryComponents = {
 Component1: component1,
 Component2: component2,
 Component3Lazy: () => import("./Component3.vue"),
}

// in app.js
const hooks = getHooks(entryComponents)

 Customize Vue app

If you want to initialize Vue app in any way, by eg. adding plugins or directives, you can customize it easily in assets/vue/index.js setup function.
// in assets/vue/index.js
// ...
// import { createPinia } from "pinia"
// const pinia = createPinia()

export default createLiveVue({
 resolve: name => {
 // ...
 },
 setup: ({ createApp, component, props, slots, plugin, el }) => {
 const app = createApp({ render: () => h(component, props, slots) })
 app.use(plugin)
 // add your own plugins here
 // app.use(pinia)
 app.mount(el)
 return app
 },
})
You can completely change the default initialization method by adjusting setup to your needs.
Note: setup is called also in SSR mode. You can adjust initialization based on ssr flag passed as an argument to setup.
export default createLiveVue({
 setup: ({ createApp, component, props, slots, plugin, el, ssr }) => {
 const app = createApp({ render: () => h(component, props, slots) })
 if (ssr) { console.log("Creating app for SSR") }
 app.use(plugin)
 app.mount(el)
 return app
 },
})
Context object passed to setup has following keys:
	Property	Descriptor
	createApp	Either createApp() or createSSRApp() depending on whether or not SSR is enabled
	component	The vue compoenent that is to be rendered
	props	The props passed to the component
	slots	The slots passed to the component
	plugin	A live_vue plugin that makes it possible to use useLiveVue provider
	el	The html element in which the vue app should be mounted
	ssr	Boolean indicating if setup is running in SSR or not

 Relation to LiveSvelte

This project is heavily inspired by ✨ LiveSvelte ✨. Both projects try to solve the same problem. LiveVue was started as a fork of LiveSvelte with adjusted ESbuild settings, and evolved to use Vite and a slightly different syntax. I strongly believe more options are always better, and since I love Vue and it's ecosystem I've decided to give it a go 😉
You can read more about differences between Vue and Svelte in FAQ.

 LiveVue Development

 Local Setup

Ensure you have node installed. Clone the repo and run mix setup. You can then run mix assets.watch to start a watcher for the assets.
Example Project
You can use /example_project as a way to test live_vue locally.
Custom Project
You can also use your own project.
Clone live_vue to the parent directory of the project you want to test it in.
Inside mix.exs
{:live_vue, path: "../live_vue"},
Inside assets/package.json
"live_vue": "file:../../live_vue",

 Building Static Files

Make the changes in /assets/js and run:
mix assets.build

Or run the watcher:
mix assets.watch

 Releasing

Release is done with expublish package.
	 Write version changelog in untracked RELEASE.md file
	 Update version in INSTALLATION.md

Run
git add INSTALLATION.md
git commit -m "INSTALLATION version bump"

to ensure everything works fine
mix expublish.minor --dry-run --allow-untracked --branch=main

to publish everything
mix do assets.build, expublish.minor --allow-untracked --branch=main

 Deployment

Deploying a LiveVue app is the same as deploying a regular Phoenix app, except that you will need to ensure that nodejs (version 19 or later) is installed in your production environment.
The below guide shows how to deploy a LiveVue app to Fly.io, but similar steps can be taken to deploy to other hosting providers.
You can find more information on how to deploy a Phoenix app here.

 Deploying on Fly.io

The following steps are needed to deploy to Fly.io. This guide assumes that you'll be using Fly Postgres as your database. Further guidance on how to deploy to Fly.io can be found here.
	Generate a Dockerfile:

mix phx.gen.release --docker

	Modify the generated Dockerfile to install curl, which is used to install nodejs (version 19 or greater), and also add a step to install our npm dependencies:

./Dockerfile

...

install build dependencies
- RUN apt-get update -y && apt-get install -y build-essential git \
+ RUN apt-get update -y && apt-get install -y build-essential git curl \
 && apt-get clean && rm -f /var/lib/apt/lists/*_*

+ # install nodejs for build stage
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs

...

COPY assets assets

+ # install all npm packages in assets directory
+ RUN cd /app/assets && npm install

...

start a new build stage so that the final image will only contain
the compiled release and other runtime necessities
FROM ${RUNNER_IMAGE}

RUN apt-get update -y && \
- apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates \
+ apt-get install -y libstdc++6 openssl libncurses5 locales ca-certificates curl \
 && apt-get clean && rm -f /var/lib/apt/lists/*_*

+ # install nodejs for production environment
+ RUN curl -fsSL https://deb.nodesource.com/setup_19.x | bash - && apt-get install -y nodejs

...
Note: nodejs is installed BOTH in the build stage and in the final image. This is because we need nodejs to install our npm dependencies and also need it when running our app.
	Launch your app with the Fly.io CLI:

fly launch

	When prompted to tweak settings, choose y:

? Do you want to tweak these settings before proceeding? (y/N) y

This will launch a new window where you can tweak your launch settings. In the database section, choose Fly Postgres and enter a name for your database. You may also want to change your database to the development configuration to avoid extra costs. You can leave the rest of the settings as-is unless you want to change them.
Deployment will continue once you hit confirm.
	Once the deployment completes, run the following command to see your deployed app!

fly apps open

 FAQ

 Name sounds exactly the same as LiveView

Yes, I noticed it slightly too late to change. Some helpful reddit users pointed it out 😉
I'd suggest referring to it as LiveVuejs in speech, to avoid confusion.

 Differences from LiveSvelte

Both LiveVue and LiveSvelteserves the same purpose and are implemented in a very similar way. Here is a list of points to consider when choosing one over another:
	 Vue uses virtual DOM, Svelte doesn't. Vue bundle is slightly bigger than Svelte because of runtime.
	 Vue performance is very similar, or even better, than Svelte. Both are fast enough that you shouldn't make your decision based on it.
	 Vue is working on a Vapor mode without virtual DOM. Once stable I'll try to support it here.
	 Svelte reactivity is done based on the compilation step figuring out dependencies. It allows for a very concise syntax, but causes problems when you'd like to keep reactivity cross-files and has some limitations. Svelte 5 Runes will be very similar to Vue ref.
	 Vue reactivity is based on JS Proxies. Syntax is a bit more verbose, but there are less ways to shoot yourself in a foot 😉
	 Vue is more popular than Svelte, and has a bigger ecosystem. It might be an important thing to consider when making a decision.

 Colocating Vue files alongside your LiveViews

Vue files in LiveVue have similar role as HEEX templates. In many cases it makes sense to colocate them next to your LiveViews for better DX.
You don't need to do anything to make it work, simply place your Vue files inside lib/my_app_web directory and reference them by their names or relative paths.

 How does it work?

The idea is fairly simple.
	Phoenix renders a div with props, slots and handlers as data attributes. In live views these are kept in sync. When SSR is enabled, it also renders the component and inlines the result in the HTML.
	LiveVue hook mount callback initializes the element. It hooks up all the handlers, injects hook itself so useLiveVue works correctly, and mounts the Vue component.
	On update, Phoenix only changes data attributes. Hook updates props of the element.
	On destroy, Vue element is unmounted and garbage collected.

One thing to keep in mind is that hooks are fired only after app.js is fully loaded, so it might cause some delays of the initial render of the component.

 Optimizations

LiveVue introduces a number of interesting optimizations:
	 Props, Handlers or slots are only send to the client if anything was changed. It's accomplished through a careful modifications of __changed__ assign.
	 We use data-props={"#{@props |> Jason.encode()}"} syntax (notice String interpolation) to avoid sending data-props= on each update
	 Soon: we'll be sending only updated props
	 Soon: we'll be sending only deep-diff of props (similar to LiveJson, but automated)

 Why SSR is useful?

As explained in the previous section, it takes a moment for Vue component to initialize, even if props are already inlined in the HTML.
It's done only during a "dead" render, without connected socket. It's not needed when doing live navigation - in my experience when using <.link navigate="..."> component is rendered before displaying a new page.

 Roadmap 🎯

	[] Add a default handler for Vue emits to eg. automatically push them to the server without explicit v-on handlers.
	[] try to use Igniter as a way of installing LiveVue in a project
	[] usePushEvent - an utility similar to useFetch making it easy to get data from &handle_event/3 -> {:reply, data, socket} responses
	[] useLiveForm - an utility to efforlessly use Ecto changesets & server-side validation, similar to HEEX
	[] useEventHandler - an utility automatically attaching & detaching handleEvent
	[] optimize payload - send only json_patch diffs of updated props
	[] VS code extension highlighting ~V sigil
	[] Add support for Phoenix streams as props

 Credits

LiveSvelte

 Star History

 Installation - LiveVue v0.5.3

Installation

LiveVue replaces esbuild with Vite for both client side code and SSR to achieve an amazing development experience. Why?
	 Vite provides a best-in-class Hot-Reload functionality and offers many benefits not present in esbuild
	 esbuild package doesn't support plugins, so we would need to setup it anyway

In production, we'll use elixir-nodejs for SSR. If you don't need SSR, you can disable it with one line of code. TypeScript will be supported as well.

 Steps

	Please install node 😉

	Add live_vue to your list of dependencies of your Phoenix app in mix.exs and run mix deps.get

defp deps do
 [
 {:live_vue, "~> 0.5"}
]
end
	Add config entry to your config/dev.exs file

config :live_vue,
 vite_host: "http://localhost:5173",
 ssr_module: LiveVue.SSR.ViteJS,
 # if you want to disable SSR by default, make it false
 ssr: true
	Add config entry to your config/prod.exs file

config :live_vue,
 ssr_module: LiveVue.SSR.NodeJS,
 ssr: true
	Add LiveVue to your html_helpers in lib/my_app_web.ex

defp html_helpers do
 quote do
 # ...
 # Add support to Vue components
 use LiveVue

 # Generate component for each vue file, so you can omit v-component="name".
 # You can configure path to your components by using optional :vue_root param
 use LiveVue.Components, vue_root: ["./assets/vue", "./lib/my_app_web"]
 end
end
	LiveVue comes with a handy command to setup all the required files. It won't alter any files you already have in your project, you need to adjust them on your own by looking at the provided sources. Additional instructions how to adjust package.json can be found at the end of this page.

It will create:
	 package.json
	 vite, typescript and postcss configs
	 server entrypoint
	 vue entrypoint

mix deps.get
mix live_vue.setup
cd assets && npm install

Now we just have to adjust js/app.js hooks and tailwind config to include vue files:
// app.js
import topbar from "topbar" // instead of ../vendor/topbar
import {getHooks} from "live_vue"
import liveVueApp from "../vue"

// remember to import your css here
import "../css/app.css"

let liveSocket = new LiveSocket("/live", Socket, {
 // ...
 hooks: getHooks(liveVueApp),
})
// tailwind.config.js

module.exports = {
 content: [
 // ...
 // include Vue files
 "./vue/**/*.vue",
 "../lib/**/*.vue",
],
}
	Let's update root.html.heex to use Vite files in development. There's a handy wrapper for it.

<!-- Wrap existing CSS and JS in LiveVue.Reload.vite_assets component,
pass paths to original files in assets -->

<LiveVue.Reload.vite_assets assets={["/js/app.js", "/css/app.css"]}>
 <link phx-track-static rel="stylesheet" href="/assets/app.css" />
 <script type="module" phx-track-static type="text/javascript" src="/assets/app.js">
 </script>
</LiveVue.Reload.vite_assets>
	Update mix.exs aliases and get rid of tailwind and esbuild packages

defp aliases do
 [
 setup: ["deps.get", "assets.setup", "assets.build"],
 "assets.setup": ["cmd --cd assets npm install"],
 "assets.build": [
 "cmd --cd assets npm run build",
 "cmd --cd assets npm run build-server"
],
 "assets.deploy": [
 "cmd --cd assets npm run build",
 "cmd --cd assets npm run build-server",
 "phx.digest"
]
]
end

defp deps do
 [
 # remove these lines, we don't need esbuild or tailwind here anymore
 # {:esbuild, "~> 0.8", runtime: Mix.env() == :dev},
 # {:tailwind, "~> 0.2", runtime: Mix.env() == :dev},
]
end
	Remove esbuild and tailwind config from config/config.exs

	Update watchers in config/dev.exs to look like this

config :my_app, MyAppWeb.Endpoint,
 # ...
 watchers: [
 npm: ["--silent", "run", "dev", cd: Path.expand("../assets", __DIR__)]
]

	To make SSR working with LiveVue.SSR.NodeJS (recommended for production), you have to add this entry to your application.ex supervision tree:

children = [
 {NodeJS.Supervisor, [path: LiveVue.SSR.NodeJS.server_path(), pool_size: 4]},
 # ...
]
	Confirm everything is working by rendering an example Vue component anywhere in your LiveViews:

~H"""
<.vue
 count={@count}
 v-component="Counter"
 v-socket={@socket}
 v-on:inc={JS.push("inc")}
/>
"""
	(Optional) enable stateful hot reload of phoenix LiveViews - it allows for stateful reload across the whole stack 🤯. Just adjust your dev.exs to look like this - add notify section and remove live|components from patterns.

Watch static and templates for browser reloading.
config :my_app, MyAppWeb.Endpoint,
 live_reload: [
 notify: [
 live_view: [
 ~r"lib/my_app_web/core_components.ex$",
 ~r"lib/my_app_web/(live|components)/.*(ex|heex)$"
]
],
 patterns: [
 ~r"priv/static/(?!uploads/).*(js|css|png|jpeg|jpg|gif|svg)$",
 ~r"lib/my_app_web/controllers/.*(ex|heex)$"
]
]
Voila! Easy, isn't it? 😉

 Adjust your own package.json

Install these packages
cd assets

vite
npm install -D vite @vitejs/plugin-vue

tailwind
npm install -D tailwindcss autoprefixer postcss @tailwindcss/forms

typescript
npm install -D typescript vue-tsc

runtime dependencies
npm install --save vue topbar ../deps/live_vue ../deps/phoenix ../deps/phoenix_html ../deps/phoenix_live_view

remove topbar from vendor, since we'll use it from node_modules
rm vendor/topbar.js

and add these scripts used by watcher and mix assets.build command
{
 "private": true,
 "type": "module",
 "scripts": {
 "dev": "vite --host -l warn",
 "build": "vue-tsc && vite build",
 "build-server": "vue-tsc && vite build --ssr js/server.js --out-dir ../priv/vue --minify esbuild --ssrManifest && echo '{\"type\": \"module\" } ' > ../priv/vue/package.json"
 }
}

 Changelog - LiveVue v0.5.3

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 0.5.3 - 2024-11-12

 Fixed

	Added explicit extensions to all JS imports. It should fix some issues with module resulution. #36

 0.5.2 - 2024-10-08

 Changed

	Added hint to pass --silent flag to npm watcher in INSTALLATION.md. It prevents npm from printing executed command which is not useful and makes output messy.

config :my_app, MyAppWeb.Endpoint,
 # ...
 watchers: [
 npm: ["--silent", "run", "dev", cd: Path.expand("../assets", __DIR__)]
]

 0.5.1 - 2024-10-08

 Fixed

	Fixed a bug where the server was not preloading the correct assets for the Vue components. It happened because CursorAI "skipped" important part of the code when migrating to the TypeScript 😅

 0.5.0 - 2024-10-08

 Changed

	Migrated the project to TypeScript 💜 #32
	Added createLiveVue entrypoint to make it easier to customize Vue app initialization

 Deprecations

	assets/vue/index.js should export app created by createLiveVue(), not just available components. See migration below.

 Migration

In assets/js/app.js, instead of:
export default {
 ...import.meta.glob("./**/*.vue", { eager: true }),
 ...import.meta.glob("../../lib/**/*.vue", { eager: true }),
}
use:
// polyfill recommended by Vite https://vitejs.dev/config/build-options#build-modulepreload
import "vite/modulepreload-polyfill"
import { h } from "vue"
import { createLiveVue, findComponent } from "live_vue"

export default createLiveVue({
 resolve: name => {
 const components = {
 ...import.meta.glob("./**/*.vue", { eager: true }),
 ...import.meta.glob("../../lib/**/*.vue", { eager: true }),
 }

 // finds component by name or path suffix and gives a nice error message.
 // `path/to/component/index.vue` can be found as `path/to/component` or simply `component`
 // `path/to/Component.vue` can be found as `path/to/Component` or simply `Component`
 return findComponent(components, name)
 },
 setup: ({ createApp, component, props, slots, plugin, el }) => {
 const app = createApp({ render: () => h(component, props, slots) })
 app.use(plugin)
 app.mount(el)
 return app
 },
})
then, in assets/js/app.js, instead of:
import components from "./vue"
simply do
import { getHooks } from "live_vue"
import liveVueApp from "./vue"
// ...

const hooks = { ...getHooks(liveVueApp) }
If you had any custom initialization code, you have to move it to createLiveVue().setup() function.

 Fixed

	Nicely formatted JS error stracktraces during SSR commit
	Previously initializeVueApp was not working in SSR mode, since it was declared in app.js which couldn't be imported by server bundle. Now it's in a separate file as createLiveVue().setup() and can be imported by both client and server bundles.

 0.4.1 - 2024-08-30

 Changed

	 Improved pathToFullPathAndFilename to work with index.vue files. Now ../ComponentName/index.vue can be referenced as ComponentName #23

 0.4.0 - 2024-06-12

 New feature

	 Support for custom Vue instance initialization #13 by @morfert

 0.3.9 - 2024-06-07

 0.3.8 - 2024-06-01

 Fixed

	 Invalid live_vue import in copied package.json (file:../.. -> file:../deps/live_vue)
	 Changed useLiveVue inject key from Symbol() to _live_vue string, so it's working if Vite does a reload and Symbol is re-evaluated.

 Added

	 Added live_vue, phoenix, phoenix_html and phonenix_live_vue to vite optimizeDeps.include config options. It should pre-bundle these packages in development, making it consistent with packages imported from node_modules and improve DX.
	 Added initial typescript definitions. Apparently it's enough to name them <filename>.d.mts, so I've created them both for index.mjs and server.mjs

 0.3.7 - 2024-05-26

 Changed

	 Added a Mix.Task to make JS file setup more straightforward and cross-platform #11. Contribution by @morfert 🔥
	 Installation instruction was moved to the separate file
	 Package.json was added to files automatically copied from live_vue when using mix live_vue.setup

 Fixed

	 Removed build: {modulePreload: { polyfill: false }} from vite.config.js as it made it impossible to use vite/modulepreload-polyfill. To migrate: please remove that line from yours vite.config.js. Fixed #12

 0.3.6 - 2024-05-24

 Fixed

	 Fixed missing import in loadManifest
	 Added import "vite/modulepreload-polyfill"; to assets/vue/index.js. To migrate, add that line to the top. It adds polyfill for module preload, required for some browsers. More here: https://vitejs.dev/config/build-options#build-modulepreload

 0.3.5 - 2024-05-24

 Changed

	 Removed body-parser dependency from live_vue. Should fix #9

 0.3.4 - 2024-05-22

 Fixed

	 Props are correctly updated when being arrays of structs

 0.3.3 - 2024-05-22

 Fixed

	 Javascript imports were mixed - vitePlugin.js was using CJS, rest was using ESM. Now it's explicit by adding ".mjs" extension.
	 Removed :attr declarations for <.vue> component to avoid warnings related to unexpected props being passed to :rest attribute #8

 0.3.2 - 2024-05-19

 Fixed

	 Hot reload of CSS when updating Elixir files

 0.3.1 - 2024-05-17

 Changed

	 Simplified assets/vue/index.js file - mapping filenames to keys is done by the library. Previous version should still work.

 0.3.0 - 2024-05-17

 CHANGED

	 removed esbuild from live_vue, package.json points directly to assets/js/live_vue
	 added support to lazy loading components. See more in README. To migrate, ensure all steps from installation are up-to-date.

 0.2.0 - 2024-05-17

QoL release

 Added

	 @ added to Vite & typescript paths. To migrate, see assets/copy/tsconfig.json and assets/copy/vite.config.js
	 Added Vite types to tsconfig.json to support special imports, eg. svg. To migrate, add "types": ["vite/client"].
	 Added possibility to colocate Vue files in lib directory. To migrate, copy assets/copy/vue/index.js to your project.

 Changed

	 Adjusted files hierarchy to match module names
	 Publishing with expublish

 [0.1.0] - 2024-05-15

 Initial release

	 Start of the project
	 End-To-End Reactivity with LiveView
	 Server-Side Rendered (SSR) Vue
	 Tailwind Support
	 Dead View Support
	 Vite support

 LiveVue - LiveVue v0.5.3

LiveVue

See README.md for installation instructions and usage.

 Summary

 Functions

 vue(assigns)

 Functions

 Link to this function

 vue(assigns)

 View Source

 LiveVue.Components - LiveVue v0.5.3

LiveVue.Components

Macros to improve the developer experience of crossing the Liveview/Vue boundary.

 Summary

 Functions

 __using__(opts)

 Generates functions local to your current module that can be used to render Vue components.
TODO: This could perhaps be optimized to only read the files once per compilation.

 Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Generates functions local to your current module that can be used to render Vue components.
TODO: This could perhaps be optimized to only read the files once per compilation.

 Examples

use LiveVue.Components, vue_root: ["./assets/vue", "./lib/my_app_web"]

 LiveVue.Reload - LiveVue v0.5.3

LiveVue.Reload

Utilities for easier integration with Vite in development

 Summary

 Functions

 vite_assets(assigns)

 Renders the vite assets in development, and in production falls back to normal compiled assets

 Functions

 Link to this function

 vite_assets(assigns)

 View Source

Renders the vite assets in development, and in production falls back to normal compiled assets

 Attributes

	assets (:list) (required)

 Slots

	inner_block (required) - what should be rendered when Vite path is not defined.

 LiveVue.SSR - LiveVue v0.5.3

LiveVue.SSR behaviour

A behaviour for rendering Vue components server-side.
To define a custom renderer, change the application config in config.exs:
config :live_vue, ssr_module: MyCustomSSRModule
Exposes a telemetry span for each render under key [:live_vue, :ssr]

 Summary

 Types

 component_name()

 props()

 render_response()

 A render response which should have shape

 slots()

 Callbacks

 render(component_name, props, slots)

 Functions

 render(name, props, slots)

 Types

 Link to this type

 component_name()

 View Source

 @type component_name() :: String.t()

 Link to this type

 props()

 View Source

 @type props() :: %{optional(String.t() | atom()) => any()}

 Link to this type

 render_response()

 View Source

 @type render_response() :: %{optional(String.t() | atom()) => any()}

A render response which should have shape
%{
 html: string,
 preloadLinks: string
}

 Link to this type

 slots()

 View Source

 @type slots() :: %{optional(String.t() | atom()) => any()}

 Callbacks

 Link to this callback

 render(component_name, props, slots)

 View Source

 @callback render(component_name(), props(), slots()) :: render_response() | no_return()

 Functions

 Link to this function

 render(name, props, slots)

 View Source

 @spec render(component_name(), props(), slots()) :: render_response() | no_return()

 LiveVue.SSR.NodeJS - LiveVue v0.5.3

LiveVue.SSR.NodeJS

Implements SSR by using NodeJS package.
Under the hood, it invokes "render" function exposed by server.js file.
You can see how server.js is created by looking at assets.deploy command
and package.json build-server script.

 Summary

 Functions

 render(name, props, slots)

 Callback implementation for LiveVue.SSR.render/3.

 server_path()

 Functions

 Link to this function

 render(name, props, slots)

 View Source

Callback implementation for LiveVue.SSR.render/3.

 Link to this function

 server_path()

 View Source

 LiveVue.SSR.ViteJS - LiveVue v0.5.3

LiveVue.SSR.ViteJS

Implements SSR by making a POST request to http://{:vite_host}/ssr_render.
ssr_render is implemented as a Vite plugin. You have to add it to the vite.config.js plugins section.
import liveVuePlugin from "live_vue/vitePlugin"

{
 publicDir: "static",
 plugins: [vue(), liveVuePlugin()],
 // ...
}

 Summary

 Functions

 render(name, props, slots)

 Callback implementation for LiveVue.SSR.render/3.

 vite_path(path)

 A handy utility returning path relative to Vite JS host.

 Functions

 Link to this function

 render(name, props, slots)

 View Source

Callback implementation for LiveVue.SSR.render/3.

 Link to this function

 vite_path(path)

 View Source

A handy utility returning path relative to Vite JS host.

 mix live_vue.setup - LiveVue v0.5.3

mix live_vue.setup

Copies files from assets/copy of the live_vue dependency to phoenix project assets folder

OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.se