

 Livebook

 v0.14.6

 [image: Logo]

 Table of contents

 	Welcome to Livebook

 	Use cases

 	Authentication

 	Notebook stamping

 	Livebook Teams

 	Intro to Livebook Teams

 	Shared secrets management

 	Shared file storages

 	Deployment

 	Docker

 	Clustering

 	FIPS mode

 	Nginx over HTTPS

 	Authentication

 	Basic Auth

 	Cloudflare

 	Google IAP

 	Tailscale

 	Custom

 	

 	Modules

 	Livebook

Livebook

[image: Website]

 Use cases - Livebook v0.14.6

Use cases

There are many ways Elixir developers use and leverage Livebook today.

 Documentation with Mix.install

Livebook is an excellent tool for documentation. Many Elixir packages use
Livebook as tutorials but you can also directly run Livebook within the context
of your existing application with the help of Mix.install/2.
As an example, imagine you have created a notebook inside your current project,
at notebooks/example.livemd. In order to run within the root Mix project, using
the same configuration and dependencies versions, you can change your notebook
setup cell to invoke Mix.install/2 with the following arguments:
Mix.install(
 [
 {:my_app, path: Path.join(__DIR__, ".."), env: :dev}
],
 config_path: :my_app,
 lockfile: :my_app
)

 Deploying custom apps and internal tooling

Your Livebook notebooks can be deployed as applications which
you may then share within your team and company. Docker deployment
is provided out of the box and you can automate your deployment,
share secrets, configure authentication and more with
Livebook Teams.

 Communication and automation of Elixir systems

You may also deploy notebooks as applications that automate and monitor
live Elixir systems. By clicking on "+ Smart cell", you will find Livebook
provides a "Remote execution" widget, that allows you to configure the
node name, cookie, and the code you want to execute on the remote node.
The node and cookie information are configured directly in the production
system you want to connect to. For example, to connect to a
Phoenix application running on your machine,
you may start it as follows:
$ iex --name phoenix-app@127.0.0.1 --cookie secret -S mix phx.server

With this information in hand, you can query and automate tasks within
existing Elixir systems. You may also mix remote execution with Livebook's
rich features to deploy applications that interact with those systems.

 Debugging live systems (with attached mode)

Livebook uses the concept of a runtime, which in practice is an Elixir node
responsible for evaluating your code. You can choose the runtime by clicking
the "Runtime" icon on the sidebar (or by using the s r keyboard shortcut).
By default, a new Elixir runtime is started (similarly to starting iex)
for each notebook. You can click reconnect whenever you want to discard the
current runtime and start a new one.
You can also manually attach to an existing node by picking the "Attached Node"
runtime. While in the previous section we used the "Remote execution" smart cell
to connect the default Livebook runtime to an existing node, the "Attached Node"
will make it so the Livebook runtime itself runs within the external node.
To do so, open up a new notebook and click the "Runtime" icon on the sidebar.
Click to "Configure" the runtime and choose "Attached node". Input the
name and cookie from the remote node and you should be ready to connect
to it. Once connected, be careful: any code that you execute in the notebook
now runs within the connected application. You are also limited on actions
you may perform. For example, you can't install dependencies (nor would that
be a good idea on a running system).
You may also connect your local Livebook instance to a node running in
production depending on your platform.

 Scaffolding embedded systems with Nerves

If you want to run Livebook on embedded devices, such as Raspberry Pi,
BeagleBone, etc., check out the Livebook
firmware built
with Nerves. In such cases, Livebook
uses a special runtime, called the Embedded Runtime, where all of your
code runs within Livebook itself, without starting additional runtimes
(which may be too expensive on limited devices).

 Ready to get started?

Head out to Livebook homepage to install it.
Once you have it up and running, head to the "Learn" section on the
sidebar to learn more!

 Authentication - Livebook v0.14.6

Authentication

Livebook has three levels of authentication:
	Instance authentication: this authenticates the user on all routes of your Livebook instance, including deployed notebooks and the admin section. This is done via Zero Trust Authentication and typically used when deploying Livebook to production. See the "Authentication" section on the sidebar for more information.

	Admin authentication: this authenticates access to Livebook admin interface, where users can create, write, and manage notebooks. Both password and token authentication are available. See the next section for more information.

	Deployed notebook authentication: additionally, when deploying notebooks as applications, each application may be password protected with a unique password. Only users authenticated as admin or with the password will be able to access them.

 Admin authentication

Livebook's default admin authentication method is token authentication. A token is automatically generated at startup and printed to the logs.
You may optionally enable password-based authentication by setting the environment variable LIVEBOOK_PASSWORD on startup or deployment. It must be at least 12 characters.
To disable authentication altogether, you may set the environment variable LIVEBOOK_TOKEN_ENABLED to false.

 Notebook stamping - Livebook v0.14.6

Notebook stamping

Livebook provides a feature called "Notebook Stamping", with the goal of enhancing security and productivity within notebooks.
Whenever you author a notebook, the contents of the notebook is signed with a secret key that belongs to your machine (which you can also find in settings). If the notebook accesses any secret or file system configuration, these permissions are stored within the stamp.
Whenever you open up a notebook stamped by you, it will retain access to secrets and file systems, and you won't have to reenable them. Whenever you open up a notebook stamped by someone else, a warning is displayed, all access is revoked, and must be explicitly enabled. However, remember that stamping only takes care of Livebook resources: when you execute the notebook, the code in the notebook will still have access to the current machine, so always execute third-party code with care.
Note that deploying notebooks as applications do not verify stamps when using your personal workspace. For such, you must use Livebook Teams, which provides an authority for stamping and encrypting notebooks.

 Secure deployments with Livebook Teams

When using Livebook Teams, notebooks are stamped with a private key that belongs to your organization/workspace. This means you can share notebooks within your organization, and if the notebook accesses any secret/file system resource, the access rules are transparently retained.
Furthermore, when deploying with Livebook Teams, Livebook guarantees that all of the notebooks belong to your organization and that the stamps are valid, eliminating the chance that someone in your organization accidentally deploys an external notebook that has not been previously reviewed by a team member.
Livebook Teams stamping works in two steps:
	The notebook is encrypted using your Livebook Teams key and then sent to the Livebook Teams server. Since Livebook Teams do not have access to your Livebook Teams key, Livebook Teams cannot read the content of your notebooks

	The Livebook Teams server then stamps the encrypted notebook using a private key, that is only available within Livebook Teams server. The members of your organization only have access to the public key, which validates the stamp, without giving past or future employees the option to forge stamps

The steps above ensure that the contents are only visible to your team members and only team members with access to the Livebook Teams can stamp notebooks.

 Intro to Livebook Teams - Livebook v0.14.6

Intro to Livebook Teams

Livebook Teams enables you to deploy internal tools built with Elixir and Livebook to your own infrastructure.
It's currently in free beta. You can join the beta waiting list here to get early access.

 Shared secrets management - Livebook v0.14.6

Shared secrets management

 Overview

This feature allows your team to share Livebook secrets among team members in an easy way.
Just add a secret to your organization workspace, and Livebook Teams will synchronize it with the Livebook of every member of your organization.
[image:]
You can also create such secrets directly from a notebook.
[image:]
Shared secrets updates and deletions will also be synchronized.

 How it works

Here's a video showing how that feature works.

 Security strengths

Livebook Teams cannot access the plain text version of your organization's secrets.
Livebook encrypts your secrets locally in your machine using your Teams key. Then, the secret is sent encrypted to Livebook Teams servers.
When a new synchronization is needed, Livebook Teams sends the encrypted secret to the Livebook of team members, and their Livebook decrypts the secret in their local machines using the same Teams key.

 Shared file storages - Livebook v0.14.6

Shared file storages

 Overview

This feature allows your team to share the configuration of S3-compatible storages.
Livebook file storages are used to store notebooks and their files.
Whenever you add (update or detach) a file storage to your organization workspace, Livebook Teams will synchronize that with the Livebook of every member of your organization.
[image:]

 How it works

Here's a video showing how that feature works.

 Security strengths

Livebook Teams cannot access the credentials of your S3 (compatible) account.
Livebook encrypts your S3 credentials locally in your machine using your Teams key. Then, they're sent encrypted to Livebook Teams servers.
When a new synchronization is needed, Livebook Teams sends the encrypted credentials to the Livebook of team members, and their Livebook decrypts that in their local machines using the same Teams key.

 Docker - Livebook v0.14.6

Docker

There are two main use cases to deploy Livebook in the cloud. The first is to read and write notebooks in the cloud, instead of your machine. The second is to deploy notebooks as applications.

 Livebook in the cloud

You can deploy Livebook inside your infrastructure using Docker. The Dockerfile below provides a great starting point:
FROM ghcr.io/livebook-dev/livebook

Configure your port accordingly
ENV LIVEBOOK_PORT 7860
EXPOSE 7860

If you have a persistent volume, configure it here
ENV LIVEBOOK_DATA_PATH "/data"
USER root
RUN mkdir -p /data
RUN chmod 777 /data
We also recommend setting the LIVEBOOK_PASSWORD environment variable to a secret value. If it is not set, you will find the token to access Livebook in the logs. See all other supported environment variables to learn more.
If you want to run several Livebook instances behind a load balancer, you need to enable clustering. See the Clustering section.
If you plan to limit access to your Livebook via a proxy, we recommend leaving the "/public" route of your instances still public. This route is used for integration with the Livebook Badge and other conveniences.

 Docker compose

If using Docker Compose the following template is a good starting point:
services:
 livebook:
 image: ghcr.io/livebook-dev/livebook
 ports:
 - 8090:8090
 - 8091:8091
 environment:
 - LIVEBOOK_PORT=8090
 - LIVEBOOK_IFRAME_PORT=8091

 Kubernetes

If using k8s the following template is a good starting point. It includes a load balancer and preset clustering:
apiVersion: v1
kind: Service
metadata:
 name: livebook-headless
spec:
 clusterIP: None
 selector:
 app: livebook

apiVersion: v1
kind: Service
metadata:
 name: livebook-loadbalancer
spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 8080
 selector:
 app: livebook

apiVersion: apps/v1
kind: Deployment
metadata:
 name: livebook
spec:
 # When deploying Livebook for authoring notebooks to Kubernetes,
 # the number of replicas must be 1, since Livebook considers you
 # will assign one instance per user.
 replicas: 1
 selector:
 matchLabels:
 app: livebook
 template:
 metadata:
 labels:
 app: livebook
 spec:
 containers:
 - name: livebook
 image: ghcr.io/livebook-dev/livebook:latest
 ports:
 - containerPort: 8080
 env:
 - name: POD_IP
 valueFrom:
 fieldRef:
 fieldPath: status.podIP
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 - name: LIVEBOOK_NODE
 value: "livebook@$(POD_IP)"
 - name: LIVEBOOK_CLUSTER
 value: "dns:livebook-headless.$(POD_NAMESPACE).svc.cluster.local"
 - name: LIVEBOOK_PASSWORD
 valueFrom:
 secretKeyRef:
 name: livebook-secret
 key: LIVEBOOK_PASSWORD
 - name: LIVEBOOK_SECRET_KEY_BASE
 valueFrom:
 secretKeyRef:
 name: livebook-secret
 key: LIVEBOOK_SECRET_KEY_BASE
 - name: LIVEBOOK_COOKIE
 valueFrom:
 secretKeyRef:
 name: livebook-secret
 key: LIVEBOOK_COOKIE

apiVersion: v1
kind: Secret
metadata:
 name: livebook-secret
 namespace: livebook-namespace
type: Opaque
data:
 LIVEBOOK_PASSWORD: <base64_encoded_password>
 LIVEBOOK_SECRET_KEY_BASE: <base64_encoded_password>
 LIVEBOOK_COOKIE: <base64_encoded_password>
The setup above does not set up a data directory, which means once you restart the instance, any configuration will be lost. If you have a persistent volume, you can point the LIVEBOOK_DATA_PATH environment variable to it.

 Deploy notebooks as applications

It is possible to deploy any notebook as an application in Livebook. Inside the notebook, open up the Application pane on the sidebar (with a rocket icon), click "Manual Docker deployment", and follow the required steps.
If you are using Livebook Teams, you can also deploy with the click of a button by running Livebook servers inside your infrastructure. To get started, open up Livebook and click "Add Organization" on the sidebar. Once completed, open up the Application pane on the sidebar (with a rocket icon), click "Deploy with Livebook Teams", and follow the deployment steps.
The deployment steps will show you to deploy your notebooks within Docker, Fly.io, and Kubernetes. This is effectively done by setting the LIVEBOOK_TEAMS_AUTH, which configures Livebook to run as a read-only instance connected to Livebook Teams.
Livebook Teams also support airgapped deployments, pre-configured Zero Trust Authentication, shared team secrets, file storages, and more.

 Clustering - Livebook v0.14.6

Clustering

If you plan to run several Livebook instances behind a load balancer, you need to enable clustering via the LIVEBOOK_CLUSTER environment variable. This page describes how to configure the relevant environment variables.
If you are using Livebook Teams, you can deploy with the click of a button by running Livebook servers inside your infrastructure. To get started, open up Livebook and click "Add Organization" on the sidebar. Once completed, open up the Application pane on the sidebar (with a rocket icon), click "Deploy with Livebook Teams". We provide templates for clustering inside Fly.io and Kubernetes, without a need to follow the steps below.

 Setting LIVEBOOK_CLUSTER

You may set LIVEBOOK_CLUSTER to one of the following values.

 auto

Detects the hosting platform and automatically sets up a cluster using DNS configuration. Currently the only supported platform is Fly.io.

 dns:QUERY

Sets up a cluster using DNS for queries for A/AAAA records to discover new nodes. Additionally, you must additionally set the following env vars:
	LIVEBOOK_NODE=livebook_server@MACHINE_IP, where MACHINE_IP is the machine IP of each deployed node

	If your cloud requires IPv6, also set ERL_AFLAGS="-proto_dist inet6_tcp"

 Setting other env vars

In addition you must set LIVEBOOK_SECRET_KEY_BASE and LIVEBOOK_COOKIE to different random values (use openssl rand -base64 48 to generate said values).
You may need to set additional environment variables at runtime. When using the Livebook Docker image, you can create a file at /app/user/env.sh that exports the necessary environment variables. This file is invoked right before booting Livebook.

 FIPS mode - Livebook v0.14.6

FIPS mode

For environments that require security hardening, you might need to turn on FIPS (Federal Information Processing Standards) mode. Turning FIPS is a complex procedure, this just enables you to do it.
You will need to have an Erlang installation that has been compiled with FIPS enabled.

 Docker example

To do this in Docker, you will need to build it differently. Below is an example Dockerfile with FIPS-enabled Erlang/Elixir base image. You can use it as a base image for building Livebook. See the Livebook Dockerfile for further reference.
FROM registry.access.redhat.com/ubi8/ubi-minimal:8.9-1137
Set environment variables for path and language
ENV PATH /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Install system dependencies and clean cache in one layer
RUN microdnf install -y unzip autoconf git ncurses-devel openssl-devel gcc gcc-c++ make automake perl clang wget tar cmake glibc-locale-source glibc-langpack-en && \
 microdnf clean all && \
 rm -rf /var/cache/yum

WORKDIR /install

Download, configure, and install Erlang/OTP with FIPS enabled
ARG ERLANG_VERSION
RUN wget https://github.com/erlang/otp/archive/OTP-${ERLANG_VERSION}.tar.gz && \
 tar -xzvf OTP-${ERLANG_VERSION}.tar.gz && \
 cd otp-OTP-${ERLANG_VERSION} && \
 ./otp_build autoconf && \
 ./configure --enable-fips && \
 make && make install

Clone, checkout, and install Elixir
ARG ELIXIR_VERSION
RUN git clone https://github.com/elixir-lang/elixir.git && \
 cd elixir && \
 git checkout v${ELIXIR_VERSION} && \
 make compile && \
 make install

 Nginx over HTTPS - Livebook v0.14.6

Nginx over HTTPS

This guide shows you how to use Nginx to serve Livebook over HTTPS.

 Prerequisites

	Nginx installed
	Livebook installed
	Both Livebook and Nginx running on the same machine or within the same network
	SSL certificate and key files

 Nginx configuration

Use the following Nginx config file as a starting point:
http {
 server {
 listen 443 ssl;
 server_name your_domain; # e.g., livebook.example.com

 ssl_certificate /path/to/your/ssl_certificate.crt; # e.g., /etc/nginx/ssl/livebook.crt
 ssl_certificate_key /path/to/your/ssl_certificate.key; # e.g., /etc/nginx/ssl/livebook.key

 location / {
 proxy_pass http://livebook_ip:livebook_port; # e.g., http://172.20.0.3:8080 (Livebook's default port is 8080)
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header Host $host;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header X-Forwarded-Proto $scheme;
 }
 }

 server {
 listen 80;
 server_name your_domain; # e.g., livebook.example.com
 return 301 https://$host$request_uri;
 }
}

events {}

 Basic Auth - Livebook v0.14.6

Basic Auth

Setting up Basic Authentication is a simple mechanism for protecting all routes of your Livebook instance with a single username-password combo. However, because this password is shared across all users, this authentication mechanism cannot be used to identity users and more robust authentication methods provided by Livebook should be preferred. Basic Authentication occurs in addition to Livebook's authentication for deployed notebooks and admins.

 How to

To integrate Basic Authentication with Livebook, set the LIVEBOOK_IDENTITY_PROVIDER environment variable to basic_auth:<username>:<password>.
To do it, run:
LIVEBOOK_IDENTITY_PROVIDER=basic_auth:user:pass \
livebook server

 Livebook Teams

Livebook Teams users can deploy notebooks with the click of a button with pre-configured Zero Trust Authentication, shared team secrets, and file storages. Both online and airgapped deployment mechanisms are supported.
Furthermore, if you are deploying multi-session apps via Livebook Teams, you can programmatically access data from the authenticated user by calling Kino.Workspace.app_info/0.
To get started, open up Livebook, click "Add Organization" on the sidebar. Then, inside the notebook of your choice, click "Deploy with Livebook Teams".

 Cloudflare - Livebook v0.14.6

Cloudflare

Setting up Cloudflare authentication will protect all routes of your Livebook instance. It is particularly useful for adding authentication to Livebook instances with deployed notebooks. Cloudflare authentication occurs in addition to Livebook's authentication for deployed notebooks and admins.
Once Cloudflare is enabled, we recommend leaving the "/public" route of your instances still public. This route is used for integration with the Livebook Badge and other conveniences.

 How to

To integrate your Cloudflare Zero Trust authentication with Livebook, set the
LIVEBOOK_IDENTITY_PROVIDER environment variable to cloudflare:<your-team-name>.
For more details about how to find your team-name, see:
https://developers.cloudflare.com/cloudflare-one/glossary/#team-name.
For more information about Cloudflare Zero Trust, see:
https://developers.cloudflare.com/cloudflare-one/.

 Livebook Teams

Livebook Teams users can deploy notebooks with the click of a button with pre-configured Zero Trust Authentication, shared team secrets, and file storages. Both online and airgapped deployment mechanisms are supported.
Furthermore, if you are deploying multi-session apps via Livebook Teams, you can programmatically access data from the authenticated user by calling Kino.Workspace.app_info/0.
To get started, open up Livebook, click "Add Organization" on the sidebar. Then, inside the notebook of your choice, click "Deploy with Livebook Teams".

 Google IAP - Livebook v0.14.6

Google IAP

Setting up Google IAP authentication will protect all routes of your Livebook instance. It is particularly useful for adding authentication to Livebook instances with deployed notebooks. Google IAP authentication occurs in addition to Livebook's authentication for deployed notebooks and admins.
Once Google IAP is enabled, we recommend leaving the "/public" route of your instances still public. This route is used for integration with the Livebook Badge and other conveniences.

 How to

To integrate your Google Identity-Aware Proxy (IAP) authentication with Livebook,
set the LIVEBOOK_IDENTITY_PROVIDER environment variable to google_iap:<your-jwt-audience>.
For more information about Google IAP, see https://cloud.google.com/iap/docs/concepts-overview.
Only access with Google accounts is supported. See https://cloud.google.com/iap/docs/authenticate-users-google-accounts.
For more details about how to find your JWT audience, see https://cloud.google.com/iap/docs/signed-headers-howto and look for "Signed Header JWT Audience."

 Livebook Teams

Livebook Teams users can deploy notebooks with the click of a button with pre-configured Zero Trust Authentication, shared team secrets, and file storages. Both online and airgapped deployment mechanisms are supported.
Furthermore, if you are deploying multi-session apps via Livebook Teams, you can programmatically access data from the authenticated user by calling Kino.Workspace.app_info/0.
To get started, open up Livebook, click "Add Organization" on the sidebar. Then, inside the notebook of your choice, click "Deploy with Livebook Teams".

 Tailscale - Livebook v0.14.6

Tailscale

Setting up Tailscale authentication will protect all routes of your Livebook instance. It is particularly useful for adding authentication to Livebook instances with deployed notebooks. Tailscale authentication occurs in addition to Livebook's authentication for deployed notebooks and admins.
Once Tailscale is enabled, we recommend leaving the "/public" route of your instances still public. This route is used for integration with the Livebook Badge and other conveniences.

 How to

To integrate Tailscale authentication with Livebook,
set the LIVEBOOK_IDENTITY_PROVIDER environment variable to tailscale:tailscale-socket-path, make sure the tailscale CLI is installed and available on your machine (or your Docker image).
If you want to access Livebook on the same machine as you are hosting it,
you must also set the LIVEBOOK_IP variable to your Tailscale IP.
To do both of these things, run:
LIVEBOOK_IP=$(tailscale ip -1 | tr -d '\n') \
LIVEBOOK_IDENTITY_PROVIDER=tailscale:/var/run/tailscale/tailscaled.sock \
livebook server

See https://tailscale.com/blog/tailscale-auth-nginx/ for more information
on how Tailscale authentication works.

 macOS

On macOS, when Tailscale is installed via the Mac App Store, no unix socket is exposed.
Instead, a TCP port is made available and protected via a password, which needs to be located.
Tailscale itself uses lsof for this. This method is replicated in the bash script below,
which will start Livebook with your Tailscale IP and correct port and password.
#!/bin/bash
addr_info=$(lsof -n -a -c IPNExtension -F | sed -n 's/.*sameuserproof-\([[:digit:]]*-.*\).*/\1/p')
port=$(echo "$addr_info" | cut -d '-' -f 1)
pass=$(echo "$addr_info" | cut -d '-' -f 2)
LIVEBOOK_IP=$(exec $(ps -xo comm | grep MacOS/Tailscale$) ip | head -1 | tr -d '\n') \
LIVEBOOK_IDENTITY_PROVIDER=tailscale:http://:$pass@127.0.0.1:$port \
livebook server

 Livebook Teams

Livebook Teams users can deploy notebooks with the click of a button with pre-configured Zero Trust Authentication, shared team secrets, and file storages. Both online and airgapped deployment mechanisms are supported.
Furthermore, if you are deploying multi-session apps via Livebook Teams, you can programmatically access data from the authenticated user by calling Kino.Workspace.app_info/0.
To get started, open up Livebook, click "Add Organization" on the sidebar. Then, inside the notebook of your choice, click "Deploy with Livebook Teams".

 Custom - Livebook v0.14.6

Custom

It is possible to provide custom Zero Trust Authentication (ZTA) inside Livebook's Docker images.
To do so, you must define a file with the .exs extension inside the /app/user/extensions of your Livebook image, for example, /app/user/extensions/my_auth.exs. This file should define at least one module, which implements the ZTA skeleton below:
defmodule MyAuth do
 use GenServer

 @spec start_link(keyword) :: {:ok, pid()}
 def start_link(opts) do
 identity_key = opts[:identity_key]
 GenServer.start_link(__MODULE__, identity_key, Keyword.take(opts, [:name]))
 end

 @spec authenticate(GenServer.server(), Plug.Conn.t(), keyword()) ::
 {Plug.Conn.t(), map() | nil}
 def authenticate(server, conn, opts \\ []) do
 # Connects to the GenServer given by `server` and returns the user information.
 # See `opts[:fields]` for the fields to be returned in the map.
 # Return nil if the user cannot be authenticated.
 end
end
Then you must configure Livebook to use the module above as your identity provider:
LIVEBOOK_IDENTITY_PROVIDER="custom:MyAuth"

Or, if you want to pass a custom identity key:
LIVEBOOK_IDENTITY_PROVIDER="custom:MyAuth:my-key"

Keep in mind that the identity provider contract in Livebook is still evolving and it may change in future releases. Additionally, your code may rely on two dependencies: Req ~> 0.4 and JOSE ~> 1.11.

 Development

If you want to try your custom identity provider in development, you can clone Livebook's git repository and then execute the following command inside Livebook's root folder:
$ mix setup
$ LIVEBOOK_IDENTITY_PROVIDER="custom:MyAuth" elixir -r path/to/my_auth.exs -S mix phx.server

 Livebook - Livebook v0.14.6

Livebook

This module provides a public Elixir API for integrating with Livebook.

 Configuration

See config_runtime/0 for bootstrapping the default runtime
configuration. There are several public configuration entries that
you can customize.

 Custom plugs

You can list a number of plugs to call directly before the Livebook
router
config :livebook, :plugs, [{CustomPlug, []}]

 Embedded runtime dependencies

In case you use the Embedded runtime and support installing
dependencies with Mix.install/2, you can make those discoverable
in the package search, by configuring a loader function:
config :livebook, Livebook.Runtime.Embedded,
 load_packages: {Loader, :packages, []}
The function should return a list of entries like this:
[
 %{
 dependency: %{dep: {:kino, "~> 0.6.1"}, config: []},
 description: "Interactive widgets for Livebook",
 name: "kino",
 url: "https://hex.pm/packages/kino",
 version: "0.6.1"
 }
]

 Custom learn notebooks

Note that this is compile time configuration.
A list of additional notebooks to include in the Learn section.
Note that the notebooks are loaded and embedded in a compiled module,
so the paths are accessed at compile time only.
config :livebook, :learn_notebooks, [
 %{
 # Required notebook path
 path: "/path/to/notebook.livemd",
 # Optional notebook identifier for URLs, as in /learn/notebooks/{slug}
 # By default the slug is inferred from file name, so there is no need to set it
 slug: "my-notebook"
 # Optional list of images
 image_paths: [
 # This image can be sourced as images/myimage.jpg in the notebook
 "/path/to/myimage.jpg"
],
 # Optional details for the notebook card. If omitted, the notebook
 # is hidden in the UI, but still accessible under /learn/notebooks/{slug}
 details: %{
 cover_path: "/path/to/logo.png",
 description: "My custom notebook that showcases some amazing stuff."
 }
 },
 %{
 path: "/path/to/other_notebook.livemd"
 }
]

 Summary

 Functions

 OEBPS/images/add_shared_file_storage.png
Livebook vois.0-dev

File storages

File storages are used to store notebooks and their files across your whole team.

S3 https://s3.amazonaws.com/personal-livebook-filesystem

Add file storage

Gl
Deployment groups
® dashbit

Deployment groups allow you to deploy Livebook apps to self-hosted machines with the
click of a button.

production Online 7 Edit on Teams

livebook-teams-intern