

 loader

 v0.6.0

 Table of contents

 	Modules

 	Loader

 	Loader.ExecutionStore

 	Loader.LoadProfile

 	Loader.LoadProfile.Curves

 	Loader.LocalReporter

 	Loader.LocalReporter.ReportStore

 	Loader.Stats

 	Loader.Stats.Summary

 	Loader.Telemetry

 	Loader.WorkResponse

 	Loader.WorkSpec

Loader

Loader is a load-generating library that allows you to define arbitrary distributions of arbitrary work via mathematical functions and small structs.
These distributions, called LoadProfiles, can be paired up with a WorkSpec and executed to generate load, and gather statistics from a client's perspective.
Usage
In order to use Loader you must start it and provide a :name, typically in a supervision tree:
children = [
 {Loader, name: MyLoader}
]
However you may want to use Loader in an iex session, or as part of a mix script via Mix.install/2, in which case you can also start Loader dynamically:
Loader.start_link(name: MyLoader)
Example
Let's assume there is some service at http://website.io/public/api, and we want to generate some simple, uniform load against that service.

alias Loader.{LoadProfile, WorkResponse, WorkSpec}

uniform_one_minute_profile =
 LoadProfile.new(%{
 target_running_time: 60,
 function: &LoadProfile.Curves.uniform(&1, 10) # y = 10
 })

service_call_spec = %WorkSpec{
 task: fn ->
 Finch.build(:get, "http://website.io/public/api", [])
 |> Finch.request(MyApp.Finch)
 end,
 is_success?: fn %WorkResponse{data: res} ->
 case res do
 {:ok, _any} -> true
 _any -> false
 end
 end
}

Loader.start_link(name: MyLoader)

Loader.execute({uniform_one_minute_profile, service_call_spec}, MyLoader)
The above example will generate a uniform 10 requests/ second against our imaginary service. We could also write additional load profiles, and run them concurrently to generate constructive interference!
linear_one_minute_profile =
 LoadProfile.new(%{
 target_running_time: 60,
 function: &LoadProfile.Curves.linear(&1, 1.5, 5) # y = 1.5x + 5
 })

sine_wave_one_minute_profile =
 LoadProfile.new(%{
 target_running_time: 60,
 function: fn x -> 5 * (:math.sin(x) + 1) end # y = 5 * (sin(x) + 1)
 })

[
 {uniform_one_minute_profile, service_call_spec},
 {linear_one_minute_profile, service_call_spec},
 {sine_wave_one_minute_profile, service_call_spec},
]
|> Loader.execute(MyLoader)
Visualized, this second example would produce load on the service as shown, where x is in seconds and y is requests/ second:
[image: constructive interference load graph]Telemetry
Loader emits the following telemetry events:
	[:loader, :load_profile_execution, :start] - emitted when Loader.execute/2 is called.
	[:loader, :load_profile_execution, :stop] - emitted when a LoadProfile has been fully executed, regardless of the number of successes or failures of individual tasks
	[:loader, :task, :start] - emitted when the :task callback from a Loader.WorkSpec is invoked
	[:loader, :task, :stop] - emitted when the :task callback from a Loader.WorkSpec is invoked
	[:loader, :task, :exception] - emitted if there is an uncaught exception while invoking the :task callback from a Loader.WorkSpec

See the documentation for the Loader.Telemetry module for more information.
ETS
Note that Loader uses one Registry (which uses ETS tables) and one ETS table per instance.
Installation
The package can be installed by adding loader to your list of dependencies in mix.exs:
def deps do
 [
 {:loader, "~> 0.6.0"}
]
end
The docs can be found at https://hexdocs.pm/loader.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 execute(profile_spec_pairs, instance_name)

 Execute tasks defined by the work_spec, scheduled based on the load_profile. When provided with a list, all profiles will be executed concurrently.

 start_link(opts)

 Start an instance of Loader

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 execute(profile_spec_pairs, instance_name)

 @spec execute(
 {Loader.LoadProfile.t(), Loader.WorkSpec.t()},
 atom()
) :: DynamicSupervisor.on_start_child()

 @spec execute([{Loader.LoadProfile.t(), Loader.WorkSpec.t()}], atom()) :: [
 DynamicSupervisor.on_start_child()
]

Execute tasks defined by the work_spec, scheduled based on the load_profile. When provided with a list, all profiles will be executed concurrently.
See Loader.LoadProfile for more information on how to define a profile.

 Link to this function

 start_link(opts)

Start an instance of Loader

 options

 Options

	:name - The name of your Loader instance. This field is required.

Loader.ExecutionStore

All entries in the ets tables "held" by this process should have the following format:
TODO: add duration after mono completion time
{
 unique_ref, # via `make_ref/0`
 pid,
 monotomic_start_time,
 successful_monotomic_completion_time,
 wall_clock_start_time,
 successful_wall_clock_completion_time,
 total_tasks_to_execute,
 success_count,
 failure_count
}
The details of the ets table and the tuple format are an internal detail,
and should not be relied upon by other modules.
The table is :public so that message passing is not necessary to allow
other processes to write to the table, but we avoid race conditions since
only atomic operations are used in this module.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 increment_failures(instance_name, scheduled_loader_ref)

 increment_successes(instance_name, scheduled_loader_ref)

 log_successful_termination(instance_name, scheduled_loader_ref)

 new_scheduled_loader(instance_name, pid, total_task_count)

 start_link(opts)

 task_counts(instance_name, scheduled_loader_ref)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 increment_failures(instance_name, scheduled_loader_ref)

 Link to this function

 increment_successes(instance_name, scheduled_loader_ref)

 Link to this function

 log_successful_termination(instance_name, scheduled_loader_ref)

 Link to this function

 new_scheduled_loader(instance_name, pid, total_task_count)

 Link to this function

 start_link(opts)

 Link to this function

 task_counts(instance_name, scheduled_loader_ref)

Loader.LoadProfile

A struct representing a distribution of discrete work tasks over a period of time, and functions for working with that data.
See Loader.LoadProfile.Curves for details on defining the function of a LoadProfile, which determines the distribution of work tasks.
A LoadProfile is defined independently from the type of work being done. It could describe calls made against a remote service as easily as work done in a local module.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(props \\ %{})

 Returns a new LoadProfile based on the given props, with incorrect props set to default values.

 plot_curve(profile)

 Returns a 2-tuple: a plot of points that represents how tasks would be distributed for the given profile,
and the total number of tasks "under the curve" (an approximate integral of the function, reflecting
the total number of tasks that will be executed).

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Loader.LoadProfile{
 function: (integer() -> number()),
 target_running_time: integer(),
 tick_resolution: 10
}

 Anchor for this section

Functions

 Link to this function

 new(props \\ %{})

Returns a new LoadProfile based on the given props, with incorrect props set to default values.

 rules-for-props

 Rules for props:

	target_running_time: must be a positive integer
	function: must be a 1-arity function. It should also return a number, but this isn't enforced

 Link to this function

 plot_curve(profile)

 @spec plot_curve(t()) :: {[{integer(), integer()}], integer()}

Returns a 2-tuple: a plot of points that represents how tasks would be distributed for the given profile,
and the total number of tasks "under the curve" (an approximate integral of the function, reflecting
the total number of tasks that will be executed).

Loader.LoadProfile.Curves

Convenience functions for defining typical "curves" (i.e. "functions") for the request distribution
in a LoadProfile.
Some function families, like exponentiation and logarithms, are varied enough or complex enough that i believe they are better expressed as "plain" callback functions, e.g. fn x -> -1 * :math.pow(2, (x + 3)) + 4.
These function families have thus been excluded from this module.
In the context of a LoadProfile, the unit for x is always seconds.

 Anchor for this section

 Summary

 Functions

 linear(x, slope, y_intercept)

 quadratic(x, quadratic_coefficient, linear_coefficient \\ 1, constant \\ 0)

 sine_wave(x, opts \\ [])

 A sinusoidal function with a modification such that the result is always >= 0.
Accepts options to modify the oscillation of the wave.

 uniform(x, y_intercept)

 Anchor for this section

Functions

 Link to this function

 linear(x, slope, y_intercept)

 @spec linear(integer(), number(), number()) :: number()

 Link to this function

 quadratic(x, quadratic_coefficient, linear_coefficient \\ 1, constant \\ 0)

 @spec quadratic(integer(), number(), number(), number()) :: number()

 Link to this function

 sine_wave(x, opts \\ [])

 @spec sine_wave(
 integer(),
 keyword()
) :: number()

A sinusoidal function with a modification such that the result is always >= 0.
Accepts options to modify the oscillation of the wave.

 options

 Options

	:amplitude: a measure of the peak deviation of the wave from it's center. To keep all values of the wave >= 0, the vertical center of the wave will also be equal to its amplitude. Should be a positive number, and will be forced as such via Kernel.abs/1. Defaults to 1.
	:frequency: the number of oscillations (cycles) that occur each second. Defaults to 1.
	:angular_frequency: the rate-of-change of the function, in units of radians/second. Mutually exclusive with :frequency, with :angular_frequency taking precedence. Defaults to nil.
	:phase: specifies, in radians, where in the wave's cycle the oscillation will begin, when x = 0. Defaults to 0.

See https://en.wikipedia.org/wiki/Sine_wave for more info on sine waves

 Link to this function

 uniform(x, y_intercept)

 @spec uniform(integer(), number()) :: number()

Loader.LocalReporter

Options
	:name - Required. The name of the reporter instance. Functions as described in the "Name registration" section in the GenServer module docs.
	:metrics - Required. The list of Telemetry.Metrics structs to be reported on.

Reporter Options
Additional options can be passed to the metric definitions, depending on the type of metric.
All metrics will use the :reporter_options key to pass these options.
TODO: put these options into sub-structures, e.g. reporter_options.distribution.buckets
Distribution (histogram)
	:buckets - Define buckets to group measurements into. However the buckets are defined, a measurement will fall into a bucket when bucket_fencepost <= value < next_largest_fencepost. Values that do not fall into one of the defined buckets (e.g. a negative measurement that was not anticipated) will go into a bucket with the key :out_of_range. Defaults to {:percentiles, [0, 25, 50. 75]}. Buckets can be defined in one of two ways:	as a list, e.g. [0, 1_000, 5_000, 10_000]
	as percentiles, e.g. {:percentiles, [0, 25, 50, 75, 90, 95, 99]}

Summary
	:mode_rounding_places - The number of decimal places to which measurements will be rounded for aggregating the "mode". Defaults to 4.
	:percentile_targets - The percentile values to be returned in the summary. Defaults to [25, 50, 75, 90, 95, 99].

ETS
Note that Loader.LocalReporter uses one Registry (which uses ETS tables) and one ETS table per event name.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 flush_to_file(instance_name, event_name, opts \\ [])

 Convenience wrapper for finding a ReportStore instance and invoking a function.

 handle_event(event_name, measurements, metadata, config)

 report(instance_name, event_name, opts \\ [])

 Convenience wrapper for finding a ReportStore instance and invoking a function.

 start_link(opts)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 flush_to_file(instance_name, event_name, opts \\ [])

Convenience wrapper for finding a ReportStore instance and invoking a function.
See ReportStore.flush_to_file/2 for information and options.

 Link to this function

 handle_event(event_name, measurements, metadata, config)

 Link to this function

 report(instance_name, event_name, opts \\ [])

Convenience wrapper for finding a ReportStore instance and invoking a function.
See ReportStore.report/2 for information and options.

 Link to this function

 start_link(opts)

Loader.LocalReporter.ReportStore

This GenServer creates a new ets table for storing measurements
for the :metric option, and registers itself with the provided registry.
Its purpose is to store all values that may be needed to create metric reports,
for a single event name (e.g. [:http_client, :request, :stop]), and make it
easy to manage and isolate the ownership and lifecycle of the ets table.
All entries in the ets table "held" by this process should have the following format:
{
 nearly_unique_ref OR `[:counter | metric_name]` OR `[:last_value | metric_name]`, # refs via make_ref/0
 metric_name, # e.g. `[:http_client, :request, :stop, :duration]`
 metric_measurement, # number, as `nil`s are ignored
}

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 flush_to_file(server, opts \\ [])

 Write the contents of the store out to a file, as specified by the options, and delete all flushed entries from the table when successful.

 record_measurement(event_name, measurements, metadata, arg)

 report(server, opts \\ [])

 Scan all measurements for the event_name that are currently stored by the server to produce a report.

 start_link(opts)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 flush_to_file(server, opts \\ [])

 @spec flush_to_file(
 server :: pid(),
 opts ::
 nil
 | [
 file_type: :ets | :json,
 directory: {:absolute | :relative_to_cwd, binary()}
]
) :: {:ok, path_to_file :: binary()} | {:error, term()}

Write the contents of the store out to a file, as specified by the options, and delete all flushed entries from the table when successful.

 options

 Options

	:file_type - the format in which the file will be written out. Defaults to :json.	available values are:	:ets - uses the binary format from :ets.tab2file
	:json - a JSON structure with two keys: "entry_count" and "entries"

	:directory - the directory where flushed stores will be written. Defaults to {:relative_to_cwd, "/reports"}.

 Link to this function

 record_measurement(event_name, measurements, metadata, arg)

 @spec record_measurement(
 :telemetry.event_name(),
 map(),
 map(),
 {Registry.registry(), [Telemetry.Metrics.t()]}
) ::
 [ok: reference() | [atom()] | {:cast, [atom()]}, error: term()]
 | {:error, term()}

 Link to this function

 report(server, opts \\ [])

 @spec report(
 server :: pid(),
 opts :: nil | [{:metrics, [Telemetry.Metrics.normalized_metric_name()]}]
) ::
 %{
 optional(Telemetry.Metrics.normalized_metric_name()) =>
 number()
 | %Loader.Stats.Summary{
 max: term(),
 mean: term(),
 median: term(),
 min: term(),
 mode: term(),
 percentiles: term(),
 standard_deviation: term()
 }
 | Loader.Stats.histogram()
 }

Scan all measurements for the event_name that are currently stored by the server to produce a report.

 options

 Options

	:metrics - a list of metric names to be included in the report. Metrics unknown to this ReportStore instance will be ignored. Defaults to :all.

 Link to this function

 start_link(opts)

Loader.Stats

Functions for aggregating statistics on measurements.

 Anchor for this section

 Summary

 Types

 histogram()

 A map, possibly empty, which represents a histogram.

 Functions

 summarize(list)

 Return summary statistics for a set of measurement values.

 summarize(measurements, opts \\ [])

 to_histogram(measurements, buckets)

 Produce a histogram for the given measurements and buckets.

 Anchor for this section

Types

 Link to this type

 histogram()

 @type histogram() :: %{
 optional(number()) => [number()],
 optional(:out_of_range) => [number()]
}

A map, possibly empty, which represents a histogram.
Each "bucket" of the histogram will be a key in the map, whose value will be a list of numbers
that satisfy: key <= value < next_largest_key.
Values that do not fall within one of the buckets will be placed into a bucket with key :out_of_range.

 Anchor for this section

Functions

 Link to this function

 summarize(list)

 @spec summarize([number()]) :: %Loader.Stats.Summary{
 max: term(),
 mean: term(),
 median: term(),
 min: term(),
 mode: term(),
 percentiles: term(),
 standard_deviation: term()
}

Return summary statistics for a set of measurement values.
See the module documentation for Loader.LocalReporter, under the "Summary" heading, for more information on options.

 examples

 Examples

iex> import Loader.Stats
iex> measurements = [1.55, 1.547, 1.6]
iex> summary = summarize(measurements, mode_rounding_places: 2)
iex> {[1.55], 2} = summary.mode
iex> more_precise_summary = summarize(measurements, mode_rounding_places: 4)
iex> {[1.6, 1.55, 1.547], 1} = more_precise_summary.mode

 Link to this function

 summarize(measurements, opts \\ [])

 Link to this function

 to_histogram(measurements, buckets)

 @spec to_histogram(measurements :: [number()], buckets :: [number()]) :: histogram()

Produce a histogram for the given measurements and buckets.
Duplicate buckets will be combined. Buckets that receive no values will be excluded from the output.

 examples

 Examples

iex> import Loader.Stats
iex> measurements = [1, 1.5, 3, 5, 9, -1]
iex> buckets = [1, 1, 2, 3, 5]
iex> to_histogram(measurements, buckets)
%{1 => [1.5, 1], 3 => [3], 5 => [9, 5], :out_of_range => [-1]}

Loader.Stats.Summary

It is assumed that we are "sampling" for the standard deviation, and so the formula
for the "sampled standard deviation" is used. See WikiPedia for more details.

Loader.Telemetry

Telemetry integration.
Unless specified, all times are in :native units.
Loader executes the following events:
Load Profile Execution Start
[:loader, :load_profile_execution, :start] - emitted when Loader.execute/2 is called.
Measurements
	:monotonic_time - system monotonic time, as reported by :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)
	:system_time - system time, as reported by System.system_time/0

Metadata
	:instance_name - the :name used to start the root supervisor for Loader
	:load_profile - profile (Loader.LoadProfile)
	:scheduled_loader_ref - (almost) unique reference generated for the process that is handling execution of the profile. Generated with make_ref/0
	:work_spec - specification for each task to be executed (Loader.WorkSpec)

Load Profile Execution Stop
[:loader, :load_profile_execution, :stop] - emitted when a LoadProfile has been fully executed, regardless of the number of successes or failures of individual tasks
Measurements
	:duration - elapsed time since the related :start event, calculated with :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)
	:monotonic_time - system monotonic time, as reported by :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)

Metadata
	:failures - number of tasks deemed unsuccessful, based on the WorkSpec
	:instance_name - the :name used to start the root supervisor for Loader
	:load_profile - profile (Loader.LoadProfile)
	:scheduled_loader_ref - (almost) unique reference generated for the process that handled execution of the profile. Generated with make_ref/0
	:successes - number of tasks deemed successful, based on the WorkSpec
	:work_spec - specification for each task to be executed (Loader.WorkSpec)

Task Start
[:loader, :task, :start] - emitted when the :task callback from a Loader.WorkSpec is invoked
Measurements
	:monotonic_time - system monotonic time, as reported by :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)
	:system_time - system time, as reported by :erlang.system_time/0 (see the :telemetry docs span/3 function for more details)

Metadata
	:instance_name - the :name used to start the root supervisor for Loader
	:scheduled_loader_ref - (almost) unique reference generated for the process that handled execution of the profile. Generated with make_ref/0
	:telemetry_span_context - (almost) unique reference generated for the span execution
	:work_spec - specification for the task (Loader.WorkSpec)

Task Stop
[:loader, :task, :stop] - emitted when the :task callback from a Loader.WorkSpec is invoked
Measurements
	:duration - elapsed time since the related :start event, calculated with :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)
	:monotonic_time - system monotonic time, as reported by :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)

Metadata
	:instance_name - the :name used to start the root supervisor for Loader
	:scheduled_loader_ref - (almost) unique reference generated for the process that handled execution of the profile. Generated with make_ref/0
	:telemetry_span_context - (almost) unique reference generated for the span execution
	:was_success? - whether or not the task was successful, according to the WorkSpec
	:work_spec - specification for the task (Loader.WorkSpec)

Task Exception
[:loader, :task, :exception] - emitted if there is an uncaught exception while invoking the :task callback from a Loader.WorkSpec
Measurements
	:duration - elapsed time since the related :start event, calculated with :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)
	:monotonic_time - system monotonic time, as reported by :erlang.monotonic_time/0 (see the :telemetry docs span/3 function for more details)

Metadata
	:instance_name - the :name used to start the root supervisor for Loader
	:kind - the type of exception
	:reason - whatever reason is given by the exception
	:scheduled_loader_ref - (almost) unique reference generated for the process that handled execution of the profile. Generated with make_ref/0
	:stacktrace - the stacktrace of the exception
	:telemetry_span_context - (almost) unique reference generated for the span execution
	:work_spec - specification for the task (Loader.WorkSpec)

Loader.WorkResponse

Internal data structure used to represent the results of executing a WorkSpec
Properties
	:data - whatever important data is returned by the work

	:response_time - must be an integer number, in microseconds, which is the "client-side" view of how long the work took. I recommend using System.monotonic_time/0 or :timer.tc/1

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Loader.WorkResponse{
 data: any(),
 kind: :ok | :error,
 response_time: integer()
}

Loader.WorkSpec

A specification for some "work" to do, to generate load.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 @type t() :: %Loader.WorkSpec{
 is_success?: (Loader.WorkResponse.t() -> boolean()),
 task: (() -> term()) | mfa()
}

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

