

 localhost.run

 v0.1.0

 Table of contents

 	LocalhostRun

 	
 Modules

 	LocalhostRun

LocalhostRun

[image: Main Branch]
[image: Module Version]
[image: Total Download]
[image: License]
[image: Last Updated]
[image: Coverage Status]
A small Elixir client for localhost.run, which lets you
expose local ports to the internet via SSH tunnels.
This can be useful for development, testing webhooks, or sharing a local server
with someone. It supports both unauthenticated and authenticated connections
using SSH keys or your local SSH agent.

 Installation

Add to your mix.exs:
def deps do
 [
 {:localhost_run, "~> 0.1.0"}
]
end

 Basic Usage

You can use this module in different ways depending on your needs.

 Start with GenServer

{:ok, pid} = LocalhostRun.start_link(internal_port: 4000)

 As a supervised process

children = [
 {LocalhostRun, [internal_port: 4000]}
]

opts = [strategy: :one_for_one, name: MyApp.Supervisor]
Supervisor.start_link(children, opts)

 Manual connection

{:ok, {conn_ref, channel_id}} = LocalhostRun.connect(internal_port: 4000)

receive do
 {:ssh_cm, ^conn_ref, {:data, ^channel_id, 0, message}} ->
 case JSON.decode!(message) do
 %{"event" => "tcpip-forward", "address" => host} ->
 Logger.info("Tunnel established to #{host}")

 %{"event" => "authn", "message" => msg} ->
 Logger.info("Authentication successful: #{msg}")

 %{"message" => msg} ->
 Logger.debug("Received: #{inspect(msg)}")
 end
end

 Authentication

To use features like custom domains or longer tunnel timeouts, you’ll need to
authenticate with localhost.run.
See their docs for details.
You have two options:

 SSH agent

Make sure your SSH agent is running and your key is added:
eval "$(ssh-agent -s)"
ssh-add ~/.ssh/id_rsa

Then pass the agent to LocalhostRun:
{:ok, pid} = LocalhostRun.start_link(internal_port: 4000, ssh_options: [
 user: "your_username",
 key_cb: {:ssh_agent, []}
])

 SSH key file

Alternatively, you can specify a key file:
{:ok, pid} = LocalhostRun.start_link(internal_port: 4000, ssh_options: [
 user: "your_username",
 key_cb: {:ssh_file, []}
])

 Getting the tunnel address

If you need to get the public address of the tunnel:
{:ok, host} = LocalhostRun.get_exposed_host()
IO.puts("Tunnel is available at #{host}")

 Logging

The module sets some helpful metadata in your logs:
	:ssh_host
	:ssh_port
	:external_host
	:internal_port

This can help with debugging or tracing tunnel usage.

 License

Copyright 2025 Jonatan Männchen
Copyright 2025 Erlang Ecosystem Foundation

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

LocalhostRun

Elixir client for localhost.run

 Usage

 Via GenServer

{:ok, pid} = LocalhostRun.start_link(internal_port: 4000)

 Via Supervisor

children = [
 {LocalhostRun, [internal_port: 4000]}
]
opts = [strategy: :one_for_one, name: MyApp.Supervisor]
Supervisor.start_link(children, opts)

 Direct

{:ok, {conn_ref, channel_id}} = LocalhostRun.connect(internal_port: 4000)

receive do
 {:ssh_cm, ^conn_ref, {:data, ^channel_id, 0, message}} ->
 case JSON.decode!(message) do
 %{"event" => "tcpip-forward", "address" => host} ->
 Logger.info("Tunnel established to #{host}")
 {:ok, host}

 %{"event" => "authn", "message" => message} ->
 Logger.info("Tunnel authentication successful: #{message}")
 :ok

 %{"message" => message} ->
 Logger.debug("Received message from SSH channel on STDOUT: #{inspect(message)}")
 end
end

 Login to localhost.run

If you want custom domain names or longer lasting tunnels, you need to login
to localhost.run.
See: https://localhost.run/docs/custom-domains
To do so, you have the following options:

 Use SSH Agent

To use your SSH agent, ensure that it is running and that you have added your
SSH key to it. You can verify that your SSH agent is running by running the
following command:
ssh-add -l

If you see a list of keys, your SSH agent is running. If not, you can start it by running:
eval "$(ssh-agent -s)"

Then, add your SSH key to the agent:
ssh-add ~/.ssh/id_rsa

Afterwards you can use the LocalhostRun module with the :ssh_options option
to specify the SSH agent:
{:ok, pid} = LocalhostRun.start_link(internal_port: 4000, ssh_options: [
 user: "your_username",
 key_cb: {:ssh_agent, []}
])
Check the [ssh_agent] documentation for more information.

 Use SSH Key

If you want to use a specific SSH key, you can specify to use the key_cb
ssh_file in the :ssh_options option:
{:ok, pid} = LocalhostRun.start_link(internal_port: 4000, ssh_options: [
 user: "your_username",
 key_cb: {:ssh_file, []}
])
Check the ssh_file documentation for more information.

 Logger Metadata

The LocalhostRun module automatically sets the following metadata for the
Logger module:
	ssh_host - The SSH host to connect to.
	ssh_port - The SSH port to connect to.
	external_host - The external host to use for the tunnel.
	internal_port - The internal port to forward.

 Summary

 Types

 opts()

 Options for the LocalhostRun GenServer.

 Functions

 connect(opts)

 Connects to the SSH server and sets up the tunnel.

 get_exposed_host(name \\ LocalhostRun)

 Returns the exposed host for the tunnel.
This function blocks until the tunnel is established and the host is available.

 start_link(opts)

 Starts the LocalhostRun GenServer.

 Types

 opts()

 @type opts() :: [
 name: GenServer.name(),
 ssh_host: String.t(),
 ssh_port: :inet.port_number(),
 external_host: String.t(),
 ssh_options: :ssh.client_options(),
 connect_timeout: timeout(),
 internal_port: :inet.port_number()
]

Options for the LocalhostRun GenServer.
	:name - The name of the GenServer process. Default is LocalhostRun.
	:ssh_host - The SSH host to connect to. Default is localhost.run.
	:ssh_port - The SSH port to connect to. Default is 22.
	:external_host - The external host to use for the tunnel. Default is a random host.
	:ssh_options - Additional SSH options. Default is an empty list.
	:connect_timeout - The timeout for the SSH connection. Default is 10 seconds.
	:internal_port - The internal port to forward. This is required and should be provided.

 Functions

 connect(opts)

 @spec connect(opts :: opts()) ::
 {:ok, {:ssh.connection_ref(), :ssh.channel_id()}} | {:error, term()}

Connects to the SSH server and sets up the tunnel.

 get_exposed_host(name \\ LocalhostRun)

 @spec get_exposed_host(name :: GenServer.name()) :: {:ok, String.t()}

Returns the exposed host for the tunnel.
This function blocks until the tunnel is established and the host is available.

 start_link(opts)

Starts the LocalhostRun GenServer.
It connects to the SSH server and sets up the tunnel.
The :internal_port option is required and should be provided.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

