

 Logger

 v1.18.4

 [image: Logo]

 Table of contents

 	
 Modules

 	Logger

 	Logger.Formatter

 	Logger.Translator

 	Deprecated

 	Logger.Backends.Console

Logger

A logger for Elixir applications.
This application is mostly a wrapper around Erlang's
:logger functionality, to provide message
translation and formatting to Elixir terms.
Overall, you will find that Logger:
	Provides all 7 syslog levels
(although debug, info, warning, and error are the most commonly used).

	Supports both message-based and structural logging.

	Integrate with Erlang's :logger and
support custom filters and handlers.

	Formats and truncates messages on the client
to avoid clogging Logger handlers.

	Provides multiple forms of overload protection:
	keeps track of its message queue and switches to sync mode to apply
back pressure or even drop messages
	limits the number of logs emitted defaulting to 500 per second
	optionally allows to terminate and restart it if the message queue length
or memory thresholds are exceeded

	Allows overriding the logging level for a specific module,
application or process.

Logging is useful for tracking when an event of interest happens in your
system. For example, it may be helpful to log whenever a user is deleted.
def delete_user(user) do
 Logger.info("Deleting user from the system: #{inspect(user)}")
 # ...
end
The Logger.info/2 macro emits the provided message at the :info
level. Note the arguments given to info/2 will only be evaluated
if a message is logged. For instance, if the Logger level is
set to :warning, :info messages are never logged and therefore
the arguments given above won't even be executed.
There are additional macros for other levels.
Logger also allows log commands to be removed altogether via the
:compile_time_purge_matching option (see below).
For dynamically logging messages, see bare_log/3. But note that
bare_log/3 always evaluates its arguments (unless the argument
is an anonymous function).
Levels
The supported levels, ordered by importance, are:
	:emergency - when system is unusable, panics
	:alert - for alerts, actions that must be taken immediately,
ex. corrupted database
	:critical - for critical conditions
	:error - for errors
	:warning - for warnings
	:notice - for normal, but significant, messages
	:info - for information of any kind
	:debug - for debug-related messages

For example, :info takes precedence over :debug. If your log
level is set to :info, then all :info, :notice and above will
be passed to handlers. If your log level is set to :alert, only
:alert and :emergency will be printed.
Message
Logger can be used for logging both unstructured and structured data.
Unstructured data is a string or a list of strings:
Logger.info("hello world!")
Logger.info(["hello ", "world!"])
Structured data, also known as reports, are keyword lists and maps:
Logger.info([new_user: user.id, account_type: :admin])
Logger.info(%{new_user: user.id, account_type: :admin})
Log functions also accept a zero-arity anonymous function as a message:
Logger.info(fn -> "hello world!" end)
The anonymous function can return a message or a tuple containing
the message and additional metadata (to be described in the next
section).
In all cases, the arguments given to the Logger macros are only
evaluated if required by the current log level. The exception is
the bare_log/3 function, which is the raw mechanism for logging.
Metadata
Whenever a message is logged, additional information can be given
via metadata. Each log operation, such as Logger.info/2, allows
metadata to be given as an argument.
Furthermore, metadata can be set per process with Logger.metadata/1.
Some metadata, however, may be added automatically by Logger whenever
possible. Those are:
	:application - the current application

	:mfa - the current module, function and arity

	:file - the current file

	:line - the current line

	:pid - the current process identifier

	:initial_call - the initial call that started the process

	:registered_name - the process registered name as an atom

	:process_label - (available from Erlang/OTP 27+) an arbitrary term
which can be added to a process with Process.set_label/1 for
debugging purposes

	:domain - a list of domains for the logged message. For example,
all Elixir reports default to [:elixir]. Erlang reports may start
with [:otp] or [:sasl]

	:crash_reason - a two-element tuple with the throw/error/exit reason
as first argument and the stacktrace as second. A throw will always be
{:nocatch, term}. An error is always an Exception struct. All other
entries are exits. The default formatter ignores this metadata by default
but it can be useful to certain handlers, such as the ones that report
errors to third-party services

There are two special metadata keys, :module and :function, which
extract the relevant bits from :mfa.
The metadata keys above may not always be available. The :mfa, :file,
:line, and similar metadata are automatically included when using Logger
macros, but not when using Logger.bare_log/3. Other metadata, such as
:crash_reason, :initial_call, and :registered_name are available
only inside behaviours such as GenServer, Supervisor, and others.
It is also possible to pass metadata on a particular Logger invocation.
For example, you might wish to include a custom :error_code metadata in
your logs:
Logger.error("We have a problem", [error_code: :pc_load_letter])
By default, no metadata is logged. We will learn how to enable that
over the next sections.
Configuration
Logger supports a wide range of configurations.
This configuration is split in three categories:
	Boot configuration - this configuration is read when logger
starts and configures how Elixir hooks into Erlang's own logger

	Compile configuration - this must be set before your code
is compiled

	Runtime configuration - can be set before the :logger
application is started, but may be changed during runtime

Boot configuration
When Logger starts, it configures the :default log handler from
Erlang to translate and format Elixir terms. As a developer, you
are able to customize the default handler, the default formatter,
and many other options.
The following configuration must be set via config files (such as
config/config.exs), under the :logger key, before your application
is started:
	:default_formatter - a keyword list which configures the
default formatter used by the default handler. See Logger.Formatter
for the full list of configuration.

	:default_handler - this option configures the default handler
used for logging. The default handler is a :logger_std_h
instance which also supports file logging and log rotation.
You can set it to false to disable the default logging altogether.
See the examples below for more information.

	:handle_otp_reports - if Erlang/OTP message should be logged.
Defaults to true.

	:handle_sasl_reports - if supervisor, crash, and progress reports
should be logged. Defaults to false. This option only has an effect
if :handle_otp_reports is true.

	:metadata - key-value pairs of global primary metadata to be included
in all log messages. Defaults to []. The default formatter writes to
standard out and therefore cannot print all metadata. See
Logger.Formatter's documentation
for more information.

For example, to configure Logger to redirect all Erlang messages using a
config/config.exs file:
config :logger,
 handle_otp_reports: true,
 handle_sasl_reports: true
To configure the default formatter, for example, to use a different format
and include some metadata:
config :logger, :default_formatter,
 format: "[$level] $message $metadata\n",
 metadata: [:error_code, :file]
Or to configure default handler, for instance, to log into a file with
built-in support for log rotation and compression:
config :logger, :default_handler,
 config: [
 file: ~c"system.log",
 filesync_repeat_interval: 5000,
 file_check: 5000,
 max_no_bytes: 10_000_000,
 max_no_files: 5,
 compress_on_rotate: true
]
You can find a complete reference on all handler options
on Erlang/OTP docs. Here is Elixir's
default configuration for the default handler:
[
 # Do not log messages from other nodes
 filters: [{&:logger_filters.remote_gl/2, :stop}],
 filter_default: :log,
 formatter: &Logger.default_formatter/0,
 level: :all,
 module: :logger_std_h
]
The :config customizes a specific handler module. The default handler
is :logger_std_h, which logs to standard IO, and you
call find all relevant configuration in its module documentation, including
information overload protection.
You may also set :default_handler to false to disable the default logging
altogether:
config :logger, :default_handler, false
How to add more handlers besides the default one is covered in later sections.
Keywords or maps
While Erlang's logger expects :config to be a map, Elixir's Logger
allows the default handler configuration to be set with keyword lists.
For example, this allows your config/*.exs files, such as config/dev.exs,
to override individual keys defined in config/config.exs.
When reading the handler configuration using Erlang's APIs,
the configuration will always be read (and written) as a map.
Compile configuration
The following configuration must be set via config files (such as
config/config.exs) under the :logger application before your code
is compiled:
	:always_evaluate_messages - if messages should be evaluated even if
the log level is lower than the minimum configured level. Defaults to false.
This is useful for cases where the log level in your test environment
is high (such as :error), which is common in order to avoid logs mixed
with the test output. In such, cases, you might discover log messages
that contain runtime errors only when your code is deployed to production,
where the log level is lower (such as :info). These runtime errors could
be caused by, for example, interpolating something that doesn't implement
the String.Chars protocol in the log message, such as "PID: #{self()}"
(since PIDs cannot be converted to strings with String.Chars).

	:compile_time_application - sets the :application metadata value
to the configured value at compilation time. This configuration is
automatically set by Mix and made available as metadata when logging.

	:compile_time_purge_matching - purges at compilation time all calls
that match the given conditions. This means that Logger calls with
level lower than this option will be completely removed at compile time,
accruing no overhead at runtime. This configuration expects a list of
keyword lists. Each keyword list contains a metadata key and the matching
value that should be purged. Some special keys are supported:
	:level_lower_than - purges all messages with a lower logger level
	:module - purges all messages with the matching module
	:function - purges all messages with the "function/arity"

Remember that if you want to purge log calls from a dependency, the
dependency must be recompiled.

For example, to purge all calls that happen at compile time with level
lower than :info in a config/config.exs file:
config :logger,
 compile_time_purge_matching: [
 [level_lower_than: :info]
]
If you want to purge all log calls from an application named :foo and only
keep errors from Bar.foo/3, you can set up two different matches:
config :logger,
 compile_time_purge_matching: [
 [application: :foo],
 [module: Bar, function: "foo/3", level_lower_than: :error]
]
Runtime Configuration
All configuration below can be set via config files (such as
config/config.exs) but also changed dynamically during runtime via
Logger.configure/1.
	:level - the logging level. Attempting to log any message
with severity less than the configured level will simply
cause the message to be ignored. Keep in mind that each handler
may have its specific level, too. In addition to levels mentioned
above it also supports 2 "meta-levels":
	:all - all messages will be logged, conceptually identical to
:debug
	:none - no messages will be logged at all

	:translator_inspect_opts - when translating OTP reports and
errors, the last message and state must be inspected in the
error reports. This configuration allow developers to change
how much and how the data should be inspected.

For example, to configure the :level options in a config/config.exs
file:
config :logger, level: :warning
Furthermore, Logger allows messages sent by Erlang to be translated
into an Elixir format via translators. Translators can be added at any
time with the add_translator/1 and remove_translator/1 APIs. Check
Logger.Translator for more information.
Erlang/OTP handlers
Handlers represent the ability to integrate into the logging system to
handle each logged message/event. Elixir's Logger automatically sets a
default handler based on Erlang's :logger_std_h, which you can configure
using the :default_handler boot configuration outlined above. You may
also attach additional handlers when you boot your application.
To do so, you must list a series of handlers under the :logger key
of your application configuration. For example, to setup an additional
handler that writes to a file:
config :my_app, :logger, [
 {:handler, :file_log, :logger_std_h, %{
 config: %{
 file: ~c"system.log",
 filesync_repeat_interval: 5000,
 file_check: 5000,
 max_no_bytes: 10_000_000,
 max_no_files: 5,
 compress_on_rotate: true
 },
 formatter: Logger.Formatter.new()
 }}
]
Each handler has the shape {:handler, name, handler_module, config_map}.
Once defined, a handler can be explicitly attached in your
Application.start/2 callback with add_handlers/1:
Logger.add_handlers(:my_app)
You can also add, remove, and update handlers at runtime with the help
of the Erlang's :logger module.
You may also develop your own handlers. Handlers run in the same
process as the process logging the message/event. This gives developers
flexibility but they should avoid performing any long running action in
such handlers, as it may slow down the action being executed considerably.
At the moment, there is no built-in overload protection for Erlang handlers,
so it is your responsibility to implement it.
Alternatively, you can use the
:logger_backends project.
It sets up a log handler with overload protection and allows incoming events
to be dispatched to multiple backends.
Filtering
You can add filters to any handler. For example, to filter out logs
that contain a particular string, you could create a module:
defmodule LogFilter do
 def filter(log_event, _opts) do
 case log_event do
 %{msg: msg} when is_binary(msg) ->
 if msg =~ "password" do
 :stop
 else
 :ignore
 end

 _ ->
 :ignore
 end
 end
end
It may return :log (to log the message), :stop (to not log the
message), or :ignore (to ignore the filter).
Then you can attach the filter, either as a primary filter (which
applies to all handlers), or to a specific handler, when you start
your application, such as in the Application.start/2 callback:
:logger.add_primary_filter(:word_filter, {&LogFilter.filter/2, []})
Backends and backwards compatibility
Prior to Elixir v1.15, custom logging could be achieved with Logger
backends. The main API for writing Logger backends have been moved to
the :logger_backends
project. However, the backends API is still part of Elixir for backwards
compatibility.
Important remarks:
	If the :backends key is set and it doesn't have the :console entry,
we assume that you want to disable the built-in logging. You can force
logging by setting config :logger, :default_handler, []

	The :console backend configuration is automatically mapped to the default
handler and default formatter. Previously, you would set:
config :logger, :console,
 level: :error,
 format: "$time $message $metadata"
This is now equivalent to:
config :logger, :default_handler,
 level: :error

config :logger, :default_formatter,
 format: "$time $message $metadata"
All previous console configuration, except for :level, now go under
:default_formatter.

	If you want to use the previous :console implementation based on Logger
Backends, you can still set backends: [Logger.Backends.Console] and place
the configuration under config :logger, Logger.Backends.Console. Although
consider using the :logger_backends
project in such cases, as Logger.Backends.Console itself will be deprecated
in future releases

	Logger.Backends only receive :debug, :info, :warning, and :error
messages. :notice maps to :info. :warn maps to :warnings.
All others map to :error

 Summary

 Types

 level()

 message()

 metadata()

 report()

 Functions

 add_backend(backend, opts \\ [])

 deprecated

 Adds a new backend.

 add_handlers(app)

 Adds the handlers configured in the :logger application parameter
of the given app.

 add_translator(translator)

 Adds a new translator.

 alert(message_or_fun, metadata \\ [])

 Logs an alert message.

 bare_log(level, message_or_fun, metadata \\ [])

 Logs a message dynamically.

 compare_levels(left, right)

 Compares log levels.

 configure(options)

 Configures the logger.

 configure_backend(backend, options)

 deprecated

 Configures the given backend.

 critical(message_or_fun, metadata \\ [])

 Logs a critical message.

 debug(message_or_fun, metadata \\ [])

 Logs a debug message.

 default_formatter(overrides \\ [])

 Returns the default formatter used by Logger.

 delete_all_module_levels()

 Resets the logging level for all modules to the primary level.

 delete_application_level(appname)

 Resets logging level for all modules in the given application to the primary level.

 delete_module_level(module)

 Resets the logging level for a given module to the primary level.

 delete_process_level(pid)

 Resets logging level for the current process to the primary level.

 disable(pid)

 deprecated

 Disables logging for the current process.

 emergency(message_or_fun, metadata \\ [])

 Logs an emergency message.

 enable(pid)

 deprecated

 Enables logging for the current process.

 enabled?(pid)

 deprecated

 Returns whether the logging is enabled for a given process.

 error(message_or_fun, metadata \\ [])

 Logs an error message.

 flush()

 Flushes the logger.

 get_module_level(mod)

 Gets logging level for given module.

 get_process_level(pid)

 Gets logging level for the current process.

 info(message_or_fun, metadata \\ [])

 Logs an info message.

 level()

 Retrieves the Logger level.

 levels()

 Returns all the available levels.

 log(level, message_or_fun, metadata \\ [])

 Logs a message with the given level.

 metadata()

 Reads the current process metadata.

 metadata(keyword)

 Alters the current process metadata according to the given keyword list.

 notice(message_or_fun, metadata \\ [])

 Logs a notice message.

 put_application_level(appname, level)

 Puts logging level for modules in a given application.

 put_module_level(mod, level)

 Puts logging level for given module.

 put_process_level(pid, level)

 Puts logging level for the current process.

 remove_backend(backend, opts \\ [])

 deprecated

 Removes a backend.

 remove_translator(translator)

 Removes a translator.

 reset_metadata(keyword \\ [])

 Resets the current process metadata to the given keyword list.

 warn(message_or_fun, metadata \\ [])

 deprecated

 warning(message_or_fun, metadata \\ [])

 Logs a warning message.

 Types

 level()

 @type level() ::
 :emergency
 | :alert
 | :critical
 | :error
 | :warning
 | :warn
 | :notice
 | :info
 | :debug

 message()

 @type message() :: :unicode.chardata() | String.Chars.t() | report()

 metadata()

 @type metadata() :: keyword()

 report()

 @type report() :: map() | keyword()

 Functions

 add_backend(backend, opts \\ [])

 This function is deprecated. Use LoggerBackends.add/2 from :logger_backends dependency.

Adds a new backend.

 add_handlers(app)

 (since 1.15.0)

 @spec add_handlers(atom()) :: :ok | {:error, term()}

Adds the handlers configured in the :logger application parameter
of the given app.
This is used to register new handlers into the logging system.
See the module documentation for
more information.

 add_translator(translator)

 @spec add_translator({module(), function :: atom()}) :: :ok

Adds a new translator.

 alert(message_or_fun, metadata \\ [])

 (since 1.11.0)

 (macro)

Logs an alert message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.alert("this is an alert message")
Report message (maps or keywords):
as keyword list
Logger.alert([something: :reported, this: :alert])

as map
Logger.alert(%{this: :alert, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.alert("this is an alert message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.alert("this is an alert message", %{user_id: 42, request_id: "xU32kFa"})

 bare_log(level, message_or_fun, metadata \\ [])

 @spec bare_log(
 level(),
 message() | (-> message() | {message(), keyword()}),
 keyword()
) :: :ok

Logs a message dynamically.
Opposite to log/3, debug/2, info/2, and friends, the arguments
given to bare_log/3 are always evaluated. However, you can pass
anonymous functions to bare_log/3 and they will only be evaluated
if there is something to be logged.

 compare_levels(left, right)

 @spec compare_levels(level(), level()) :: :lt | :eq | :gt

Compares log levels.
Receives two log levels and compares the left level
against the right level and returns:
	:lt if left is less than right
	:eq if left and right are equal
	:gt if left is greater than right

Examples
iex> Logger.compare_levels(:debug, :warning)
:lt
iex> Logger.compare_levels(:error, :info)
:gt

 configure(options)

 @spec configure(keyword()) :: :ok

Configures the logger.
See the "Runtime Configuration" section in the Logger module
documentation for the available options. The changes done here
are automatically persisted to the :logger application
environment.

 configure_backend(backend, options)

 This function is deprecated. Use LoggerBackends.configure/2 from :logger_backends dependency.

Configures the given backend.

 critical(message_or_fun, metadata \\ [])

 (since 1.11.0)

 (macro)

Logs a critical message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.critical("this is a critical message")
Report message (maps or keywords):
as keyword list
Logger.critical([something: :reported, this: :critical])

as map
Logger.critical(%{this: :critical, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.critical("this is a critical message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.critical("this is a critical message", %{user_id: 42, request_id: "xU32kFa"})

 debug(message_or_fun, metadata \\ [])

 (macro)

Logs a debug message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.debug("this is a debug message")
Report message (maps or keywords):
as keyword list
Logger.debug([something: :reported, this: :debug])

as map
Logger.debug(%{this: :debug, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.debug("this is a debug message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.debug("this is a debug message", %{user_id: 42, request_id: "xU32kFa"})

 default_formatter(overrides \\ [])

 (since 1.15.0)

 @spec default_formatter(keyword()) :: {module(), :logger.formatter_config()}

Returns the default formatter used by Logger.
It returns a Logger.Formatter built on the :default_formatter configuration:
config :logger, :default_formatter,
 format: "\n$time $metadata[$level] $message\n",
 metadata: [:user_id]
In case of a list, a set of overrides can be given to merge into the list.
See Logger.Formatter.new/1 for all options.
Examples
Logger will automatically load a default formatter into the default handler
on boot. However, you can use this function if you wish to programmatically replace
a handler formatter. For example, inside tests, you might want to change the formatter
settings:
setup tags do
 formatter = Logger.default_formatter(colors: [enabled: false])
 :logger.update_handler_config(:default, :formatter, formatter)

 on_exit(fn ->
 :logger.update_handler_config(:default, :formatter, Logger.default_formatter())
 end)
end
However, note you should not invoke this function inside config files,
as this function expects Logger to already be configured and started.
To start a brand new handler with this formatter, use Logger.Formatter.new/1
instead.

 delete_all_module_levels()

 (since 1.11.0)

 @spec delete_all_module_levels() :: :ok

Resets the logging level for all modules to the primary level.

 delete_application_level(appname)

 (since 1.13.0)

 @spec delete_application_level(application) ::
 :ok | {:error, {:not_loaded, application}}
when application: atom()

Resets logging level for all modules in the given application to the primary level.
Equivalent of:
appname |> Application.spec(:modules) |> Logger.delete_module_level()

 delete_module_level(module)

 (since 1.11.0)

 @spec delete_module_level(module() | [module()]) :: :ok

Resets the logging level for a given module to the primary level.

 delete_process_level(pid)

 (since 1.15.0)

 @spec delete_process_level(pid()) :: :ok

Resets logging level for the current process to the primary level.
Currently the only accepted PID is self().

 disable(pid)

 This function is deprecated. Use Logger.put_process_level(pid, :none) instead.

 @spec disable(pid()) :: :ok

Disables logging for the current process.
Currently the only accepted PID is self().
Equivalent of:
put_process_level(pid, :none)

 emergency(message_or_fun, metadata \\ [])

 (since 1.11.0)

 (macro)

Logs an emergency message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.emergency("this is an emergency message")
Report message (maps or keywords):
as keyword list
Logger.emergency([something: :reported, this: :emergency])

as map
Logger.emergency(%{this: :emergency, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.emergency("this is an emergency message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.emergency("this is an emergency message", %{user_id: 42, request_id: "xU32kFa"})

 enable(pid)

 This function is deprecated. Use Logger.delete_process_level(pid) instead.

 @spec enable(pid()) :: :ok

Enables logging for the current process.
Currently the only accepted PID is self().
Equivalent of:
delete_process_level(pid)

 enabled?(pid)

 This function is deprecated. Use Logger.get_process_level(pid) instead.

 @spec enabled?(pid()) :: boolean()

Returns whether the logging is enabled for a given process.
Currently the only accepted PID is self().

 error(message_or_fun, metadata \\ [])

 (macro)

Logs an error message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.error("this is an error message")
Report message (maps or keywords):
as keyword list
Logger.error([something: :reported, this: :error])

as map
Logger.error(%{this: :error, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.error("this is an error message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.error("this is an error message", %{user_id: 42, request_id: "xU32kFa"})

 flush()

 @spec flush() :: :ok

Flushes the logger.
This guarantees all logger handlers flush to disk or storage.
This is useful for testing but it should be avoided in production,
as it could force logger handlers to drop whatever they are doing
and flush, even if continuing to buffer would be the most performant
option.

 get_module_level(mod)

 (since 1.11.0)

 @spec get_module_level(module() | [module()]) :: [{module(), level() | :all | :none}]

Gets logging level for given module.
The returned value will be the effective value used. If no value
was set for a given module, then it will not be present in
the returned list.

 get_process_level(pid)

 (since 1.15.0)

 @spec get_process_level(pid()) :: level() | :all | :none | nil

Gets logging level for the current process.
Currently the only accepted PID is self().
The returned value will be the effective value used. If no value
was set for a given process, then nil is returned.

 info(message_or_fun, metadata \\ [])

 (macro)

Logs an info message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.info("this is an info message")
Report message (maps or keywords):
as keyword list
Logger.info([something: :reported, this: :info])

as map
Logger.info(%{this: :info, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.info("this is an info message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.info("this is an info message", %{user_id: 42, request_id: "xU32kFa"})

 level()

 @spec level() :: level() | :all | :none

Retrieves the Logger level.
The Logger level can be changed via configure/1.

 levels()

 (since 1.16.0)

 @spec levels() :: [level(), ...]

Returns all the available levels.

 log(level, message_or_fun, metadata \\ [])

 (macro)

Logs a message with the given level.
Returns :ok.
The macros debug/2, info/2, notice/2, warning/2,
error/2, critical/2, alert/2, and emergency/2 are
preferred over this macro as they can automatically eliminate
the call to Logger altogether at compile time if desired
(see the documentation for the Logger module).

 metadata()

 @spec metadata() :: metadata()

Reads the current process metadata.
This does not return the "global" logger metadata (set via the :metadata key in the
:logger application config), but only the process metadata.

 metadata(keyword)

 @spec metadata(metadata()) :: :ok

Alters the current process metadata according to the given keyword list.
This function will merge the given keyword list into the existing metadata,
with the exception of setting a key to nil, which will remove that key
from the metadata.
Note some metadata keys are reserved and cannot be overridden. See
the module documentation for more information.

 notice(message_or_fun, metadata \\ [])

 (since 1.11.0)

 (macro)

Logs a notice message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.notice("this is a notice message")
Report message (maps or keywords):
as keyword list
Logger.notice([something: :reported, this: :notice])

as map
Logger.notice(%{this: :notice, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.notice("this is a notice message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.notice("this is a notice message", %{user_id: 42, request_id: "xU32kFa"})

 put_application_level(appname, level)

 (since 1.13.0)

 @spec put_application_level(atom(), level() | :all | :none) ::
 :ok | {:error, :not_loaded}

Puts logging level for modules in a given application.
This will take priority over the primary level set, so it can be
used to increase or decrease verbosity of some parts of the project.
Equivalent of:
appname |> Application.spec(:modules) |> Logger.put_module_level(level)

 put_module_level(mod, level)

 (since 1.11.0)

 @spec put_module_level(module() | [module()], level() | :all | :none) ::
 :ok | {:error, term()}

Puts logging level for given module.
This will take priority over the primary level set, so it can be
used to increase or decrease verbosity of some parts of the project.
Example
defmodule Foo do
 require Logger

 def log, do: Logger.debug("foo")
end

Logger.configure(level: :error)
Logger.put_module_level(Foo, :all)

Foo.log()
This will print the message even if global level is :error

 put_process_level(pid, level)

 (since 1.15.0)

 @spec put_process_level(pid(), level() | :all | :none) :: :ok

Puts logging level for the current process.
Currently the only accepted PID is self().
Different from put_module_level/2, the process level doesn't take priority
over the global level, but instead works alongside it. Effectively, the higher
logger level is used.

 remove_backend(backend, opts \\ [])

 This function is deprecated. Use LoggerBackends.remove/2 from :logger_backends dependency.

Removes a backend.

 remove_translator(translator)

 @spec remove_translator({module(), function :: atom()}) :: :ok

Removes a translator.

 reset_metadata(keyword \\ [])

 @spec reset_metadata(metadata()) :: :ok

Resets the current process metadata to the given keyword list.

 warn(message_or_fun, metadata \\ [])

 (macro)

 This macro is deprecated. Use Logger.warning/2 instead.

 warning(message_or_fun, metadata \\ [])

 (since 1.11.0)

 (macro)

Logs a warning message.
Returns :ok.
Examples
Logging a message (string or iodata):
Logger.warning("this is a warning message")
Report message (maps or keywords):
as keyword list
Logger.warning([something: :reported, this: :warning])

as map
Logger.warning(%{this: :warning, something: :reported})
Report message with metadata (maps or keywords):
as a keyword list
Logger.warning("this is a warning message", [user_id: 42, request_id: "xU32kFa"])

as map
Logger.warning("this is a warning message", %{user_id: 42, request_id: "xU32kFa"})

Logger.Formatter

Conveniences and built-in formatter for logs.
This modules defines a suitable :logger formatter which formats
messages and reports as Elixir terms and also provides additional
functionality, such as timezone conversion, truncation, and coloring.
This formatter is used by default by Logger and you can configure it
using:
config :logger, :default_formatter,
 format: "\n$time $metadata[$level] $message\n",
 metadata: [:user_id]
You can also use Logger.Formatter.new/1 to create your own formatter,
which can then be passed as a formatter to any :logger_handler.
See Logger.Formatter.new/1 for all configuration options.
This module also provides several conveniences for those who wish
to write their custom logger formatters.
Formatting
The log messages can be controlled by a formatting string. Here is
an example:
config :logger, :default_formatter,
 format: "\n$time $metadata[$level] $message\n",
 metadata: [:user_id]
The above will print error messages as:
18:43:12.439 user_id=13 [error] Hello\n
The valid parameters you can use are:
	$time - the time the log message was sent
	$date - the date the log message was sent
	$message - the log message
	$level - the log level
	$node - the node that prints the message
	$metadata - user controlled data presented in "key=val key2=val2 " format

Formatting function
You can also customize the format of your log messages with
a {module, function_name} tuple if you wish to change how messages
are formatted but keep all other features provided by Logger.Formatter
such as truncation and coloring. However, if you want to get full
control of formatting, consider writing a custom
:logger formatter
instead, which has complete access to all events and metadata.
When using a {module, function_name}, the function will be invoked
with the level, the message, the timestamp, and metadata, like this:
defmodule MyConsoleLogger do
 @spec format(atom, chardata, Logger.Formatter.date_time_ms(), keyword()) :: IO.chardata()
 def format(level, message, timestamp, metadata) do
 # Custom formatting logic that must return chardata.
 # ...
 end
end
Metadata
Metadata to be sent to the logger can be read and written with
the Logger.metadata/0 and Logger.metadata/1 functions. For example,
you can set Logger.metadata([user_id: 13]) to add user_id metadata
to the current process. The user can configure the backend to choose
which metadata it wants to print and it will replace the $metadata
value.
When is user metadata printed?
The default Logger formatter requires the user's metadata to meet
one of the following conditions to be printed:
	Be a string (is_binary/1)
	Be a number (either is_integer/1 or is_float/1)
	Be a PID
	Be an atom
	Be a reference
	Be a port
	Implement the String.Chars protocol (except for charlists)

If none of the conditions above are true, the given metadata get
discarded.

 Summary

 Types

 date()

 date_time_ms()

 pattern()

 time_ms()

 Functions

 compile(pattern_or_function)

 Compiles a pattern or function into a data structure that format/5 can handle.

 format(pattern_or_function, level, message, timestamp, metadata)

 Formats a pattern_or_function returned by compile/1.

 format_date(date_tuple)

 Formats date as chardata.

 format_event(log_event, truncate)

 Formats the message of a log event.

 format_time(time_ms_tuple)

 Formats time as chardata.

 new(options \\ [])

 Initializes a formatter for :logger handlers.

 prune(binary)

 Prunes invalid Unicode code points from lists and invalid UTF-8 bytes.

 system_time_to_date_time_ms(system_time, utc_log? \\ false)

 Converts the system time (in microseconds) from metadata into a date_time_ms tuple.

 truncate(chardata, n)

 Truncates a chardata into n bytes.

 Types

 date()

 @type date() :: {1970..10000, 1..12, 1..31}

 date_time_ms()

 @type date_time_ms() :: {date(), time_ms()}

 pattern()

 @type pattern() :: :date | :level | :levelpad | :message | :metadata | :node | :time

 time_ms()

 @type time_ms() :: {0..23, 0..59, 0..59, 0..999}

 Functions

 compile(pattern_or_function)

 @spec compile(binary() | nil) :: [pattern() | binary()]

 @spec compile(pattern) :: pattern when pattern: {module(), function :: atom()}

Compiles a pattern or function into a data structure that format/5 can handle.
Check the module doc for documentation on the valid parameters that
will be interpolated in the pattern. If you pass nil as the pattern,
the pattern defaults to:
"\n$time $metadata[$level] $message\n"
If you want to customize formatting with a custom function, you can
pass a {module, function_name} tuple.
This function, alongside format/5, is the main building block used
by Logger.Formatter.new/1 for formatting messages. It can also be used
by those interested in building custom formatters.
Examples
iex> Logger.Formatter.compile("$time $metadata [$level] $message\n")
[:time, " ", :metadata, " [", :level, "] ", :message, "\n"]

iex> Logger.Formatter.compile({MyLoggerFormatter, :format})
{MyLoggerFormatter, :format}

 format(pattern_or_function, level, message, timestamp, metadata)

 @spec format(
 mod_and_fun | [pattern() | binary()],
 Logger.level(),
 Logger.message(),
 date_time_ms(),
 keyword()
) :: IO.chardata()
when mod_and_fun: {atom(), atom()}

Formats a pattern_or_function returned by compile/1.
It takes a compiled format and injects the level, timestamp, message,
and metadata keyword list and returns a properly formatted string.
If pattern_or_function is a {module, function_name} tuple,
then module.function_name(level, message, timestamp, metadata) is
invoked to get the message.
This function, alongside compile/1, is the main building block used
by Logger.Formatter.new/1 for formatting messages. It can also be used
by those interested in building custom formatters.
Examples
iex> pattern = Logger.Formatter.compile("[$level] $message")
iex> timestamp = {{1977, 01, 28}, {13, 29, 00, 000}}
iex> formatted = Logger.Formatter.format(pattern, :info, "hello", timestamp, [])
iex> IO.chardata_to_string(formatted)
"[info] hello"

 format_date(date_tuple)

 @spec format_date(date()) :: IO.chardata()

Formats date as chardata.

 format_event(log_event, truncate)

 @spec format_event(:logger.log_event(), pos_integer() | :infinity) :: IO.chardata()

Formats the message of a log event.

 format_time(time_ms_tuple)

 @spec format_time(time_ms()) :: IO.chardata()

Formats time as chardata.

 new(options \\ [])

 @spec new(keyword()) :: formatter when formatter: term()

Initializes a formatter for :logger handlers.
The supported options are:
	:colors - a keyword list of coloring options.

	:format - the format message used to print logs.
Defaults to: "\n$time $metadata[$level] $message\n".
It may also be a {module, function_name} tuple that is invoked
with the log level, the message, the current timestamp and
the metadata and must return IO.chardata/0.
See the module docs for more information on :format.

	:metadata - a list of metadata keys to be printed by
$metadata. Defaults to an empty list (no metadata).
Setting :metadata to :all prints all metadata. See
the "Metadata" section in the Logger documentation for
more information.

	:truncate - the maximum message size to be logged (in bytes).
Defaults to 8192 bytes. Note this configuration is approximate.
Truncated messages will have " (truncated)" at the end.
The atom :infinity can be passed to disable this behavior.

	:utc_log - when true, uses UTC in logs. By default it uses
local time (as it defaults to false).

The supported keys in the :colors keyword list are:
	:enabled - boolean value that allows for switching the
coloring on and off. Defaults to: IO.ANSI.enabled?/0

	:debug - color for debug messages. Defaults to: :cyan

	:info - color for info and notice messages. Defaults to: :normal

	:warning - color for warning messages. Defaults to: :yellow

	:error - color for error and higher messages. Defaults to: :red

See the IO.ANSI module for a list of colors and attributes.
The color of the message can also be configured per message via
the :ansi_color metadata.

 prune(binary)

 @spec prune(IO.chardata()) :: IO.chardata()

Prunes invalid Unicode code points from lists and invalid UTF-8 bytes.
Typically called after formatting when the data cannot be printed.

 system_time_to_date_time_ms(system_time, utc_log? \\ false)

 @spec system_time_to_date_time_ms(integer(), boolean()) :: date_time_ms()

Converts the system time (in microseconds) from metadata into a date_time_ms tuple.

 truncate(chardata, n)

 @spec truncate(IO.chardata(), non_neg_integer() | :infinity) :: IO.chardata()

Truncates a chardata into n bytes.
There is a chance we truncate in the middle of a grapheme
cluster but we never truncate in the middle of a binary
code point. For this reason, truncation is not exact.

Logger.Translator behaviour

Default translation for Erlang log messages.
Logger allows developers to rewrite log messages provided by
OTP applications into a format more compatible with Elixir
log messages by providing a translator.
A translator is simply a tuple containing a module and a function
that can be added and removed via the Logger.add_translator/1 and
Logger.remove_translator/1 functions and is invoked for every Erlang
message above the minimum log level with four arguments:
	min_level - the current Logger level
	level - the level of the message being translated
	kind - if the message is a :report or :format
	message - the message to format. If it is :report, it is a tuple
with {report_type, report_data}, if it is :format, it is a
tuple with {format_message, format_args}.

The function must return:
	{:ok, chardata, metadata} - if the message translation with its metadata
	{:ok, chardata} - the translated message
	:skip - if the message is not meant to be translated nor logged
	:none - if there is no translation, which triggers the next translator

See the function translate/4 in this module for an example implementation
and the default messages translated by Logger.

 Summary

 Callbacks

 translate(level, level, arg3, report)

 Callback for translating a logger message.

 Functions

 translate(min_level, level, kind, message)

 Built-in translation function.

 Callbacks

 translate(level, level, arg3, report)

 @callback translate(Logger.level(), Logger.level(), :format | :report, :logger.report()) ::
 {:ok, iodata(), keyword()} | {:ok, iodata()} | :skip | :none

Callback for translating a logger message.

 Functions

 translate(min_level, level, kind, message)

Built-in translation function.
This function is an implementation of the translate/4 callback.
For arguments and return value of this function, see that callback.

Logger.Backends.Console

 This module is deprecated. Use LoggerBackends.Console from :logger_backends dependency.

A logger backend that logs messages by printing them to the console.
This backend was typically configured as config :logger, :console,
but it has been deprecated in favor of :default_handler and
:default_formatter. However, for backwards compatibility, you can
still add it as:
config :logger, :backends, [Logger.Backends.Console]
However, if you plan to continue using Logger backends in the long
term, consider using the :logger_backends
project.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png

