

 logger_backends

 v1.0.0

 Table of contents

 	Modules

 	LoggerBackends

 	LoggerBackends.Console

LoggerBackends

:gen_event-based logger handlers with overload protection.
This module provides backends for Elixir's Logger with
built-in overload protection. This was the default
mechanism for hooking into Elixir's Logger until Elixir v1.15.
Elixir backends run in a single separate process which comes with
overload protection. All backends run in this same process as a
unified front for handling log events.
The available backends by default are:
	LoggerBackends.Console - logs messages to the console
(see its documentation for more information)

Developers may also implement their own backends, an option that
is explored in more detail later.
Backends can be added and removed via add/2 and remove/2 functions.
This is often done in your Application.start/2 callback:
@impl true
def start(_type, _args) do
 LoggerBackends.add(MyCustomBackend)

 # ...
end
The backend can be configured in your config files:
config :logger, MyCustomBackend,
 some_config: ...
Application configuration
Application configuration goes under the :logger application for
backwards compatibility. The following keys must be set before
the :logger application (and this application) are started.
	:discard_threshold_periodic_check - a periodic check that
checks and reports if logger is discarding messages. It logs a warning
message whenever the system is (or continues) in discard mode and
it logs a warning message whenever if the system was discarding messages
but stopped doing so after the previous check. By default it runs
every 30_000 milliseconds.

	:start_options - passes start options to LoggerBackends's main process, such
as :spawn_opt and :hibernate_after. All options in GenServer.option/0
are accepted, except :name.

Runtime configuration
The following keys can be set at runtime via the configure/1 function.
In your config files, they also go under the :logger application
for backwards compatibility.
	:utc_log - when true, uses UTC in logs. By default it uses
local time (i.e., it defaults to false).

	:truncate - the maximum message size to be logged (in bytes).
Defaults to 8192 bytes. Note this configuration is approximate.
Truncated messages will have " (truncated)" at the end.
The atom :infinity can be passed to disable this behavior.

	:sync_threshold - if the Logger manager has more than
:sync_threshold messages in its queue, Logger will change
to sync mode, to apply backpressure to the clients.
Logger will return to async mode once the number of messages
in the queue is reduced to one below the sync_threshold.
Defaults to 20 messages. :sync_threshold can be set to 0 to
force sync mode.

	:discard_threshold - if the Logger manager has more than
:discard_threshold messages in its queue, Logger will change
to discard mode and messages will be discarded directly in the
clients. Logger will return to sync mode once the number of
messages in the queue is reduced to one below the discard_threshold.
Defaults to 500 messages.

Custom backends
Any developer can create their own backend. Since Logger is an
event manager powered by :gen_event, writing a new backend
is a matter of creating an event handler, as described in the
:gen_event documentation.
From now on, we will be using the term "event handler" to refer
to your custom backend, as we head into implementation details.
The event manager and all added event handlers are automatically
supervised by Logger. If a backend fails to start by returning
{:error, :ignore} from its init/1 callback, then it's not added
to the backends but nothing fails. If a backend fails to start by
returning {:error, reason} from its init/1 callback, the system
will fail to start.
Once initialized, the handler should be designed to handle the
following events:
	{level, group_leader, {Logger, message, timestamp, metadata}} where:
	level is one of :debug, :info, :warn, or :error, as previously
described (for compatibility with pre 1.10 backends the :notice will
be translated to :info and all messages above :error will be translated
to :error)
	group_leader is the group leader of the process which logged the message
	{Logger, message, timestamp, metadata} is a tuple containing information
about the logged message:	the first element is always the atom Logger
	message is the actual message (as chardata)
	timestamp is the timestamp for when the message was logged, as a
{{year, month, day}, {hour, minute, second, millisecond}} tuple
	metadata is a keyword list of metadata used when logging the message

	:flush

It is recommended that handlers ignore messages where the group
leader is in a different node than the one where the handler is
installed. For example:
def handle_event({_level, gl, {Logger, _, _, _}}, state)
 when node(gl) != node() do
 {:ok, state}
end
In the case of the event :flush handlers should flush any pending
data. This event is triggered by Logger.flush/0.
Furthermore, backends can be configured via the configure_backend/2
function which requires event handlers to handle calls of the
following format:
{:configure, options}
where options is a keyword list. The result of the call is the result
returned by configure_backend/2. The recommended return value for
successful configuration is :ok. For example:
def handle_call({:configure, options}, state) do
 new_state = reconfigure_state(state, options)
 {:ok, :ok, new_state}
end
It is recommended that backends support at least the following configuration
options:
	:level - the logging level for that backend
	:format - the logging format for that backend
	:metadata - the metadata to include in that backend

Check the LoggerBackends.Console implementation in Elixir's codebase
for examples on how to handle the recommendations in this section and
how to process the existing options.

 Anchor for this section

 Summary

 Types

 backend()

 A logger handler.

 Functions

 add(backend, opts \\ [])

 Adds a new backend.

 configure(options)

 Applies runtime configuration to all backends.

 configure(backend, options)

 Configures a given backend.

 remove(backend, opts \\ [])

 Removes a backend.

 Anchor for this section

Types

 Link to this type

 backend()

 View Source

 (since 1.0.0)

 @type backend() :: :gen_event.handler()

A logger handler.

 Anchor for this section

Functions

 Link to this function

 add(backend, opts \\ [])

 View Source

 @spec add(
 backend(),
 keyword()
) :: Supervisor.on_start_child()

Adds a new backend.
Adding a backend calls the init/1 function in that backend
with the name of the backend as its argument. For example,
calling
LoggerBackends.add(MyBackend)
will call MyBackend.init(MyBackend) to initialize the new
backend. If the backend's init/1 callback returns {:ok, _},
then this function returns {:ok, pid}. If the handler returns
{:error, :ignore} from init/1, this function still returns
{:ok, pid} but the handler is not started. If the handler
returns {:error, reason} from init/1, this function returns
{:error, {reason, info}} where info is more information on
the backend that failed to start.

 options

 Options

	:flush - when true, guarantees all messages currently sent
to Logger are processed before the backend is added

 Link to this function

 configure(options)

 View Source

 @spec configure(keyword()) :: :ok

Applies runtime configuration to all backends.
See the module doc for more information.

 Link to this function

 configure(backend, options)

 View Source

 @spec configure(
 backend(),
 keyword()
) :: term()

Configures a given backend.

 Link to this function

 remove(backend, opts \\ [])

 View Source

 @spec remove(
 backend(),
 keyword()
) :: :ok | {:error, term()}

Removes a backend.

 options

 Options

	:flush - when true, guarantees all messages currently sent
to Logger are processed before the backend is removed

LoggerBackends.Console

A logger backend that logs messages by printing them to the console.
Options
	:level - the level to be logged by this backend.
Note that messages are filtered by the general
:level configuration for the :logger application first.

	:format - the format message used to print logs.
Defaults to: "\n$time $metadata[$level] $message\n".
It may also be a {module, function} tuple that is invoked
with the log level, the message, the current timestamp and
the metadata and must return IO.chardata/0. See
Logger.Formatter.

	:metadata - the metadata to be printed by $metadata.
Defaults to an empty list (no metadata).
Setting :metadata to :all prints all metadata. See
the "Metadata" section in the Logger documentation for
more information.

	:colors - a keyword list of coloring options.

	:device - the device to log error messages to. Defaults to
:user but can be changed to something else such as :standard_error.

	:max_buffer - maximum events to buffer while waiting
for a confirmation from the IO device (default: 32).
Once the buffer is full, the backend will block until
a confirmation is received.

The supported keys in the :colors keyword list are:
	:enabled - boolean value that allows for switching the
coloring on and off. Defaults to: IO.ANSI.enabled?/0

	:debug - color for debug messages. Defaults to: :cyan

	:info - color for info and notice messages. Defaults to: :normal

	:warning - color for warning messages. Defaults to: :yellow

	:error - color for error and higher messages. Defaults to: :red

See the IO.ANSI module for a list of colors and attributes.
Here is an example of how to configure this backend in a
config/config.exs file:
config :logger, LoggerBackends.Console,
 format: "\n$time $metadata[$level] $message\n",
 metadata: [:user_id]

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

