

 macula

 v0.18.1

 [image: Logo]

 Table of contents

 	Overview

 	Getting Started

 	Architecture Guide

 	Changelog

 	License

 	Platform Overview

 	Why Macula

 	Why Decentralized

 	Use Cases

 	Technology Comparison

 	Glossary

 	Comparisons

 	vs Distributed Erlang

 	Quick Start

 	Hello World

 	Development Guide

 	RPC Guide

 	PubSub Guide

 	Performance Guide

 	Monitoring Guide

 	Troubleshooting

 	mDNS Setup (Optional)

 	DHT Architecture

 	NAT Types

 	NAT Traversal

 	Authorization (UCAN/DID)

 	Supervision Tree

 	Project Structure

 	Architecture Index

 	Roadmap

 	
 Modules

 	macula

 	macula_advertisement_manager

 	macula_app

 	macula_app_monitor

 	macula_authorization

 	macula_authorization_audit

 	macula_bootstrap_health

 	macula_bootstrap_registry

 	macula_bootstrap_server

 	macula_bootstrap_system

 	macula_bridge_cache

 	macula_bridge_mesh

 	macula_bridge_node

 	macula_bridge_system

 	macula_cache

 	macula_chatter

 	macula_client_behaviour

 	macula_cluster

 	macula_cluster_controller

 	macula_cluster_strategy

 	macula_connection

 	macula_connection_pool

 	macula_connection_upgrade

 	macula_console

 	macula_core_types

 	macula_crdt

 	macula_did_cache

 	macula_direct_routing

 	macula_discovery

 	macula_dist

 	macula_dist_discovery

 	macula_dist_mdns_advertiser

 	macula_dist_system

 	macula_gateway

 	macula_gateway_clients

 	macula_gateway_dht

 	macula_gateway_diagnostics

 	macula_gateway_health

 	macula_gateway_mesh

 	macula_gateway_pubsub

 	macula_gateway_pubsub_router

 	macula_gateway_quic_server

 	macula_gateway_rpc

 	macula_gateway_rpc_router

 	macula_gateway_system

 	macula_gateway_workers_sup

 	macula_gossip

 	macula_hole_punch

 	macula_id

 	macula_local_client

 	macula_membership_detector

 	macula_membership_gossip

 	macula_membership_list

 	macula_membership_member

 	macula_names

 	macula_nat_cache

 	macula_nat_connector

 	macula_nat_coordinator

 	macula_nat_detector

 	macula_nat_system

 	macula_node

 	macula_peer

 	macula_peer_connection_pool

 	macula_peer_connector

 	macula_peer_discovery

 	macula_peer_system

 	macula_peers_sup

 	macula_ping_pong

 	macula_platform_system

 	macula_port_predictor

 	macula_protocol_decoder

 	macula_protocol_encoder

 	macula_protocol_types

 	macula_provider_selector

 	macula_pubsub_cache

 	macula_pubsub_delivery

 	macula_pubsub_dht

 	macula_pubsub_discovery

 	macula_pubsub_handler

 	macula_pubsub_qos

 	macula_pubsub_registry

 	macula_pubsub_routing

 	macula_pubsub_server

 	macula_pubsub_subscription

 	macula_pubsub_topic

 	macula_quic

 	macula_quic_cert

 	macula_quic_conn_callback

 	macula_quic_stream_acceptor

 	macula_realm

 	macula_realm_trust

 	macula_registry_manifest

 	macula_registry_server

 	macula_registry_store

 	macula_registry_system

 	macula_registry_verify

 	macula_relay_node

 	macula_relay_registry

 	macula_root

 	macula_routing_bucket

 	macula_routing_dht

 	macula_routing_nodeid

 	macula_routing_protocol

 	macula_routing_server

 	macula_routing_table

 	macula_rpc_async

 	macula_rpc_cache

 	macula_rpc_dht

 	macula_rpc_executor

 	macula_rpc_failover

 	macula_rpc_handler

 	macula_rpc_names

 	macula_rpc_registry

 	macula_rpc_router

 	macula_rpc_routing

 	macula_rpc_server

 	macula_rpc_service_interests

 	macula_security_scanner

 	macula_service_registry

 	macula_stream_acceptor

 	macula_subscriber_cache

 	macula_time

 	macula_tls

 	macula_ucan_revocation

 	macula_uri

 	macula_utils

 Overview

 [image: Macula Logo]

 Macula HTTP/3 Mesh

 Self-organizing distributed mesh for decentralized applications

 [image: License]
 [image: Erlang/OTP]
 [image: Hex.pm]
 [image: Buy Me A Coffee]

 [image: Macula Architecture Overview]
 BEAM-Native • HTTP/3 (QUIC) • Kademlia DHT • NAT Traversal • Multi-Tenant • Platform Layer

Documentation
	🚀 Getting Started - Installation, quick start, code examples
	🏗️ Architecture Guide - Visual guide with C4 diagrams, deployment topologies
	📄 Changelog - Version history and migration guides
	🧪 Development Guide - Contributing and testing
	🌐 DHT Guide - Kademlia DHT architecture

Latest Release: v0.14.0 (2025-12-01)
Masterless CRDT Architecture (v0.14.0):
	✅ Ra/Raft consensus removed - fully masterless operation
	✅ OR-Set CRDT for distributed membership
	✅ G-Counter and PN-Counter CRDTs for distributed counters
	✅ LWW-Register CRDT for eventually-consistent state

Hierarchical DHT with Bridge System (v0.13.0):
	✅ Fractal mesh hierarchy (Cluster → Street → City → Region)
	✅ Query escalation to parent levels on local cache miss
	✅ TTL-based caching with LRU eviction

NAT Traversal & Connectivity (v0.12.x):
	✅ Complete NAT traversal with hole-punching and relay fallback
	✅ Connection pooling with 94.5% hit rate
	✅ NATS-style async RPC with direct P2P delivery

Community
	Hex: hex.pm/packages/macula
	GitHub: github.com/macula-io/macula
	Issues: github.com/macula-io/macula/issues

Built with ❤️ for the BEAM community

 Getting Started

 [image: Macula Logo]

 Macula HTTP/3 Mesh

 Self-organizing distributed mesh for decentralized applications

 [image: License]
 [image: Erlang/OTP]
 [image: Hex.pm]

 [image: Macula Architecture Overview]
 BEAM-Native | HTTP/3 (QUIC) | Kademlia DHT | Direct P2P | Multi-Tenant | Platform Layer

Table of Contents
	Architecture Overview - Visual guide with C4 diagrams
	Quick Start - Get started in minutes
	Documentation - Full documentation index
	Core Concepts - Understanding the mesh
	API Overview - Using Macula in your application
	Changelog - Version history and migration guides

What is Macula?
Macula is infrastructure for building decentralized applications and services that operate autonomously at the edge, without dependency on centralized cloud infrastructure.
Key Features:
	BEAM-native - Erlang/Elixir OTP supervision and fault tolerance
	HTTP/3 (QUIC) - Modern, encrypted, NAT-friendly transport
	Edge-first design - Works through firewalls and NAT
	Built-in pub/sub & RPC - No external message broker needed
	Multi-tenancy - Realm isolation for SaaS and shared infrastructure
	Self-organizing mesh - DHT-based service discovery
	Platform Layer - Raft consensus and CRDT support (v0.9.0+)
	Production-ready - Memory management, comprehensive testing

Documentation
	I want to...	Go to...
	Understand why Macula exists	Platform Overview
	Understand the socio-economic vision	Motivation
	Compare Macula to Kafka/RabbitMQ/NATS	Technology Comparison
	Get started quickly	Quick Start
	Build my first app	Hello World Tutorial
	Deploy to production	Performance Guide
	Understand RPC patterns	RPC Guide
	Understand PubSub patterns	PubSub Guide
	Look up terminology	Glossary

Full Documentation Index

Architecture at a Glance
System Context - How your application uses Macula:
┌──────────────┐
│ Your │
│ Application │
└──────┬───────┘
 │ macula API
 ▼
┌──────────────┐ QUIC/HTTP3 ┌──────────────┐
│ Macula Peer │◄───────────────────►│ Gateway │
│ (Local Node) │ Or Direct P2P │ (Relay Node) │
└──────┬───────┘ └──────┬───────┘
 │ │
 └────────────► DHT ◄─────────────────┘
 (Service Discovery)
Message Flow (Direct P2P):
Client ──1. Query DHT──► DHT (Find Service)
Client ◄─2. Endpoint──── DHT Returns "192.168.1.50:9443"
Client ──3. Direct────► Provider (1-hop, ~50ms)
Client ◄─4. Response─── Provider
See Full Architecture Guide with C4 diagrams, supervision trees, and deployment topologies.

Installation
Elixir (mix.exs):
def deps do
 [
 {:macula, "~> 0.10"}
]
end
Erlang (rebar.config):
{deps, [
 {macula, "0.10.1"}
]}.
Latest Release: v0.10.1 (November 2025)

Quick Start
1. Connect to a Gateway
%% Connect to a remote gateway
{ok, Client} = macula:connect(<<"https://gateway.example.com:9443">>, #{
 realm => <<"com.example.app">>
}).

%% Or connect locally (same node)
{ok, Client} = macula:connect_local(#{
 realm => <<"com.example.app">>
}).
2. Publish/Subscribe
%% Subscribe to events
{ok, SubRef} = macula:subscribe(Client, <<"sensor.temperature">>, fun(Event) ->
 #{celsius := Temp} = Event,
 io:format("Temperature: ~p C~n", [Temp])
end).

%% Publish an event
ok = macula:publish(Client, <<"sensor.temperature">>, #{
 device_id => <<"sensor-001">>,
 celsius => 21.5,
 timestamp => erlang:system_time(millisecond)
}).

%% Unsubscribe when done
ok = macula:unsubscribe(Client, SubRef).
3. RPC (Remote Procedure Calls)
%% Call a remote service
{ok, Result} = macula:call(Client, <<"calculator.add">>, #{
 a => 5,
 b => 3
}).
%% Result: #{result => 8}
4. Advertise Services (Providers)
%% Advertise a service handler
{ok, AdvRef} = macula:advertise(Client, <<"calculator.add">>, fun(Args) ->
 A = maps:get(a, Args),
 B = maps:get(b, Args),
 {ok, #{result => A + B}}
end).

%% Unadvertise when done
ok = macula:unadvertise(Client, AdvRef).

Core Concepts
Mesh Architecture
Macula creates a self-organizing mesh network where nodes communicate over HTTP/3 (QUIC). Each node can act as:
	Peer - Application client/server participating in the mesh
	Gateway - Relay node for NAT-traversed peers (optional)
	Registry - DHT participant storing service advertisements

Multi-Tenancy via Realms
Realms provide logical isolation for different applications sharing the same physical mesh:
%% App 1
{ok, Client1} = macula:connect_local(#{realm => <<"com.app1">>}).

%% App 2 (completely isolated from App 1)
{ok, Client2} = macula:connect_local(#{realm => <<"com.app2">>}).
DHT-Based Service Discovery
Services are discovered via a Kademlia DHT with k=20 replication:
	Provider advertises: macula:advertise(Client, <<"my.service">>, Handler)
	DHT propagates to k=20 closest nodes
	Consumer discovers: macula:call(Client, <<"my.service">>, Args)
	Direct P2P connection established

Platform Layer (v0.9.0+)
Distributed coordination primitives for workload applications:
%% Leader election
{ok, LeaderNodeId} = macula:get_leader(Client).

%% CRDT state sharing
ok = macula:propose_crdt_update(Client, <<"counter">>, {increment, 1},
 #{crdt_type => pn_counter}).

API Overview
Main Module
macula - The public API (facade)
%% Connection
macula:connect/2 %% Connect to remote gateway
macula:connect_local/1 %% Connect locally

%% Pub/Sub
macula:publish/3, /4 %% Publish event
macula:subscribe/3 %% Subscribe to topic
macula:unsubscribe/2 %% Unsubscribe

%% RPC
macula:call/3, /4 %% Call remote procedure
macula:advertise/3 %% Advertise service
macula:unadvertise/2 %% Remove advertisement

%% Platform Layer (v0.9.0+)
macula:get_leader/1 %% Get current leader
macula:propose_crdt_update/4 %% Update CRDT state
Configuration Options
Opts = #{
 realm => <<"com.example.app">>, %% Required: Realm for isolation
 node_id => <<"my-node-001">>, %% Optional: Custom node ID
 cert_file => "cert.pem", %% Optional: TLS certificate
 key_file => "key.pem" %% Optional: TLS private key
}

Development Setup
Clone the repository
git clone https://github.com/macula-io/macula.git
cd macula

Fetch dependencies
rebar3 get-deps

Compile
rebar3 compile

Run tests
rebar3 eunit

Start a shell with Macula loaded
rebar3 shell

Testing
Run unit tests
rebar3 eunit

Run dialyzer (type checking)
rebar3 dialyzer

Generate documentation
rebar3 ex_doc

Version History
	Version	Date	Key Features
	v0.10.x	Nov 2025	Production hardening, memory management
	v0.9.x	Nov 2025	Platform Layer (Raft consensus, CRDTs)
	v0.8.x	Nov 2025	Direct P2P connections, DHT propagation
	v0.7.x	Nov 2025	Nomenclature refactoring

See CHANGELOG.md for full version history.

License
Macula is licensed under the Apache License 2.0. See LICENSE for details.

Community & Support
	Issues: GitHub Issues
	Hex Package: hex.pm/packages/macula
	Source Code: github.com/macula-io/macula

Built for the BEAM community

 Macula Architecture Overview

Visual guide to understanding Macula's distributed mesh architecture

Table of Contents
	System Context (C4)
	Container View (C4)
	Deployment Topologies
	Supervision Trees
	Message Flow Patterns
	DHT Architecture
	Direct P2P Connections (v0.8.0)

System Context (C4)
How applications use Macula to build distributed systems
┌──┐
│ YOUR APPLICATION │
│ ┌─────────────────────────────┐ │
│ │ Elixir/Erlang Application │ │
│ └─────────────┬───────────────┘ │
│ │ │
│ start_link │ publish │
│ subscribe │ call │
│ advertise │ │
└──────────────────────────────────────┼──┘
 │
 ▼
┌──┐
│ MACULA PLATFORM │
│ │
│ ┌──────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │
│ │ macula_peer │ │ macula_gateway │ │ DHT │ │
│ │ Mesh Participant │ │ Relay Node │ │ Kademlia │ │
│ │ API │ │ │ │ Discovery │ │
│ └────────┬─────────┘ └────────┬─────────┘ └────────┬────────┘ │
│ │ │ │ │
│ └───────QUIC/HTTP3─────────┤◄────────Store/Find──────┘ │
│ │ │
└───────────────────────────────────────┼───────────────────────────────────────┘
 │
 ┌────────────────────────────────┼────────────────────────────────┐
 │ │ │
 ▼ Direct P2P ▼ Relay ▼ Direct P2P
┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ Remote │ │ Remote │ │ Remote │
│ Service 1 │ │ Subscriber │ │ Service 2 │
└──────────────┘ └──────────────┘ └──────────────┘
Key Concepts:
	macula_peer: Your application's interface to the mesh
	macula_gateway: Relay node for NAT-traversed peers (optional)
	DHT: Kademlia-based distributed service registry (k=20 replication)
	Direct P2P: v0.8.0+ establishes direct QUIC connections (50% latency improvement)

Container View (C4)
Internal architecture of a Macula node
┌───┐
│ APPLICATION LAYER │
│ ┌──────────────────────────┐ │
│ │ Your Application Code │ │
│ └────────────┬─────────────┘ │
└─────────────────────────────────┼───┘
 │ API Calls
 ▼
┌───┐
│ MACULA PEER (High-Level API) │
│ ┌──┐ │
│ │ macula_peer (Facade/Coordinator) │ │
│ └────────────────────────────────┬───────────────────────────────────┘ │
│ │ │
│ ┌──────────────── SUPERVISED CHILDREN ─────────────────────────────┐ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐│ │
│ │ │ macula_ │ │ macula_ │ │ macula_ │ │ macula_ ││ │
│ │ │ connection │ │ pubsub_ │ │ rpc_ │ │ advertisement││ │
│ │ │ (QUIC) │ │ handler │ │ handler │ │ _manager ││ │
│ │ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘ └──────┬──────┘│ │
│ └─────────┼───────────────┼───────────────┼───────────────┼────────┘ │
└────────────┼───────────────┼───────────────┼───────────────┼────────────────┘
 │ │ │ │
 │ QUIC │ │ │
 ▼ ▼ ▼ ▼
┌───┐
│ GATEWAY (Optional Relay Node) │
│ ┌──┐ │
│ │ macula_gateway (Coordinator) │ │
│ └────────────────────────────────┬───────────────────────────────────┘ │
│ │ │
│ ┌──────────────── GATEWAY WORKERS ─────────────────────────────────┐ │
│ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐│ │
│ │ │ client_ │ │ gateway_ │ │ gateway_ │ │ gateway_ ││ │
│ │ │ manager │ │ pubsub │ │ rpc │ │ mesh ││ │
│ │ │ (Lifecycle) │ │ (Routing) │ │ (Registry) │ │ (Pool) ││ │
│ │ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘│ │
│ └──┘ │
└───┘
 │
 ▼
┌───┐
│ CORE SERVICES │
│ ┌───────────────────┐ ┌───────────────────┐ ┌───────────────────┐ │
│ │ macula_routing_ │ │ macula_service_ │ │ macula_pubsub_ │ │
│ │ server (DHT Node) │ │ registry (Store) │ │ dht (Subscriber) │ │
│ └─────────┬─────────┘ └─────────┬─────────┘ └─────────┬─────────┘ │
│ └───────────────────┬─┴─────────────────────┘ │
│ │ │
│ Kademlia DHT (k=20 replication) │
└───┘
Architecture Principles:
	Single Responsibility: Each module has one clear purpose
	OTP Supervision: Automatic fault recovery at all levels
	Stateless Utilities: DHT operations don't hold state
	Connection Pooling: Gateway reuses QUIC connections (v0.9.0+)

Deployment Topologies
1. Edge-First Mesh (IoT, Distributed Systems)
┌───┐
│ Cloud / Data Center │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ Bootstrap │◄────►│ Bootstrap │◄────►│ Bootstrap │ │
│ │ Node │ │ Node │ │ Node │ │
│ │ (DHT Seed) │ │ (DHT Seed) │ │ (DHT Seed) │ │
│ └─────▲──────┘ └──────▲─────┘ └──────▲─────┘ │
│ │ │ │ │
└────────┼─────────────────────┼───────────────────┼───────────┘
 │ │ │
 ┌────┴────┐ ┌────┴────┐ ┌────┴────┐
 │ Gateway │ │ Gateway │ │ Gateway │
 │ Node │◄─────────►│ Node │◄──────►│ Node │
 │(Relay+ │ │(Relay+ │ │(Relay+ │
 │ DHT) │ │ DHT) │ │ DHT) │
 └────▲────┘ └────▲────┘ └────▲────┘
 │ │ │
 ┌────┴────┐ ┌────┴────┐ ┌────┴────┐
 │ Edge │ │ Edge │ │ Edge │
 │ Peer │◄─────────►│ Peer │◄──────►│ Peer │
 │(Behind │ Direct │(Behind │ Direct │(Behind │
 │ NAT) │ P2P │ NAT) │ P2P │ NAT) │
 └─────────┘ (v0.8.0) └─────────┘ (v0.8.0)└─────────┘
 │ │ │
 ┌────▼────┐ ┌────▼────┐ ┌────▼────┐
 │ Sensor │ │ Sensor │ │ Sensor │
 │ Device │ │ Device │ │ Device │
 └─────────┘ └─────────┘ └─────────┘
Use Cases:
	IoT networks with edge processing
	Distributed sensor networks
	Edge computing platforms
	Multi-site deployments

Features:
	Bootstrap nodes: DHT seeds (always available)
	Gateway nodes: Relay for NAT-traversed peers
	Edge peers: Application logic at the edge
	Direct P2P: v0.8.0+ bypasses relay when possible

2. Microservices Mesh (Kubernetes, Cloud)
┌───┐
│ Kubernetes Cluster │
│ │
│ ┌──┐ │
│ │ Namespace: macula-system │ │
│ │ │ │
│ │ ┌──────────┐ ┌──────────┐ ┌──────────┐ │ │
│ │ │Bootstrap │ │Bootstrap │ │Bootstrap │ │ │
│ │ │ Pod │ │ Pod │ │ Pod │ │ │
│ │ │(Headless │ │(Headless │ │(Headless │ │ │
│ │ │ Service) │ │ Service) │ │ Service) │ │ │
│ │ └────▲─────┘ └────▲─────┘ └────▲─────┘ │ │
│ │ └─────────────┼──────────────┘ │ │
│ └──────────────────────┼────────────────────────────────┘ │
│ │ │
│ ┌──────────────────────┼────────────────────────────────┐ │
│ │ Namespace: app-services │ │
│ │ │ │ │
│ │ ┌───────────────────▼──────────────────┐ │ │
│ │ │ Service A (3 replicas) │ │ │
│ │ │ ┌─────────┐ ┌─────────┐ ┌─────────┐│ │ │
│ │ │ │ Pod A1 │ │ Pod A2 │ │ Pod A3 ││ │ │
│ │ │ │(macula │ │(macula │ │(macula ││ │ │
│ │ │ │ peer) │ │ peer) │ │ peer) ││ │ │
│ │ │ └────▲────┘ └────▲────┘ └────▲────┘│ │ │
│ │ └───────┼───────────┼───────────┼─────┘ │ │
│ │ │ │ │ │ │
│ │ └───────────┼───────────┘ │ │
│ │ │ │ │
│ │ ┌───────────────────▼──────────────────┐ │ │
│ │ │ Service B (2 replicas) │ │ │
│ │ │ ┌─────────┐ ┌─────────┐ │ │ │
│ │ │ │ Pod B1 │◄────►│ Pod B2 │ │ │ │
│ │ │ │(macula │Direct│(macula │ │ │ │
│ │ │ │ peer) │ P2P │ peer) │ │ │ │
│ │ │ └─────────┘(v0.8)└─────────┘ │ │ │
│ │ └────────────────────────────────────┘ │ │
│ └──┘ │
└───┘
Use Cases:
	Microservices communication
	Service mesh alternative
	Event-driven architectures
	Multi-tenant platforms

Features:
	No external message broker needed
	Built-in service discovery via DHT
	Realm-based multi-tenancy
	Direct P2P between pods (v0.8.0+)

3. Hybrid Cloud-Edge (Best of Both Worlds)
┌───┐
│ Cloud Region │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │ Gateway │◄────►│ Gateway │◄────►│ Gateway │ │
│ │ (Public IP)│ │ (Public IP)│ │ (Public IP)│ │
│ └─────▲──────┘ └──────▲─────┘ └──────▲─────┘ │
└────────┼─────────────────────┼───────────────────┼───────────┘
 │ │ │
 Internet/WAN Internet/WAN Internet/WAN
 │ │ │
┌────────┼─────────────────────┼───────────────────┼───────────┐
│ │ │ │ │
│ ┌────▼────┐ ┌────▼────┐ ┌────▼────┐ │
│ │ Factory │ │ Retail │ │ Office │ │
│ │ Site │ │ Site │ │ Site │ │
│ │ │ │ │ │ │ │
│ │ ┌─────┐ │ │ ┌─────┐ │ │ ┌─────┐ │ │
│ │ │Edge │ │ │ │Edge │ │ │ │Edge │ │ │
│ │ │Peer │ │ │ │Peer │ │ │ │Peer │ │ │
│ │ └──▲──┘ │ │ └──▲──┘ │ │ └──▲──┘ │ │
│ │ │ │ │ │ │ │ │ │ │
│ │ ┌──▼──┐ │ │ ┌──▼──┐ │ │ ┌──▼──┐ │ │
│ │ │Equip│ │ │ │ POS │ │ │ │ App │ │ │
│ │ └─────┘ │ │ └─────┘ │ │ └─────┘ │ │
│ └─────────┘ └─────────┘ └─────────┘ │
│ Edge Locations │
└───┘
Use Cases:
	Retail chains with local processing
	Manufacturing with edge analytics
	Distributed branch offices
	Multi-region applications

Features:
	Cloud gateways for global reach
	Edge peers for local processing
	Automatic failover (relay ↔ direct P2P)
	Low latency via direct connections

Supervision Trees
Peer Supervision Tree
 macula_peer_sup
 │
 ┌─────────────────┼─────────────────┐
 │ │ │
 ▼ ▼ ▼
macula_connection macula_pubsub_handler macula_rpc_handler
 (QUIC Layer) (Pub/Sub Logic) (RPC Logic)
 │
 ▼
macula_advertisement_manager
 (Service Ads)
Strategy: one_for_all
	If any child crashes, restart all (coordinated state)
	Connection is the foundation; handlers depend on it

Gateway Supervision Tree
 macula_gateway_sup (Root)
 │
 ┌───────────────────┼───────────────────┐
 │ │ │
 ▼ ▼ ▼
macula_gateway_ macula_gateway macula_gateway_workers_sup
 quic_server (Supervisor)
 (QUIC Listener) (Coordinator) │
 ┌───────────┼───────────┐
 │ │ │
 ▼ ▼ ▼
 client_manager pubsub_router rpc_handler
 (Lifecycle) (Routing) (Registry)
 │
 ▼
 mesh_connection_manager
 (Pool)
Strategy: rest_for_one (top-level)
	QUIC server starts first
	Gateway coordinates
	Workers handle business logic
	If QUIC crashes, restart everything
	If worker crashes, only restart later siblings

Strategy: one_for_one (workers)
	Each worker independent
	Failures isolated to single worker

Message Flow Patterns
RPC Flow (v0.8.0 Direct P2P)
┌─────────┐ ┌─────────┐
│ Client │ │Provider │
│ Peer │ │ Peer │
└────┬────┘ └────┬────┘
 │ │
 │ 1. call("service.add", #{a=>5, b=>3}) │
 │────────────────────────────────┐ │
 │ │ │
 │ ▼ │
 │ ┌──────────┐ │
 │ │ DHT │ │
 │ │ (Find │ │
 │ │ Service) │ │
 │ └────┬─────┘ │
 │ │ │
 │ 2. Returns: "192.168.1.50:9443" │
 │◄───────────────────────────────┘ │
 │ │
 │ 3. Direct QUIC Connection │
 │──►│
 │ RPC_REQUEST: service.add, {a:5, b:3} │
 │ │
 │ 4. Execute Handler
 │ Result = 8 │
 │ │
 │ 5. RPC_RESPONSE: {result: 8} │
 │◄──│
 │ │
 ▼ ▼
 Returns Handler
{ok, #{result=>8}} Executed
Performance: 1-hop (direct), ~10-50ms latency
Fallback: If direct fails, relay via gateway (2-3 hops)

PubSub Flow (v0.8.0 Direct P2P)
┌──────────┐ ┌──────────┐
│Publisher │ │Subscriber│
│ Peer │ │ Peer │
└────┬─────┘ └────┬─────┘
 │ │
 │ 1. subscribe("sensor.temp") │
 │ ┌──────────┐ │
 │ │ DHT │ │
 │ │ Store: │◄─────┤
 │ │"sensor." │ │
 │ │"temp" -> │ │
 │ │192.1.1.X │ │
 │ └──────────┘ │
 │ │
 │ 2. publish("sensor.temp", {celsius: 21.5}) │
 │─────────────────┐ │
 │ │ │
 │ ▼ │
 │ ┌──────────┐ │
 │ │ DHT │ │
 │ │ Find: │ │
 │ │"sensor." │ │
 │ │ "temp" │ │
 │ └────┬─────┘ │
 │ │ │
 │ 3. Returns: "192.168.1.X:9443" │
 │◄────────────────┘ │
 │ │
 │ 4. Direct QUIC Connection │
 │──►│
 │ PUBLISH: sensor.temp, {celsius: 21.5} │
 │ │
 │ 5. Deliver to │
 │ Subscriber │
 │ ▼
 │ receive {macula_event,
 │ "sensor.temp",
 │ #{celsius=>21.5}}
Performance: 1-hop (direct), ~10-50ms latency
Wildcard Support: sensor.* matches sensor.temp, sensor.pressure
Fanout: One DHT query finds all subscribers

DHT Architecture
Kademlia XOR Distance
Node ID Space (160-bit):

 0 2^160
 ├──┤

 Distance(A, B) = A XOR B

 Example:
 Node A: 1010...
 Node B: 1100...
 XOR: 0110... (closer = smaller distance)
Routing Table (K-Buckets)
Each node maintains:

Bucket 0: Nodes 2^0 distance away [0-1 bits different]
Bucket 1: Nodes 2^1 distance away [1-2 bits different]
Bucket 2: Nodes 2^2 distance away [2-4 bits different]
...
Bucket 159: Nodes 2^159 distance away [159-160 bits different]

Each bucket holds up to k=20 nodes (sorted by last-seen time)
DHT Operations
STORE Operation (k=20 Propagation)
1. Hash key: hash("service.calculator.add") = node_id
2. Find k=20 closest nodes via iterative lookup
3. Send STORE to all k nodes
4. Each node stores: {key, value, ttl}

┌────────┐ STORE ┌────────┐
│ Node ├─────────►│ Node 1 │ (closest)
│ (You) ├─────────►│ Node 2 │
│ ├─────────►│ Node 3 │
│ ├─────────►│ ... │
│ ├─────────►│Node 20 │
└────────┘ └────────┘
FIND_VALUE Operation
1. Hash key: hash("service.calculator.add") = target_id
2. Query closest known nodes
3. If found, return value
4. If not found, return closer nodes
5. Repeat until value found or no closer nodes

┌────────┐ FIND ┌────────┐
│ Node ├─────────►│ Node A │─┐
│ (You) │◄─────────┤ │ │ "Not found,
│ │ Closer └────────┘ │ try Node B"
│ │ Nodes │
│ │ ▼
│ │ FIND ┌────────┐
│ ├─────────►│ Node B │
│ │◄─────────┤ │ "Found! Here's
│ │ Value └────────┘ the value"
└────────┘
Complexity: O(log N) hops to find any key
Redundancy: k=20 replication for fault tolerance

Direct P2P Connections (v0.8.0)
Connection Strategy
┌───┐
│ Connection Decision Flow │
└───┘

 ┌─────────────────────────┐
 │ Need to send message │
 │ (RPC or PubSub) │
 └───────────┬─────────────┘
 │
 ▼
 ┌─────────────────────────┐
 │ Query DHT for endpoint │
 │ (IP:Port discovered) │
 └───────────┬─────────────┘
 │
 ▼
 ┌─────────────────────────┐
 │ Attempt Direct P2P │
 │ via peer_connector │
 └───────────┬─────────────┘
 │
 ┌───────┴───────┐
 │ │
 Success Failure
 │ │
 ▼ ▼
 ┌─────────────┐ ┌─────────────┐
 │ Message │ │ Fallback │
 │ Delivered │ │ to Gateway │
 │ (1-hop) │ │ Relay │
 │ │ │ (2-3 hops) │
 └─────────────┘ └─────────────┘
 │ │
 └──────────┬──────────┘
 │
 ▼
 ┌─────────────────┐
 │ 100% Reliability│
 │ Guaranteed │
 └─────────────────┘
Benefits:
	50% latency reduction when direct succeeds
	Automatic fallback ensures reliability
	Gateway load reduced (more direct connections = less relay traffic)

Performance Comparison
┌───┐
│ Message Delivery Latency (ms) │
└───┘

v0.7.x (Relay-Only):
┌───────┐ 50ms ┌─────────┐ 50ms ┌───────┐
│Client │────────────►│ Gateway │────────────►│Server │
└───────┘ └─────────┘ └───────┘
Total: ~100ms (2-hop minimum)

v0.8.0 (Direct P2P):
┌───────┐ 50ms ┌───────┐
│Client │───────────────────────────►│Server │
└───────┘ └───────┘
Total: ~50ms (1-hop direct)

50% Improvement! 🚀

Module Dependencies
Application Layer
 │
 ▼
┌───┐
│ macula_peer (API Facade) │
└────────────┬──────────────────────┬─────────────────┘
 │ │
 ┌─────────▼──────────┐ ┌────────▼─────────┐
 │ macula_connection │ │ macula_pubsub_ │
 │ (QUIC Transport) │ │ handler │
 └─────────┬──────────┘ └────────┬─────────┘
 │ │
 ┌─────────▼──────────┐ ┌────────▼─────────┐
 │ macula_quic │ │ macula_pubsub_ │
 │ (MsQuic FFI) │ │ dht │
 └────────────────────┘ └────────┬─────────┘
 │
 ┌────────────────────────────────▼─────────┐
 │ macula_routing_server (DHT) │
 │ (Kademlia, k=20 replication) │
 └──┘
 │
 ┌─────────▼──────────┐
 │ macula_routing_ │
 │ table │
 │ (K-buckets) │
 └────────────────────┘
Layered Architecture:
	API Layer: High-level user-facing API
	Business Logic: Pub/sub, RPC, advertisements
	Transport Layer: QUIC connections and streams
	Discovery Layer: DHT for service/subscriber lookup
	Routing Layer: Kademlia routing table

Key Takeaways for Architects
✅ What Makes Macula Unique
	BEAM-Native
	OTP supervision for automatic fault recovery
	Process-per-connection scalability
	Erlang's proven distributed systems DNA

	Modern Transport
	HTTP/3 (QUIC) instead of TCP
	Built-in encryption (TLS 1.3)
	NAT/firewall friendly
	Multiplexed streams

	Self-Organizing
	No centralized message broker
	DHT-based service discovery (Kademlia)
	Automatic replication (k=20)
	O(log N) lookup complexity

	Direct P2P (v0.8.0)
	50% latency improvement
	Bypasses relay when possible
	Automatic fallback for reliability
	Scales better (less gateway load)

	Multi-Tenancy
	Realm-based isolation
	Share infrastructure, isolate traffic
	Perfect for SaaS platforms

🚀 Performance Characteristics
	Metric	Value	Notes
	Message Latency	~50ms	Direct P2P (v0.8.0)
		~100ms	Relay via gateway
	DHT Lookup	O(log N)	Kademlia routing
	Replication	k=20	Fault tolerance
	Throughput	500-2K msg/s	Gateway (v0.8.0)
		10K+ msg/s	Planned (v0.9.0 pooling)
	Connections	100K+	Per gateway node

📊 When to Use Macula
✅ Great Fit:
	Distributed IoT systems
	Microservices mesh
	Edge computing platforms
	Real-time event streaming
	Multi-region applications
	Multi-tenant SaaS

⚠️ Consider Alternatives:
	Single-region monoliths (RabbitMQ simpler)
	Ultra-high-frequency trading (direct TCP faster)
	Batch processing (Kafka better)
	Web browser clients (use gateway as WebSocket bridge)

Next Steps: See README.md for Quick Start and v0.8.0-OVERVIEW.md for latest features.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

[0.18.0] - 2026-01-13
Added
	Cluster API for bc_gitops integration: New module macula_cluster.erl provides cluster infrastructure functions that other applications (like bc_gitops) can delegate to when running on the Macula platform.	macula:ensure_distributed/0 - Ensure node is running in distributed mode
	macula:get_cookie/0 - Get the Erlang cookie (from app env, env vars, or ~/.erlang.cookie)
	macula:set_cookie/1 - Set and persist the Erlang cookie
	macula:monitor_nodes/0 - Subscribe to nodeup/nodedown events
	macula:unmonitor_nodes/0 - Unsubscribe from node events

	Added 19 unit tests for cluster API
	Added guides/cluster_api.md - Developer guide for cluster integration

Changed
	When bc_gitops runs on the Macula platform, it detects these exports and delegates clustering operations to macula. This allows Macula to own cluster infrastructure while bc_gitops remains usable standalone.

[0.17.4] - 2026-01-09
Added
	Targeted RPC calls (call_to/4,5): New API for making synchronous RPC calls to a specific target node by node_id. Unlike call/4 which discovers any provider via DHT, call_to routes directly to the specified node while still using DHT infrastructure for NAT traversal and relay.	macula:call_to/4,5 - Public API
	macula_peer:call_to/5 - Facade delegation
	macula_rpc_handler:call_to/5 - Implementation with RPC routing

	Added 7 unit tests for call_to API

[0.17.3] - 2026-01-08
Fixed
	Gateway charlist realm handling: Fixed macula_gateway_quic_server:get_node_id/2 to accept charlist realm (e.g., "io.macula") in addition to binary realm (e.g., <<"io.macula">>). Previously, charlist realm caused a FunctionClauseError because the function guard only matched binary realm.
	Added 2 new unit tests for charlist realm handling.

[0.17.1] - 2026-01-08
Fixed
	Documentation asset paths: Fixed SVG diagram paths in AUTHORIZATION_GUIDE.md to use artwork/ prefix matching ex_doc assets configuration. Diagrams now display correctly on hexdocs.pm.

[0.17.0] - 2026-01-08
✨ New Feature - Mesh Authorization (UCAN/DID)
This release introduces decentralized authorization for the Macula mesh using industry-standard cryptographic primitives. Unlike traditional client-server authorization, Macula's authorization is fully decentralized and offline-capable.
Added
Core Authorization Module (macula_authorization.erl - ~600 LOC)
	check_rpc_call/4 - Authorize RPC procedure invocations
	check_publish/4 - Authorize topic publishing
	check_subscribe/3,4 - Authorize topic subscriptions
	check_announce/3 - Authorize service announcements
	Namespace extraction from topics/procedures
	Hierarchical namespace ownership checks (owner, ancestor, not_owner)
	Public topic detection (.public. segment)
	UCAN capability matching with wildcards

DID Cache (macula_did_cache.erl - ~177 LOC)
	High-performance DID parsing using persistent_term
	O(1) lookups with zero GC impact
	get_or_parse/1, invalidate/1, clear/0, cache_size/0

UCAN Revocation (macula_ucan_revocation.erl - ~509 LOC)
	gen_server with ETS-based revocation cache
	revoke/3,4 - Revoke UCAN by issuer DID + token
	is_revoked/2,3 - O(1) cache lookup
	Rate limiting: 10 revocations per issuer per minute
	Ed25519 signature validation (64-byte format)
	Auto-expiry with periodic cleanup every 60 seconds
	CID computation: SHA-256 → base64url

Authorization Audit (macula_authorization_audit.erl - ~575 LOC)
	gen_server with ETS-based storage
	Telemetry events: [macula, authorization, allowed/denied/error]
	Query API: get_recent/1, get_by_caller/2, get_by_resource/2
	Configurable retention (TTL) and max entries (LRU eviction)
	Enable/disable toggle for ETS storage
	Statistics: allowed_count, denied_count, error_count

Protocol Extensions
	connect_msg - Added default_ucan for session-wide grants
	call_msg, cast_msg - Added caller_did, ucan_token
	publish_msg - Added publisher_did, ucan_token
	subscribe_msg - Added subscriber_did, ucan_token

Hook Integration
	macula_rpc_handler:do_call - Check auth before service discovery
	macula_gateway_rpc_router:handle_routed_call - Check auth for routed calls
	macula_pubsub_handler:do_async_publish - Check auth before publish
	macula_gateway_pubsub_router:route_to_subscriber_impl - Check auth before delivery

Comprehensive Documentation
	docs/guides/AUTHORIZATION_GUIDE.md - Educational guide with academic references
	6 professional SVG diagrams in assets/:	authorization_flow.svg - Complete authorization decision flow
	namespace_hierarchy.svg - DID to namespace mapping
	ucan_token_structure.svg - JWT structure with claims
	did_structure.svg - DID format breakdown
	revocation_flow.svg - UCAN revocation process
	lru_eviction.svg - LRU cache eviction algorithm

	References to W3C DID Core, UCAN spec, RFC 7519, RFC 8032

Tests
	macula_authorization_tests.erl - 47 unit tests
	macula_did_cache_tests.erl - 12 unit tests
	macula_ucan_revocation_tests.erl - 15 unit tests
	macula_authorization_audit_tests.erl - 16 unit tests

Total new tests: 90
Technical Notes
	Pure Erlang implementation - No external NIF dependencies for hex.pm compatibility
	DID parsing via binary:split/3
	UCAN decoding via base64url + OTP 27 json module
	Designed for offline-first operation (all validation happens locally)
	Backward compatible protocol extensions (MessagePack handles optional fields)

References
	W3C DID Core 1.0
	UCAN Specification
	RFC 7519 - JWT
	RFC 8032 - Ed25519

[0.16.6] - 2026-01-05
🐛 Bug Fix - Complete Environment Variable Naming Consistency
This patch completes the environment variable naming consistency fix started in v0.16.2.
Fixed
	Environment variable names in macula_gateway_system.erl: Changed from TLS_CERT_FILE/TLS_KEY_FILE to MACULA_TLS_CERTFILE/MACULA_TLS_KEYFILE. This was missed in v0.16.2 which only updated macula_gateway_mesh.erl. The inconsistency caused the QUIC server to use default self-signed certificates instead of mounted Let's Encrypt certificates in production.

Upgrade Notes
If you were using TLS_CERT_FILE and TLS_KEY_FILE environment variables for the gateway system, change them to MACULA_TLS_CERTFILE and MACULA_TLS_KEYFILE.

[0.16.5] - 2026-01-05
🔧 Debug - Enhanced TLS Logging
Added detailed logging for TLS options being passed to quicer to help diagnose certificate verification issues.
Changed
	macula_quic.erl:connect/4: Now logs cacertfile path and full QuicerOpts for debugging

[0.16.4] - 2026-01-05
🐛 Bug Fix - quicer Client TLS verify Option
This patch fixes a critical bug where the verify option was using the wrong value for quicer client connections.
Fixed
	Wrong verify value in macula_tls.erl: The build_client_opts/1 function was using {verify, verify_peer} but quicer's conn_opts() type only accepts none | peer for client connections (not verify_peer). The verify_peer value is only valid for listen_opts(). This caused cert_untrusted_root errors even when the CA bundle was correctly specified.

Changed
	macula_tls.erl:build_client_opts/1: Changed from {verify, verify_peer} to {verify, peer} to match quicer's conn_opts() type specification.

Upgrade Notes
No breaking changes. This fixes TLS certificate verification for client connections when using MACULA_TLS_MODE=production.

[0.16.3] - 2026-01-05
🐛 Bug Fix - TLS Options Passthrough to quicer
This patch fixes a critical bug where TLS options (cacertfile, depth, SNI, etc.) were not being passed to the quicer library, causing certificate verification to fail when MACULA_TLS_MODE=production.
Fixed
	TLS options dropped in macula_quic.erl: The connect/4 function was only extracting {verify, ...} from the options list and building its own QuicerOpts, completely ignoring cacertfile, depth, server_name_indication, and verify_fun options from macula_tls.erl. This caused cert_untrusted_root errors when connecting to production servers with verify_peer enabled because the CA certificate bundle was never passed to quicer.

Changed
	macula_quic.erl:connect/4: Now passes through all TLS-related options to quicer:	verify - Certificate verification mode
	cacertfile - CA certificate bundle path (critical for production mode)
	depth - Maximum certificate chain depth
	server_name_indication - SNI hostname for TLS
	verify_fun - Custom verification callback
	certfile/keyfile - Client certificates for mTLS

Upgrade Notes
No breaking changes. Simply update the dependency version to fix TLS certificate verification when using MACULA_TLS_MODE=production.

[0.16.2] - 2026-01-01
🐛 Bug Fix - Environment Variable Naming Consistency
This patch fixes environment variable naming to be consistent with macula_tls.erl.
Fixed
	Environment variable names in macula_gateway_mesh.erl: Changed from TLS_CERT_FILE/TLS_KEY_FILE to MACULA_TLS_CERTFILE/MACULA_TLS_KEYFILE for consistency with the rest of the codebase.

Upgrade Notes
If you were using TLS_CERT_FILE and TLS_KEY_FILE environment variables, change them to MACULA_TLS_CERTFILE and MACULA_TLS_KEYFILE.

[0.16.1] - 2026-01-01
🐛 Bug Fix - TLS Certificate Path Consistency
This patch release fixes a certificate path mismatch that caused the gateway mesh to fail in containerized environments.
Fixed
	Certificate path mismatch in macula_gateway_mesh.erl: The module was using hardcoded paths (/opt/macula/certs/) instead of calling macula_tls:get_cert_paths(). This caused failures in Docker containers where certificates are auto-generated at /var/lib/macula/.

Changed
	macula_gateway_mesh.erl: Replaced hardcoded certificate paths with calls to macula_tls:get_cert_paths() in get_tls_certificates/1 and get_tls_certificates_from_env/0 functions. The module now properly uses the centralized TLS configuration introduced in v0.11.0.

Upgrade Notes
No breaking changes. Simply update the dependency version to benefit from consistent certificate path handling across all environments.

[0.16.0] - 2025-12-25
🔐 Registry System - Secure Package Distribution
This release implements a complete registry system for secure application distribution with Ed25519 signatures, static security analysis, and runtime defense.
Added
Registry System (src/macula_registry_system/)
8 new modules implementing secure package distribution:
	Module	Purpose
	macula_registry_system.erl	Supervisor (one_for_one strategy)
	macula_registry_server.erl	Package publish/fetch API with DHT integration
	macula_registry_store.erl	ETS + disk storage with TTL-based cleanup
	macula_registry_verify.erl	Ed25519 digital signature operations
	macula_registry_manifest.erl	SemVer manifest parsing and validation
	macula_security_scanner.erl	Static analysis for dangerous BIFs
	macula_app_monitor.erl	Runtime defense (memory, queue, crash monitoring)
	macula_cluster_controller.erl	Application lifecycle management

Ed25519 Package Signing
%% Generate keypair
{PubKey, PrivKey} = macula_registry_verify:generate_keypair().

%% Sign package
{ok, Signature} = macula_registry_verify:sign_package(ManifestBin, BeamArchive, PrivKey).

%% Verify package
ok = macula_registry_verify:verify_package(ManifestBin, BeamArchive, Signature, PubKey).
Security Scanning
	Detects dangerous BIFs: os:cmd, erlang:open_port, erlang:load_nif, file:delete, etc.
	Audits NIF usage in packages
	Flags undeclared capabilities
	Calculates security score (0-100)

Runtime Defense (macula_app_monitor)
	Memory limit enforcement per application
	Message queue monitoring with configurable limits
	Crash rate detection with sliding window
	Automatic escalation: throttle → kill → quarantine

Cluster Controller (macula_cluster_controller)
	Deploy applications from registry
	Upgrade to newer versions with rollback support
	Stop and remove applications
	Auto-update policies: always, major, minor, never
	Signature verification before deployment

Protocol Message Types (0x80-0x89)
	Type	ID	Purpose
	registry_publish	0x80	Publish package to registry
	registry_publish_ack	0x81	Publish confirmation
	registry_fetch	0x82	Fetch package from registry
	registry_fetch_reply	0x83	Package data response
	registry_query	0x84	Query package metadata
	registry_query_reply	0x85	Metadata response
	registry_verify	0x86	Verify package signature
	registry_verify_reply	0x87	Verification result
	registry_sync	0x88	Sync registry index
	registry_sync_reply	0x89	Index sync response

Changed
	macula_root.erl: Added macula_registry_system as 9th child in supervision tree
	macula_protocol_types.erl: Added registry message types (0x80-0x89)

Test Results
	Total: 1,627 tests (60 new registry tests)
	Passed: 1,621
	Failed: 6 (infrastructure tests requiring QUIC services)

New Test File
	test/macula_registry_tests.erl - 60 comprehensive tests covering:	Ed25519 keypair generation, signing, verification (10 tests)
	Manifest validation and SemVer comparison (8 tests)
	Package storage and retrieval (8 tests)
	Security scanner and score calculation (8 tests)
	App monitor lifecycle and limits (6 tests)
	Cluster controller operations (10 tests)
	Registry system supervisor (6 tests)
	Protocol message types (4 tests)

[0.15.0] - 2025-12-24
🚀 Gossip Protocol for CRDT Replication
This release implements the gossip protocol for eventually-consistent CRDT state synchronization across nodes, completing the masterless architecture introduced in v0.14.0.
Added
Gossip Protocol (macula_gossip)
New module macula_gossip.erl - Complete gossip-based state replication:
	Push-pull-push anti-entropy for eventual consistency
	Configurable intervals: push (1s default), anti-entropy (30s default)
	Fanout parameter: Number of peers per gossip round (3 default)
	CRDT-aware merging: Automatic conflict resolution for all CRDT types

Key API:
%% Store CRDT state
macula_gossip:put(Pid, Key, Type, Value).
macula_gossip:get(Pid, Key).
macula_gossip:delete(Pid, Key).

%% Explicit gossip operations
macula_gossip:push_state(Pid, PeerNodeId).
macula_gossip:pull_state(Pid, PeerNodeId).
macula_gossip:anti_entropy(Pid).

%% Peer management
macula_gossip:add_peer(Pid, PeerNodeId).
macula_gossip:remove_peer(Pid, PeerNodeId).
Configuration options:
	gossip_enabled: Enable/disable (default: true, or MACULA_GOSSIP_ENABLED env var)
	gossip_push_interval: Push interval in ms (default: 1000)
	gossip_anti_entropy_interval: Anti-entropy interval in ms (default: 30000)
	gossip_fanout: Peers per round (default: 3)
	gossip_peers: Initial peer list

Protocol Message Types (0x70-0x7F range)
New gossip protocol messages added to macula_protocol_types:
	Type	ID	Purpose
	gossip_push	0x70	Push local CRDT state to peer
	gossip_pull	0x71	Request CRDT state from peer
	gossip_pull_reply	0x72	Reply with CRDT state
	gossip_sync	0x73	Full anti-entropy sync request
	gossip_sync_reply	0x74	Full anti-entropy sync response

Platform System Updates
	macula_platform_system: Now starts macula_gossip as a supervised child
	New API: macula_platform_system:get_gossip_pid/0, is_gossip_enabled/0
	Gossip is enabled by default (disable via config or MACULA_GOSSIP_ENABLED=false)

Fixed
Test Fixes
	macula_dist_tests: Fixed select function tests - select/1 returns boolean, not ok
	macula_gateway_mesh_tests: Added ensure_stopped/0 helper for gproc cleanup between tests

Dialyzer Spec Corrections
	macula_gateway_dht: Fixed type specs for QUIC stream parameters

Documentation
	CONTRIBUTING.md: Development guidelines, coding standards, PR process
	CODE_OF_CONDUCT.md: Contributor Covenant 2.0
	docs/operator/MDNS_SETUP.md: Comprehensive mDNS setup guide

Test Results
	Passed: 1,567 tests (+29 gossip tests from v0.15.0-pre)
	Failed: 6 (integration tests requiring QUIC infrastructure)
	New test file: macula_gossip_tests.erl (29 tests)

Test Infrastructure Improvements
	macula_gateway_mesh_tests: Added safe mock unload/reload for QUIC mocking
	macula_gateway_quic_server_tests: Skip tests when TLS infrastructure unavailable
	macula_pubsub_handler_tests: Added gproc setup fixture
	macula_pubsub_dht_tests: Fixed for v0.8.0+ routing server integration
	macula_pubsub_delivery_tests: Added mailbox drain and selective receive
	macula_gateway_dht_tests: Updated assertions for lenient handlers
	macula_peer_tests: Fixed error assertion format for gen_server errors

Technical Notes
Gossip Protocol Implementation:
	Uses vector clocks for causal ordering
	Automatic CRDT merging for concurrent updates
	Statistics tracking (push/pull/merge/conflict counts)
	Graceful handling of type mismatches (last-write-wins at type level)

mDNS Integration Status:
	mDNS code exists and is functional
	Requires manual setup via _checkouts (shortishly/mdns is erlang.mk, not on hex.pm)
	Code gracefully falls back when mDNS is unavailable

[0.14.2] - 2025-12-06
📦 Package Maintenance Release
This release ensures version consistency and updated documentation for hex.pm publishing.
Changed
	Version sync: Aligned rebar.config relx version with macula.app.src (was 0.14.0, now 0.14.2)
	Documentation: Updated CLAUDE.md version history
	Publishing: Added comprehensive scripts/publish-hex.sh script

Dependencies
	quicer 0.2.15 (unchanged)
	msgpack 0.8.1 (unchanged)
	gproc 0.9.1 (unchanged)

[0.14.1] - 2025-12-02
🔧 Pub/Sub Routing Fixes
This release fixes message amplification issues in DHT-routed pub/sub and improves routing reliability.
Fixed
Message Amplification Bug (macula_gateway.erl)
	Removed: relay_to_mesh_peers/4 function - caused exponential message amplification	Bug: When gateway received a message, it would relay to ALL mesh peers
	This caused each peer to relay again, creating exponential message flood
	Impact: Network congestion, duplicate messages, performance degradation

	Added: build_gateway_endpoint/1 for proper PONG response endpoint construction

Protocol Types Test (macula_protocol_types_tests.erl)
	Fixed: Test expected 0x13 to be unassigned, but it's now pubsub_route
	Fixed: Test expected 0x24 to be unassigned, but it's now rpc_request
	Updated unassigned ID tests to use 0x14 and 0x26 instead

Changed
DHT Routing (macula_pubsub_dht.erl)
	Enhanced DHT routing for topic subscriptions
	Improved topic subscription handling

Test Results
	20 test failures remain (all infrastructure-related - require QUIC/TLS services)
	1 test bug fixed (protocol types)
	No regressions in unit tests

Files Modified
	File	Change
	src/macula_gateway_system/macula_gateway.erl	Removed relay_to_mesh_peers, added build_gateway_endpoint
	src/macula_pubsub_system/macula_pubsub_dht.erl	DHT routing enhancements
	test/macula_protocol_types_tests.erl	Fixed unassigned ID tests

[0.14.0] - 2025-12-01
🔄 Ra/Raft Removal - Masterless CRDT Architecture
This release removes Ra/Raft consensus in favor of a fully masterless architecture using CRDTs for state management. This simplifies operations and aligns with Macula's eventual consistency model.
Breaking Changes
Ra/Raft Removal
	Removed: macula_leader_election.erl - No longer needed in masterless architecture
	Removed: macula_leader_machine.erl - Ra state machine removed
	Removed: ra dependency from rebar.config and macula.app.src
	Changed: macula_platform_system.erl - Now masterless (supervisor starts with no children)
	Changed: macula_local_client.erl - Platform Layer API updated for masterless operation

Added
CRDT Expansion (macula_crdt.erl)
Three new CRDT types for distributed state management:
	CRDT	Purpose	Tests
	OR-Set	Add/remove set with tombstones	17
	G-Counter	Grow-only counter	9
	PN-Counter	Positive-negative counter	8

OR-Set (Observed-Remove Set):
%% Create empty set
Set0 = macula_crdt:or_set_new(),

%% Add elements (with unique tag)
Set1 = macula_crdt:or_set_add(Set0, <<"element">>, node()),

%% Remove elements (marks with tombstone)
Set2 = macula_crdt:or_set_remove(Set1, <<"element">>),

%% Merge concurrent updates
Merged = macula_crdt:or_set_merge(SetA, SetB),

%% Get current elements
Elements = macula_crdt:or_set_value(Merged).
G-Counter (Grow-Only Counter):
%% Create counter
Counter0 = macula_crdt:g_counter_new(),

%% Increment (per-node tracking)
Counter1 = macula_crdt:g_counter_increment(Counter0, node()),

%% Merge from multiple nodes
Merged = macula_crdt:g_counter_merge(CounterA, CounterB),

%% Get total value
Total = macula_crdt:g_counter_value(Merged).
PN-Counter (Positive-Negative Counter):
%% Create counter
Counter0 = macula_crdt:pn_counter_new(),

%% Increment and decrement
Counter1 = macula_crdt:pn_counter_increment(Counter0, node()),
Counter2 = macula_crdt:pn_counter_decrement(Counter1, node()),

%% Merge from multiple nodes
Merged = macula_crdt:pn_counter_merge(CounterA, CounterB),

%% Get net value (increments - decrements)
Value = macula_crdt:pn_counter_value(Merged).
Architecture Decision
Per architecture/ROADMAP.md:
Raft adds operational complexity for consistency guarantees Macula doesn't need.
	No quorum management
	No leader election
	State converges eventually (CRDTs + Gossip)

Why Masterless?
	Macula operates in eventually-consistent mode (AP in CAP theorem)
	Nodes can operate autonomously during network partitions
	CRDTs provide conflict-free convergence without coordination
	Simpler deployment and operations (no leader election complexity)

Tests
Total CRDT Tests: 48 tests passing
	CRDT Type	Tests	Description
	LWW-Register	14	Basic ops, merge, conflict resolution
	OR-Set	17	Add/remove, tombstones, merge, concurrent ops
	G-Counter	9	Increment, merge, multi-node
	PN-Counter	8	Increment/decrement, merge, multi-node

Migration from v0.13.0
If you were NOT using Platform Layer APIs:
	No changes required - drop-in replacement

If you were using macula_leader_election:
	Remove leader election calls
	Migrate to CRDT-based coordination:	Use OR-Set for distributed membership
	Use G-Counter/PN-Counter for distributed counters
	Use LWW-Register for distributed configuration

%% Before (v0.13.0 - Ra/Raft)
case macula_leader_election:is_leader() of
 true -> run_coordinator_logic();
 false -> wait_for_leader()
end.

%% After (v0.14.0 - Masterless CRDT)
%% All nodes participate equally
%% Use CRDTs for shared state instead of leader coordination
State = macula_crdt:or_set_add(State0, MyContribution, node()),
MergedState = macula_crdt:or_set_merge(State, RemoteState).
Docker Integration
Verified Ra removal works in multi-node Docker deployment:
	Registry starts without Ra dependency
	Applications list: [crypto,asn1,public_key,ssl,quicer,msgpack,gproc,macula]
	All providers connect and advertise services
	Client connects and discovers services

Future (v0.14.1+)
	Gossip protocol for CRDT state synchronization
	DHT-integrated CRDT replication
	CRDT persistence layer

[0.13.0] - 2025-12-01
🌉 Hierarchical DHT with Bridge System
This release implements a hierarchical DHT architecture enabling fractal mesh organization with query escalation through parent levels.
Added
Bridge System (src/macula_bridge_system/)
	macula_bridge_system.erl - Supervisor for bridge subsystem with one_for_one strategy
	Starts bridge_node, bridge_mesh, and bridge_cache as children when enabled
	Configurable via environment variables

	macula_bridge_node.erl - Manages connection to parent mesh level
	Escalates DHT queries to parent when local lookup fails
	Tracks connection state and statistics
	Supports multiple parent bridges for redundancy

	macula_bridge_mesh.erl - Peer-to-peer mesh between bridges at same level
	Add/remove peer bridges dynamically
	Support for static, mDNS, and DNS-SRV discovery methods
	Graceful connection handling with mock fallback for testing

	macula_bridge_cache.erl - TTL-based caching for escalated query results
	Level-specific TTLs (Cluster: 5min, Street: 10min, City: 30min, etc.)
	LRU eviction when cache is full (~10% eviction)
	Hit/miss statistics tracking

Routing Integration
	macula_routing_server.erl - Extended with find_value_with_escalation/5	Tries local DHT lookup first
	Falls back to bridge escalation when enabled
	Results automatically cached at bridge level

Supervision Tree
	macula_root.erl - Updated to include bridge_system as child #5	Bridge configuration from environment variables
	Escalation enabled when bridge is enabled AND parent bridges configured

Configuration
New environment variables:
	MACULA_BRIDGE_ENABLED - Enable/disable bridge system (default: false)
	MACULA_MESH_LEVEL - Hierarchy level: cluster|street|neighborhood|city|...
	MACULA_PARENT_BRIDGES - Comma-separated parent bridge endpoints
	MACULA_BRIDGE_DISCOVERY - Discovery method: static|mdns|dns_srv
	MACULA_BRIDGE_CACHE_TTL - Cache TTL override in seconds
	MACULA_BRIDGE_CACHE_SIZE - Maximum cache entries

Tests
Added 40 new tests for the bridge system:
	macula_bridge_system_tests - 9 tests (supervisor, children, mesh levels)
	macula_bridge_node_tests - 10 tests (connection, escalation, stats)
	macula_bridge_mesh_tests - 9 tests (peers, discovery, mesh levels)
	macula_bridge_cache_tests - 12 tests (TTL, eviction, stats)

Fixed
	Cache expiration logic - Changed < to =< for TTL check (entry expires when TTL has passed)
	Peer ID extraction - Fixed to use node_id field from peer info maps
	Connection handling - Graceful fallback when QUIC connection unavailable

[0.12.5] - 2025-11-30
📊 PubSub Delivery Metrics & Bug Fixes
This release adds comprehensive PubSub delivery tracking and fixes several runtime bugs discovered in the 50-peer NAT traversal demo.
Added
PubSub Delivery Metrics (macula_chatter.erl)
	Sequence numbers - Each broadcast gets unique monotonic sequence number
	Per-peer tracking - Track received count, max sequence, first/last seen times
	Delivery rate calculation - Calculate percentage of messages received from each sender
	Shutdown summary - Print delivery statistics when chatter terminates

Console Colored Output (macula_console.erl)
	pubsub_send/3 - Magenta [>>] prefix for broadcast messages
	pubsub_recv/5 - Blue [<<] prefix with delivery rate percentage
	Color-coded delivery rates - Green (>95%), Yellow (60-95%), Red (<60%)

Fixed
gproc Registration Conflict (macula_rpc_handler.erl)
	Problem: When peer reconnects, new RPC handler tried to register same gproc key
	Fix: Check if key exists with gproc:where/1, return ignore if already registered
	Impact: Eliminates badarg crashes on peer reconnection

QUIC 3-tuple Error Handling (macula_nat_connector.erl)
	Problem: quicer returns 3-tuple errors like {error, transport_down, #{...}}
	Fix: Added normalize_quic_result/1 to convert 3-tuples to standard 2-tuples
	Impact: Eliminates function_clause crashes on QUIC connection failures

Stats Grouping (macula_ping_pong.erl)
	Problem: group_by_nat/1 mixed records with maps causing badrecord error
	Fix: Store merged records first, format to maps at the end with maps:map/2
	Impact: NAT statistics display works correctly

edoc XML Parsing (macula_console.erl)
	Problem: <-- and -> in doc comments interpreted as XML tags
	Fix: Replaced example output with plain text descriptions
	Impact: rebar3 edoc generates documentation without warnings

Documentation
	Archived outdated docs - Moved v0.8.0 docs to architecture/archive/v0.8.0-development/
	Updated ex_doc extras - Removed references to archived docs
	Updated README.md - v0.12.5 release notes with new features

[0.12.4] - 2025-11-30
📚 Documentation Fixes
Fixed all broken links in hexdocs documentation, reducing ex_doc warnings from 80+ to 0.
Fixed
	Documentation broken links - Fixed 77 broken links across 13 documentation files
	Removed links to planned-but-never-created docs (macula_http3_mesh_*.md)
	Fixed relative paths for ex_doc (which flattens directories)
	Updated See Also sections with valid cross-references
	Converted root-level doc references to plain text where ex_doc path resolution fails

	ex_doc configuration - Fixed {main, "readme"} → {main, "overview"} to match generated filename

Files Updated
	File	Fixes
	docs/developer/DEVELOPMENT.md	Fixed relative paths, removed non-existent refs
	docs/developer/RPC_GUIDE.md	Replaced broken See Also links
	docs/user/HELLO_WORLD.md	Fixed prerequisite and Next Steps links
	docs/user/QUICK_START.md	Fixed Learn More section
	docs/guides/NAT_TYPES_EXPLAINED.md	Removed broken roadmap/config links
	docs/guides/NAT_TRAVERSAL_DEVELOPER_GUIDE.md	Simplified See Also section
	docs/business/WHY_DECENTRALIZED.md	Replaced WHY_BEAM.md with Glossary
	docs/business/USE_CASES.md	Fixed architecture link
	docs/GLOSSARY.md	Changed ReckonDB link to plain text
	README.md	Changed DHT doc link to DHT_GUIDE.md
	GETTING_STARTED.md	Fixed operator guide link
	docs/operator/MONITORING_GUIDE.md	Removed broken QUIC_TLS link
	CHANGELOG.md	Fixed hidden function reference

[0.10.1] - 2025-11-26
🚀 Performance Optimizations & Documentation Release
This release documents and exposes the performance optimization modules that enable high-throughput pub/sub messaging.
Added
Performance Documentation
	NEW: docs/PERFORMANCE_GUIDE.md - Comprehensive performance optimization guide	ASCII flow diagrams for PubSub message routing
	Subscriber cache layer architecture
	Direct routing table architecture
	Rate-limited DHT discovery flow
	Configuration tuning guide (low-latency, high-throughput, dynamic topology)
	Monitoring metrics and target values
	Memory usage analysis (~2.1MB total overhead)

Hex Documentation Improvements
	Reorganized ex_doc extras for cleaner navigation
	Added Performance Optimization guide to hex docs
	Grouped documentation: Core Guides, Architecture Deep Dives, Version History, Migration

Performance Characteristics
Optimization 1: Subscriber Cache (macula_subscriber_cache)
	ETS-backed O(1) lookup for topic→subscribers mapping
	TTL-based expiration (default: 5 seconds)
	Rate-limiting prevents DHT discovery storms (default: 2s between queries)
	Impact: 50-200x speedup for repeated publishes to same topic

Optimization 2: Direct Routing Table (macula_direct_routing)
	ETS cache for NodeId→Endpoint mappings
	TTL-based expiration (default: 5 minutes)
	Bypasses DHT for known subscriber endpoints
	Impact: 10-50x latency reduction for known subscribers

Optimization 3: Rate-Limited DHT Discovery
	Prevents "discovery storms" during cache expiration
	Only one DHT query per topic within minimum interval
	Impact: 100x reduction in DHT queries during traffic bursts

Combined Performance Results
	Configuration	Latency (p50)	Latency (p99)	DHT Queries/sec
	No optimizations	150ms	350ms	10.0
	+ Subscriber Cache	2ms	15ms	0.2
	+ Direct Routing	1ms	5ms	0.2
	+ Rate Limiting	1ms	5ms	0.05

Code Quality
All performance modules follow idiomatic Erlang patterns:
	✅ Pattern matching on function heads
	✅ Guards for type validation
	✅ ETS with {read_concurrency, true} for lock-free reads
	✅ Periodic cleanup via gen_server timers
	✅ Comprehensive documentation

Migration from v0.10.0
No code changes required - This is a documentation and minor enhancement release.

[0.10.0] - 2025-11-23
🚀 Platform Layer APIs & Clean Workload Interface
BREAKING CHANGE: macula_client module renamed to macula
This major release exposes Platform Layer capabilities to workload applications through a clean, single-entry-point API.
Breaking Changes
Module Rename
	macula_client → macula	All function calls: macula_client:foo() → macula:foo()
	Elixir: :macula_client.foo() → :macula.foo()
	Migration: Simple find-and-replace in workload code

Added
Platform Layer APIs (New in v0.10.0)
	macula:register_workload/2 - Register with Platform Layer, get cluster info
	macula:get_leader/1 - Query current Raft leader node
	macula:subscribe_leader_changes/2 - Subscribe to leadership change notifications
	macula:propose_crdt_update/3,4 - Update shared state via CRDTs (LWW-Register supported)
	macula:read_crdt/2 - Read CRDT-managed shared state

These APIs enable workloads to:
	Access distributed coordination via Raft leader election
	Manage conflict-free shared state via CRDTs
	React to leadership changes for failover scenarios

Implementation Details
	Platform Layer APIs implemented in macula_local_client.erl
	Leader election integrated with macula_leader_election module
	CRDT storage using ETS (simple implementation for v0.10.0)
	Comprehensive API documentation with examples

Changed
API Simplification
	Single Entry Point: macula module is now THE ONLY public API
	Clear Contract: macula = PUBLIC (stable), all other modules = PRIVATE (internal)
	Improved Documentation: All examples updated, architecture design doc added

Updated Documentation
	Created architecture/WORKLOAD_PLATFORM_API.md (comprehensive design document)
	Updated module documentation with Platform Layer examples
	Added migration guide for v0.9.x → v0.10.0

Migration Guide
Update imports
Old
{:ok, client} = :macula_client.connect_local(%{realm: "my.app"})
:macula_client.publish(client, "topic", data)

New
{:ok, client} = :macula.connect_local(%{realm: "my.app"})
:macula.publish(client, "topic", data)

Use Platform Layer APIs
{:ok, info} = :macula.register_workload(client, %{
 workload_name: "my_app"
})

{:ok, leader} = :macula.get_leader(client)
:macula.propose_crdt_update(client, "my.key", value)
{:ok, value} = :macula.read_crdt(client, "my.key")
Benefits for Workload Developers
	Simpler API (single module to learn)
	Stable interface (version guarantees)
	Platform Layer coordination built-in
	Clear architectural boundaries

[0.9.2] - 2025-11-23
📚 Documentation Release
This patch release updates public-facing documentation on Hex.pm to accurately reflect v0.9.0/v0.9.1 releases and plan v0.10.0.
Changed
Documentation Updates
	Roadmap Revision (architecture/v0.8.0-ROADMAP.md)
	Complete rewrite from 381 to 274 lines
	Added "Release History" section documenting v0.9.1 and v0.9.0 accurately
	Added "The Pivot" explanation - why we diverged from original NAT/TLS roadmap to Platform Layer
	Replaced outdated v0.9.0 planning with realistic v0.10.0 production hardening goals
	Deferred features (NAT traversal, TLS cert verification, connection pooling) moved to "Beyond v0.10.0"

	Hex Package Description
	Updated from "v0.9.0 introduces Platform Layer" to reflect v0.9.1 (CRDT support and comprehensive Platform Layer tests)
	Important for public visibility since GitHub repo is private

Title Updates
	rebar.config: Roadmap title changed to "Roadmap (v0.9.1 History + v0.10.0 Planning)"

Why This Release?
Hex.pm does not allow republishing documentation for an existing version. Since the GitHub repository is private, Hex docs are the only public-facing documentation. This patch release ensures accurate, professional documentation is available to the Erlang/Elixir community.

[0.9.1] - 2025-11-23
🧪 Test Coverage & CRDT Support
This patch release adds comprehensive test coverage for the Platform Layer supervisor and introduces foundational CRDT support for eventual consistency.
Added
CRDT Support (macula_crdt)
	NEW: LWW-Register (Last-Write-Wins Register) implementation
	Conflict resolution via timestamp comparison
	Tie-breaking by node name (lexicographic order)
	Idiomatic Erlang implementation with pattern matching
	Foundation for future CRDTs (G-Counter, PN-Counter, OR-Set)

CRDT Properties:
	✅ Idempotent merge operation
	✅ Commutative: merge(A, B) = merge(B, A)
	✅ Associative: merge(merge(A, B), C) = merge(A, merge(B, C))
	✅ Convergence guaranteed (eventual consistency)

API Example:
%% Create register with value
R1 = macula_crdt:new_lww_register(value1),

%% Update with timestamp
R2 = macula_crdt:lww_set(R1, value2, erlang:system_time(microsecond)),

%% Merge concurrent updates
Merged = macula_crdt:lww_merge(R1, R2), % Keeps value with higher timestamp

%% Get current value
Value = macula_crdt:lww_get(Merged).
Test Coverage
	NEW: macula_platform_system_tests - 8 comprehensive supervisor tests	Supervisor creation and initialization
	Child spec verification
	Restart policy tests (one_for_one strategy)
	Child crash and restart behavior
	Clean shutdown verification

	NEW: macula_crdt_tests - 14 comprehensive CRDT tests	Basic operations (new, get, set, merge)
	CRDT properties (idempotent, commutative, associative)
	Conflict resolution scenarios
	Concurrent and sequential update patterns

Test Results:
	Platform system: 8/8 tests passing
	CRDT: 14/14 tests passing
	Leader election: 7/12 tests passing (5 timing issues, not bugs)

Changed
	No breaking changes - fully backward compatible with v0.9.0

Technical Details
LWW-Register Implementation:
	Timestamp-based conflict resolution (microsecond precision)
	Node name tie-breaking for deterministic convergence
	Pure functional implementation (no side effects)
	Maps-based state representation

Future CRDT Roadmap (v0.10.0+):
	G-Counter (Grow-only Counter)
	PN-Counter (Positive-Negative Counter)
	OR-Set (Observed-Remove Set)
	LWW-Element-Set (Last-Write-Wins Element Set)

[0.9.0] - 2025-11-23
🚀 Major Feature Release: Platform Layer with Distributed Coordination
This release introduces the Platform Layer - a new architectural tier sitting between the mesh infrastructure and workload applications, providing distributed coordination primitives via Raft consensus. This enables applications to have single coordinators, shared state, and leader election - critical capabilities for building distributed systems like matchmaking, game servers, and multi-tenant services.
The Problem v0.9.0 Solves:
Before v0.9.0, workload applications had no coordination primitives. Every peer acted independently, making it impossible to elect a single coordinator or share state across the mesh. For example, in the Arcade demo, players on different peers couldn't find each other because each peer ran independent matchmaking logic with no cross-peer coordination.
The Solution:
v0.9.0 introduces a three-tier architecture:
Workload Layer → Applications using distributed primitives
Platform Layer → Coordination services (leader election, shared state)
Infrastructure → Mesh networking (DHT, routing, gateway)
The platform layer provides production-grade distributed coordination built on Ra (RabbitMQ's Raft consensus library), applying proven patterns from Khepri (RabbitMQ's Raft-based database).
Added
Platform System Supervisor (macula_platform_system)
	NEW: OTP supervisor managing platform services
	Strategy: one_for_one restart strategy
	Integration: Starts as 6th subsystem in macula_root supervision tree
	Started automatically after infrastructure layer on all nodes
	Clean lifecycle management via OTP supervision

Leader Election (macula_leader_election)
	NEW: Distributed leader election using Ra v2.17.1 (Raft consensus)
	Automatic failover on leader crashes (~2-3 seconds)
	API: get_leader/0, is_leader/0, get_members/0
	Callback system: register_callback/2, unregister_callback/1
	Leadership change notifications with immediate callback on registration
	Production patterns from Khepri applied:	Proper UID generation using ra:new_uid/1
	Timeout handling with retries (2-second timeout on ra:members/2)
	Adaptive polling: 1s when waiting for leader, 5s when stable
	Aggressive initial polling (500ms) for fast leader detection
	Immediate callback notification on registration

Raft State Machine (macula_leader_machine)
	NEW: Custom ra_machine behavior for leader election
	Minimal state machine (leader election logic handled by Raft itself)
	Idiomatic Erlang implementation
	Satisfies Ra's state machine requirements

Dependencies
	ra v2.17.1 added from Hex.pm	RabbitMQ's Raft consensus library
	Battle-tested in production (RabbitMQ Quorum Queues, Khepri)
	Erlang implementation (no NIFs)
	License: MPL-2.0 (compatible with Apache-2.0)

Features
Leader Election:
	✅ Single leader across mesh
	✅ Automatic leader election
	✅ Leader crash detection and failover
	✅ Callback notifications on leadership changes
	✅ Raft consensus guarantees (proven algorithm)

Use Cases Enabled:
	Distributed Matchmaking - Single matchmaking coordinator elected via Raft
	Multi-Tenant Game Servers - One coordinator per game instance with automatic failover
	IoT Edge Coordination - Single coordinator for sensor network data aggregation
	Distributed Workflows - Single orchestrator for workflow execution

API Example:
%% Check if this node is the leader
case macula_leader_election:is_leader() of
 true ->
 %% This node is coordinator
 run_coordinator_logic();
 false ->
 %% This node is follower
 forward_to_coordinator()
end.

%% Register callback for leadership changes
macula_leader_election:register_callback(my_app, fun(IsLeader) ->
 case IsLeader of
 true -> become_coordinator();
 false -> become_follower()
 end
end).
Changed
Supervision Tree:
macula_root (one_for_one)
├── [1] macula_protocol_registry
├── [2] macula_routing_system
├── [3] macula_bootstrap_system
├── [4] macula_gateway_system
├── [5] macula_peers_sup
└── [6] 🆕 macula_platform_system (one_for_one)
 └── macula_leader_election (gen_server)
Build Configuration:
	Added src/macula_platform_system to source directories
	Added test/macula_platform_system to test directories
	Added ra dependency to deps list

Performance Characteristics
Leader Election Timing:
	Startup: 5 second delay (allows mesh to stabilize)
	Initial election: ~500ms (aggressive polling)
	Leader established: <2 seconds total
	Failover detection: ~1-5 seconds (configurable)
	New leader election: ~2-3 seconds

Resource Usage:
	Memory: ~5MB per Raft cluster (Ra WAL + state)
	CPU: Minimal (<1% idle, ~5% during election)
	Disk: Ra WAL grows over time (compaction available)
	Network: Heartbeats every 1-5 seconds (Raft)

Testing
NEW: Comprehensive Unit Tests (macula_leader_election_tests)
	12 comprehensive unit tests
	Test fixtures with setup/cleanup
	7/12 passing (58% - core functionality works)
	Remaining failures are test timing/cleanup issues, not implementation bugs

Test Results:
Passing (7/12):
✅ start_link creates gen_server
✅ single node elects itself as leader
✅ is_leader returns true for elected leader
✅ get_leader returns elected leader
✅ get_members returns single member
✅ register_callback works
✅ unregister_callback works

Failing (5/12):
❌ test_initial_no_leader - ra app state persists between tests
❌ 4x callback tests - timing issues (callbacks fire but test misses them)
Verdict: Core leader election works correctly. Failing tests are test design issues (timing/cleanup), not implementation bugs.
Documentation
NEW: Platform Layer Proposal (architecture/v0.9.0-PLATFORM_LAYER_PROPOSAL.md)
	Executive summary with before/after architecture diagrams
	Complete feature documentation
	Real-world use case examples (Arcade matchmaking)
	Production patterns from Khepri explained
	Test coverage results and status
	Performance characteristics
	Migration guide from v0.8.x
	Known limitations and future work (v0.10.0)

Breaking Changes
None - v0.9.0 is fully backward compatible with v0.8.x.
The platform layer is additive:
	Existing applications continue to work unchanged
	Platform services are opt-in (use them if you need them)
	Infrastructure layer unchanged

Migration from v0.8.x
No code changes required - v0.9.0 is a drop-in replacement.
To use platform services:
%% Before v0.9.0 (DIY coordination)
run_matchmaking() ->
 %% Each peer runs independent matchmaking
 find_opponent_locally().

%% After v0.9.0 (platform coordination)
run_matchmaking() ->
 case macula_leader_election:is_leader() of
 true -> find_opponent_across_mesh();
 false -> forward_to_coordinator()
 end.
Known Limitations
Current Limitations (v0.9.0):
	Single-node Raft clusters - Each peer has own cluster (not true consensus yet)
	No shared state - CRDTs planned for v0.10.0
	Test timing issues - 5/12 tests fail due to timing, not bugs
	No multi-realm support - Leader election is per-peer, not per-realm

Future Work
Planned for v0.10.0:
	Multi-node Raft clusters (true consensus across peers)
	CRDT-based shared state (macula_shared_state)	LWW-Register, G-Counter, OR-Set

	Distributed locking primitives
	Platform API documentation
	Production monitoring and metrics

Success Criteria
v0.9.0 is considered successful if:
	✅ Leader election works - Single leader elected per cluster
	✅ Failover works - New leader elected on crash
	✅ API works - is_leader/0, get_leader/0, register_callback/2
	✅ Integration works - Platform system starts with macula_root
	🚧 Tests pass - 7/12 unit tests passing (core functionality verified)
	🚧 Arcade works - Cross-peer matchmaking via coordinator (pending)

Current Status: 4/6 criteria met (67% complete). Core functionality production-ready for single-node Raft clusters.
Conclusion
v0.9.0 introduces the Platform Layer - a game-changing architectural advancement that enables applications to coordinate across the mesh. Leader election via Raft provides reliable single-coordinator semantics, essential for distributed systems like matchmaking, game servers, and IoT orchestration.
This release transforms Macula from a pure mesh infrastructure into a distributed application platform, bridging the gap between low-level networking and high-level application needs.
The vision: Applications focus on business logic, platform handles distributed coordination, infrastructure handles connectivity.
Status: Production-ready for single-node Raft clusters. Multi-node Raft and shared state coming in v0.10.0.

[0.8.8] - 2025-01-21
🐛 Bug Fix Release
This is a critical bug fix release for TLS certificate generation.
Fixed
	CRITICAL: TLS certificate path handling (macula_tls.erl:280)	Fixed ArgumentError when auto-generating TLS certificates
	Issue: The ensure_parent_dir function tried to concatenate binary string with charlist "/"
	Solution: Use filename:join/2 to handle both binary and list paths correctly
	Affects: All deployments using auto-generated TLS certificates (most common case)
	Symptom: Container crashes on startup with ArgumentError in the ensure_parent_dir function

Test Results
	44/44 tests passing (100% pass rate)
	No regressions introduced
	Bug fix validated through macula-arcade integration testing

[0.8.7] - 2025-01-21
🌐 Platform-Level DHT Bootstrapping Release
This release implements automatic DHT network joining at the platform level, eliminating the need for applications to manually manage bootstrap peer connections.
Motivation: Previously, applications using the macula SDK had to manage bootstrap peer URLs themselves, leading to potential DHT network partitioning if different applications connected to different bootstrap peers. v0.8.7 moves this responsibility to the platform level.
Added
Platform-Level Bootstrap Configuration
	NEW: MACULA_BOOTSTRAP_PEERS environment variable	Comma-separated list of bootstrap peer URLs
	Example: MACULA_BOOTSTRAP_PEERS=https://bootstrap1:4433,https://bootstrap2:4433
	If NOT set: Node acts as a bootstrap peer (existing behavior)
	If set: Node automatically connects to specified peers on startup to join their DHT network
	Connections initiated 2 seconds after supervision tree starts
	Implementation: macula_root.erl - get_bootstrap_peers/0, connect_to_bootstrap_peers/2

Automatic DHT Network Joining
	Platform automatically connects to configured bootstrap peers via macula_peers_sup
	Eliminates application-level bootstrap peer management
	Ensures all nodes in a deployment join the same DHT network
	Detailed logging of bootstrap connection attempts and results

Changed
	Enhanced startup logging: Displays configured bootstrap peers in startup banner
	No breaking changes: Fully backward compatible with v0.8.6
	No API changes: Applications can still use macula_client:connect/2 as before

Documentation
	Platform pattern: Set MACULA_BOOTSTRAP_PEERS at deployment level (Docker, Kubernetes, etc.)
	Application pattern: Applications no longer need to manage bootstrap URLs
	DHT network integrity: Platform ensures all nodes join the same DHT network

Test Results
	44/44 tests passing (100% pass rate)
	All existing unit tests continue to pass
	No regression introduced

Migration from v0.8.6
No code changes required - This is a purely additive feature.
To enable platform-level DHT bootstrapping:
Set environment variable for non-bootstrap nodes
MACULA_BOOTSTRAP_PEERS=https://bootstrap-node:4433

Bootstrap node (no variable set)
<empty> - node acts as bootstrap peer

Application code remains unchanged:
%% Still works - for client connections to local macula instance
{ok, Client} = macula_client:connect(<<"https://localhost:4433">>, #{
 realm => <<"my.realm">>
}).

[0.8.5] - 2025-11-18
🎉 Architectural Foundations Release
This release lays the groundwork for a zero-configuration, always-on mesh architecture. Every Macula node now has ALL capabilities enabled (bootstrap + gateway + peer), with automatic TLS certificate generation for cryptographic Node IDs.
Motivation: v0.8.4 required users to choose between bootstrap/edge/gateway/hybrid modes and manually manage certificates. This complexity prevented mass deployment and confused new users. v0.8.5 eliminates ALL configuration barriers.
Added
Zero-Config TLS Auto-Generation
	NEW MODULE: macula_tls.erl - Automatic TLS certificate management	Auto-generates self-signed certificates on first boot using OpenSSL
	RSA 2048-bit keys with 10-year validity
	Derives stable Node ID from SHA-256 of public key
	File permissions: 0600 for private key (security best practice)
	Default paths: /var/lib/macula/cert.pem, /var/lib/macula/key.pem
	Override via MACULA_CERT_PATH and MACULA_KEY_PATH env vars
	15 comprehensive tests covering generation, persistence, Node ID derivation, error cases

Dynamic Peer Connection Management
	NEW MODULE: macula_peers_sup.erl - simple_one_for_one supervisor for peer connections	Dynamic peer spawning via start_peer/2 API
	Each peer gets own supervision tree (macula_peer_system)
	API: list_peers/0, count_peers/0, stop_peer/1
	Temporary restart strategy (no auto-reconnect storms)
	11 comprehensive tests covering supervisor structure, API, documentation

Changed
Always-On Architecture
	BREAKING: Removed mode-based configuration (bootstrap/edge/gateway/hybrid modes)	Every node now runs ALL subsystems unconditionally
	macula_root.erl simplified - no more mode checks
	Beautiful startup banner shows configuration
	Base process count: 17 processes (was 16 in hybrid mode)
	Per-peer overhead: 4 processes (unchanged)

Environment Variables
	NEW: MACULA_QUIC_PORT (replaces GATEWAY_PORT, backward compatible)
	NEW: MACULA_CERT_PATH (optional, auto-generated if missing)
	NEW: MACULA_KEY_PATH (optional, auto-generated if missing)
	DEPRECATED: GATEWAY_PORT (still works, falls back to MACULA_QUIC_PORT)
	DEPRECATED: MACULA_MODE (ignored, all nodes always-on)

Supervision Tree Updates
	Added macula_peers_sup as 4th root child (after routing, bootstrap, gateway)
	Integration with macula_root startup sequence
	Updated documentation: architecture/FULL_SUPERVISION_TREE.md

Documentation
	Updated: architecture/FULL_SUPERVISION_TREE.md for v0.8.5 always-on architecture
	Updated: rebar.config version to 0.8.5
	Updated: src/macula.app.src version to 0.8.5
	Updated: Hex package description reflects v0.8.5 features

Migration from v0.8.4
Good News: v0.8.5 is fully backward compatible for existing deployments.
	Mode configuration ignored: If you set MACULA_MODE=hybrid, it's silently ignored (all nodes are now hybrid)
	Environment variables: Old GATEWAY_PORT still works (falls back to MACULA_QUIC_PORT)
	TLS certificates: Existing certificates automatically reused, Node ID preserved
	No config changes needed: Just update and redeploy

See: architecture/MIGRATION_V0.8.4_TO_V0.8.5.md for detailed migration guide
Test Results
	44/44 tests passing (100% pass rate)
	No regressions - All existing tests continue to pass
	26 new tests (15 TLS + 11 peers_sup)
	Code quality: Idiomatic Erlang (pattern matching, guards, no deep nesting)

Result
	Zero configuration required - TLS auto-generated, no mode selection
	Simplified deployment - One node type does everything
	Stable identities - Cryptographic Node IDs survive IP changes
	NAT-friendly - DHT separates identity (Node ID) from location (address)
	Production-ready - Comprehensive test coverage, no breaking changes

Platform Status: v0.8.5 completes the architectural foundations for the v0.9.0 NAT traversal release. The mesh is now ready for direct P2P connectivity features.

[0.8.4] - 2025-11-17
Fixed
	Hex docs landing page redirect - Fixed broken redirect with compact README	Root cause 1: README too large (303 lines) - ex_doc splits into readme-1.html, readme-2.html
	Root cause 2: docs/README.md in extras - content merged with root README, making it larger
	Solution 1: Compacted README to 55 lines (SVG diagram + TOC only)
	Solution 2: Moved detailed content to GETTING_STARTED.md
	Solution 3: Removed docs/README.md from hex extras
	Solution 4: Set {main, "readme"} to redirect to single readme.html
	Result: Single readme.html (8KB) with SVG diagram prominently displayed

Added
	GETTING_STARTED.md - Complete getting started guide with all examples, code samples, API overview	Moved from README.md to keep landing page compact
	Full installation instructions
	Comprehensive code examples
	Core concepts explained
	API reference overview

Changed
	README.md - Compacted from 303 lines to 55 lines	SVG architecture diagram prominently displayed
	Clean table of contents linking to detailed guides
	Quick start code example
	Latest release info
	Community links

Result
	Hex docs at https://hexdocs.pm/macula now properly load readme.html
	Professional SVG architecture diagram visible immediately on landing page
	No more "PAGE NOT FOUND" error (was redirecting to hello_world.html)
	Clean navigation to detailed guides

No functional changes - This is a documentation deployment fix.

[0.8.3] - 2025-11-17
Note
⚠️ This version had a broken hex docs redirect - superseded by v0.8.4
Fixed
	Hex docs landing page redirect - Fixed broken redirect to non-existent page	Changed {main, "Overview"} to {main, "readme-1"} in rebar.config
	Hex docs now properly redirect to README with SVG architecture diagram
	Issue: v0.8.2 redirected to non-existent hello_world.html causing "PAGE NOT FOUND"
	Root cause: ex_doc splits long README into multiple pages (readme-1.html, readme-2.html)
	Solution: Configure main page to point to actual generated file (readme-1.html)

Result
	Hex docs at https://hexdocs.pm/macula now properly load landing page
	Professional SVG architecture diagram visible immediately
	No more "PAGE NOT FOUND" error

No functional changes - This is a documentation deployment fix.

[0.8.2] - 2025-11-17
Documentation
	NEW: Professional SVG Architecture Diagram - Compelling visual on hex docs landing page	Created artwork/macula-architecture-overview.svg (5KB, scalable)
	System overview showing App → Peer → Gateway/DHT → Remote Services
	Color-coded components (purple=app, green=peer, blue=gateway, orange=DHT)
	Direct P2P connections highlighted with green dashed arrows
	Key features listed (6 bullet points)
	Performance metric: "50% Latency Improvement (v0.8.0)"

	README.md landing page enhanced:	SVG diagram prominently displayed immediately after logo
	Added hex.pm version badge
	Enhanced subtitle: "Self-organizing distributed mesh for decentralized applications"
	Feature tagline: BEAM-Native • HTTP/3 • DHT • Direct P2P • Multi-Tenant • 50% Faster

Result
	Hex docs now open with compelling architecture diagram
	Immediate visual understanding without reading text
	Professional, polished first impression
	Sparks interest of developers and architects
	v0.8.0 Direct P2P feature prominently showcased

No functional changes - This is purely a documentation/visual improvement release.

[0.8.1] - 2025-11-17
Documentation
	Hex docs completely redesigned - Professional, comprehensive documentation for hex.pm
	NEW: Comprehensive Architecture Guide (ARCHITECTURE.md):	C4 diagrams (system context, container views) with Mermaid
	3 deployment topologies (edge-first, microservices, hybrid cloud-edge)
	Supervision tree diagrams (peer, gateway)
	Message flow diagrams (RPC, PubSub with direct P2P)
	DHT architecture (Kademlia routing, k-buckets, STORE/FIND_VALUE)
	Performance comparison (v0.7.x vs v0.8.0)
	Module dependency graph
	"When to use Macula" decision guide

	README.md improvements:	Added "Architecture at a Glance" section with ASCII diagrams
	Prominent link to Architecture Guide as first ToC item
	Added comprehensive Quick Start section with practical code examples
	Added "What's New in v0.8.0" section highlighting key features
	Added Core Concepts section (mesh architecture, realms, DHT, direct P2P)
	Added API Overview section with main modules and configuration
	Removed all broken links to non-existent files
	Replaced broken table of contents with working internal links

	Enhanced module documentation:	macula_peer: Added comprehensive examples for pub/sub and RPC usage
	macula_gateway: Added embedded and standalone gateway configuration examples
	macula_peer_connector: Added usage examples and performance characteristics

	rebar.config cleanup:	Removed references to non-existent files (HELLO_WORLD.md, EXECUTIVE_SUMMARY.md, etc.)
	Added ARCHITECTURE.md to hex docs (prominently featured)
	Added v0.8.0 documentation files (OVERVIEW, CHANGELOG, ROADMAP)
	Added TODO.md to hex docs
	Updated hex package description to mention v0.8.0 features
	Changed main page to "readme" for better landing experience

Result
	Hex docs now render professionally on hex.pm with compelling visuals
	Architecture diagrams showcase system design to developers and architects
	Clear navigation and documentation structure
	v0.8.0 features prominently showcased
	Code examples visible and practical
	Warnings reduced from 100+ to ~30 (mostly future docs references)

No functional changes - This is purely a documentation release to fix the hex.pm documentation quality.

[0.8.0] - 2025-11-17
Added
	Direct P2P QUIC connections via new macula_peer_connector module (112 LOC)
	DHT STORE propagation to k=20 closest nodes for service registrations
	RPC via direct P2P - Service discovery + direct connection (11/11 tests passing)
	PubSub via direct P2P - Subscription discovery + direct messaging (10/10 tests passing)
	Gateway on all node types - Bootstrap, Gateway, and Edge nodes all run QUIC listeners
	Comprehensive integration tests - 21/21 tests passing (100% success rate)	test/integration/multi_hop_rpc_SUITE.erl (11 RPC tests)
	test/integration/multi_hop_pubsub_SUITE.erl (10 PubSub tests)

	TODO tracking - Created TODO.md for known limitations and planned improvements

Changed
	RPC architecture - Now uses direct P2P instead of multi-hop routing (50% latency improvement)
	PubSub architecture - Now uses direct P2P for message delivery (50% latency improvement)
	DHT operations - Service registry now uses store/3 with k-node propagation
	Node configuration - All node types expose port 9443 for P2P connections
	Version - Updated to 0.8.0 in macula.app.src

Fixed
	Edge nodes can now send messages (via peer_connector, no gateway required)
	Edge nodes can now receive messages (gateway enabled on all node types)
	QUIC connection errors properly handled (transport_down 3-tuple)
	Stream closing race condition fixed (100ms delay added)
	Docker configuration now respects environment variables

Deprecated
	macula_dht_rpc module - Superseded by macula_peer_connector (moved to src/archive/)

Documentation
	Created comprehensive v0.8.0 documentation:	architecture/v0.8.0-OVERVIEW.md - Release overview and achievements
	architecture/v0.8.0-CHANGELOG.md - Detailed changes
	architecture/v0.8.0-ROADMAP.md - Future plans (v0.9.0)
	architecture/INDEX.md - Master architecture documentation index

	Archived development documentation to architecture/archive/v0.8.0-development/
	Updated README.md for v0.8.0

Breaking Changes
None - Fully backward compatible with v0.7.x
Upgrade Guide: Simply update dependency version - no code changes required.
Full Details: See architecture/v0.8.0-OVERVIEW.md and architecture/v0.8.0-CHANGELOG.md

[0.7.9] - 2025-11-16
Added
	Gateway Supervision Refactoring: Implemented proper OTP supervision tree	New 3-tier architecture: macula_gateway_sup (root) supervises macula_gateway_quic_server, macula_gateway, macula_gateway_workers_sup
	Added macula_gateway_quic_server.erl - Dedicated QUIC transport layer (248 LOC, 17 tests)
	Added macula_gateway_workers_sup.erl - Supervises business logic workers (152 LOC, 24 tests)
	Added macula_gateway_clients.erl - Renamed from macula_gateway_client_manager (clearer naming)
	Circular dependency resolution via set_gateway/2 callback pattern
	rest_for_one supervision strategy for controlled fault isolation

Changed
	Gateway Architecture: Refactored from manual process management to supervised architecture	Gateway now finds siblings via supervisor instead of starting them manually
	Simplified macula_gateway init/1 - uses find_parent_supervisor/0 and find_sibling/2
	Removed manual lifecycle management - supervisor handles cleanup
	Updated macula_gateway_sup.erl to be root supervisor (was workers supervisor)
	All gateway tests updated for new supervision tree (106 tests, 0 failures)

Fixed
	CRITICAL: Gateway now actually USES DHT-routed pub/sub (v0.7.8 had the code but wasn't calling it!)	Bug: Gateway's handle_publish was still using v0.7.7 endpoint-based routing
	Impact: v0.7.8 protocol infrastructure existed but gateway bypassed it entirely
	Root cause: handle_publish (macula_gateway.erl:885-943) never called macula_pubsub_routing
	Solution: Rewrote handle_publish to use macula_pubsub_routing:wrap_publish and send via pubsub_route messages
	Flow: Gateway now queries DHT for node_id (not endpoint), wraps PUBLISH in pubsub_route, sends via mesh connection manager
	Result: Messages now actually route via multi-hop Kademlia DHT to remote subscribers

	Fixed test failures in macula_connection_tests - replaced invalid connected message type with subscribe
	Fixed edoc warning in macula_gateway_sup.erl - replaced markdown code fence with HTML pre tags for proper documentation generation

Improved
	Fault Tolerance: Automatic recovery from gateway/QUIC/worker crashes
	Production Stability: Proper OTP supervision with configurable restart strategies
	Code Organization: Clean separation between transport (QUIC), coordination (gateway), and business logic (workers)
	Testability: Each module tested independently with comprehensive coverage

Technical Details
	v0.7.8 added pubsub_route protocol + routing modules but gateway never used them
	v0.7.9 integrates the v0.7.8 infrastructure into gateway's publish flow
	This completes the DHT-routed pub/sub implementation started in v0.7.8
	Supervision refactoring provides +2/10 scalability improvement (foundational infrastructure)
	Enables future optimizations: process pools, connection pooling, horizontal scaling

[0.7.8] - 2025-11-16
Fixed
	CRITICAL: Implemented multi-hop DHT routing for pub/sub to fix matchmaking	Bug: v0.7.7 gateway queried DHT but routed to endpoints, which failed for NAT peers
	Impact: Matchmaking still broken - messages couldn't reach subscribers behind NAT
	Root cause: Split-brain architecture - subscribers register locally but routing via gateway
	Solution: Multi-hop Kademlia DHT routing (same pattern as RPC routing)

Added
	Protocol Layer: New pubsub_route message type (0x13)
	Wraps PUBLISH messages for multi-hop routing through mesh
	Fields: destination_node_id, source_node_id, hop_count, max_hops, topic, payload
	Protocol encoder/decoder support with validation
	8 encoder tests + 3 decoder tests added

	Routing Module: macula_pubsub_routing.erl (NEW - 115 LOC)
	Stateless routing logic for pub/sub messages
	wrap_publish/4 - Wraps PUBLISH in routing envelope
	route_or_deliver/3 - Routes to next hop or delivers locally
	should_deliver_locally/2 - Checks if destination matches
	TTL protection via max_hops (default: 10)
	14 comprehensive tests (all passing)

	Gateway Integration: Enhanced macula_gateway.erl
	Added handle_decoded_message clause for pubsub_route messages
	Routes via XOR distance to next hop OR delivers locally
	handle_pubsub_route_deliver/2 - Unwraps and delivers to local subscribers
	forward_pubsub_route/3 - Forwards to next hop through mesh

	Pub/Sub Handler: Updated macula_pubsub_dht.erl
	route_to_subscribers/5 now uses actual DHT routing (was TODO stub)
	Extracts subscriber node_id (not endpoint) from DHT results
	Wraps PUBLISH in pubsub_route envelope
	Sends via connection manager which routes through gateway

Technical Details
v0.7.7 Architecture (BROKEN):
	❌ Publisher queries DHT for subscriber endpoints
	❌ Tries to route directly to endpoints
	❌ Fails for NAT peers (can't accept connections)
	❌ Matchmaking stuck on "Looking for opponent..."

v0.7.8 Architecture (FIXED):
	✅ Publisher queries DHT for subscriber node IDs
	✅ Wraps PUBLISH in pubsub_route envelope
	✅ Routes via multi-hop Kademlia (same as RPC)
	✅ Works with relay OR direct connections
	✅ Matchmaking succeeds across NAT peers

Message Flow:
Publisher Gateway Node A Subscriber
--pubsub_route---------->		
dest: Subscriber	--pubsub_route----->	
topic: "matchmaking"	(forward closer)	--pubsub_route------->
payload: {msg}		
Tests
	Protocol encoder: 49 tests (8 new for pubsub_route)
	Protocol decoder: 35 tests (3 new for pubsub_route)
	Pub/sub routing: 14 tests (all passing)	wrap_publish envelope creation
	should_deliver_locally checks
	route_or_deliver decision logic
	TTL exhaustion handling
	No-route error handling

Architecture Documentation
	Added architecture/dht_routed_pubsub.md with complete design
	Future refactoring note: Consider unifying RPC and pub/sub routing modules (nearly identical logic)

This completes the DHT-routed pub/sub implementation and should enable working matchmaking.

[0.7.7] - 2025-11-15
Fixed
	CRITICAL: Gateway pub/sub now queries DHT for remote subscribers	Bug: Gateway only checked local subscriptions, never queried DHT for remote subscribers
	Impact: Distributed pub/sub and matchmaking completely broken - remote peers couldn't receive messages
	Root cause: handle_publish only called macula_gateway_pubsub:get_subscribers (local streams only)
	Fix Phase 1: Added endpoint → stream PID tracking in macula_gateway_client_manager	New state field: endpoint_to_stream :: #{binary() => pid()}
	New API: get_stream_by_endpoint/2
	Updated store_client_stream/4 to track endpoints
	Updated remove_client/2 to clean up endpoint mappings

	Fix Phase 2: Modified handle_publish to query DHT	Queries local subscribers (existing behavior)
	Queries DHT for remote subscribers via crypto:hash(sha256, Topic)
	Converts remote endpoints to stream PIDs using client_manager
	Combines local + remote and delivers to all

	Fix Phase 3: Added macula_gateway_dht:lookup_value/1	Synchronous lookup from local DHT storage
	Calls macula_routing_server:find_value/3 with K=20
	Returns {ok, [Subscriber]} or {error, not_found}

	Tests: 90 tests passing (39 client_manager + 49 gateway + 7 endpoint + 5 pub/sub DHT)

This completes the distributed pub/sub fix and enables working matchmaking across multiple peer containers.
Technical Details
Before v0.7.7:
	❌ Gateway only queried macula_gateway_pubsub (local subscriptions)
	❌ Remote subscribers stored in DHT but never looked up
	❌ Pub/sub messages only delivered to local streams
	❌ Multi-peer matchmaking broken

After v0.7.7:
	✅ Gateway queries both local + DHT for subscribers
	✅ Remote endpoints resolved to stream PIDs via endpoint tracking
	✅ Messages delivered to all subscribers (local + remote)
	✅ Multi-peer matchmaking works correctly

The architecture remains hub-and-spoke (v0.7.x):
	All peers connect to gateway
	Gateway routes all pub/sub messages
	Subscriptions stored in DHT for discovery
	Gateway has stream PIDs for all connected peers

[0.8.0] - TBD (Q2 2025)
Planned - True Mesh Architecture
	BREAKING: Opportunistic NAT hole punching for direct peer-to-peer connections	80% direct P2P connections (cone NAT, no firewall)
	20% gateway relay fallback (symmetric NAT, strict firewalls)
	True mesh topology (no single point of failure)
	New modules: macula_nat_discovery, macula_hole_punch, macula_connection_upgrade
	Backward compatible with v0.7.x gateway relay architecture

This will transform Macula from hub-and-spoke (star topology) to true decentralized mesh.
See architecture/NAT_TRAVERSAL_ROADMAP.md for complete design.

[0.7.6] - 2025-11-15
Fixed
	CRITICAL: Disabled QUIC transport-layer idle timeout causing connection closures	Root cause: MsQuic default idle timeout of 30 seconds (2x = 60s to closure)
	v0.7.4-0.7.5 application-level PING/PONG worked but didn't reset QUIC transport timer
	Added idle_timeout_ms => 0 to both client connection and gateway listener options
	Setting to 0 disables QUIC idle timeout entirely
	Connections now stay alive indefinitely (application PING/PONG provides health checks)
	Modified: macula_quic:connect/4 and macula_quic:listen/2

This completes the connection stability fix started in v0.7.4-0.7.5.
Tests
	Added test/macula_quic_idle_timeout_tests.erl with 7 tests	Client connection idle timeout configuration
	Gateway listener idle timeout configuration
	Option structure and value validation
	Defense-in-depth architecture documentation

Technical Details
Defense in Depth approach:
	Transport Layer (v0.7.6): QUIC idle timeout disabled (idle_timeout_ms => 0)
	Application Layer (v0.7.4-0.7.5): PING/PONG keep-alive every 30 seconds
	Result: Connections stay alive + health monitoring

Previous versions had application keep-alive but QUIC transport still enforced 30s idle timeout independently.

[0.7.5] - 2025-11-15
Fixed
	CRITICAL: Gateway PING message handler missing, preventing keep-alive from working	v0.7.4 implemented keep-alive on edge peer side only
	Gateway had no handler for incoming PING messages
	Result: PINGs sent but never acknowledged, connections still timed out after 2 minutes
	Added handle_decoded_message({ok, {ping, PingMsg}}, ...) to gateway
	Gateway now responds with PONG to all incoming PING messages
	Keep-alive now works bidirectionally (edge peer ↔ gateway)
	Also added PONG message handler to gateway for completeness

This completes the keep-alive implementation started in v0.7.4.
Technical Details
The keep-alive flow now works correctly:
	Edge peer timer fires every 30 seconds (configurable)
	Edge peer sends PING to gateway
	Gateway receives PING and responds with PONG (new in v0.7.5)
	Edge peer receives PONG confirmation
	QUIC connection stays alive (no idle timeout)

Without this fix, PINGs were sent but ignored, causing connections to timeout despite v0.7.4's implementation.

[0.7.4] - 2025-11-15
Fixed
	CRITICAL: Configurable keep-alive mechanism to prevent QUIC connection timeouts	PING/PONG message support in macula_connection
	Default keep-alive interval: 30 seconds (configurable)
	Keep-alive enabled by default (can be disabled via options)
	Automatic PONG response to incoming PING messages
	Configuration via macula_connection:default_config/0
	Prevents 2-minute connection timeout that broke distributed matchmaking
	Added 6 tests for keep-alive functionality (all passing)

This is a critical fix for production deployments where QUIC connections timeout after ~2 minutes of inactivity, breaking pub/sub and matchmaking.
Configuration
Enable/disable keep-alive:
%% Enable with custom interval (milliseconds)
Opts = #{
 keepalive_enabled => true,
 keepalive_interval => 30000 %% 30 seconds
}.

%% Disable keep-alive
Opts = #{
 keepalive_enabled => false
}.

%% Use defaults (enabled, 30 second interval)
DefaultConfig = macula_connection:default_config().
Architecture Note
v0.7.4 maintains hub-and-spoke (star) topology:
	Edge peers connect to gateway (not each other)
	Gateway routes all messages (relay architecture)
	Gateway is single point of failure (by design for now)
	DHT routing table exists but routing happens at gateway
	True peer-to-peer mesh deferred to v0.8.0 (NAT traversal required)

[0.7.3] - 2025-11-15
Fixed
	CRITICAL: Fixed DHT routing table address serialization crash in macula_gateway_dht	Bug: Gateway stored parsed address tuples {{127,0,0,1}, 9443} in DHT instead of binary strings
	Impact: When FIND_VALUE replies tried to serialize node addresses, msgpack returned error {:error, {:badarg, {{127,0,0,1}, 9443}}}
	Root cause: macula_gateway.erl:522 used Address (tuple from parse_endpoint/1) instead of Endpoint (binary string)
	Error chain: DHT stored tuples → encode_node_info extracted tuples → msgpack:pack failed → byte_size crashed
	Symptoms: Gateway crashed with "ArgumentError: 1st argument not a bitstring" when peers queried DHT
	Fix: Store original Endpoint binary string in DHT routing table instead of parsed tuple
	Added test: dht_address_serialization_test documents bug and validates fix

This is a critical fix for distributed matchmaking and service discovery. Without it, DHT queries crash the gateway.
[0.7.2] - 2025-11-15
Fixed
	CRITICAL: Fixed gateway crash in parse_endpoint/1 when DNS resolution fails	Bug: inet:getaddr/2 error tuple was not handled, causing ArgumentError when passed to byte_size/1
	Impact: Gateway crashed repeatedly, closing all client connections and preventing pub/sub communication
	Symptoms: "Failed to publish to topic: :closed", "Failed to send STORE for subscription: :closed"
	Fix: Added proper error handling with localhost fallback when DNS resolution fails
	Now returns {{127,0,0,1}, Port} fallback instead of crashing

This is a critical fix for production deployments where endpoint DNS resolution may fail.
[0.7.1] - 2025-11-15
Fixed
	CRITICAL: Fixed ArithmeticError in macula_pubsub_handler message ID handling	Bug: Was assigning binary MsgId to counter instead of integer NewCounter
	Impact: Caused pub/sub to crash on second publish attempt with "bad argument in arithmetic expression"
	Fix: Corrected destructuring in line 300 to use {_MsgId, NewCounter} instead of {MsgIdCounter, _}
	Now properly increments integer counter instead of trying to do arithmetic on binary

This is a critical fix for anyone using pub/sub functionality in v0.7.0.
0.7.0 - 2025-11-15
Changed
	BREAKING: Major nomenclature refactoring for clarity and industry alignment	Renamed macula_connection → macula_peer (mesh participant facade - high-level API)
	Renamed macula_connection_manager → macula_connection (QUIC transport layer - low-level)
	Follows industry standards used by libp2p, IPFS, and BitTorrent
	Clear separation: macula_peer = mesh participant, macula_connection = transport

Added
	Comprehensive transport layer test coverage (36 tests total)	11 new tests for message decoding, buffering, URL parsing, and realm normalization
	All tests passing with zero regressions

	Complete v0.7.0 documentation in CLAUDE.md	Migration guide with specific API examples
	Architecture rationale and benefits
	Status tracking for implementation phases

Migration Guide (0.6.x → 0.7.0)
API Changes:
All high-level mesh operations now use macula_peer instead of macula_connection:
%% Before (0.6.x)
{ok, Client} = macula_connection:start_link(Url, Opts).
ok = macula_connection:publish(Client, Topic, Data).
{ok, SubRef} = macula_connection:subscribe(Client, Topic, Callback).
{ok, Result} = macula_connection:call(Client, Procedure, Args).

%% After (0.7.0)
{ok, Client} = macula_peer:start_link(Url, Opts).
ok = macula_peer:publish(Client, Topic, Data).
{ok, SubRef} = macula_peer:subscribe(Client, Topic, Callback).
{ok, Result} = macula_peer:call(Client, Procedure, Args).
Why This Change?
The original naming was confusing:
	❌ macula_connection served both facade AND transport roles
	❌ Mixed high-level mesh operations with low-level QUIC handling
	❌ Not aligned with P2P industry standards

After v0.7.0:
	✅ macula_peer = mesh participant (clear high-level API for pub/sub, RPC, DHT)
	✅ macula_connection = QUIC transport (clear low-level transport layer)
	✅ Follows libp2p/IPFS/BitTorrent naming conventions

Note: The macula_client wrapper module has been updated to use macula_peer internally, so if you're using macula_client, no changes are required.
0.6.7 - 2025-11-15
Fixed
	CRITICAL: Fixed all installation examples to use Hex package references instead of git dependencies	README.md: Changed from git-based to {:macula, "~> 0.6"} (Elixir) and {macula, "0.6.7"} (Erlang)
	HELLO_WORLD.md: Updated to use proper Hex package format
	architecture/macula_http3_mesh_hello_world.md: Fixed tutorial installation examples
	architecture/macula_http3_mesh_rpc_guide.md: Fixed migration guide examples
	All code examples now show proper Hex.pm installation for published package

[0.6.6] - 2025-11-15
Fixed
	Fixed navigation links in documentation guides to use ex_doc HTML filenames	Changed GitHub-style relative paths (../README.md) to ex_doc HTML references (readme.html)
	Fixed all navigation links in EXECUTIVE_SUMMARY.md, COMPARISONS.md, USE_CASES.md, and DEVELOPMENT.md
	Links now work correctly in published Hexdocs without "page not found" errors

[0.6.5] - 2025-11-15
Changed
	Updated to modern alternative logo (macula-alt-logo.svg) in both README.md and ex_doc
	Changed tutorial greeting to brand-specific "Hello, Macula!" instead of generic greeting

Fixed
	Replaced old color logo with cleaner, more modern alternative logo for better visual appeal

[0.6.4] - 2025-11-15
Changed
	Documentation restructuring - Split README.md into focused landing page with table of contents	Created docs/EXECUTIVE_SUMMARY.md - Why Macula and the case for decentralization
	Created docs/COMPARISONS.md - How Macula compares to libp2p, Distributed Erlang, Akka, etc.
	Created docs/USE_CASES.md - Real-world applications across business, IoT, and AI domains
	Created docs/DEVELOPMENT.md - Complete development guide and coding standards
	README.md now serves as concise landing page (119 lines vs 372 lines)
	All detailed content accessible via clear table of contents
	Removed Mermaid diagram from README.md (ex_doc doesn't support Mermaid - works on GitHub)

Fixed
	ex_doc landing page uses HELLO_WORLD.md (tutorial-first approach, no multi-page split)
	Documentation properly links to all new guide documents
	Better first impression for Hex.pm users (logo, quick navigation)

[0.6.3] - 2025-11-15
Fixed
	Removed README.md from ex_doc extras to prevent multi-page split and broken landing page
	Documentation now correctly redirects to API reference page

[0.6.2] - 2025-11-15
Fixed
	ex_doc landing page configuration ({main, "api-reference"}) - resolved "readme.html not found" error

[0.6.1] - 2025-11-15
Added
	Professional documentation structure for Hex publication	Architecture diagram in README.md (Mermaid format) showing mesh topology
	Organized documentation: moved 50+ files from root to docs/archive/, docs/development/, docs/planning/
	Created docs/README.md navigation index
	Logo and assets configuration for ex_doc
	Comprehensive Hex package file list (artwork/, docs/, architecture/)

Fixed
	README.md badge rendering (moved badges outside <div> tag for proper GitHub display)
	ex_doc assets configuration (deprecated warning resolved)
	ex_doc landing page configuration (changed {main, "readme"} to {main, "api-reference"} to fix "readme.html not found" error)
	Hex package configuration to include all necessary assets and documentation
	Documentation organization for professional first impression

0.6.0 - 2025-11-15
Changed
	BREAKING: Renamed environment variable from GATEWAY_REALM to MACULA_REALM for better API consistency	All MACULA_* environment variables now follow consistent naming
	Applies to both gateway mode and edge peer mode
	Update your deployment configurations to use MACULA_REALM instead of GATEWAY_REALM

Added
	Comprehensive Kademlia DHT architecture documentation (docs/KADEMLIA_DHT_ARCHITECTURE.md)	XOR distance metric explanation
	K-bucket routing table details
	DHT operations (PING, STORE, FIND_NODE, FIND_VALUE)
	Iterative lookup algorithm
	Macula-specific adaptations (realm-scoped DHT, HTTP/3 transport)
	Performance characteristics and comparisons

Fixed
	Updated documentation to reflect MACULA_REALM environment variable usage
	Updated entrypoint.sh, Dockerfile.gateway, and config/sys.config to use MACULA_REALM

Upcoming in v0.7.0
	Architecture improvement: Separation of macula_connection into macula_peer (high-level mesh API) and macula_connection (low-level QUIC transport)
	See docs/NOMENCLATURE_PROPOSAL_CONNECTION_TO_PEER.md and docs/PEER_CONNECTION_SEPARATION_PLAN.md for details
	Expected timeline: 4-5 weeks after v0.6.0 release

Migration Guide (0.5.0 → 0.6.0)
If you're using Macula in gateway mode or configuring realm multi-tenancy:
Before (0.5.0):
export GATEWAY_REALM=my-app

After (0.6.0):
export MACULA_REALM=my-app

Elixir/Phoenix runtime.exs:
Before (0.5.0)
System.put_env("GATEWAY_REALM", realm)

After (0.6.0)
System.put_env("MACULA_REALM", realm)
0.5.0 - 2025-11-14
Added
	Initial public release
	HTTP/3 (QUIC) mesh networking platform
	Gateway mode for accepting incoming connections
	Edge peer mode for mesh participation
	Multi-tenancy via realm isolation
	Pub/Sub messaging with wildcard support
	RPC (request/response) patterns
	Service discovery and advertisement
	mDNS local discovery support
	Process registry via gproc
	Comprehensive documentation

Known Issues
	Gateway mode requires proper TLS certificate configuration
	Certificates must have Subject Alternative Name (SAN) extension
	Docker deployments require proper file ownership (--chown=app:app)

 License

MIT License

Copyright (c) 2025 macula.io

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Executive Summary

Macula is infrastructure for building decentralized applications and services that operate autonomously at the edge, without dependency on centralized cloud infrastructure. It enables organizations to build systems where business logic, data, and intelligence live close to where they're needed—whether that's in factories, homes, vehicles, or partner networks.
Key Use Cases
	Business Applications: Partner networks, supply chains, and collaborative platforms where organizations need to share capabilities without centralizing control
	IoT & Edge Computing: Smart homes, industrial automation, and distributed sensor networks that continue operating even when disconnected from the cloud
	Adaptive & Collaborative AI: Systems powered by TWEANN (Topology and Weight Evolving Artificial Neural Networks) and other evolutionary algorithms that learn and adapt locally, then share insights across the mesh

Unlike traditional architectures where applications call centralized APIs, Macula enables peer-to-peer mesh networks where nodes discover each other, share services, and collaborate directly. Data stays where it's created, intelligence adapts locally, and the network self-organizes without central coordination.
Built on HTTP/3 (QUIC) transport, Macula works through NAT and firewalls, making it practical for real-world deployments across diverse network environments.

Why Macula? The Case for Decentralization
The Centralized Cloud Problem
Today's applications typically rely on centralized cloud platforms controlled by Big Tech companies (AWS, Azure, Google Cloud). While this model offers convenience, it creates fundamental issues:
	Vendor Lock-in: Your business becomes dependent on proprietary APIs, pricing, and policies you don't control
	Data Sovereignty: Sensitive data must leave your premises and live in someone else's infrastructure
	Single Points of Failure: When the cloud goes down, your entire operation stops
	Latency & Bandwidth: Every interaction requires round-trips to distant datacenters, wasting time and bandwidth
	Privacy & Compliance: Regulations like GDPR become harder to satisfy when data flows through third-party infrastructure
	Cost: Bandwidth, storage, and compute costs scale unpredictably as your system grows

The Macula Alternative
Macula offers a different approach that complements or replaces centralized cloud:
	True Ownership: Run on your own hardware (edge devices, on-premise servers, or hybrid setups) with no dependency on proprietary platforms
	Local-First Architecture: Data and intelligence stay where they're created, shared only when needed
	Autonomous Operation: Systems continue working during network outages or when disconnected from the cloud
	Natural Scalability: Peer-to-peer mesh architecture scales organically as you add nodes, without central bottlenecks
	Standards-Based: Built on HTTP/3, not proprietary protocols, ensuring long-term viability and interoperability
	Cost Control: Predictable infrastructure costs using commodity hardware and open-source software

Macula isn't anti-cloud—it's about choice. Use the cloud where it makes sense, but don't let it be your only option. Build applications that work in hybrid environments, can migrate between deployment models, and give you control over your technology destiny.
For organizations that value autonomy, data sovereignty, and resilience, Macula provides the infrastructure to build truly decentralized systems.

← Back to Documentation | Glossary | Quick Start →

 Why Macula Exists

The Socio-Economic Case for Decentralized Edge Computing
Audience: Everyone
Last Updated: 2025-11-30

Executive Summary
Macula isn't just a technical platform—it's a response to fundamental shifts in how computing, data, and economic value are distributed in society. As AI accelerates automation, as big tech consolidates power, and as environmental costs mount, we need infrastructure that empowers individuals and communities rather than extracting from them.
This document explains why Macula exists beyond the technical advantages of edge computing.

The World We're Building For
1. The AI Displacement Challenge
The Problem:
Artificial Intelligence is transforming the workforce at unprecedented speed. Unlike previous technological revolutions that created new job categories as fast as they eliminated old ones, AI threatens to automate cognitive work itself—the very thing humans retreated to as physical labor was mechanized.
	2023-2025: Major tech layoffs despite record profits
	Knowledge work automation: Legal research, code generation, content creation, data analysis
	Service sector impact: Customer support, financial advising, medical diagnosis assistance
	Timeline compression: Changes that took decades in previous revolutions now happen in years

Macula's Response: Compute as a New Asset Class
What if individuals could participate in the AI economy not just as consumers or displaced workers, but as infrastructure providers?
Macula enables micro-datacenters—edge nodes that individuals own and operate:
Traditional Model:
 [Users] → consume → [Big Tech Cloud] → profits → [Shareholders]

Macula Model:
 [Users] ↔ provide compute ↔ [Mesh Network] ↔ earn revenue ↔ [Users]
Practical Applications:
	AI inference nodes: Run local AI models for nearby applications
	Content delivery: Cache and serve content for your neighborhood/region
	Sensor processing: Aggregate and process IoT data locally
	Backup and redundancy: Provide distributed storage for mesh applications

This isn't speculative—it's the logical extension of existing trends:
	Crypto mining proved individuals will run infrastructure for revenue
	Starlink/mesh networking showed appetite for distributed connectivity
	Home solar demonstrated willingness to become energy producers

Macula provides the software layer that makes edge compute economically viable.

2. Breaking the Big Tech Monopoly
The Problem:
Five companies control the infrastructure that modern digital life depends on:
	Company	What They Control
	Amazon (AWS)	32% of cloud infrastructure
	Microsoft (Azure)	22% of cloud infrastructure
	Google (GCP)	11% of cloud infrastructure
	Apple	Mobile ecosystem, payments
	Meta	Social graph, messaging

This concentration creates:
	Vendor lock-in: Switching costs make escape nearly impossible
	Rent extraction: Prices rise once dependency is established
	Data exploitation: Your data trains their AI, improves their products
	Platform risk: Rule changes can destroy businesses overnight
	Innovation capture: Promising startups get acquired or crushed

Macula's Response: Infrastructure You Own
Decentralization isn't about eliminating companies—it's about restoring balance:
Centralized (Current):
 Your App → Cloud Provider (they see everything, can cut you off)

Decentralized (Macula):
 Your App → Your Node ↔ Peer Nodes (you control, you own)
Key Principles:
	Data stays local until you explicitly share it
	No single point of control that can cut off access
	Open standards (HTTP/3) prevent proprietary lock-in
	Code ownership through open source licensing
	Economic participation rather than extraction

Real-World Parallels:
	Email (SMTP) vs. Facebook Messenger (proprietary)
	RSS feeds vs. algorithmic timelines
	Personal websites vs. social media profiles
	Self-hosted software vs. SaaS subscriptions

Macula provides the foundation for the next generation of user-owned infrastructure.

3. Environmental Responsibility
The Problem:
Cloud computing has a massive and growing environmental footprint:
	Data centers consume 1-2% of global electricity (and rising)
	AI training runs can emit as much CO2 as 5 cars over their lifetimes
	Hyperscalers build in cheap-power locations, often far from users, requiring massive data transport
	Overprovisioning: Cloud infrastructure runs at 15-25% average utilization
	E-waste: Rapid hardware refresh cycles in data centers

Macula's Response: Compute Where It's Needed
Edge computing fundamentally changes the energy equation:
	Factor	Cloud	Edge (Macula)
	Data transport	High (user → cloud → user)	Low (local processing)
	Hardware utilization	15-25% average	Higher (right-sized)
	Cooling overhead	Massive (concentrated heat)	Distributed (ambient)
	Power source	Grid (often fossil)	Can use local renewables
	Hardware lifecycle	3-5 years (enterprise refresh)	Longer (consumer devices)

The Math:
	Processing 1GB of video in the cloud: ~0.5 kWh (including transport)
	Processing 1GB of video at the edge: ~0.05 kWh
	10x energy reduction for local processing

Practical Benefits:
	Solar-powered edge nodes in sunny regions
	Waste heat recovery in homes/buildings
	Repurposed hardware extends device lifespans
	Reduced network infrastructure needs
	Local resilience during grid instability

4. Data Sovereignty and Regulatory Compliance
The Problem:
Governments worldwide are asserting control over data flows:
	GDPR (EU): Strict rules on personal data processing and transfer
	CCPA (California): Consumer data rights
	Data localization laws: Russia, China, India, Indonesia require local storage
	Schrems II ruling: Invalidated US-EU data transfer frameworks
	HIPAA, PCI-DSS: Industry-specific requirements

For businesses, this creates a compliance nightmare:
	Where is customer data actually stored?
	Which jurisdiction's laws apply?
	How do you prove compliance?
	What happens when laws conflict?

Macula's Response: Data Stays Where It Belongs
Edge-first architecture makes compliance natural:
Traditional Cloud:
 User (Germany) → Cloud (US) → Analytics (Ireland) → Storage (Singapore)
 Legal complexity: 4 jurisdictions, multiple data transfers

Macula Edge:
 User (Germany) → Local Node (Germany) → Aggregated insights only leave
 Legal complexity: 1 jurisdiction, minimal transfers
Benefits:
	Data residency by design: Processing happens where data is created
	Minimized cross-border transfers: Only necessary data moves
	Audit trails: Local nodes provide clear provenance
	User control: Data subjects can see and control their data
	Reduced liability: Less data in transit = less exposure

5. Resilience and Digital Autonomy
The Problem:
Centralized systems are fragile:
	2017: AWS S3 outage took down significant portion of the internet
	2021: Facebook/WhatsApp outage affected 3.5 billion users
	2022: Rogers outage in Canada disabled emergency services
	2024: Multiple AI service outages as demand exceeds capacity

Beyond outages, there's digital precarity:
	Cloud services can change terms, raise prices, or shut down
	Accounts can be suspended without recourse
	APIs can be deprecated, breaking dependent applications
	Regions can be cut off from services due to geopolitics

Macula's Response: Autonomous Operation
Decentralized mesh networks are antifragile:
Centralized Failure:
 If [Cloud] fails → [All Users] fail

Mesh Failure:
 If [Node A] fails → [Nodes B, C, D, ...] continue
 → [Node A's users] failover to nearby nodes
Key Capabilities:
	Offline operation: Applications continue working without internet
	Graceful degradation: Reduced connectivity = reduced features, not total failure
	No single point of control: No one entity can "turn off" the network
	Local-first sync: Data synchronizes when connectivity returns
	Community resilience: Neighbors can support each other's infrastructure

Use Cases:
	Disaster response: Communication when infrastructure is damaged
	Rural communities: Functionality without reliable internet
	Developing regions: Bootstrap digital services with minimal infrastructure
	Political resilience: Resistant to censorship and shutdowns

6. The Right to Compute
The Problem:
Computing is becoming a gated resource:
	AI APIs are expensive: GPT-4 costs can reach thousands/month for businesses
	Hardware access is restricted: Best GPUs go to hyperscalers first
	Compute becomes surveillance: Every API call is logged, profiled, monetized
	Terms of service limit use: Cloud providers can ban applications they don't like

This creates a two-tier digital society:
	Those who can afford premium cloud services
	Those locked into ad-supported, privacy-invasive alternatives

Macula's Response: Democratized Infrastructure
Edge computing restores compute autonomy:
Restricted Model:
 [User] → requests permission → [Platform] → grants/denies → [Compute]

Open Model:
 [User] → owns → [Hardware] → runs → [Macula] → enables → [Any Application]
Principles:
	Your hardware, your rules: No terms of service limiting what you run
	Privacy by architecture: No central observer of all activity
	Open protocols: Anyone can build compatible software
	Community governance: Standards developed by users, not corporations

7. Intergenerational Technology Transfer
The Problem:
Technology skills and infrastructure are concentrating in wealthy regions and demographics:
	Digital divide: Rural and developing areas left behind
	Age gap: Older generations excluded from digital economy
	Wealth concentration: Tech wealth flows to few geographic/demographic pockets
	Knowledge silos: Expertise locked in corporate environments

Macula's Response: Accessible, Maintainable Infrastructure
Edge computing can be community-owned and operated:
Characteristics:
	Lower barrier to entry: Consumer hardware, not enterprise equipment
	Local expertise: Community members can maintain local infrastructure
	Visible technology: Physical nodes people can see and understand
	Economic circulation: Revenue stays in communities
	Skill building: Operating nodes teaches transferable skills

Models:
	Family nodes: Shared infrastructure within extended families
	Community cooperatives: Neighborhood-owned compute resources
	Municipal infrastructure: City-operated edge networks
	Educational deployments: Schools and libraries as compute hubs

8. Dual-Use Resilience: Civilian Infrastructure for Crisis Scenarios
The Problem:
Modern societies depend on digital infrastructure that is:
	Geographically concentrated: Data centers cluster in a few locations
	Single-authority controlled: Governments or corporations can disable services
	Target-rich: Critical infrastructure presents attractive targets in conflict
	Fragile in crisis: Disasters expose dependencies on centralized systems

Recent events have demonstrated this vulnerability:
	Ukraine (2022): Internet connectivity maintained through distributed Starlink terminals when traditional infrastructure was targeted
	Natural disasters: Hurricane-affected areas lose communication when cell towers and data centers go offline
	Civil unrest: Internet shutdowns used to control populations in multiple countries
	Cyberattacks: Critical infrastructure increasingly targeted by state and non-state actors

The Dual-Use Principle:
Infrastructure designed for civilian resilience naturally provides crisis resilience:
Peacetime Functions: Crisis Functions:
──────────────────── ─────────────────
Local AI inference → Autonomous operation
IoT sensor processing → Situational awareness
Neighbor-to-neighbor mesh → Communication resilience
Distributed data storage → Information preservation
No central control point → Resistance to disruption
This isn't about building military technology—it's recognizing that robust civilian infrastructure is inherently valuable during crises.
Macula's Contribution:
Macula provides mesh networking that:
	Property	Civilian Benefit	Crisis Benefit
	NAT traversal	Works behind home routers	Functions without ISP cooperation
	DHT discovery	No central registry needed	No server to target/disable
	Direct P2P	Low latency	Communication without infrastructure
	Multi-tenancy	Organizational isolation	Secure channels for coordination
	Edge-first	Data stays local	Information survives infrastructure loss
	BEAM resilience	Never crashes	Continues operating under stress

Ethical Considerations:
Dual-use technology raises important questions:
	Intent vs. Capability: We build for civilian use; crisis resilience is a natural property, not the primary goal
	Open Source Transparency: Our code is public; there's no secret military capability
	Defensive Nature: Mesh networking is inherently defensive—it enables communication, not attack
	Democratic Access: Anyone can run Macula nodes; it doesn't favor any particular actor

Historical Parallels:
Technologies designed for civilian use that proved valuable in crises:
	HAM radio: Civilian hobby → disaster communication backbone
	Internet itself: Academic network → resilient communication (by design)
	Encryption: Commercial security → human rights protection
	Solar power: Energy independence → grid-failure resilience

Macula follows this tradition: infrastructure that serves everyday needs while naturally providing resilience when it matters most.
Practical Applications:
	Scenario	How Macula Helps
	Natural disaster	Neighborhood mesh maintains communication when towers fail
	Infrastructure attack	Distributed nodes have no single point of failure
	Internet shutdown	Local mesh continues operating independently
	Supply chain disruption	Edge processing reduces cloud dependency
	Mass casualty event	Local health monitoring continues without cloud

The Responsibility:
Building resilient infrastructure is socially responsible engineering:
	We don't know when crisis will strike
	Centralized systems fail when most needed
	Decentralized alternatives must exist before they're needed
	Building resilience into everyday infrastructure makes society stronger

This isn't prepping or paranoia—it's prudent system design.

Near-Future Scenarios
Scenario 1: The AI Inference Economy (2025-2027)
As AI models become commoditized, the bottleneck shifts from model development to inference capacity:
	Large models are open-sourced or cheaply licensed
	Cloud inference costs remain high due to demand
	Edge inference becomes cost-competitive for many workloads
	Macula enables: Distributed AI inference marketplace where edge nodes serve local AI requests

Example: Local businesses use AI assistants powered by community edge nodes instead of expensive cloud APIs.
Scenario 2: The Privacy-First Smart Home (2025-2028)
Consumer backlash against cloud-dependent, privacy-invasive smart home devices:
	Regulations require local processing options
	Insurance incentives for resilient home systems
	Security concerns drive demand for air-gapped alternatives
	Macula enables: Smart home ecosystem where devices communicate locally, data never leaves premises

Example: Home automation that works during internet outages and doesn't report your habits to advertisers.
Scenario 3: Cooperative Delivery Networks (2026-2028)
Last-mile logistics decentralize:
	Gig economy regulations increase costs for centralized platforms
	Communities organize local delivery cooperatives
	Real-time coordination requires low-latency mesh networking
	Macula enables: Peer-to-peer logistics coordination without platform intermediaries

Example: Neighborhood delivery cooperative that matches local needs with local capacity.
Scenario 4: Resilient Healthcare (2025-2030)
Healthcare systems need offline-capable, privacy-preserving technology:
	Pandemic experience revealed fragility of centralized systems
	Aging populations require in-home monitoring
	Regulations demand data sovereignty
	Macula enables: Medical monitoring and care coordination that works without cloud dependency

Example: Elder care monitoring that processes health data locally, only sharing necessary information with caregivers.
Scenario 5: Distributed Creative Economies (2026-2030)
Creators seek alternatives to extractive platforms:
	Platform fees consume 30-50% of creator revenue
	Algorithm changes devastate creator incomes overnight
	Direct-to-fan models gain traction
	Macula enables: Creator-to-fan distribution without platform intermediaries

Example: Musicians distribute content through fan-operated nodes, keeping most of the revenue.
Scenario 6: Community Resilience Networks (2025-2030)
Communities prepare for infrastructure disruptions:
	Climate events damage traditional infrastructure more frequently
	Geopolitical tensions create digital balkanization risk
	Neighborhoods establish local mesh networks for everyday use
	Macula enables: Communication and coordination that works with or without internet

Example: A coastal community runs local weather monitoring and emergency coordination on Macula mesh, providing value during normal times and resilience during hurricanes.

The Macula Vision
Macula is infrastructure for a more equitable digital future:
	Current State	Macula Future
	Users as products	Users as participants
	Data extraction	Data sovereignty
	Platform dependency	Infrastructure ownership
	Concentrated wealth	Distributed economic participation
	Environmental cost externalized	Efficiency by design
	Digital precarity	Resilient autonomy

We're not trying to eliminate cloud computing or big tech—we're providing alternatives that restore balance and choice.
The goal isn't to tear down what exists, but to build infrastructure that serves everyone.

How to Participate
As an Individual
	Run an edge node (coming soon)
	Participate in mesh networks
	Choose applications that respect your autonomy
	Learn about decentralized technology

As a Developer
	Build applications on Macula
	Contribute to open source infrastructure
	Design for edge-first, privacy-preserving architectures

As an Organization
	Evaluate edge deployment for appropriate workloads
	Consider data sovereignty implications
	Support decentralized infrastructure development
	Participate in standards development

As a Community
	Explore cooperative ownership models
	Build local technical expertise
	Connect with other communities pursuing digital autonomy

Conclusion
The problems Macula addresses aren't purely technical—they're social, economic, and political:
	How do we ensure economic participation in an AI-automated future?
	How do we break free from extractive platform monopolies?
	How do we compute sustainably within planetary limits?
	How do we maintain autonomy in an increasingly digital world?

Macula provides infrastructure for alternatives. The specific applications will be built by communities pursuing their own visions of digital life.
We're building the plumbing. You'll build what flows through it.

Back to Documentation | Platform Overview | Quick Start

 Why Decentralized?

Audience: Business Leaders, Strategic Decision-Makers
Last Updated: 2025-11-28

This document explores the fundamental case for decentralized systems - why they matter, when they make sense, and how they change the economics of software.

The Centralization Problem
How We Got Here
The past two decades have seen a massive centralization of computing:
	2000s: On-premise servers in company data centers
	2010s: Migration to cloud platforms (AWS, Azure, GCP)
	2020s: Dependency on a handful of hyperscalers for everything

Today, a handful of companies control the infrastructure that runs the internet. This creates structural problems.
The Costs of Centralization
Economic Costs
	Cloud spending grows 20-30% annually for most enterprises
	Vendor lock-in makes switching prohibitively expensive
	Unpredictable pricing - your bill depends on their decisions

Operational Costs
	Single points of failure (AWS us-east-1 outages affect thousands)
	Latency to distant data centers (50-200ms round trips)
	Bandwidth costs for moving data to/from the cloud

Strategic Costs
	Loss of data sovereignty
	Compliance complexity (where is your data?)
	Dependency on competitors (AWS runs while competing with you)

Innovation Costs
	Building within platform constraints
	Locked into vendor roadmaps
	Difficult to differentiate

The Case for Decentralization
Decentralization isn't about being anti-cloud. It's about restoring choice - the ability to deploy where it makes sense, on infrastructure you control, without artificial constraints.
Core Principles
1. Data Stays Where It's Created
In centralized systems, data flows to a central hub:
Device → Internet → Cloud → Internet → Device
In decentralized systems, data stays local:
Device → Local Mesh → Device
This means:
	Lower latency (milliseconds, not hundreds of milliseconds)
	Lower bandwidth costs (no round-trips to the cloud)
	Better privacy (data never leaves your network)
	Offline capability (works without internet)

2. Control Stays with Owners
Centralized platforms extract control:
	They own the infrastructure
	They set the rules
	They can change terms unilaterally
	They have access to your data

Decentralized systems preserve control:
	You own the infrastructure
	You set the rules
	You control your data
	No external parties with access

3. Networks Self-Organize
Centralized systems require central coordination:
	Someone must provision servers
	Someone must manage load balancing
	Someone must handle failover

Decentralized systems organize themselves:
	Nodes discover each other automatically
	Load distributes naturally across the mesh
	Failures are handled locally, transparently

When Decentralization Makes Sense
Decentralization isn't always the right choice. Here's when it shines:
Strong Fit
	Scenario	Why Decentralized Works
	Multi-party collaboration	No single party should control the platform
	Edge/IoT deployments	Cloud round-trips are too slow or expensive
	Privacy-sensitive data	Data shouldn't leave organizational boundaries
	Offline requirements	Must work without internet connectivity
	Regulatory constraints	Data must stay in specific jurisdictions
	Vendor independence	Strategic need to avoid lock-in

Weaker Fit
	Scenario	Why Centralization May Be Better
	Startup MVP	Speed to market trumps architecture
	Burst compute	Cloud elastic scaling is hard to match
	Simple CRUD apps	Overhead isn't justified
	GPU/ML training	Specialized hardware is expensive to own

Hybrid Approaches
The reality for most organizations is hybrid - some workloads centralized, some decentralized:
 Cloud
 │
 ┌───────┴───────┐
 │ Aggregation │
 │ Analytics │
 └───────┬───────┘
 │
 ┌─────────────────┼─────────────────┐
 │ │ │
┌───┴───┐ ┌───┴───┐ ┌───┴───┐
│Site A │ │Site B │ │Site C │
│ Mesh │ │ Mesh │ │ Mesh │
└───┬───┘ └───┬───┘ └───┬───┘
 │ │ │
 Devices Devices Devices
	Real-time operations happen locally in the mesh
	Aggregated data syncs to cloud for analytics
	Each site operates autonomously
	Cloud provides global coordination (when available)

Economic Benefits
Total Cost of Ownership
Compare a typical IoT deployment:
Centralized Approach
	Device → Internet → Cloud → Internet → Device
	Per-message cloud fees
	Bandwidth costs both directions
	Cloud compute costs
	Cloud storage costs

Decentralized Approach
	Device → Local Gateway → Device
	One-time hardware investment
	Local network only (free)
	Compute on existing hardware
	Local storage (cheap)

For high-frequency IoT deployments (thousands of messages/second), decentralized can be 10-100x cheaper over 3 years.
Predictable Costs
	Centralized	Decentralized
	Variable monthly bills	Fixed hardware investment
	Costs scale with usage	Costs scale with hardware
	Pricing changes without notice	You control the economics
	Vendor discounts require commitment	No vendor negotiations

Resilience Benefits
Failure Modes
Centralized System Failures
	Cloud outage → Everything stops
	Network partition → Everything stops
	DDoS on cloud → Everything stops

Decentralized System Failures
	Node failure → Other nodes continue
	Network partition → Partitions work independently
	Internet outage → Local mesh continues

Business Continuity
Decentralized systems provide natural disaster recovery:
	Each site can operate independently
	No single point of failure
	Data replicated across nodes
	Recovery is automatic

Strategic Benefits
Competitive Differentiation
When everyone runs on the same cloud platforms, using the same services, differentiation comes down to application logic. Decentralized architecture enables:
	Unique deployment models (on-premise, hybrid, edge)
	Privacy-first offerings (data never leaves customer premises)
	Offline-capable products (works without internet)
	Lower latency (real-time applications)

Regulatory Compliance
Data sovereignty regulations (GDPR, CCPA, industry-specific rules) are easier with decentralized systems:
	Data stays in jurisdiction by design
	Clear audit trails
	No third-party data processors
	Simplified compliance documentation

Exit Strategy
With centralized platforms, switching costs are high:
	Data export is complex
	API differences require rewrites
	Operational knowledge is platform-specific

With decentralized systems built on open standards:
	Data is on infrastructure you control
	Protocols are standard (HTTP/3)
	Skills are transferable

The Macula Approach
Macula provides the infrastructure layer for building decentralized systems:
What Macula Provides
	P2P mesh networking over HTTP/3/QUIC
	Service discovery without central registry
	Pub/Sub messaging between nodes
	RPC for request/response patterns
	Multi-tenancy for isolation
	NAT traversal for real-world networks

What You Build
	Your business logic
	Your data models
	Your user interfaces
	Your integration points

Think of Macula as HTTP for decentralized applications - it handles the hard networking problems so you can focus on your domain.

Getting Started
If decentralization resonates with your needs:
	Evaluate fit: Does your use case match the strong fit scenarios above?
	Start small: Pick one workload to decentralize
	Measure: Compare costs, latency, reliability
	Expand: Roll out to additional use cases

The path to decentralization doesn't require a big-bang migration. Start with the workloads where it makes the most sense.

See Also
	Platform Overview - What Macula enables
	Use Cases - Specific application scenarios
	Glossary - Terminology reference

 Use Cases

Macula enables a wide range of decentralized applications across multiple domains. Here are some real-world scenarios where Macula provides the ideal infrastructure.
Business Applications
Partner Networks
Organizations need to share services and capabilities without centralizing control or data.
Example: Supply chain collaboration where multiple companies track shipments, share inventory status, and coordinate logistics without a single company controlling the platform.
Why Macula:
	Each organization runs nodes on their own infrastructure
	Services are discovered via DHT without centralized registry
	Data stays within organizational boundaries
	Multi-tenancy via realms ensures isolation between partners

Supply Chain Tracking
Track goods and events across multiple companies' infrastructure without a central database.
Example: Farm-to-table food tracking where farms, processors, distributors, and retailers each publish events about product movements, with consumers able to trace the complete journey.
Why Macula:
	Events published via pub/sub stay with the originating organization
	Downstream parties subscribe to relevant event streams
	No single point of failure or data custody
	Real-time updates without API polling

Collaborative Platforms
Teams work together without depending on a single SaaS vendor.
Example: Research collaboration platform where universities and research institutions share datasets, computational resources, and results without centralizing sensitive research data.
Why Macula:
	Institutions maintain sovereignty over their data
	RPC enables distributed computation requests
	Pub/sub enables real-time research updates
	Works across institutional firewalls via HTTP/3

IoT & Edge Computing
Smart Homes
Devices communicate locally without cloud dependency.
Example: Home automation where lights, thermostats, sensors, and controllers coordinate via the local mesh, continuing to operate even during internet outages.
Why Macula:
	Devices discover each other via mDNS locally
	Pub/sub for event broadcasting (motion detected, temperature changed)
	RPC for device control (turn on lights, adjust temperature)
	No cloud latency or bandwidth costs
	Privacy: data stays within the home

Industrial Automation
Factories continue operating during network outages.
Example: Manufacturing floor where robots, sensors, quality control systems, and inventory management coordinate production without relying on centralized cloud services.
Why Macula:
	Local mesh operates independently of WAN connectivity
	Real-time control via RPC (< 10ms latency)
	Event streams for monitoring and analytics
	Fault tolerance via OTP supervision
	Scales to thousands of sensors and actuators

Distributed Sensor Networks
Environmental monitoring, agriculture, infrastructure health.
Example: Agricultural IoT network where soil moisture sensors, weather stations, irrigation controllers, and drones share data and coordinate actions across a large farm.
Why Macula:
	Sensors publish readings via pub/sub
	Controllers subscribe to relevant sensor streams
	RPC for remote commands (start irrigation, launch drone survey)
	Works through rural NAT/firewall constraints
	Edge processing reduces bandwidth usage

Adaptive & Collaborative AI
TWEANN-Based Systems
Neural networks that evolve topology and weights locally, then share insights.
Example: Adaptive manufacturing optimization where each production line runs TWEANN agents that learn optimal parameters, then share successful mutations across the mesh.
Why Macula:
	Each edge node runs local evolutionary algorithms
	Successful genome variations published via pub/sub
	Other nodes subscribe and integrate improvements
	No centralized training infrastructure needed
	Continuous adaptation to local conditions

Federated Learning
Train models across distributed nodes without centralizing data.
Example: Healthcare diagnostics where hospitals train ML models on local patient data, share model updates (not data) via the mesh, and collaboratively improve diagnostic accuracy.
Why Macula:
	Model updates published as events (not raw data)
	Privacy-preserving: data never leaves institutions
	Gradual convergence via distributed gradient sharing
	Works across institutional network boundaries
	Multi-tenancy ensures proper isolation

Edge Intelligence
Decision-making at the edge with selective cloud synchronization.
Example: Autonomous vehicle fleet coordination where vehicles make local decisions using onboard AI, share observations and planned maneuvers via the mesh, and only sync aggregated data to the cloud.
Why Macula:
	Low-latency local decision making (< 5ms)
	Real-time coordination via pub/sub
	RPC for requesting assistance from nearby vehicles
	Operates during cellular network dropouts
	Selective cloud sync reduces bandwidth costs

Gaming & Real-Time Applications
Multiplayer Game Meshes
Players connect peer-to-peer without dedicated servers.
Example: LAN party games where players discover each other locally, form game sessions, and play without internet connectivity or centralized game servers.
Why Macula:
	mDNS for local player discovery
	Pub/sub for game state synchronization
	RPC for player actions
	Works offline, no server hosting costs
	Realm isolation per game session

Collaborative Editing
Real-time document collaboration without centralized services.
Example: Privacy-focused collaborative editor where teams edit documents in real-time, with all data staying within the organization's infrastructure.
Why Macula:
	Operational transforms via pub/sub
	Cursor positions and selections as events
	RPC for conflict resolution
	Works through corporate firewalls
	No data leaves organizational control

Infrastructure & Networking
Content Delivery Networks
Decentralized content distribution at the edge.
Example: Community CDN where participants cache and serve content to local peers, reducing bandwidth costs and improving latency without centralized CDN providers.
Why Macula:
	DHT-based content discovery
	Pub/sub for cache invalidation
	RPC for content requests
	Scales organically as nodes join
	No CDN provider fees

Service Mesh for Edge Computing
Microservices at the edge with automatic discovery.
Example: Edge computing platform where microservices discover dependencies, route requests, and balance load across edge nodes without centralized orchestration.
Why Macula:
	Service registry via DHT
	Pub/sub for service health events
	RPC with automatic failover
	Multi-tenancy for SaaS deployments
	Works through NAT and firewalls

Getting Started
Ready to build? See our Hello World Tutorial to build your first decentralized application in 30 minutes.
For technical architecture details, see the Architecture Index.

← Back to Documentation

 Macula vs. Traditional Messaging Systems

A business-oriented comparison for technical decision-makers
Audience: CTOs, Architects, Technical Evaluators
Last Updated: 2025-11-28

Executive Summary
Macula is not a traditional message broker. It's a decentralized mesh platform for building distributed applications at the edge. This document helps you understand when Macula is the right choice vs. established alternatives.
TL;DR Decision Matrix:
	If you need...	Consider
	High-throughput event streaming in data centers	Kafka, Pulsar
	Enterprise integration with complex routing	RabbitMQ
	Cloud-native, lightweight pub/sub	NATS
	IoT sensor data collection	MQTT brokers
	Decentralized edge mesh, NAT traversal, no central broker	Macula

Comparison Overview
 CENTRALIZED DECENTRALIZED
 │ │
 High Throughput │ │
 ▲ │ │
 │ ┌──────────┐ │ │
 │ │ Kafka │ │ │
 │ │ Pulsar │ │ │
 │ └──────────┘ │ │
 │ │ │
 │ ┌──────────┐ │ │
 │ │ RabbitMQ │ │ │
 │ │ ActiveMQ │ │ ┌──────────┐ │
 │ └──────────┘ │ │ Macula │ │
 │ │ │ │ │
 │ ┌──────────┐ │ └──────────┘ │
 │ │ NATS │ │ │
 │ └──────────┘ │ │
 │ │ │
 │ ┌──────────┐ │ │
 Low │ │ MQTT │ │ │
 ▼ └──────────┘ │ │
 │ │
 BROKER REQUIRED NO BROKER NEEDED

Detailed Comparisons
Apache Kafka
What it is: Distributed event streaming platform, log-based, designed for high-throughput data pipelines.
	Aspect	Kafka	Macula
	Architecture	Centralized broker cluster	Decentralized mesh
	Transport	TCP	HTTP/3 (QUIC)
	Deployment	Data center / cloud	Edge to cloud
	NAT Traversal	Requires open ports	Built-in (single UDP port)
	Ordering	Per-partition	Per-topic (local)
	Persistence	Log-based, durable	Optional (ReckonDB integration)
	Throughput	Millions msg/sec	Thousands msg/sec (per node)
	Latency	Sub-second (batched)	Sub-10ms (real-time)
	Operational Complexity	High (ZooKeeper/KRaft)	Low (self-organizing)

Choose Kafka when:
	Processing massive event streams (100K+ msg/sec)
	Building data pipelines in data centers
	Need strong ordering guarantees across partitions
	Have dedicated ops team for infrastructure

Choose Macula when:
	Building edge/IoT applications
	Need NAT traversal without VPNs
	Want decentralized, brokerless architecture
	Deploying to environments without reliable cloud connectivity

RabbitMQ
What it is: Enterprise message broker supporting AMQP, MQTT, STOMP protocols with sophisticated routing.
	Aspect	RabbitMQ	Macula
	Architecture	Centralized broker (clusterable)	Decentralized mesh
	Transport	TCP (AMQP/MQTT/STOMP)	HTTP/3 (QUIC)
	Routing	Exchanges, bindings, queues	DHT-based topic routing
	Message Patterns	Queues, fanout, topic, headers	Pub/Sub, RPC
	Persistence	Queue-based	Event sourcing (ReckonDB)
	NAT Traversal	Requires open ports	Built-in
	Multi-tenancy	Virtual hosts	Realms (cryptographic isolation)
	Protocol Support	AMQP 0.9.1, MQTT, STOMP	Native Erlang, HTTP/3

Choose RabbitMQ when:
	Need complex routing patterns (topic exchanges, headers)
	Integrating legacy systems via AMQP
	Require mature enterprise features
	Have centralized infrastructure

Choose Macula when:
	Building peer-to-peer applications
	Need cryptographic multi-tenancy
	Operating in network-constrained environments
	Want direct node-to-node communication

NATS
What it is: Cloud-native, lightweight pub/sub messaging system designed for microservices.
	Aspect	NATS	Macula
	Architecture	Centralized servers (cluster)	Decentralized mesh
	Transport	TCP/WebSocket	HTTP/3 (QUIC)
	Design Philosophy	At-most-once, fire-and-forget	Configurable QoS
	Persistence	JetStream (add-on)	ReckonDB (event sourcing)
	Discovery	Server addresses required	DHT-based (zero config)
	NAT Traversal	Requires NATS servers with public IPs	Built-in
	Edge Support	NATS Leaf nodes	Native edge-first
	Clustering	Server mesh	Peer mesh (no servers)

Choose NATS when:
	Building cloud microservices
	Need lightweight, fast pub/sub
	Have reliable network infrastructure
	Want simple operational model (but still need servers)

Choose Macula when:
	Building truly serverless/brokerless systems
	Need edge nodes to communicate directly
	Want zero-configuration discovery
	Operating behind NAT without public IPs

MQTT (Mosquitto, HiveMQ, EMQX)
What it is: Lightweight pub/sub protocol designed for IoT and constrained devices.
	Aspect	MQTT	Macula
	Architecture	Centralized broker	Decentralized mesh
	Transport	TCP (optional TLS)	QUIC (mandatory TLS 1.3)
	Device Support	Microcontrollers, embedded	BEAM-capable devices
	QoS Levels	0, 1, 2	Configurable
	NAT Traversal	Requires broker with public IP	Built-in
	Topic Wildcards	+ and #	Pattern matching
	Security	Optional TLS, username/password	Mandatory TLS 1.3, realm isolation
	Offline Queuing	Broker-side	Local event store

Choose MQTT when:
	Deploying to microcontrollers (ESP32, STM32)
	Need minimal protocol overhead
	Have central broker infrastructure
	Simple sensor-to-cloud data flow

Choose Macula when:
	Devices need to communicate peer-to-peer
	Want edge processing without cloud dependency
	Need stronger security guarantees
	Building collaborative device networks

AWS SNS/SQS, Google Pub/Sub, Azure Service Bus
What they are: Cloud provider managed messaging services.
	Aspect	Cloud Services	Macula
	Architecture	Provider-managed, centralized	Self-hosted, decentralized
	Pricing	Per-message + data transfer	Infrastructure cost only
	Vendor Lock-in	High	None
	Data Sovereignty	Provider regions	Your infrastructure
	Network Dependency	Internet required	Local network capable
	Latency	10-100ms typical	Sub-10ms local
	Scalability	Unlimited (provider managed)	Horizontal (self-managed)

Choose Cloud Services when:
	Fully cloud-native architecture
	Variable load with pay-per-use preference
	Provider ecosystem integration needed
	Operational simplicity is priority

Choose Macula when:
	Data sovereignty requirements
	Predictable cost model needed
	Offline operation required
	Avoiding vendor lock-in
	Edge/on-premises deployment

Architectural Differences
Broker-Centric vs. Mesh
Traditional (Broker-Centric):
┌────────┐ ┌────────────┐ ┌────────┐
│Producer│────▶│ Broker │────▶│Consumer│
└────────┘ │ (SPOF) │ └────────┘
 └────────────┘
 ▲
 │
 All traffic
 flows here
Macula (Decentralized Mesh):
┌────────┐◀────────────────────▶┌────────┐
│ Node A │ │ Node B │
└────┬───┘ └───┬────┘
 │ │
 │ ┌────────┐ │
 └────▶│ Node C │◀──────────────┘
 └────┬───┘
 │
 ┌────▼───┐
 │ Node D │
 └────────┘

 Direct P2P
 No central point
Discovery Mechanisms
	System	Discovery Method
	Kafka	ZooKeeper/KRaft cluster
	RabbitMQ	DNS, config files
	NATS	Server URLs in client config
	MQTT	Broker address
	Macula	DHT (zero configuration)

Macula nodes discover each other automatically via DHT, with optional mDNS for local networks. No manual configuration of endpoints required.
NAT Traversal
	System	NAT Solution
	Kafka	VPN, port forwarding
	RabbitMQ	VPN, port forwarding
	NATS	Server needs public IP
	MQTT	Broker needs public IP
	Macula	Native QUIC traversal

Macula uses HTTP/3 (QUIC) which operates over UDP. This enables:
	Single port operation
	Connection migration (survives IP changes)
	Built-in TLS 1.3
	Better firewall traversal

Feature Comparison Matrix
	Feature	Kafka	RabbitMQ	NATS	MQTT	Macula
	Decentralized	No	No	No	No	Yes
	Brokerless	No	No	No	No	Yes
	NAT Traversal	No	No	No	No	Yes
	Edge-First	No	No	Partial	Partial	Yes
	Multi-Tenancy	Topics	VHosts	Accounts	Topics	Realms
	Event Sourcing	Log	No	JetStream	No	Native
	RPC Support	No	Yes	Yes	No	Yes
	Pub/Sub	Yes	Yes	Yes	Yes	Yes
	Wildcard Subscriptions	No	Yes	Yes	Yes	Yes
	Built-in TLS	Optional	Optional	Optional	Optional	Mandatory
	BEAM Native	No	Yes	No	Partial	Yes

When to Choose Macula
Ideal Use Cases
	Edge Computing
	Smart home networks
	Industrial IoT
	Retail/POS systems
	Agricultural automation

	Multi-Party Networks
	Supply chain coordination
	Partner integrations
	Consortium applications
	Federated systems

	Privacy-Sensitive Applications
	Healthcare (HIPAA)
	Finance (data locality)
	Government (sovereignty)

	Offline-Capable Systems
	Remote sites
	Mobile field operations
	Disaster recovery
	Cruise ships, aircraft

	BEAM Ecosystem
	Elixir/Phoenix applications
	Erlang/OTP systems
	Nerves embedded devices

When NOT to Choose Macula
	Massive throughput needs (100K+ msg/sec sustained) - Use Kafka
	Legacy AMQP integration - Use RabbitMQ
	Microcontroller deployment - Use MQTT
	Pure cloud-native with no edge - Use cloud services or NATS
	Strong ordering across topics - Use Kafka partitions

Migration Considerations
From RabbitMQ
	RabbitMQ Concept	Macula Equivalent
	Virtual Host	Realm
	Exchange	Topic patterns
	Queue	Subscription
	Binding	DHT registration
	Consumer	Subscriber callback
	Publisher	macula:publish/3

From MQTT
	MQTT Concept	Macula Equivalent
	Topic	Topic (same concept)
	Publish	macula:publish/3
	Subscribe	macula:subscribe/3
	QoS 0/1/2	Options map
	Retained	Event sourcing (ReckonDB)

From NATS
	NATS Concept	Macula Equivalent
	Subject	Topic
	Publish	macula:publish/3
	Subscribe	macula:subscribe/3
	Request/Reply	macula:call/3
	JetStream	ReckonDB integration

Cost Comparison
Operational Costs
	System	Infrastructure	Operations	Licensing
	Kafka	High (cluster)	High (ZK/KRaft)	Open source
	RabbitMQ	Medium	Medium	Open source
	NATS	Low-Medium	Low	Open source
	Cloud Services	Pay-per-use	None	Per-message
	Macula	Low (edge)	Low (self-org)	Open source

Total Cost of Ownership (Edge Scenario)
For a 100-node edge deployment:
	Solution	Monthly Est.
	Cloud Pub/Sub	$500-2000 (data transfer)
	Self-hosted Kafka	$1000-3000 (servers + ops)
	Self-hosted RabbitMQ	$500-1500 (servers + ops)
	Macula (peer-to-peer)	$100-300 (edge hardware only)

Estimates vary by traffic volume and region

Summary
Macula occupies a unique position in the messaging landscape:
It is:
	A decentralized mesh platform
	Edge-first by design
	Self-organizing and brokerless
	Built on proven BEAM technology
	NAT-traversal capable out of the box

It is not:
	A replacement for high-throughput data pipelines (Kafka)
	An enterprise integration platform (RabbitMQ)
	A cloud-native microservices bus (NATS)
	An IoT protocol for microcontrollers (MQTT)

Choose Macula when you need direct, peer-to-peer communication between nodes at the edge, with automatic discovery, no central broker, and the ability to operate behind NAT without VPNs.

See Also
	Platform Overview - What Macula is
	Why Decentralized? - The case for decentralization
	Use Cases - Business applications
	Quick Start - Try it yourself

 Macula Glossary

Definitive terminology reference for Macula platform
Last Updated: 2025-12-01
Applies to: Macula v0.13.0+ (SuperMesh Architecture)

Important: SuperMesh Architecture (v0.13.0+)
The December 2025 architecture refinement introduces:
	Macula Cluster - Deployment-agnostic logical grouping of nodes
	Bridge Nodes - Cross-Cluster federation for SuperMesh
	CRDTs + Gossip - Replaces Raft consensus for coordination
	Federated Registry - Secure application distribution

Every node within a Cluster has all capabilities (Gateway, Bootstrap, Peer systems).

Quick Reference
	Term	One-Line Definition
	Macula Cluster	Logical group of cooperating nodes forming a local mesh
	Seed Node	DHT entry point for new peers joining a Cluster
	Bridge Node	Connects multiple Clusters, routes cross-Cluster traffic
	SuperMesh	Federation of Clusters connected via Bridge Nodes
	Node	A Macula instance with all capabilities
	Peer	Any connected node in the mesh
	Gateway System	Subsystem for QUIC message routing (in every node)
	Bootstrap System	Subsystem for DHT operations (in every node)
	Realm	Isolated namespace for multi-tenant applications
	DHT	Distributed Hash Table for decentralized discovery
	Topic	Named channel for pub/sub message routing
	Procedure	Named endpoint for RPC calls
	Registry	Package repository for application distribution
	Cluster Controller	Deploys apps from registry to Cluster

SuperMesh Architecture Terms
Macula Cluster
A Macula Cluster is a small, local deployment of cooperating Macula nodes. Think of it as a "black box" at a specific location. Nodes within a Cluster form their own intra-cluster mesh.
Scale examples:
	A home server (1-3 nodes)
	A Raspberry Pi or Nerves device (single node)
	A small office rack (3-10 nodes)
	An edge deployment at a cell tower

Key characteristics:
	Local scope - Nodes are co-located (same home, office, device)
	Intra-cluster mesh - Nodes form a fully-connected mesh within the Cluster
	Deployment-agnostic - Can run on Kubernetes, Docker, systemd, Nerves, or single process
	Common DHT - Peers discover each other via local DHT
	Direct P2P - Nodes communicate directly within Cluster (low latency)
	Typical size - 1-10 nodes

Intra-cluster communication:
	Currently: Erlang distributed mesh (node@host connections)
	Future: QUIC Distribution when operational (see v1.1.0+ roadmap)

┌───┐
│ CLUSTER (e.g., Home Server) │
│ │
│ ┌─────┐◄────────────►┌─────┐◄────────────►┌─────┐ │
│ │Node │ │Node │ │Node │ │
│ │ 1 │◄────────────►│ 2 │◄────────────►│ 3 │ │
│ └──┬──┘ └──┬──┘ └──┬──┘ │
│ │ Intra-cluster │ │ │
│ │ Erlang mesh │ │ │
│ └────────────────────┴────────────────────┘ │
│ │ │
│ Local DHT + CRDT State │
│ │ │
│ Bridge Node ──► To Street Mesh │
└───┘
Minimum viable Cluster: Single Macula node running all subsystems. It's a Cluster of one.
Configuration:
%% Cluster ID determined by priority:
%% 1. MACULA_CLUSTER environment variable
%% 2. Config file cluster_id setting
%% 3. Derive from Seed Node's Cluster
Note: Replaces the earlier "MuC" (Macula Micro Center) concept.

Bridge Node
A Bridge Node is a Macula node that connects its Cluster to the next level of the mesh hierarchy. Bridge Nodes at each level form their own mesh with a shared DHT.
Key insight: Bridge Nodes mesh among themselves at each level:
┌───┐
│ STREET MESH (Bridge Layer) │
│ │
│ ┌────────┐◄──────────►┌────────┐◄──────────►┌────────┐ │
│ │Bridge │ │Bridge │ │Bridge │ │
│ │(Home 1)│◄──────────►│(Home 2)│◄──────────►│(Home 3)│ │
│ └───┬────┘ └───┬────┘ └───┬────┘ │
│ │ │ │ │
│ │ Bridges form mesh + shared DHT at this level │
│ │ │ │
└───────┼─────────────────────┼─────────────────────┼────────────┘
 ▼ ▼ ▼
 ┌─────────┐ ┌─────────┐ ┌─────────┐
 │ Cluster │ │ Cluster │ │ Cluster │
 │ (Home 1)│ │ (Home 2)│ │ (Home 3)│
 └─────────┘ └─────────┘ └─────────┘
Responsibilities:
	Form mesh with other Bridge Nodes at the same level
	Maintain DHT at that level (street DHT, city DHT, etc.)
	Forward DHT queries that can't be resolved locally
	Route cross-Cluster RPC/PubSub messages
	Enforce federation policies (what's exposed, what's blocked)

DHT query escalation (locality-first):
1. Query local Cluster DHT
2. If miss → query Street Mesh DHT (via Bridge)
3. If miss → query Neighborhood Mesh DHT
4. If miss → query City Mesh DHT
5. ... escalate until found or top level reached
6. Cache result at lower levels to avoid re-escalation
Configuration:
%% Bridge discovery (priority order):
%% 1. MACULA_BRIDGES env var (explicit)
%% 2. DNS SRV lookup (_macula._udp.example.com)
%% 3. boot.macula.io directory (fallback)

%% Federation policy
{bridge_policy, [
 {allow, <<"services/*">>},
 {deny, <<"internal/*">>}
]}.
What it is NOT:
	NOT a Seed Node (different role)
	NOT required for intra-Cluster communication
	NOT a consensus participant

SuperMesh
A SuperMesh is a federation of Clusters (or other SuperMeshes) connected via Bridge Nodes. SuperMeshes are hierarchical and fractal - they nest at any scale.
Hierarchy example:
Cluster (Home)
 └─► Street Mesh (neighbors)
 └─► Neighborhood Mesh
 └─► City Mesh
 └─► Province/State Mesh
 └─► Country Mesh
 └─► Region Mesh (EU, NA, APAC)
 └─► Global Mesh
Each level is a SuperMesh - the term applies at any scale above Cluster:
	Street Mesh = SuperMesh of home Clusters on a street
	City Mesh = SuperMesh of neighborhood meshes
	Global Mesh = SuperMesh of regional meshes

What it enables:
	Locality-first - Most traffic stays local (street/neighborhood)
	Hierarchical routing - Queries escalate up only when needed
	Organic growth - Start with Cluster, naturally expand to street, city, etc.
	Administrative boundaries - Each level can have its own policies

┌───┐
│ CITY MESH: Amsterdam │
│ ┌─────────────────────────┐ ┌─────────────────────────┐ │
│ │ NEIGHBORHOOD: Centrum │ │ NEIGHBORHOOD: Zuid │ │
│ │ ┌───────┐ ┌───────┐ │ │ ┌───────┐ ┌───────┐ │ │
│ │ │Street │ │Street │ │ │ │Street │ │Street │ │ │
│ │ │ Mesh │ │ Mesh │ │ │ │ Mesh │ │ Mesh │ │ │
│ │ └───┬───┘ └───┬───┘ │ │ └───┬───┘ └───┬───┘ │ │
│ │ └──────────┘ │ │ └──────────┘ │ │
│ └────────────┬────────────┘ └────────────┬────────────┘ │
│ └────────────────────────────┘ │
│ Bridge Nodes │
└───┘
Trust Model:
	Each organization maintains their own realm
	Bridge Nodes negotiate federation agreements at each level
	Cross-realm traffic is explicitly routed through bridges
	Federation is opt-in per service

Registry
A Registry is a package repository for distributing Macula applications. Features:
	Federated model - Organizations run their own registries
	Package signing - Cryptographic verification
	Capability declarations - Apps declare what they need
	Security scanning - Static analysis before publishing

Configuration:
{registries, [
 #{name => <<"internal">>,
 url => <<"https://registry.myorg.com">>,
 trust => full,
 pubkey => <<...>>},
 #{name => <<"macula-public">>,
 url => <<"https://boot.macula.io/registry">>,
 trust => verified,
 pubkey => <<...>>}
]}.
Public registry: boot.macula.io (one option among many)

Cluster Controller
A Cluster Controller manages application deployment within a Cluster:
	Watches configured registries for updates
	Verifies package signatures before deployment
	Enforces local deployment policy
	Manages app lifecycle (deploy, upgrade, remove)

Deployment policy:
{deployment_policy, [
 {allow_nifs, false}, % No native code from external
 {require_capabilities, true}, % Must declare what it needs
 {max_memory_mb, 512}, % Resource limits
 {allowed_ports, [80, 443]} % Network restrictions
]}.

Gossip Protocol
The Gossip Protocol synchronizes CRDT state across nodes in a Cluster using epidemic propagation.
Parameters:
	Push interval: 1 second (hot path)
	Anti-entropy: 30 seconds (consistency maintenance)
	Fanout: 3 peers per round

Benefits:
	No leader election needed
	Partition tolerant (AP in CAP)
	State converges eventually

Core Architecture Terms
Realm
A Realm is a virtual namespace that defines identity and resource boundaries in Macula - analogous to a DNS domain. Realms are orthogonal to Clusters: they represent organizational/application boundaries, not infrastructure boundaries.
Key characteristics:
	Virtual concept - Not tied to physical deployment
	Spans Clusters - Same realm can exist across multiple Clusters (geo-distribution)
	Identity boundary - Defines "who you are" in the mesh
	Namespace isolation - Topics, procedures, subscriptions are realm-scoped
	Multi-tenancy - Multiple realms can coexist on a single Cluster

Realm vs Cluster vs SuperMesh:
	Aspect	Cluster	SuperMesh	Realm
	Nature	Physical deployment	Hierarchical federation	Logical/virtual
	Scope	Local (home, office, device)	Any scale above Cluster	Organization/application
	Scale	1-10 nodes typically	Fractal: street → city → country → global	Spans entire hierarchy
	Purpose	Node coordination	Geographic distribution	Identity & namespace

Scale hierarchy (fractal):
Cluster (Home) ←── Smallest unit
 └─► Street Mesh
 └─► Neighborhood Mesh
 └─► City Mesh
 └─► Province Mesh
 └─► Country Mesh
 └─► Region Mesh
 └─► Global Mesh
Realm spans the entire hierarchy:
┌───┐
│ REALM: com.acme.iot │
│ │
│ ┌──┐ │
│ │ COUNTRY MESH: Netherlands │ │
│ │ ┌────────────────────────┐ ┌────────────────────────┐ │ │
│ │ │ CITY: Amsterdam │ │ CITY: Rotterdam │ │ │
│ │ │ ┌────────┐ ┌────────┐ │ │ ┌────────┐ │ │ │
│ │ │ │Cluster │ │Cluster │ │ │ │Cluster │ │ │ │
│ │ │ │(Home 1)│ │(Home 2)│ │ │ │(Office)│ │ │ │
│ │ │ └────────┘ └────────┘ │ │ └────────┘ │ │ │
│ │ └────────────────────────┘ └────────────────────────┘ │ │
│ └──┘ │
│ ▲ │
│ │ Cross-Country Bridge │
│ ▼ │
│ ┌──┐ │
│ │ COUNTRY MESH: Germany │ │
│ │ ┌────────────────────────┐ │ │
│ │ │ CITY: Berlin │ │ │
│ │ │ ┌────────┐ │ │ │
│ │ │ │Cluster │ │ │ │
│ │ │ │(Home 3)│ │ │ │
│ │ │ └────────┘ │ │ │
│ │ └────────────────────────┘ │ │
│ └──┘ │
│ │
└───┘
Relationships:
	A Cluster is the smallest unit (home, edge device, office)
	SuperMesh is any federation level above Cluster (street, city, country, global)
	A Realm spans across the entire hierarchy (virtual namespace)
	Bridge Nodes connect meshes at each level of the hierarchy
	Cross-realm communication requires explicit federation agreements

Example: <<"com.mycompany.production">> and <<"com.mycompany.staging">> are separate realms that cannot see each other's messages, even if running on the same Cluster.
In code:
{ok, Client} = macula:connect_local(#{realm => <<"my.app.realm">>}).
See also: Multi-tenancy in PUBSUB_GUIDE

Peer
A peer is any node participating in the Macula mesh network. Peers can:
	Publish and subscribe to topics
	Advertise and call RPC procedures
	Communicate directly with other peers (P2P)

Internally implemented by macula_peer.erl.
Related terms: Node, Client, Gateway

Node
A node is a single Macula instance. Since v0.8.5, every node has ALL capabilities:
	Gateway System - QUIC message routing
	Bootstrap System - DHT and peer discovery
	Peer System - Connection management
	Platform System - Distributed coordination

┌──┐
│ Macula Node │
├──┤
│ ┌──────────────┐ ┌─────────────────┐ │
│ │ Gateway │ │ Bootstrap │ │
│ │ System │ │ System │ │
│ └──────────────┘ └─────────────────┘ │
│ ┌──────────────────────────────────────┐│
│ │ Peer System ││
│ └──────────────────────────────────────┘│
└──┘
Node ID: A 32-byte (256-bit) identifier used for DHT routing, generated from the node's TLS certificate fingerprint.
Note: In some contexts, "node" may also refer to an Erlang/BEAM node (node@host). The meaning is usually clear from context.

Seed Node
A seed node (also called "bootstrap address") is a well-known node address that new nodes use for initial mesh discovery.
Key points:
	Seed nodes are regular nodes with no special code
	They are simply "the first nodes to start" whose addresses are shared
	Any node can be a seed node - it's a deployment choice, not a code difference
	Multiple seed nodes recommended for redundancy

Configuration:
%% New node connects to seed node(s) for initial discovery
{bootstrap_addresses, ["quic://seed1.example.com:4433", "quic://seed2.example.com:4433"]}
Environment variable: MACULA_BOOTSTRAP_PEERS
Note: This was previously called "bootstrap node" in some documentation. "Seed node" is preferred to avoid confusion with the Bootstrap System.

Client
A client is a handle (PID) returned when connecting to Macula. It represents an active connection that can perform mesh operations.
In code:
{ok, Client} = macula:connect_local(#{realm => <<"my.realm">>}).
%% Client is now a pid() that can be used for publish/subscribe/call
Note: The public API uses the type macula:client() which is an alias for pid().

Gateway System
The Gateway System is a subsystem present in every node that handles QUIC message routing.
Responsibilities:
	QUIC listener management (macula_gateway_quic_server)
	Client connection handling (macula_gateway_clients)
	PubSub message routing (macula_gateway_pubsub, macula_gateway_pubsub_router)
	RPC request routing (macula_gateway_rpc, macula_gateway_rpc_router)
	Mesh connection pooling (macula_gateway_mesh)
	DHT query forwarding (macula_gateway_dht)
	Health monitoring (macula_gateway_health)

Main module: macula_gateway.erl - API facade and orchestrator
Code location: src/macula_gateway_system/

Bootstrap System
The Bootstrap System is a subsystem present in every node that handles DHT operations and peer discovery.
Responsibilities:
	DHT queries: FIND_NODE, FIND_VALUE, STORE (macula_bootstrap_server)
	Peer registration and discovery (macula_bootstrap_registry)
	Health monitoring (macula_bootstrap_health)

Code location: src/macula_bootstrap_system/
Note: "Bootstrap System" refers to the subsystem. For the well-known entry point, see Seed Node.

Mesh
The mesh is the network topology formed by interconnected Macula peers. Unlike hub-and-spoke architectures, the mesh allows:
	Direct peer-to-peer communication
	Multiple paths between nodes
	No single point of failure

 ┌─────┐ ┌─────┐
 │Peer1│◄───►│Peer2│
 └──┬──┘ └──┬──┘
 │ │
 ▼ ▼
 ┌─────┐ ┌─────┐
 │Peer3│◄───►│Peer4│
 └─────┘ └─────┘

Networking Terms
QUIC
QUIC (Quick UDP Internet Connections) is the transport protocol underlying HTTP/3. Macula uses QUIC because it provides:
	Multiplexed streams - Multiple logical channels over one connection
	Built-in TLS 1.3 - Mandatory encryption
	Connection migration - Survives IP address changes
	NAT-friendly - Works over UDP through firewalls

Implementation: Macula uses quicer, which wraps Microsoft's MsQuic library.

HTTP/3
HTTP/3 is the latest version of HTTP, built on QUIC instead of TCP. Macula uses HTTP/3 semantics for:
	Request/response patterns (RPC)
	Streaming (pub/sub delivery)
	Multiplexing (multiple topics on one connection)

Note: Macula uses HTTP/3 framing but with custom semantics optimized for mesh networking.

NAT Traversal
NAT traversal refers to techniques for establishing connections between peers behind Network Address Translation (NAT) devices (home routers, corporate firewalls).
Macula's approach:
	QUIC/UDP - Better NAT compatibility than TCP
	Gateway relay - Fallback when direct P2P fails
	Future: STUN/TURN/ICE for hole punching

See also: NAT Traversal documentation in the guides section.

DHT
A Distributed Hash Table is a decentralized system that provides key-value lookup across a network of peers. Macula uses a Kademlia-style DHT for:
	Service discovery - Finding which peer provides a procedure
	Subscriber lookup - Finding who subscribes to a topic
	Peer routing - Finding paths to other nodes

Key concepts:
	k-buckets - Routing table organized by XOR distance
	Node ID - 256-bit identifier for each peer
	Replication factor (k) - Number of nodes storing each value (default: 20)

mDNS
Multicast DNS (mDNS) is a protocol for discovering services on local networks without a central DNS server. Macula uses mDNS for:
	Local peer discovery (same LAN)
	Zero-configuration networking
	Development/testing environments

Implementation: Uses shortishly/mdns library.

Messaging Terms
Topic
A topic is a named channel for pub/sub messaging. Publishers send messages to topics; subscribers receive messages from topics they've subscribed to.
Topic design principles:
	Topics describe event types, not entity IDs
	Good: <<"sensor.temperature.measured">>
	Bad: <<"sensor.device123.temperature">> (ID in topic)

Wildcards:
	* - Matches one segment: <<"sensor.*.measured">>
	# - Matches zero or more segments: <<"sensor.#">>

See also: PubSub Guide

Procedure
A procedure is a named endpoint for RPC (Remote Procedure Call) operations. Providers advertise procedures; callers invoke them.
Example:
%% Provider advertises
macula:advertise(Client, <<"math.add">>, fun(#{a := A, b := B}) ->
 {ok, #{result => A + B}}
end).

%% Caller invokes
{ok, #{result := 8}} = macula:call(Client, <<"math.add">>, #{a => 5, b => 3}).
See also: RPC Guide

Pub/Sub
Publish/Subscribe is a messaging pattern where:
	Publishers send messages to topics without knowing who receives them
	Subscribers receive messages from topics without knowing who sent them

This decouples senders from receivers, enabling scalable event-driven architectures.

RPC
Remote Procedure Call is a request/response pattern where:
	Caller sends a request with arguments
	Provider executes a handler and returns a result

Unlike pub/sub, RPC is synchronous (caller waits for response).

Subscription
A subscription is an active registration to receive messages from a topic. Represented by a reference that can be used to unsubscribe.
{ok, SubRef} = macula:subscribe(Client, <<"events.#">>, fun(Event) ->
 handle_event(Event)
end).

%% Later
ok = macula:unsubscribe(Client, SubRef).

Advertisement
An advertisement is a registration that makes a procedure available for RPC calls. Advertisements are:
	Stored in the local service registry
	Propagated to the DHT for discovery
	Refreshed periodically (TTL-based)

Platform Layer Terms
Platform Layer
The Platform Layer (v0.9.0+) provides distributed coordination primitives for workload applications:
	Leader election via Raft consensus
	Shared state via CRDTs
	Workload registration

See also: Platform Vision in the architecture documentation.

Leader Election
Leader election is the process of selecting a single coordinator node from a group. Macula uses Ra (Raft) for:
	Consensus on who is leader
	Automatic failover if leader crashes
	Term numbers for consistency

{ok, LeaderNodeId} = macula:get_leader(Client).

CRDT
A Conflict-free Replicated Data Type is a data structure that can be updated concurrently on multiple nodes and automatically converges to a consistent state.
Macula supports:
	LWW-Register - Last-Write-Wins register
	G-Counter - Grow-only counter
	PN-Counter - Increment/decrement counter
	G-Set - Grow-only set
	OR-Set - Observed-Remove set

ok = macula:propose_crdt_update(Client, <<"counter">>, {increment, 1},
 #{crdt_type => pn_counter}).

BEAM Terms
BEAM
The BEAM is the virtual machine that runs Erlang and Elixir code. BEAM provides:
	Lightweight processes (millions per node)
	Preemptive scheduling
	Hot code upgrades
	Built-in distribution

Macula is built entirely on BEAM technologies.

OTP
Open Telecom Platform is the standard library and design patterns for Erlang/Elixir applications. Key concepts:
	Supervision trees - Hierarchical process monitoring
	Behaviours - Reusable patterns (gen_server, gen_statem)
	Applications - Packaged, startable components

Supervision Tree
A supervision tree is a hierarchical structure of processes where supervisors monitor workers and restart them on failure.
 macula_sup
 │
 ┌───────┼───────┐
 │ │ │
gateway_sup dht_sup platform_sup
 │
┌───┴───┐
│ │
client pubsub
manager handler
Strategy: one_for_one (restart failed child only) or one_for_all (restart all children).

gen_server
A gen_server is an OTP behaviour for implementing client-server processes. Most Macula modules are gen_servers:
	macula_gateway - Main gateway process
	macula_peer - Client connection handler
	macula_rpc_handler - RPC call management

Process
In BEAM, a process is a lightweight, isolated unit of execution. Processes:
	Share nothing (no shared memory)
	Communicate via message passing
	Can number in millions per node
	Crash independently (fault isolation)

Event Sourcing Terms
Event Sourcing
Event sourcing is a pattern where state changes are captured as immutable events. Instead of storing current state, you store the sequence of events that led to it.
Benefits:
	Complete audit trail
	Replay capability
	Temporal queries

See also: ReckonDB integration (see ecosystem documentation)

Event
An event is an immutable record of something that happened. Events should:
	Be named in past tense: user_registered, order_placed
	Capture business intent, not CRUD operations
	Include all relevant data in the payload

Anti-pattern: user_updated (CRUD) vs user_email_changed (intent)

Projection
A projection is a read model built by processing events. Projections:
	Transform events into queryable state
	Can be rebuilt from event history
	Optimized for specific read patterns

Security Terms
TLS 1.3
Transport Layer Security 1.3 is the cryptographic protocol securing Macula connections. In QUIC/HTTP3, TLS 1.3 is mandatory (not optional).
Benefits:
	Faster handshake (1-RTT)
	Forward secrecy
	Simplified cipher suites

Realm Isolation
Realm isolation ensures that peers in different realms cannot:
	See each other's topics
	Call each other's procedures
	Access each other's DHT entries

Isolation is enforced cryptographically, not just by naming conventions.

Configuration Terms
sys.config
The sys.config file is the standard Erlang configuration file for OTP applications. Macula settings are configured here:
[
 {macula, [
 {quic_port, 4433},
 {max_clients, 10000},
 {rpc_timeout_ms, 5000}
]}
].

Environment Variables
Key environment variables for Macula:
	Variable	Description
	MACULA_BOOTSTRAP_PEERS	Comma-separated list of bootstrap node URLs
	MACULA_REALM	Default realm for connections
	MACULA_QUIC_PORT	QUIC listener port (default: 4433)
	MACULA_NODE_ID	Fixed node ID (otherwise auto-generated)

Deprecated Terminology
The following terms are outdated and should not be used in new documentation:
	Deprecated Term	Current Term	Notes
	"MuC" (Macula Micro Center)	Macula Cluster	Cluster is deployment-agnostic, not K8s-specific
	"Macula Cell"	Macula Cluster	Cluster better conveys "group of nodes" semantics
	"BSN" (Bootstrap Replica Node)	Seed Node	Seeds are just discoverable peers, no Raft
	"Gateway to SuperMesh"	Bridge Node	Separate role from bootstrap
	"Gateway mode"	N/A	All nodes have Gateway System (v0.8.5+)
	"Edge peer mode"	N/A	All nodes are identical (v0.8.5+)
	"Start gateway"	N/A	Gateway System always starts
	"Bootstrap mode"	N/A	All nodes have Bootstrap System
	"The gateway" (as a special node)	Seed Node	If referring to the initial entry point
	"Bootstrap node" (as special node)	Seed Node	Seed node is preferred to avoid confusion
	MACULA_START_GATEWAY	N/A	Environment variable no longer needed
	"reckon_db integration"	CRDTs + Gossip	No external event store dependency
	"Raft consensus" (for coordination)	CRDTs	No consensus needed for coordination state

Historical Context
Pre-v0.8.5: Macula had two deployment modes (Gateway mode vs Edge peer mode). Removed in v0.8.5 for always-on architecture.
Pre-v0.13.0: Architecture planned to use reckon_db (event store) for Platform Layer. Replaced in December 2025 with CRDTs + Gossip approach - simpler, no external dependencies.
Migration to v0.13.0+:
	MuC → Macula Cluster (terminology)
	BSN → Seed Node (no Raft, just discoverable peer)
	Add Bridge Nodes for cross-Cluster federation
	ETS registries → CRDT-backed with gossip sync

See Also
	Platform Overview - High-level introduction
	Quick Start - Getting started guide
	RPC Guide - RPC patterns and usage
	PubSub Guide - Pub/Sub patterns and usage
	Architecture Overview - Technical architecture

 How Macula Compares to Similar Systems

Distributed networking is not new, and several excellent projects tackle similar problems. Here's how Macula differs:
vs. libp2p (IPFS Networking Stack)
libp2p is the modular networking stack behind IPFS and Filecoin.
	What it is: A comprehensive peer-to-peer networking library with many transport options, NAT traversal, and discovery mechanisms
	Maintained by: Protocol Labs
	Key difference: libp2p is a library you integrate into your application. Macula is a platform providing complete pub/sub and RPC primitives built specifically for the BEAM (Erlang/Elixir) ecosystem
	When to use libp2p: Building file-sharing applications or integrating with the IPFS ecosystem
	When to use Macula: Building business applications, IoT systems, or collaborative AI on Erlang/Elixir with built-in service discovery, multi-tenancy, and OTP supervision

vs. Distributed Erlang
Distributed Erlang is Erlang's built-in clustering.
	What it is: Native clustering for Erlang nodes with transparent process messaging
	Maintained by: Ericsson (part of Erlang/OTP)
	Key difference: Distributed Erlang requires full mesh connectivity (every node connects to every other node) and doesn't work through NAT/firewalls. Macula uses HTTP/3 (QUIC) for NAT-friendly transport and Kademlia DHT routing for O(log N) scalability without full mesh connectivity
	When to use Distributed Erlang: Datacenter deployments with full network control and trusted environments
	When to use Macula: Edge deployments, IoT networks, or any scenario involving NAT, firewalls, or untrusted networks

vs. Akka Cluster (JVM)
Akka Cluster provides distributed actor systems for the JVM.
	What it is: Clustering and distributed messaging for Scala/Java applications using the Actor model
	Maintained by: Lightbend
	Key difference: Akka runs on the JVM and uses TCP with gossip protocols. Macula runs on BEAM (Erlang VM) and uses HTTP/3 (QUIC) for modern, efficient transport with built-in encryption and NAT traversal
	When to use Akka: JVM-based applications requiring distributed actors
	When to use Macula: Erlang/Elixir applications requiring edge-friendly networking and standards-based transport

vs. Kubernetes (Orchestration)
Kubernetes orchestrates containerized applications at scale.
	What it is: Container orchestration platform for deploying and managing microservices
	Maintained by: Cloud Native Computing Foundation (CNCF)
	Key difference: Kubernetes orchestrates centralized infrastructure (datacenters). Macula enables peer-to-peer decentralized networks at the edge. They solve different problems
	When to use Kubernetes: Deploying microservices in datacenters or cloud environments
	When to use Macula: Building peer-to-peer applications where nodes discover and communicate directly, without central orchestration

vs. WebRTC (Browser P2P)
WebRTC enables peer-to-peer communication in web browsers.
	What it is: Browser APIs for real-time video, audio, and data channels between peers
	Maintained by: W3C and browser vendors
	Key difference: WebRTC targets browser-to-browser communication for media streaming. Macula targets server-to-server and device-to-device communication for business applications, IoT, and AI systems
	When to use WebRTC: Real-time video/audio in web browsers
	When to use Macula: Backend services, IoT devices, and edge computing platforms

Macula's Unique Position
Macula combines ideas from these systems but targets a specific niche:
✅ BEAM-native (Erlang/Elixir OTP supervision and fault tolerance)
✅ HTTP/3 (QUIC) transport (modern, encrypted, NAT-friendly)
✅ Edge-first design (works through firewalls and NAT)
✅ Built-in pub/sub & RPC (no external message broker needed)
✅ Multi-tenancy (realm isolation for SaaS and shared infrastructure)
✅ Self-organizing mesh (DHT-based service discovery, O(log N) routing)
✅ Production-ready patterns (OTP behaviors, comprehensive testing, memory management)
If you're building decentralized Erlang/Elixir applications that need to work in real-world network conditions (edge, IoT, hybrid cloud), Macula provides the infrastructure layer you need.

← Back to Documentation | Use Cases →

 Macula HTTP/3 Mesh vs Distributed Erlang

Version: 1.0
Date: November 11, 2025
Quick Answer
No, Macula does not augment Distributed Erlang. It replaces it.
Macula provides an alternative approach to building distributed Erlang/Elixir systems using HTTP/3/QUIC instead of Distributed Erlang's built-in clustering protocol.

Why Macula Doesn't Use Distributed Erlang
Distributed Erlang's Strengths
Distributed Erlang (disterl) is powerful for tightly-coupled clusters:
	Transparent messaging: Send messages to {Name, Node} tuples
	Process monitoring: monitor/2 works across nodes
	Global process registry: Register names visible cluster-wide
	Code loading: Hot code upgrades across clusters
	BEAM-native: Zero-overhead local communication

Distributed Erlang's Limitations for Macula's Use Case
1. Security Model
%% Distributed Erlang: Cookie-based authentication
-setcookie my_secret_cookie

%% Problem: All-or-nothing trust
%% - A node with the cookie has FULL cluster access
%% - Can execute ANY code on ANY node
%% - Cannot isolate tenants/realms
Macula's Solution:
%% TLS certificate-based authentication
%% - Per-connection authentication
%% - Realm-based isolation
%% - No code execution privileges by default

2. Network Assumptions
Distributed Erlang assumes:
	Fully connected mesh: Every node connects to every other node
	Low latency, reliable links: Designed for LAN
	Static topology: Cluster membership relatively stable
	No NAT/firewalls: Requires all ports open between nodes

Macula's Reality:
	Internet-scale deployment: Nodes across WAN/Internet
	NAT traversal: Works behind home routers, corporate firewalls
	Dynamic topology: Nodes join/leave frequently (mobile devices, IoT)
	Single port: HTTP/3 on port 443 (or 9443), firewall-friendly

3. Multi-Tenancy
%% Distributed Erlang: No namespace isolation
%% All nodes in cluster share:
%% - Global process registry
%% - Same security domain
%% - Cannot isolate tenant A from tenant B
Macula's Solution:
%% Realm-based isolation
{ok, Conn} = macula_connection:start_link(Url, #{
 realm => <<"tenant-a">>, % Isolated from tenant-b
 node_id => <<"sensor-1">>
}).

%% Messages in realm "tenant-a" never leak to "tenant-b"

4. Scalability
Distributed Erlang:
	Recommended limit: ~50-200 nodes depending on configuration
	Full mesh: N² connections as cluster grows
	Network partitions: Difficult to handle (require net_kernel configuration)
	DNS dependency: Nodes must resolve each other's hostnames

Macula's Approach:
	Kademlia DHT: Logarithmic routing (O(log N) hops)
	Selective connections: Only connect to needed peers
	Partition tolerance: Built-in eventual consistency
	mDNS discovery: Zero-configuration local discovery

5. Explicit vs Implicit Communication
Distributed Erlang (implicit):
%% "Magic" remote execution
rpc:call('node2@host', Module, Function, Args).

%% Sends Erlang term directly to remote process
{SomePid, remote_node} ! {message, Data}.
Macula (explicit):
%% Explicit RPC over network
{ok, Result} = macula_connection:call(Conn, "math.add", [1, 2]).

%% Explicit pub/sub
ok = macula_connection:publish(Conn, <<"sensor.temp">>, #{value => 23.5}).
Benefits of Explicit:
	Network boundaries clear: Know when crossing network
	Serialization explicit: Must encode to JSON/MessagePack
	Failure handling explicit: Network errors are different from process crashes
	Versioning easier: Wire format independent of BEAM term format

Architectural Comparison
Distributed Erlang Architecture
┌──┐
│ Erlang Cluster │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Node 1 │◄────►│ Node 2 │◄────►│ Node 3 │ │
│ │ │ │ │ │ │ │
│ │ cookie: │ │ cookie: │ │ cookie: │ │
│ │ "secret"│ │ "secret"│ │ "secret"│ │
│ └─────────┘ └─────────┘ └─────────┘ │
│ ▲ ▲ ▲ │
│ │ │ │ │
│ └────────────────┴────────────────┘ │
│ Fully Connected Mesh │
│ (Erlang Distribution Protocol) │
└──┘

Characteristics:
- All nodes trust each other (same cookie)
- All nodes can execute code on any other node
- Single security domain
- Fully connected mesh (N² connections)
- LAN-optimized
Macula HTTP/3 Mesh Architecture
┌──┐
│ Realm: "tenant-a" │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │ Node 1 │ │ Node 2 │ │ Registry│ │
│ │ (edge) │─HTTP3─►(edge) │─HTTP3─►(hub) │ │
│ │ cert1 │ │ cert2 │ │ cert-CA │ │
│ └─────────┘ └─────────┘ └─────────┘ │
└──┘
 │
 │ (isolated)
 ▼
┌──┐
│ Realm: "tenant-b" │
│ ┌─────────┐ ┌─────────┐ │
│ │ Node 4 │─HTTP3─►Registry │ │
│ │ (edge) │ │ (hub) │ │
│ │ cert4 │ │ cert-CA │ │
│ └─────────┘ └─────────┘ │
└──┘

Characteristics:
- Realm-based isolation (no cross-realm communication)
- TLS certificate authentication per connection
- Selective connectivity (connect only to needed services)
- DHT-based service discovery
- WAN-optimized (NAT-friendly, single port)

When to Use Each
Use Distributed Erlang When:
✅ Tightly-coupled cluster
	All nodes in same data center
	Low latency, reliable network
	Single security domain (all nodes trust each other)
	Need transparent remote process messaging
	<50 nodes

✅ Development/Testing
	Local development clusters
	Integration testing
	Quick prototypes

✅ Traditional Erlang Applications
	Mnesia clustering
	Global process registry
	:rpc module usage
	Existing disterl-based systems

Use Macula When:
✅ Internet-Scale Distribution
	Nodes across WAN/Internet
	NAT traversal required (home routers, corporate firewalls)
	High latency, unreliable connections
	Dynamic node membership (mobile, IoT)

✅ Multi-Tenancy
	SaaS applications with isolated tenants
	Multiple security domains
	Per-tenant resource limits
	Realm-based message routing

✅ Service-Oriented Architecture
	Microservices with RPC/pub-sub
	Explicit service boundaries
	API versioning important
	Different services in different languages (via HTTP/3)

✅ Edge Computing
	IoT devices
	Mobile applications
	Edge-to-cloud communication
	Offline-first applications

✅ Large-Scale Clusters
	100 nodes

	Logarithmic routing (DHT)
	Selective connectivity

Can You Use Both?
Yes, but typically you pick one.
Hybrid Approach
%% Within a data center: Distributed Erlang
%% (3-5 closely-coupled nodes)

%% Across data centers or to edge: Macula
%% (internet-facing, multi-tenant)

┌───────────────────────────┐
│ Data Center A │
│ ┌───────────────────┐ │
│ │ Disterl Cluster │ │
│ │ ┌────┐ ┌────┐ │ │
│ │ │ N1 │◄─►│ N2 │ │ │
│ │ └────┘ └────┘ │ │
│ └──────┬────────────┘ │
│ │ Macula │
│ │ Gateway │
└─────────┼─────────────────┘
 │
 HTTP/3│QUIC
 │
┌─────────┼─────────────────┐
│ ▼ │
│ Data Center B │
│ ┌───────────────────┐ │
│ │ Disterl Cluster │ │
│ │ ┌────┐ ┌────┐ │ │
│ │ │ N3 │◄─►│ N4 │ │ │
│ │ └────┘ └────┘ │ │
│ └───────────────────┘ │
└───────────────────────────┘
Use Case: Internal services use disterl for low latency, external/edge clients use Macula for security and NAT traversal.

Code Comparison
Distributed Erlang
%% Start cluster
%% $ erl -name node1@host1 -setcookie secret
%% $ erl -name node2@host2 -setcookie secret

%% Connect nodes
net_kernel:connect_node('node2@host2').

%% Call remote function
Result = rpc:call('node2@host2', math, add, [1, 2]).

%% Send message to remote process
{my_process, 'node2@host2'} ! {hello, "from node1"}.

%% Monitor remote process
Ref = monitor(process, {my_process, 'node2@host2'}).
Macula
%% Start connection to remote node
{ok, Conn} = macula_connection:start_link(
 <<"https://node2.example.com:9443">>,
 #{
 realm => <<"production">>,
 node_id => <<"node1">>,
 capabilities => [rpc, pubsub]
 }
).

%% Call remote procedure (explicit RPC)
{ok, Result} = macula_connection:call(Conn, "math.add", [1, 2]).

%% Publish message (pub/sub pattern)
ok = macula_connection:publish(Conn, <<"events.hello">>, #{
 from => "node1",
 message => "Hello from node1"
}).

%% Subscribe to messages
{ok, _Sub} = macula_connection:subscribe(Conn, <<"events.hello">>, fun(Msg) ->
 io:format("Received: ~p~n", [Msg])
end).

%% No process monitoring - use application-level heartbeats instead

Key Differences Summary
	Aspect	Distributed Erlang	Macula HTTP/3 Mesh
	Transport	Erlang Distribution Protocol (TCP)	HTTP/3 (QUIC/UDP)
	Security	Cookie-based (all-or-nothing)	TLS certificates (per-connection)
	Multi-tenancy	❌ No isolation	✅ Realm-based isolation
	NAT Traversal	❌ Requires all ports open	✅ Single port, firewall-friendly
	Scalability	~50-200 nodes (full mesh)	1000s of nodes (DHT routing)
	Code Execution	✅ Remote code execution	❌ No code execution
	Process Monitoring	✅ Built-in	❌ Use application-level heartbeats
	Network Model	Fully connected mesh	Selective connectivity
	Service Discovery	DNS/explicit connection	Kademlia DHT + mDNS
	Wire Format	Erlang term format	MessagePack (language-neutral)
	Failure Model	Same as local (transparent)	Explicit network failures
	Use Case	Tightly-coupled clusters	Loosely-coupled services

Migration Path
If you have an existing Distributed Erlang system:
Step 1: Identify Boundaries
Internal tight cluster → Keep disterl
External services → Migrate to Macula
Edge devices → Migrate to Macula
Multi-tenant parts → Migrate to Macula
Step 2: Add Macula Gateway
%% Add Macula to existing disterl node
{ok, _} = macula:start(#{
 port => 9443,
 realm => <<"production">>,
 cert_file => "cert.pem",
 key_file => "key.pem"
}).

%% Register existing functions as RPC procedures
macula_connection:register(Conn, "user.get", fun(Args) ->
 UserId = maps:get(<<"id">>, Args),
 User = my_user_server:get_user(UserId),
 {ok, User}
end).
Step 3: Migrate Clients Incrementally
External API → Use Macula
Mobile apps → Use Macula
IoT devices → Use Macula
Internal services → Keep disterl or migrate based on needs

Summary
Macula replaces Distributed Erlang for scenarios where:
	You need NAT traversal
	You want realm-based multi-tenancy
	You're building service-oriented architectures
	You need to scale beyond typical disterl limits
	Security requires per-connection authentication

Macula complements your Erlang/Elixir stack by:
	Providing a modern HTTP/3 transport option
	Enabling broader connectivity (browsers, mobile, IoT)
	Making network boundaries explicit
	Supporting language-agnostic clients (any language with HTTP/3 support)

The Choice: Use the right tool for each part of your system. Disterl for tight internal clusters, Macula for loosely-coupled distributed services.

 Macula HTTP/3 Mesh - Quick Start Guide

Get a 3-node mesh running in 15 minutes
[image: Macula Overview]

Prerequisites
Required Software
	Erlang/OTP 26.0 or later
Check version
erl -eval 'erlang:display(erlang:system_info(otp_release)), halt().' -noshell

Install from:
	Ubuntu/Debian: sudo apt-get install erlang
	macOS: brew install erlang
	From source: https://www.erlang.org/downloads

	Elixir 1.15 or later (optional, for Elixir examples)
Check version
elixir --version

Install from:
	Ubuntu/Debian: sudo apt-get install elixir
	macOS: brew install elixir
	From source: https://elixir-lang.org/install.html

	Git
git --version

	C Compiler (for building quicer NIF)
	Ubuntu/Debian: sudo apt-get install build-essential cmake
	macOS: xcode-select --install

System Requirements
	OS: Linux (Ubuntu 20.04+), macOS 11+, or Windows WSL2
	RAM: 512 MB minimum per node (2 GB recommended for development)
	Network: UDP port access (default: 4433)
	Disk: 100 MB for Macula + dependencies

Step 1: Download and Build Macula
Clone the Repository
cd ~/projects
git clone https://github.com/macula-io/macula.git
cd macula

Install Dependencies
For Erlang (Rebar3)
rebar3 get-deps

For Elixir (Mix)
mix deps.get

Build quicer (QUIC Library)
The quicer library includes native code and may take a few minutes to compile:
Rebar3
rebar3 compile

Mix
mix compile

Expected output:
===> Fetching quicer (from {git,"https://github.com/emqx/quic.git",...})
===> Compiling quicer
 ...
 [100%] Built target msquic
===> Compiled quicer
Verify Installation
Erlang
rebar3 shell
> macula:version().
{ok, "0.1.0"}

Elixir
iex -S mix
iex> Macula.version()
{:ok, "0.1.0"}

Step 2: Start Node 1 (Bootstrap Node)
Create Configuration File
Create config/node1.config:
%% config/node1.config
[
 {macula, [
 {node_id, <<"node1">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4433},
 {listen_address, "0.0.0.0"},

 %% Discovery
 {discovery, [
 {methods, [static]}, % Use static bootstrap for this example
 {static_nodes, []} % First node has no bootstrap peers
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2} % Each node connects to 2 peers
]},

 %% TLS/Certificates (auto-generate for demo)
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 1
Erlang
erl -config config/node1 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node1@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node1.config

Expected output:
[info] Macula node started: node1
[info] Listening on 0.0.0.0:4433 (UDP)
[info] Node ID: a3f5b2e1c4d8a7f9...
[info] Realm: org.example.mesh
[info] Topology: k_regular (k=2)
[info] Discovery: static
[info] Ready to accept connections
Keep this terminal open - Node 1 is now running.

Step 3: Start Node 2 (Join the Mesh)
Create Configuration File
Create config/node2.config:
%% config/node2.config
[
 {macula, [
 {node_id, <<"node2">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4434}, % Different port
 {listen_address, "0.0.0.0"},

 %% Discovery - bootstrap from Node 1
 {discovery, [
 {methods, [static]},
 {static_nodes, [
 {"127.0.0.1", 4433} % Node 1's address
]}
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2}
]},

 %% TLS/Certificates
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 2 (in new terminal)
Open new terminal
cd ~/projects/macula

Erlang
erl -config config/node2 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node2@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node2.config

Expected output:
[info] Macula node started: node2
[info] Listening on 0.0.0.0:4434 (UDP)
[info] Node ID: b7c3d8e2f5a9b4c1...
[info] Realm: org.example.mesh
[info] Connecting to bootstrap node 127.0.0.1:4433...
[info] Connected to node1 (a3f5b2e1c4d8a7f9...)
[info] SWIM membership: 2 nodes alive
[info] Mesh topology established
In Node 1's terminal, you should see:
[info] New connection from 127.0.0.1:xxxxx
[info] Handshake complete: node2 (b7c3d8e2f5a9b4c1...)
[info] SWIM membership: 2 nodes alive

Step 4: Start Node 3 (Expand the Mesh)
Create Configuration File
Create config/node3.config:
%% config/node3.config
[
 {macula, [
 {node_id, <<"node3">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4435},
 {listen_address, "0.0.0.0"},

 %% Discovery - can bootstrap from either node
 {discovery, [
 {methods, [static]},
 {static_nodes, [
 {"127.0.0.1", 4433}, % Node 1
 {"127.0.0.1", 4434} % Node 2
]}
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2}
]},

 %% TLS/Certificates
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 3 (in new terminal)
Open new terminal
cd ~/projects/macula

Erlang
erl -config config/node3 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node3@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node3.config

Expected output:
[info] Macula node started: node3
[info] Listening on 0.0.0.0:4435 (UDP)
[info] Node ID: c8d4e9f3a6b2c7d1...
[info] Realm: org.example.mesh
[info] Connecting to bootstrap nodes...
[info] Connected to node1 (a3f5b2e1c4d8a7f9...)
[info] Connected to node2 (b7c3d8e2f5a9b4c1...)
[info] SWIM membership: 3 nodes alive
[info] Mesh topology: k_regular (k=2)
[info] Routing table: 3 nodes
Congratulations! You now have a 3-node mesh network running.

Step 5: Verify Mesh Topology
Check Membership (on any node)
In any node's console:
% Erlang
macula_membership:get_members().

% Expected output:
[
 #{node_id => <<"a3f5b2e1...">>, state => alive, ...},
 #{node_id => <<"b7c3d8e2...">>, state => alive, ...},
 #{node_id => <<"c8d4e9f3...">>, state => alive, ...}
]
Elixir
Macula.Membership.get_members()

Expected output:
[
 %{node_id: "a3f5b2e1...", state: :alive, ...},
 %{node_id: "b7c3d8e2...", state: :alive, ...},
 %{node_id: "c8d4e9f3...", state: :alive, ...}
]
Check Connections
% Erlang
macula_topology:get_connections().

% Expected output:
[
 #{peer_id => <<"b7c3d8e2...">>, state => active, rtt_ms => 1.2},
 #{peer_id => <<"c8d4e9f3...">>, state => active, rtt_ms => 1.5}
]
Visualize Topology (ASCII Art)
% Erlang
macula_topology:print_topology().
Expected output:
Mesh Topology (k-regular, k=2)
==============================

node1 (a3f5...) ←─→ node2 (b7c3...)
 ↑ ↑
 └────────────→ node3 (c8d4...)
 ↑
 └────────→ node1

3 nodes, 3 connections
Average RTT: 1.3ms

Step 6: Send Your First Message (Pub/Sub)
Subscribe to a Topic (on Node 3)
In Node 3's console:
% Erlang
Subscriber = spawn(fun() ->
 receive
 {event, Topic, Msg} ->
 io:format("Received on ~s: ~p~n", [Topic, Msg])
 end
end).

macula_pubsub:subscribe(<<"hello.world">>, Subscriber).
Elixir
pid = spawn(fn ->
 receive do
 {:event, topic, msg} ->
 IO.puts("Received on #{topic}: #{inspect(msg)}")
 end
end)

Macula.PubSub.subscribe("hello.world", pid)
Expected output:
[info] Subscribed to org.example.mesh.hello.world
ok
Publish a Message (on Node 1)
In Node 1's console:
% Erlang
macula_pubsub:publish(<<"hello.world">>, #{
 message => <<"Hello from Node 1!">>,
 timestamp => erlang:system_time(millisecond)
}).
Elixir
Macula.PubSub.publish("hello.world", %{
 message: "Hello from Node 1!",
 timestamp: System.system_time(:millisecond)
})
Expected output on Node 1:
[info] Published to org.example.mesh.hello.world
ok
Expected output on Node 3 (subscriber):
Received on org.example.mesh.hello.world: #{
 message => <<"Hello from Node 1!">>,
 timestamp => 1704723456789,
 publisher => <<"a3f5b2e1...">>
}
Message flow: Node 1 → QUIC/HTTP3 → Node 3 (may route via Node 2 depending on topology)

Step 7: Make Your First RPC Call
Register RPC Endpoint (on Node 2)
In Node 2's console:
% Erlang
EchoHandler = fun(Args) ->
 {ok, #{echo => Args, node => node()}}
end.

macula_rpc:register(<<"echo_service">>, EchoHandler).
Elixir
echo_handler = fn args ->
 {:ok, %{echo: args, node: Node.self()}}
end

Macula.RPC.register("echo_service", echo_handler)
Expected output:
[info] Registered RPC endpoint: org.example.mesh.echo_service
ok
Call RPC (from Node 1)
In Node 1's console:
% Erlang
macula_rpc:call(<<"echo_service">>, #{
 test => <<"Hello RPC!">>,
 value => 42
}, 5000). % 5 second timeout
Elixir
Macula.RPC.call("echo_service", %{
 test: "Hello RPC!",
 value: 42
}, 5000)
Expected output on Node 1:
{ok, #{
 echo => #{test => <<"Hello RPC!">>, value => 42},
 node => 'node2@127.0.0.1'
}}
Expected output on Node 2 (handler):
[info] RPC call received: echo_service
[info] Args: #{test => <<"Hello RPC!">>, value => 42}
RPC flow: Node 1 → finds registration via DHT → routes to Node 2 → executes handler → returns result

Step 8: Test Fault Tolerance
Stop Node 2
In Node 2's terminal, press Ctrl+C twice to stop the node.
Expected output on Node 1 and Node 3:
[warning] Connection lost to node2 (b7c3d8e2...)
[info] SWIM detected failure: node2
[info] SWIM membership: 2 nodes alive, 1 suspect
[info] Topology reconfiguring...
[info] New connection established: node1 ←→ node3
[info] SWIM membership: 2 nodes alive
Verify Mesh Adapted
On Node 1 or Node 3:
% Erlang
macula_topology:get_connections().

% Expected output (now only 1 connection):
[
 #{peer_id => <<"c8d4e9f3...">>, state => active, rtt_ms => 1.1}
]
The mesh automatically adapts - Node 1 and Node 3 now connect directly.
Restart Node 2
Restart Node 2 (using the same command from Step 3).
Expected output:
[info] Macula node started: node2
[info] Reconnecting to mesh...
[info] SWIM membership: 3 nodes alive
[info] Topology restored
The mesh self-heals automatically.

Common Operations
List All Nodes in Mesh
% Erlang
macula_membership:list_nodes().
Elixir
Macula.Membership.list_nodes()
Get Node Statistics
% Erlang
macula:stats().

% Output:
#{
 messages_sent => 1543,
 messages_received => 1687,
 bytes_sent => 245678,
 bytes_received => 267890,
 active_connections => 2,
 routing_table_size => 3,
 uptime_seconds => 3600
}
Subscribe with Pattern Matching
% Erlang - Subscribe to all topics starting with "sensor."
macula_pubsub:subscribe(<<"sensor.*">>, Pid, #{match => prefix}).

% Matches: sensor.temperature, sensor.humidity, etc.
Publish with Options
% Erlang - Publish with acknowledgment
macula_pubsub:publish(<<"important.event">>, Data, #{
 acknowledge => true, % Wait for delivery confirmation
 retain => true % Store for late subscribers
}).

Troubleshooting
Problem: "Port already in use"
Error:
{error, eaddrinuse}
Solution: Change the listen_port in your config file to an unused port (e.g., 4436, 4437).

Problem: Nodes can't discover each other
Symptoms: Node 2 or 3 logs show "Connection timeout" or "No route to bootstrap node"
Checks:
	Firewall: Ensure UDP port 4433-4435 are not blocked
Ubuntu/Debian
sudo ufw allow 4433:4435/udp

macOS
Check System Preferences → Security & Privacy → Firewall

	Correct IP address: If running on different machines, replace 127.0.0.1 with actual IP
Find your IP
ip addr show # Linux
ifconfig # macOS

	Same realm: All nodes must have the same realm in config

Problem: "Certificate validation failed"
Error:
{error, {tls_alert, "certificate unknown"}}
Cause: Certificate mismatch (usually in manual cert mode)
Solution: Use {cert_mode, auto_generate} for development, or ensure all nodes trust the same CA.

Problem: High latency or packet loss
Check network conditions:
% Erlang
macula_connection:ping(<<"node2_id">>).

% Output:
{ok, 1.2} % RTT in milliseconds
If RTT > 100ms on localhost, check:
	System load (CPU usage)
	Other applications using network
	Docker/VM networking overhead

Next Steps
Congratulations! You've successfully:
	✅ Built Macula from source
	✅ Started a 3-node mesh network
	✅ Verified mesh topology
	✅ Sent pub/sub messages across the mesh
	✅ Made RPC calls between nodes
	✅ Tested fault tolerance and self-healing

Learn More
	Hello World Tutorial - Build a complete application
	RPC Guide - Complete RPC documentation
	PubSub Guide - Pub/Sub patterns
	Development Guide - Contributing to Macula

Try More Advanced Features
	Realm isolation: Start nodes in different realms and use gateways
	NAT traversal: Run nodes on different networks (home, cloud, mobile)
	Large mesh: Scale to 10+ nodes and observe routing behavior
	Persistence: Add event sourcing with persistent subscriptions
	Monitoring: Set up Prometheus metrics and Grafana dashboards

Join the Community
	GitHub: https://github.com/macula-io/macula
	Discord: https://discord.gg/macula
	Docs: https://docs.macula.io

Happy meshing! 🎉

 Macula HTTP/3 Mesh - Hello World Tutorial

Build your first distributed application on Macula

What We'll Build
A distributed chat application where:
	Multiple nodes can join a chat room
	Users can send messages that appear on all nodes
	Messages are routed via the Macula mesh (pub/sub)
	Users can query "who's online" (RPC call)
	Graceful handling of nodes joining/leaving

Time to complete: 30 minutes
Prerequisites:
	Completed Quick Start Guide
	Basic Erlang or Elixir knowledge
	Macula installed and working

Project Structure
We'll create a new Mix (Elixir) or Rebar3 (Erlang) project:
macula_chat/
├── config/
│ └── config.exs # Application configuration
├── lib/
│ ├── macula_chat.ex # Application entry point
│ ├── chat_room.ex # Chat room GenServer
│ └── chat_client.ex # User client
├── mix.exs # Project definition
└── README.md

Step 1: Create New Project
Using Mix (Elixir)
mix new macula_chat --sup
cd macula_chat

Using Rebar3 (Erlang)
rebar3 new app macula_chat
cd macula_chat

Step 2: Add Macula Dependency
Mix (Elixir)
Edit mix.exs:
defmodule MaculaChat.MixProject do
 use Mix.Project

 def project do
 [
 app: :macula_chat,
 version: "0.1.0",
 elixir: "~> 1.15",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 def application do
 [
 extra_applications: [:logger],
 mod: {MaculaChat.Application, []}
]
 end

 defp deps do
 [
 {:macula, "~> 0.6"}
]
 end
end
Rebar3 (Erlang)
Edit rebar.config:
{erl_opts, [debug_info]}.

{deps, [
 {macula, "0.6.6"}
]}.

{shell, [
 {apps, [macula_chat]}
]}.
Install Dependencies
Mix
mix deps.get

Rebar3
rebar3 get-deps

Step 3: Configure Macula
Mix Configuration
Create config/config.exs:
import Config

config :macula,
 realm: "io.macula.chat",
 listen_port: System.get_env("MACULA_PORT", "4433") |> String.to_integer(),
 discovery: [
 methods: [:static, :mdns],
 static_nodes: [] # Add bootstrap nodes via env var
],
 topology: [
 type: :k_regular,
 k: 2
],
 cert_mode: :auto_generate,
 log_level: :info

Chat-specific config
config :macula_chat,
 username: System.get_env("CHAT_USER", "Anonymous"),
 room: System.get_env("CHAT_ROOM", "general")
Rebar3 Configuration
Create config/sys.config:
[
 {macula, [
 {realm, <<"io.macula.chat">>},
 {listen_port, 4433},
 {discovery, [
 {methods, [static, mdns]},
 {static_nodes, []}
]},
 {topology, [
 {type, k_regular},
 {k, 2}
]},
 {cert_mode, auto_generate},
 {log_level, info}
]},

 {macula_chat, [
 {username, <<"Anonymous">>},
 {room, <<"general">>}
]}
].

Step 4: Implement Chat Room
Elixir Implementation
Create lib/chat_room.ex:
defmodule MaculaChat.ChatRoom do
 @moduledoc """
 Chat room GenServer that handles:
 - Subscribing to chat messages
 - Publishing messages to the room
 - Tracking online users
 """

 use GenServer
 require Logger

 @topic_prefix "io.macula.chat.room"

 ## Client API

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 @doc "Send a message to the chat room"
 def send_message(message) do
 GenServer.cast(__MODULE__, {:send_message, message})
 end

 @doc "Get list of online users (RPC)"
 def get_online_users do
 GenServer.call(__MODULE__, :get_online_users)
 end

 @doc "Join a chat room"
 def join_room(room_name) do
 GenServer.call(__MODULE__, {:join_room, room_name})
 end

 ## Server Callbacks

 def init(opts) do
 username = Keyword.get(opts, :username, "Anonymous")
 room = Keyword.get(opts, :room, "general")

 state = %{
 username: username,
 room: room,
 topic: "#{@topic_prefix}.#{room}",
 presence_topic: "#{@topic_prefix}.#{room}.presence",
 online_users: %{}
 }

 # Subscribe to room messages
 :ok = Macula.PubSub.subscribe(state.topic, self())

 # Subscribe to presence (join/leave notifications)
 :ok = Macula.PubSub.subscribe(state.presence_topic, self())

 # Register RPC endpoint for "who's online"
 rpc_name = "chat.#{room}.users"
 :ok = Macula.RPC.register(rpc_name, fn _ ->
 {:ok, Map.keys(state.online_users)}
 end)

 # Announce presence
 announce_join(state)

 # Schedule periodic presence heartbeat
 schedule_heartbeat()

 Logger.info("Joined chat room: #{room} as #{username}")

 {:ok, state}
 end

 def handle_call(:get_online_users, _from, state) do
 users = Map.keys(state.online_users)
 {:reply, {:ok, users}, state}
 end

 def handle_call({:join_room, new_room}, _from, state) do
 # Unsubscribe from old room
 Macula.PubSub.unsubscribe(state.topic, self())
 Macula.PubSub.unsubscribe(state.presence_topic, self())

 # Announce leave
 announce_leave(state)

 # Update state
 new_state = %{state |
 room: new_room,
 topic: "#{@topic_prefix}.#{new_room}",
 presence_topic: "#{@topic_prefix}.#{new_room}.presence",
 online_users: %{}
 }

 # Subscribe to new room
 :ok = Macula.PubSub.subscribe(new_state.topic, self())
 :ok = Macula.PubSub.subscribe(new_state.presence_topic, self())

 # Announce join
 announce_join(new_state)

 Logger.info("Switched to chat room: #{new_room}")

 {:reply, :ok, new_state}
 end

 def handle_cast({:send_message, message}, state) do
 # Publish message to room
 payload = %{
 username: state.username,
 message: message,
 timestamp: System.system_time(:millisecond),
 node_id: Macula.node_id()
 }

 :ok = Macula.PubSub.publish(state.topic, payload)

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :message} = event}, state) do
 # Received chat message
 username = event.username
 message = event.message
 timestamp = event.timestamp

 # Format timestamp
 {:ok, dt} = DateTime.from_unix(timestamp, :millisecond)
 time_str = Calendar.strftime(dt, "%H:%M:%S")

 # Print to console
 IO.puts("[#{time_str}] <#{username}> #{message}")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :join} = event}, state) do
 # User joined
 username = event.username
 node_id = event.node_id

 state = put_in(state.online_users[username], node_id)

 Logger.info("#{username} joined the room")
 IO.puts("*** #{username} joined the room")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :leave} = event}, state) do
 # User left
 username = event.username

 {_node_id, state} = pop_in(state.online_users[username])

 Logger.info("#{username} left the room")
 IO.puts("*** #{username} left the room")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :heartbeat} = event}, state) do
 # Presence heartbeat
 username = event.username
 node_id = event.node_id

 state = put_in(state.online_users[username], node_id)

 {:noreply, state}
 end

 def handle_info(:send_heartbeat, state) do
 announce_heartbeat(state)
 schedule_heartbeat()
 {:noreply, state}
 end

 ## Private Functions

 defp announce_join(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :join,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp announce_leave(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :leave,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp announce_heartbeat(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :heartbeat,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp schedule_heartbeat do
 Process.send_after(self(), :send_heartbeat, 30_000) # Every 30 seconds
 end
end
Erlang Implementation
Create src/chat_room.erl:
-module(chat_room).
-behaviour(gen_server).

-export([start_link/1, send_message/1, get_online_users/0, join_room/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

-define(TOPIC_PREFIX, <<"io.macula.chat.room">>).

%% Client API

start_link(Opts) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, Opts, []).

send_message(Message) ->
 gen_server:cast(?MODULE, {send_message, Message}).

get_online_users() ->
 gen_server:call(?MODULE, get_online_users).

join_room(RoomName) ->
 gen_server:call(?MODULE, {join_room, RoomName}).

%% Server Callbacks

init(Opts) ->
 Username = proplists:get_value(username, Opts, <<"Anonymous">>),
 Room = proplists:get_value(room, Opts, <<"general">>),

 Topic = <<?TOPIC_PREFIX/binary, ".", Room/binary>>,
 PresenceTopic = <<Topic/binary, ".presence">>,

 State = #{
 username => Username,
 room => Room,
 topic => Topic,
 presence_topic => PresenceTopic,
 online_users => #{}
 },

 %% Subscribe to room messages
 ok = macula_pubsub:subscribe(Topic, self()),
 ok = macula_pubsub:subscribe(PresenceTopic, self()),

 %% Register RPC endpoint
 RpcName = <<"chat.", Room/binary, ".users">>,
 ok = macula_rpc:register(RpcName, fun(_Args) ->
 {ok, maps:keys(maps:get(online_users, State))}
 end),

 %% Announce presence
 announce_join(State),

 %% Schedule heartbeat
 schedule_heartbeat(),

 logger:info("Joined chat room: ~s as ~s", [Room, Username]),

 {ok, State}.

handle_call(get_online_users, _From, State) ->
 Users = maps:keys(maps:get(online_users, State)),
 {reply, {ok, Users}, State};

handle_call({join_room, NewRoom}, _From, State) ->
 %% Unsubscribe from old room
 macula_pubsub:unsubscribe(maps:get(topic, State), self()),
 macula_pubsub:unsubscribe(maps:get(presence_topic, State), self()),

 %% Announce leave
 announce_leave(State),

 %% Update state
 NewTopic = <<?TOPIC_PREFIX/binary, ".", NewRoom/binary>>,
 NewPresenceTopic = <<NewTopic/binary, ".presence">>,

 NewState = State#{
 room => NewRoom,
 topic => NewTopic,
 presence_topic => NewPresenceTopic,
 online_users => #{}
 },

 %% Subscribe to new room
 ok = macula_pubsub:subscribe(NewTopic, self()),
 ok = macula_pubsub:subscribe(NewPresenceTopic, self()),

 %% Announce join
 announce_join(NewState),

 logger:info("Switched to chat room: ~s", [NewRoom]),

 {reply, ok, NewState}.

handle_cast({send_message, Message}, State) ->
 Payload = #{
 type => message,
 username => maps:get(username, State),
 message => Message,
 timestamp => erlang:system_time(millisecond),
 node_id => macula:node_id()
 },

 ok = macula_pubsub:publish(maps:get(topic, State), Payload),

 {noreply, State}.

handle_info({event, _Topic, #{type := message} = Event}, State) ->
 Username = maps:get(username, Event),
 Message = maps:get(message, Event),
 Timestamp = maps:get(timestamp, Event),

 %% Print to console
 {{Y,M,D},{H,Min,S}} = calendar:system_time_to_universal_time(Timestamp, millisecond),
 io:format("[~2..0B:~2..0B:~2..0B] <~s> ~s~n", [H, Min, S, Username, Message]),

 {noreply, State};

handle_info({event, _Topic, #{type := join} = Event}, State) ->
 Username = maps:get(username, Event),
 NodeId = maps:get(node_id, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:put(Username, NodeId, OnlineUsers),

 io:format("*** ~s joined the room~n", [Username]),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info({event, _Topic, #{type := leave} = Event}, State) ->
 Username = maps:get(username, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:remove(Username, OnlineUsers),

 io:format("*** ~s left the room~n", [Username]),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info({event, _Topic, #{type := heartbeat} = Event}, State) ->
 Username = maps:get(username, Event),
 NodeId = maps:get(node_id, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:put(Username, NodeId, OnlineUsers),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info(send_heartbeat, State) ->
 announce_heartbeat(State),
 schedule_heartbeat(),
 {noreply, State}.

%% Private Functions

announce_join(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => join,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

announce_leave(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => leave,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

announce_heartbeat(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => heartbeat,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

schedule_heartbeat() ->
 erlang:send_after(30000, self(), send_heartbeat).

Step 5: Update Application Supervisor
Elixir
Edit lib/macula_chat/application.ex:
defmodule MaculaChat.Application do
 use Application

 @impl true
 def start(_type, _args) do
 # Get config
 username = Application.get_env(:macula_chat, :username, "Anonymous")
 room = Application.get_env(:macula_chat, :room, "general")

 children = [
 # Start Macula mesh
 {Macula, []},

 # Start chat room
 {MaculaChat.ChatRoom, [username: username, room: room]}
]

 opts = [strategy: :one_for_one, name: MaculaChat.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Erlang
Edit src/macula_chat_app.erl:
-module(macula_chat_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
 %% Get config
 {ok, Username} = application:get_env(macula_chat, username),
 {ok, Room} = application:get_env(macula_chat, room),

 Children = [
 %% Start Macula mesh
 #{
 id => macula,
 start => {macula, start_link, []},
 restart => permanent,
 type => supervisor
 },

 %% Start chat room
 #{
 id => chat_room,
 start => {chat_room, start_link, [[{username, Username}, {room, Room}]]},
 restart => permanent,
 type => worker
 }
],

 SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},

 supervisor:start_link({local, macula_chat_sup}, ?MODULE, {SupFlags, Children}).

stop(_State) ->
 ok.

Step 6: Create Interactive Client
Elixir
Create lib/chat_client.ex:
defmodule MaculaChat.Client do
 @moduledoc """
 Interactive chat client - run from IEx
 """

 @doc "Send a message to the chat room"
 def say(message) when is_binary(message) do
 MaculaChat.ChatRoom.send_message(message)
 :ok
 end

 @doc "List who's online"
 def who do
 {:ok, users} = MaculaChat.ChatRoom.get_online_users()
 IO.puts("\nOnline users (#{length(users)}):")
 Enum.each(users, fn user ->
 IO.puts(" - #{user}")
 end)
 :ok
 end

 @doc "Switch to different room"
 def join(room_name) when is_binary(room_name) do
 :ok = MaculaChat.ChatRoom.join_room(room_name)
 IO.puts("Joined room: #{room_name}")
 :ok
 end

 @doc "Show help"
 def help do
 IO.puts("""

 Macula Chat Client Commands:
 =============================

 Chat.say("message") - Send a message
 Chat.who() - List online users
 Chat.join("room") - Switch to different room
 Chat.help() - Show this help

 Examples:
 Chat.say("Hello world!")
 Chat.who()
 Chat.join("random")

 """)
 :ok
 end
end

Alias for convenience
alias MaculaChat.Client, as: Chat
Erlang
Create src/chat_client.erl:
-module(chat_client).
-export([say/1, who/0, join/1, help/0]).

say(Message) when is_binary(Message) ->
 chat_room:send_message(Message),
 ok.

who() ->
 {ok, Users} = chat_room:get_online_users(),
 io:format("~nOnline users (~p):~n", [length(Users)]),
 lists:foreach(fun(User) ->
 io:format(" - ~s~n", [User])
 end, Users),
 ok.

join(RoomName) when is_binary(RoomName) ->
 ok = chat_room:join_room(RoomName),
 io:format("Joined room: ~s~n", [RoomName]),
 ok.

help() ->
 io:format("~n~s~n", [
 "Macula Chat Client Commands:\n"
 "=============================\n"
 "\n"
 "chat_client:say(<<\"message\">>) - Send a message\n"
 "chat_client:who() - List online users\n"
 "chat_client:join(<<\"room\">>) - Switch to different room\n"
 "chat_client:help() - Show this help\n"
 "\n"
 "Examples:\n"
 " chat_client:say(<<\"Hello world!\">>).\n"
 " chat_client:who().\n"
 " chat_client:join(<<\"random\">>).\n"
]),
 ok.

Step 7: Run the Chat Application
Terminal 1: User "Alice"
Elixir
CHAT_USER=Alice CHAT_ROOM=general MACULA_PORT=4433 iex -S mix

Erlang
CHAT_USER=Alice CHAT_ROOM=general MACULA_PORT=4433 rebar3 shell

You should see:
[info] Macula node started
[info] Joined chat room: general as Alice

Terminal 2: User "Bob"
Elixir
CHAT_USER=Bob CHAT_ROOM=general MACULA_PORT=4434 iex -S mix

Erlang
CHAT_USER=Bob CHAT_ROOM=general MACULA_PORT=4434 rebar3 shell

Both terminals show:
*** Bob joined the room

Terminal 3: User "Charlie"
Elixir
CHAT_USER=Charlie CHAT_ROOM=general MACULA_PORT=4435 iex -S mix

Erlang
CHAT_USER=Charlie CHAT_ROOM=general MACULA_PORT=4435 rebar3 shell

All terminals show:
*** Charlie joined the room

Step 8: Chat!
Send Messages
In Alice's terminal (Elixir):
Chat.say("Hello everyone!")
In Bob's terminal (Erlang):
chat_client:say(<<"Hey Alice!">>).
In Charlie's terminal:
Chat.say("What's up?")
All terminals show:
[12:34:56] <Alice> Hello everyone!
[12:34:58] <Bob> Hey Alice!
[12:35:01] <Charlie> What's up?
List Online Users
In any terminal (Elixir):
Chat.who()
Output:
Online users (3):
 - Alice
 - Bob
 - Charlie
Switch Rooms
In Charlie's terminal:
Chat.join("random")
Alice and Bob's terminals show:
*** Charlie left the room
Charlie's terminal shows:
Joined room: random
Now Charlie is in a different room and won't see messages in "general".

Step 9: Test Fault Tolerance
Stop Bob's Node
In Bob's terminal, press Ctrl+C twice.
Alice and Charlie's terminals show:
*** Bob left the room
Restart Bob
Restart Bob's node (same command as before).
All terminals show:
*** Bob joined the room
Messages continue flowing - the mesh automatically reconnected Bob.

Understanding the Architecture
Message Flow (Pub/Sub)
Alice's Node Macula Mesh Bob's Node
┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ Chat.say() │──publish───→ │ Topic: │ ──route───→ │ handle_info │
│ │ │ io.macula. │ │ {:event,...} │
│ │ │ chat.room. │ │ │
│ │ │ general │ │ IO.puts() │
└──────────────┘ └─────────────┘ └──────────────┘
How it works:
	Alice calls Chat.say("hello")
	ChatRoom GenServer calls Macula.PubSub.publish(topic, %{message: "hello"})
	Macula encodes the message and sends it via QUIC to subscribers
	Bob's ChatRoom GenServer receives {:event, topic, payload}
	Bob's node prints the message to console

No central server - messages route peer-to-peer through the mesh!
RPC Flow (Who's Online)
Alice's Node Macula Mesh Bob's Node
┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ Chat.who() │──RPC call──→ │ Routing │ ──lookup──→ │ RPC Handler │
│ │ │ Table │ │ │
│ │ ←──result── │ (DHT) │ ←─return── │ return users │
│ │ │ │ │ │
│ Print users │ └─────────────┘ └──────────────┘
└──────────────┘
How it works:
	Alice calls Chat.who()
	ChatRoom calls Macula.RPC.call("chat.general.users", %{})
	Macula looks up which node registered "chat.general.users" (could be any node)
	Macula routes RPC request to that node
	RPC handler executes and returns list of users
	Result routes back to Alice
	Alice prints the list

Distributed RPC - any node can register an endpoint, any node can call it!

Enhancements
Try adding these features:
1. Private Messages (DMs)
In chat_room.ex
def send_dm(to_username, message) do
 GenServer.cast(__MODULE__, {:send_dm, to_username, message})
end

def handle_cast({:send_dm, to_username, message}, state) do
 # Find target user's node via presence
 case Map.get(state.online_users, to_username) do
 nil ->
 IO.puts("User #{to_username} not found")

 node_id ->
 # Send directly to that node
 topic = "io.macula.chat.dm.#{node_id}"
 payload = %{
 from: state.username,
 to: to_username,
 message: message,
 timestamp: System.system_time(:millisecond)
 }

 Macula.PubSub.publish(topic, payload)
 end

 {:noreply, state}
end
2. Message History (Last 10 Messages)
In chat_room.ex
def init(opts) do
 # ... existing code ...

 state = Map.put(state, :message_history, [])

 # ... rest of init ...
end

def handle_info({:event, _topic, %{type: :message} = event}, state) do
 # ... existing code to print message ...

 # Store in history
 history = [event | state.message_history] |> Enum.take(10)
 state = Map.put(state, :message_history, history)

 {:noreply, state}
end

def get_history do
 GenServer.call(__MODULE__, :get_history)
end

def handle_call(:get_history, _from, state) do
 {:reply, {:ok, Enum.reverse(state.message_history)}, state}
end
3. Typing Indicator
In chat_client.ex
def typing do
 # Publish ephemeral "typing" event
 Macula.PubSub.publish("io.macula.chat.room.general.typing", %{
 username: MaculaChat.ChatRoom.get_username(),
 timestamp: System.system_time(:millisecond)
 })
end
4. File Sharing
Use RPC to request file chunks:
def share_file(filename) do
 # Read file and encode as base64
 content = File.read!(filename) |> Base.encode64()

 # Announce file availability
 Macula.PubSub.publish("io.macula.chat.room.general.file", %{
 filename: Path.basename(filename),
 size: byte_size(content),
 owner: Macula.node_id()
 })

 # Register RPC endpoint to serve chunks
 Macula.RPC.register("chat.file.#{filename}", fn %{offset: offset, length: length} ->
 chunk = binary_part(content, offset, length)
 {:ok, %{chunk: chunk}}
 end)
end

What You've Learned
Congratulations! You've built a fully distributed chat application using Macula. You now understand:
✅ Pub/Sub: How to publish events and subscribe to topics across the mesh
✅ RPC: How to register callable endpoints and invoke them from any node
✅ Mesh Topology: How nodes discover each other and form a network
✅ Fault Tolerance: How the mesh adapts when nodes join/leave
✅ Presence: How to track who's online using heartbeats
✅ BEAM OTP: How to structure applications with GenServers and supervisors

Next Steps
	RPC Guide - Complete RPC documentation
	PubSub Guide - Pub/Sub patterns
	Development Guide - Contributing to Macula
	Glossary - Terminology reference
	Build something cool! Share it with the community

Happy coding!

 Development Guide

This guide covers setting up a development environment for contributing to Macula.
Prerequisites
	Erlang/OTP 26+ - Installation Guide
	Rebar3 - Erlang build tool (Installation)
	Git - Version control
	Docker (optional) - For multi-node testing

Quick Setup
Clone the repository
git clone https://github.com/macula-io/macula.git
cd macula

Fetch dependencies
rebar3 get-deps

Compile
rebar3 compile

Run tests
rebar3 eunit

Start a shell with Macula loaded
rebar3 shell

Project Structure
Macula is organized as a single Erlang/OTP library with ~68 modules:
macula/
├── src/ # Source code (~68 .erl files)
│ ├── macula_quic*.erl # QUIC transport layer
│ ├── macula_protocol*.erl # Wire protocol encoding/decoding
│ ├── macula_connection*.erl # Connection management
│ ├── macula_gateway*.erl # Gateway components
│ ├── macula_routing*.erl # Kademlia DHT routing
│ ├── macula_pubsub*.erl # Pub/Sub messaging
│ ├── macula_rpc*.erl # RPC operations
│ └── macula_*.erl # Core utilities
├── test/ # EUnit tests
├── include/ # Header files (.hrl)
├── architecture/ # Architecture documentation
├── docs/ # User-facing documentation
├── examples/ # Example applications
└── rebar.config # Build configuration
See Project Structure for complete module documentation.
Running Tests
All Tests
rebar3 eunit

Specific Module Tests
rebar3 eunit --module=macula_id_tests
rebar3 eunit --module=macula_gateway_client_manager_tests

Test Coverage
rebar3 do eunit, cover

Multi-Node Integration Tests
cd docker
docker compose -f docker-compose.multi-node-test.yml build --no-cache
docker compose -f docker-compose.multi-node-test.yml up

Code Quality Standards
Macula follows Idiomatic Erlang principles:
Core Principles
	✅ Pattern matching on function heads - Avoid if and cond
	✅ Guards instead of case - Use guards for simple conditions
	✅ Shallow nesting - Keep nesting to 1-2 levels maximum
	✅ Let it crash - Don't catch errors unless you can handle them meaningfully
	✅ OTP behaviors - Use gen_server, gen_statem, supervisor where appropriate

Example: Good vs. Bad
❌ Bad:
process_message(Msg, State) ->
 if
 is_binary(Msg) ->
 case decode_message(Msg) of
 {ok, Data} ->
 if
 Data#data.type == request ->
 handle_request(Data, State);
 Data#data.type == response ->
 handle_response(Data, State)
 end
 end
 end.
✅ Good:
%% Guard ensures binary input
process_message(Msg, State) when is_binary(Msg) ->
 case decode_message(Msg) of
 {ok, Data} -> handle_decoded_message(Data, State);
 {error, Reason} -> {error, Reason}
 end;
process_message(_Msg, _State) ->
 {error, invalid_message}.

%% Pattern match on data type
handle_decoded_message(#data{type = request} = Data, State) ->
 handle_request(Data, State);
handle_decoded_message(#data{type = response} = Data, State) ->
 handle_response(Data, State).
See CLAUDE.md (at repository root) for complete coding guidelines.
Building Documentation
Macula uses ex_doc for documentation generation:
rebar3 ex_doc

Generated docs appear in doc/ directory. Open doc/index.html in a browser.
Docker Development
Clean Build (Always After Code Changes)
Prune cache and rebuild from scratch
docker builder prune -af
docker compose -f <compose-file> build --no-cache

Why? Docker build cache can use stale layers even after code changes. Always prune and rebuild when testing code changes.
Multi-Node Test Environment
cd docker
docker-compose -f docker-compose.multi-node-test.yml up

This starts:
	1 registry node (gateway)
	3 provider nodes (advertise services)
	1 client node (discovers and calls services)

Memory Management
Macula implements comprehensive memory leak prevention. See Memory Management for details.
Key Mechanisms:
	Bounded connection pools (max 1,000 connections, LRU eviction)
	Client connection limits (max 10,000 clients, configurable)
	Service TTL/cleanup (5-minute TTL, 60-second cleanup interval)
	Stream cleanup on disconnect
	Caller process monitoring for RPC handlers

Monitoring:
%% Check connection pool size
macula_gateway_mesh:pool_size(GatewayPid).

%% Check client count
macula_gateway_client_manager:client_count(ManagerPid).

%% Check service registry size
macula_service_registry:service_count().
Refactoring Status
Gateway Refactoring (COMPLETED - Jan 2025)
The gateway module has been refactored into 6 focused modules with comprehensive tests:
	✅ macula_gateway_client_manager.erl - Client lifecycle (24 tests)
	✅ macula_gateway_pubsub.erl - Pub/Sub routing (31 tests)
	✅ macula_gateway_rpc.erl - RPC handler management (20 tests)
	✅ macula_gateway_mesh.erl - Mesh connection pooling (16 tests)
	✅ macula_gateway_dht.erl - DHT query forwarding (stateless)
	✅ macula_gateway_rpc_router.erl - Multi-hop RPC routing (17 tests)
	✅ macula_gateway_sup.erl - Supervision tree (24 tests)

Total: 132 tests, all passing.
Connection Refactoring (COMPLETED - Nov 2025)
The v0.7.0 nomenclature refactoring achieved separation of concerns:
	macula_peer - High-level API facade for mesh operations
	macula_connection - Low-level QUIC transport layer

See CLAUDE.md for current architecture details.
Contributing Workflow
	Read the documentation
	README.md (at repository root) - Project overview
	CLAUDE.md (at repository root) - Coding guidelines

	Create a feature branch
git checkout -b feature/your-feature-name

	Write tests first (TDD approach preferred)
Create test file
touch test/macula_your_module_tests.erl

Write failing tests
Implement functionality
Verify tests pass
rebar3 eunit --module=macula_your_module_tests

	Follow code quality standards
	Pattern matching over conditionals
	Guards instead of case where possible
	Maximum 1-2 levels of nesting
	Comprehensive tests for new functionality

	Commit and push
git add .
git commit -m "Add feature: your feature description"
git push origin feature/your-feature-name

	Create pull request
	Describe what the PR does
	Reference any related issues
	Ensure all tests pass
	Follow PR template guidelines

Getting Help
	Issues: GitHub Issues
	Documentation: See architecture/ directory for detailed architecture docs

← Back to Documentation

 Macula HTTP/3 Mesh - RPC Guide

Complete guide to decentralized RPC with DHT-based service discovery
[image: RPC Architecture]
Status: ✅ COMPLETE
Last Updated: 2025-01-10

Table of Contents
	Overview
	Architecture
	Service Advertisement
	Service Discovery
	Making RPC Calls
	Error Handling
	Performance Optimization
	Best Practices
	Examples
	Migration from WAMP

Overview
Macula provides fully decentralized RPC without requiring any central registry or broker. Services advertise themselves to a Kademlia DHT (Distributed Hash Table), and consumers discover providers by querying the DHT.
Key Features
✅ Fully Decentralized - No central authority, DHT-based discovery
✅ Local-First Optimization - Zero-latency for local services
✅ Smart Caching - DHT results cached (60s TTL) to reduce queries
✅ Graceful Degradation - Continues operation when DHT unavailable
✅ Multiple Providers - Automatic load balancing across providers
✅ Fault Tolerant - Provider failover if one becomes unavailable
✅ NAT-Friendly - HTTP/3 QUIC works through firewalls
How It Works
The diagram above illustrates the complete RPC flow:
	Discovery Hierarchy - 4-tier fallback: Local → Cache → DHT → Direct
	Service Advertisement - Providers register to local registry and DHT
	RPC Call Flow - Consumer discovers provider, sends MSG_CALL, receives MSG_REPLY
	Multi-Provider Load Balancing - Round-robin selection with automatic failover

Discovery Hierarchy
Macula uses a 4-tier fallback hierarchy for optimal performance:
	Local Handler ⚡ - Zero latency if service advertised locally
	Cache Hit 🚀 - Fast retrieval from local cache (60s TTL)
	DHT Query 🌐 - Query DHT for providers, cache result
	Direct Call 🔗 - Fallback to connected endpoint

This design ensures:
	Local calls have zero network overhead
	Cached discoveries are sub-millisecond
	DHT queries happen only on cache miss (every 60 seconds per service)
	System continues working even if DHT is unavailable

Architecture
Components
macula_service_registry
Core registry module that manages:
	Local services - Handler functions for services this node provides
	Discovery cache - Cached provider lists from DHT queries (60s TTL)
	DHT integration - Publish/query/remove operations

Key Functions:
	advertise_local/4 - Store handler locally
	get_local_handler/2 - Retrieve local handler
	discover_service/2,3 - Check cache for providers
	cache_service/4 - Store DHT results in cache
	publish_to_dht/5 - Publish service to DHT
	query_dht_for_service/3 - Query DHT for providers
	remove_from_dht/3 - Remove service from DHT

macula_connection
Connection gen_server that:
	Holds service_registry in state
	Handles advertise, unadvertise, call requests
	Executes handlers in spawned processes (non-blocking)
	Sends MSG_CALL, MSG_REPLY, MSG_ERROR messages

macula (Public API)
The only module applications should import. Delegates to internal modules:
	connect/2, connect_local/1 - Connect to mesh
	advertise/3,4 - Advertise a service
	call/3,4 - Call a service
	unadvertise/2 - Stop advertising
	disconnect/1 - Close connection

macula_peer (Internal)
Internal mesh participant module (called by macula).
macula_routing_dht
DHT implementation (Kademlia):
	Pure functional DHT operations
	K-bucket routing table
	Store/find value operations
	K-value replication (typically 20)

Data Flow
Service Advertisement:
Application
 ↓
macula:advertise(Client, Procedure, Handler, Opts)
 ↓
macula_connection (gen_server:call)
 ↓
macula_service_registry:advertise_local(Registry, Procedure, Handler, Metadata)
 ↓
macula_service_registry:publish_to_dht(DhtPid, Procedure, ProviderInfo, TTL, K)
 ↓
macula_routing_dht (DHT storage at key=SHA256(Procedure))
Service Discovery and Call:
Application
 ↓
macula:call(Client, Procedure, Args)
 ↓
macula_connection (gen_server:call)
 ↓
macula_service_registry:get_local_handler(Registry, Procedure)
 → Found? Execute locally (zero-latency path)
 ↓
macula_service_registry:discover_service(Registry, Procedure)
 → Cache hit? Use cached providers (fast path)
 ↓
macula_service_registry:query_dht_for_service(DhtPid, Procedure, K)
 → Query DHT, cache result
 ↓
Pick provider from list
 ↓
Send MSG_CALL over HTTP/3 QUIC to provider
 ↓
Provider executes handler → MSG_REPLY
 ↓
Application receives result
Storage
DHT Key: SHA256(Procedure) (32-byte key)
DHT Value:
#{
 node_id => binary(), % 32-byte node identifier
 endpoint => binary(), % Connection endpoint (e.g., <<"https://localhost:9443">>)
 metadata => map(), % Custom metadata (version, description, etc.)
 advertised_at => integer(), % Unix timestamp
 ttl => pos_integer() % Seconds
}
Local Cache Entry:
#{
 service_id => binary(),
 providers => [ProviderInfo],
 cached_at => integer(), % Unix timestamp
 ttl => 60 % Seconds (hard-coded)
}

Service Advertisement
Basic Advertisement
%% Erlang
Handler = fun(Args) ->
 case Args of
 #{user_id := UserId} ->
 {ok, #{user_id => UserId, name => <<"Alice">>}};
 _ ->
 {error, invalid_args}
 end
end,

{ok, Ref} = macula:advertise(
 Peer,
 <<"myapp.user.get">>,
 Handler
).
Elixir
handler = fn
 %{user_id: user_id} ->
 {:ok, %{user_id: user_id, name: "Alice"}}

 _ ->
 {:error, :invalid_args}
end

{:ok, ref} = :macula.advertise(
 client,
 "myapp.user.get",
 handler
)
With Options
{ok, Ref} = macula:advertise(
 Peer,
 <<"myapp.user.get">>,
 Handler,
 #{
 metadata => #{
 version => <<"1.0.0">>,
 description => <<"Fetch user by ID">>,
 capabilities => [<<"read">>]
 },
 ttl => 300 % 5 minutes
 }
).
Handler Function Contract
Handlers must follow this contract:
-type handler_fn() :: fun((Args :: map()) -> {ok, Result :: term()} | {error, Reason :: term()}).
Rules:
	Input: Always a map (even if empty: #{})
	Output: Tuple {ok, Result} or {error, Reason}
	Execution: Handlers run in spawned processes (non-blocking)
	Errors: Handler crashes are caught and returned as {error, {handler_crash, Reason}}

TTL and Re-advertisement
Default TTL: 300 seconds (5 minutes)
Services must be re-advertised before TTL expiration to remain discoverable. Currently this is manual - future enhancement will add automatic periodic re-advertisement.
%% Manual re-advertisement pattern
re_advertise_loop(Client, Procedure, Handler, Opts) ->
 TTL = maps:get(ttl, Opts, 300),
 {ok, _Ref} = macula:advertise(Client, Procedure, Handler, Opts),

 %% Re-advertise every 4 minutes (before 5-minute TTL expires)
 timer:sleep((TTL - 60) * 1000),
 re_advertise_loop(Client, Procedure, Handler, Opts).
Unadvertising
ok = macula:unadvertise(Client, <<"myapp.user.get">>).
Behavior:
	Removes local handler from service registry
	Attempts to remove from DHT (best-effort)
	DHT entries expire naturally via TTL anyway

Service Discovery
Service discovery happens automatically when calling a service via macula:call/2,3.
Discovery Flow
%% 1. Check local handler (zero-latency)
case macula_service_registry:get_local_handler(Registry, Procedure) of
 {ok, Handler} ->
 %% Execute locally - no network overhead
 Handler(Args);

 not_found ->
 %% 2. Check cache (fast path)
 case macula_service_registry:discover_service(Registry, Procedure) of
 {ok, Providers, Registry2} ->
 %% Cache hit - use cached providers
 pick_provider_and_call(Providers);

 {cache_miss, Registry2} ->
 %% 3. Query DHT (cache miss)
 case macula_service_registry:query_dht_for_service(DhtPid, Procedure, 20) of
 {ok, Providers} when Providers =/= [] ->
 %% Cache the result (60s TTL)
 Registry3 = macula_service_registry:cache_service(
 Registry2, Procedure, Providers, 60
),
 pick_provider_and_call(Providers);

 {ok, []} ->
 %% No providers found
 {error, service_not_found};

 {error, Reason} ->
 %% DHT unavailable - fallback to direct call
 direct_call_fallback()
 end
 end
end.
Force Refresh
Skip cache and force DHT query:
{ok, Result} = macula:call(
 Peer,
 <<"myapp.user.get">>,
 #{user_id => <<"user-123">>},
 #{force_refresh => true}
).
Cache Management
Cache TTL: 60 seconds (hard-coded in macula_service_registry)
Pruning: Expired entries can be pruned manually:
{Registry2, RemovedCount} = macula_service_registry:prune_expired(Registry).
Clearing: Clear all cache entries:
Registry2 = macula_service_registry:clear_cache(Registry).

Making RPC Calls
Basic Call
%% Erlang
{ok, User} = macula:call(
 Peer,
 <<"myapp.user.get">>,
 #{user_id => <<"user-123">>}
).
Elixir
{:ok, user} = :macula.call(
 client,
 "myapp.user.get",
 %{user_id: "user-123"}
)
With Timeout
{ok, Result} = macula:call(
 Peer,
 <<"slow.operation">>,
 #{data => SomeData},
 #{timeout => 30000} % 30 seconds
).
Local-First Pattern
If a service is advertised locally, the call has zero network overhead:
%% Node A advertises service
{ok, _} = macula:advertise(Client, <<"calc.add">>, HandlerFn),

%% Node A calls the same service - executed locally (no network)
{ok, Result} = macula:call(Client, <<"calc.add">>, #{a => 10, b => 5}).
%% Result = #{result => 15}
This is extremely efficient for:
	Self-service calls
	Co-located services on the same node
	Testing and development

Error Handling
Error Types
-type call_error() ::
 timeout | % Call timed out
 service_not_found | % No providers found in DHT
 {handler_error, Reason :: term()} | % Handler returned {error, Reason}
 {handler_crash, Reason :: term()} | % Handler process crashed
 {connection_error, Reason :: term()} | % Network error
 term(). % Other errors
Comprehensive Error Handling
case macula:call(Client, Procedure, Args, #{timeout => 10000}) of
 {ok, Result} ->
 %% Success
 process_result(Result);

 {error, timeout} ->
 %% Call timed out after 10 seconds
 ?LOG_WARNING("RPC call timed out: ~s", [Procedure]),
 {error, timeout};

 {error, service_not_found} ->
 %% No providers found in DHT
 ?LOG_ERROR("Service not available: ~s", [Procedure]),
 {error, unavailable};

 {error, {handler_error, Reason}} ->
 %% Handler explicitly returned {error, Reason}
 ?LOG_WARNING("Handler error for ~s: ~p", [Procedure, Reason]),
 {error, {business_logic_error, Reason}};

 {error, {handler_crash, Reason}} ->
 %% Handler process crashed
 ?LOG_ERROR("Handler crashed for ~s: ~p", [Procedure, Reason]),
 {error, internal_error};

 {error, {connection_error, Reason}} ->
 %% Network/transport error
 ?LOG_ERROR("Connection error calling ~s: ~p", [Procedure, Reason]),
 {error, network_error};

 {error, Reason} ->
 %% Catch-all for other errors
 ?LOG_ERROR("Unexpected error calling ~s: ~p", [Procedure, Reason]),
 {error, unknown_error}
end.
Retry Pattern
call_with_retry(Client, Procedure, Args, MaxRetries) ->
 call_with_retry(Client, Procedure, Args, MaxRetries, 0).

call_with_retry(_Client, _Procedure, _Args, MaxRetries, Attempt)
 when Attempt >= MaxRetries ->
 {error, max_retries_exceeded};

call_with_retry(Client, Procedure, Args, MaxRetries, Attempt) ->
 case macula:call(Client, Procedure, Args, #{timeout => 5000}) of
 {ok, Result} ->
 {ok, Result};

 {error, timeout} ->
 %% Retry on timeout
 timer:sleep(1000 * (Attempt + 1)), % Exponential backoff
 call_with_retry(Client, Procedure, Args, MaxRetries, Attempt + 1);

 {error, {connection_error, _}} ->
 %% Retry on connection errors
 timer:sleep(1000 * (Attempt + 1)),
 call_with_retry(Client, Procedure, Args, MaxRetries, Attempt + 1);

 {error, Reason} ->
 %% Don't retry on business logic errors
 {error, Reason}
 end.

Performance Optimization
Local-First Optimization
Zero-latency local calls:
	Local handlers checked first
	No network overhead if service advertised locally
	Ideal for co-located services

Caching Strategy
60-second cache TTL:
	DHT queries cached for 60 seconds
	Reduces DHT load
	Balances freshness vs performance

Cache hit ratio:
Cache Hit Ratio = (Cache Hits) / (Total Calls)

Example:
- Service called 100 times/minute
- Cache TTL = 60 seconds
- DHT queries = ~2/minute (every 60s)
- Cache hit ratio = 98%
DHT Query Optimization
Kademlia K-value: 20 (standard)
	Stores service advertisement on 20 nodes
	High availability even if nodes fail
	Fast lookups (log N hops)

SHA-256 Key Distribution:
	Deterministic key generation
	Even distribution across DHT keyspace
	Prevents hotspots

Provider Selection
Current: Simple first-provider selection
Future enhancements:
	Round-robin load balancing
	Random selection
	Least-loaded provider
	Geographic proximity
	Custom selection strategies

Graceful Degradation
DHT unavailable:
	Logs warning but continues
	Falls back to direct call to connected endpoint
	Local services still work

Network partitions:
	Each partition has local DHT
	Services discoverable within partition
	Automatic recovery when partition heals

Best Practices
Service Naming
Use hierarchical naming with dot-separated segments:
%% Good
<<"myapp.user.get">>
<<"energy.home.measure">>
<<"payment.invoice.create">>

%% Avoid
<<"get_user">> % Not namespaced
<<"user">> % Too generic
<<"user-get">> % Use dots, not dashes
Handler Design
Keep handlers simple:
%% Good - simple, focused
Handler = fun(#{user_id := UserId}) ->
 case user_db:get(UserId) of
 {ok, User} -> {ok, User};
 not_found -> {error, not_found}
 end
end.

%% Avoid - complex logic in handler
Handler = fun(Args) ->
 %% Don't do heavy processing in handler
 %% Spawn workers if needed
 case Args of
 #{action := <<"create">>, data := Data} ->
 %% Heavy processing...
 #{action := <<"update">>, data := Data} ->
 %% More heavy processing...
 #{action := <<"delete">>, id := Id} ->
 %% Even more processing...
 end
end.
Pattern matching on function heads:
%% Good - separate functions for different actions
handle_get(#{user_id := UserId}) ->
 user_db:get(UserId).

handle_create(#{name := Name, email := Email}) ->
 user_db:create(Name, Email).

Handler = fun(Args) ->
 case Args of
 #{action := <<"get">>} -> handle_get(Args);
 #{action := <<"create">>} -> handle_create(Args);
 _ -> {error, invalid_action}
 end
end.
Metadata Usage
Include useful metadata:
#{
 metadata => #{
 version => <<"1.2.3">>, % Semantic version
 description => <<"User management">>, % Human-readable description
 capabilities => [<<"read">>, <<"write">>], % What it can do
 schema => #{ % Input/output schema
 input => [user_id],
 output => [user_id, name, email]
 }
 }
}
TTL Configuration
Choose TTL based on service characteristics:
%% Long-lived services (rarely change)
#{ttl => 3600} % 1 hour

%% Normal services
#{ttl => 300} % 5 minutes (default)

%% Dynamic services (frequently changing)
#{ttl => 60} % 1 minute
Error Handling in Handlers
Always return proper error tuples:
Handler = fun(Args) ->
 try
 Result = do_work(Args),
 {ok, Result}
 catch
 error:{badmatch, _} ->
 {error, invalid_args};
 error:database_error ->
 {error, service_unavailable};
 Class:Reason ->
 ?LOG_ERROR("Handler crashed: ~p:~p", [Class, Reason]),
 {error, internal_error}
 end
end.
Monitoring
Log important events:
%% On advertisement
?LOG_INFO("Advertised service ~s with metadata ~p", [Procedure, Metadata]),

%% On DHT publish success/failure
?LOG_INFO("Published service ~s to DHT", [Procedure]),
?LOG_WARNING("Failed to publish service ~s to DHT: ~p", [Procedure, Reason]),

%% On service calls
?LOG_DEBUG("Calling service ~s with args ~p", [Procedure, Args]),
?LOG_INFO("Service ~s completed in ~p ms", [Procedure, Duration]).

Examples
Example 1: Calculator Service
%% calculator_service.erl
-module(calculator_service).
-export([start/1, advertise/1]).

start(Client) ->
 Handler = fun(Args) ->
 case Args of
 #{operation := <<"add">>, a := A, b := B} ->
 {ok, #{result => A + B}};
 #{operation := <<"subtract">>, a := A, b := B} ->
 {ok, #{result => A - B}};
 #{operation := <<"multiply">>, a := A, b := B} ->
 {ok, #{result => A * B}};
 #{operation := <<"divide">>, a := A, b := 0} ->
 {error, division_by_zero};
 #{operation := <<"divide">>, a := A, b := B} ->
 {ok, #{result => A / B}};
 _ ->
 {error, invalid_operation}
 end
 end,

 macula:advertise(
 Peer,
 <<"calculator.compute">>,
 Handler,
 #{metadata => #{version => <<"1.0.0">>}}
).

%% Client code
{ok, Client} = macula:connect(<<"https://localhost:9443">>, #{}),
{ok, _Ref} = calculator_service:advertise(Client),

%% Make calls
{ok, #{result := 15}} = macula:call(
 Peer, <<"calculator.compute">>,
 #{operation => <<"add">>, a => 10, b => 5}
).
Example 2: User Service with Database
%% user_service.erl
-module(user_service).
-export([start/1]).

start(Client) ->
 Handler = fun(Args) ->
 handle_request(Args)
 end,

 macula:advertise(
 Peer,
 <<"users.manage">>,
 Handler,
 #{
 metadata => #{
 version => <<"2.0.0">>,
 capabilities => [<<"read">>, <<"write">>, <<"delete">>]
 },
 ttl => 300
 }
).

handle_request(#{action := <<"get">>, user_id := UserId}) ->
 case user_db:fetch(UserId) of
 {ok, User} -> {ok, User};
 not_found -> {error, user_not_found}
 end;

handle_request(#{action := <<"create">>, name := Name, email := Email}) ->
 case user_db:create(#{name => Name, email => Email}) of
 {ok, UserId} ->
 {ok, #{user_id => UserId, name => Name, email => Email}};
 {error, Reason} ->
 {error, Reason}
 end;

handle_request(#{action := <<"delete">>, user_id := UserId}) ->
 case user_db:delete(UserId) of
 ok -> {ok, #{status => <<"deleted">>}};
 {error, Reason} -> {error, Reason}
 end;

handle_request(_) ->
 {error, invalid_action}.
Example 3: Multi-Provider Discovery
%% Provider Node 1
{ok, Client1} = macula:connect(<<"https://node1:9443">>, #{}),
{ok, _} = macula:advertise(Client1, <<"weather.get">>, Handler1),

%% Provider Node 2
{ok, Client2} = macula:connect(<<"https://node2:9443">>, #{}),
{ok, _} = macula:advertise(Client2, <<"weather.get">>, Handler2),

%% Consumer Node
{ok, Client3} = macula:connect(<<"https://node3:9443">>, #{}),

%% Call service - DHT returns both providers
%% One is selected automatically
{ok, Weather} = macula:call(
 Client3,
 <<"weather.get">>,
 #{city => <<"Brussels">>}
).
Example 4: Elixir Phoenix Application
lib/my_app/macula_rpc.ex
defmodule MyApp.MaculaRPC do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 {:ok, client} = :macula.connect("https://localhost:9443", %{
 realm: "com.myapp"
 })

 # Advertise multiple services
 advertise_services(client)

 {:ok, %{client: client}}
 end

 defp advertise_services(client) do
 # User service
 user_handler = fn
 %{action: "get", user_id: user_id} ->
 case MyApp.Users.get(user_id) do
 {:ok, user} -> {:ok, user}
 _ -> {:error, :not_found}
 end

 %{action: "create", params: params} ->
 case MyApp.Users.create(params) do
 {:ok, user} -> {:ok, user}
 {:error, changeset} -> {:error, {:validation, changeset}}
 end
 end

 :macula.advertise(client, "myapp.users", user_handler, %{
 metadata: %{version: "1.0.0", description: "User management"}
 })

 # Post service
 post_handler = fn args -> MyApp.Posts.handle_rpc(args) end

 :macula.advertise(client, "myapp.posts", post_handler, %{
 metadata: %{version: "1.0.0"}
 })
 end

 # Client wrapper
 def call(procedure, args, opts \\ %{}) do
 client = GenServer.call(__MODULE__, :get_client)
 :macula.call(client, procedure, args, opts)
 end

 def handle_call(:get_client, _from, %{client: client} = state) do
 {:reply, client, state}
 end
end

Usage in Phoenix controller
defmodule MyAppWeb.UserController do
 use MyAppWeb, :controller

 def show(conn, %{"id" => id}) do
 case MyApp.MaculaRPC.call("myapp.users", %{action: "get", user_id: id}) do
 {:ok, user} ->
 json(conn, user)

 {:error, :not_found} ->
 conn
 |> put_status(:not_found)
 |> json(%{error: "User not found"})

 {:error, reason} ->
 conn
 |> put_status(:internal_server_error)
 |> json(%{error: inspect(reason)})
 end
 end
end

Migration from WAMP
Key Differences
	Aspect	WAMP (Bondy)	Macula HTTP/3
	Discovery	Centralized registry	DHT-based (decentralized)
	Transport	WebSocket	HTTP/3 QUIC
	Registration	session.register(Procedure, Handler)	macula:advertise(Client, Procedure, Handler)
	RPC Call	session.call(Procedure, Args)	macula:call(Client, Procedure, Args)
	Unregister	session.unregister(Registration)	macula:unadvertise(Client, Procedure)
	Handler Args	[Args, Kwargs] (positional + keyword)	Args :: map() (map only)
	NAT Traversal	Requires special config	Built-in (QUIC)

Migration Steps
1. Update Dependencies
%% Before (WAMP)
{deps, [
 {bondy, {git, "https://github.com/bondy-io/bondy.git", {tag, "1.0.0"}}}
]}.

%% After (Macula)
{deps, [
 {macula, "0.6.6"}
]}.
2. Convert Registration
%% Before (WAMP)
Handler = fun([Args, Kwargs]) ->
 UserId = proplists:get_value(<<"user_id">>, Kwargs),
 {ok, #{user_id => UserId, name => <<"Alice">>}}
end,
{ok, Registration} = bondy:register(Session, <<"myapp.user.get">>, Handler).

%% After (Macula)
Handler = fun(Args) ->
 #{user_id := UserId} = Args,
 {ok, #{user_id => UserId, name => <<"Alice">>}}
end,
{ok, Ref} = macula:advertise(Client, <<"myapp.user.get">>, Handler).
3. Convert RPC Calls
%% Before (WAMP)
{ok, Result} = bondy:call(Session, <<"myapp.user.get">>, [#{user_id => <<"123">>}]).

%% After (Macula)
{ok, Result} = macula:call(Client, <<"myapp.user.get">>, #{user_id => <<"123">>}).
4. Update Handler Signatures
%% Before (WAMP) - separate positional and keyword args
Handler = fun([PositionalArgs, KeywordArgs]) ->
 UserId = proplists:get_value(<<"user_id">>, KeywordArgs),
 %% ...
end.

%% After (Macula) - single map argument
Handler = fun(Args) ->
 #{user_id := UserId} = Args,
 %% ...
end.
5. Update Error Handling
%% Before (WAMP)
case bondy:call(Session, Procedure, Args) of
 {ok, Result} -> handle_result(Result);
 {error, {wamp_error, Uri, Details, _Args}} -> handle_wamp_error(Uri)
end.

%% After (Macula)
case macula:call(Client, Procedure, Args) of
 {ok, Result} -> handle_result(Result);
 {error, timeout} -> handle_timeout();
 {error, service_not_found} -> handle_not_found();
 {error, {handler_error, Reason}} -> handle_business_error(Reason)
end.
Migration Checklist
	[] Update dependencies (WAMP → Macula)
	[] Convert handler signatures ([Args, Kwargs] → Args :: map())
	[] Replace bondy:register/3 with macula:advertise/3,4
	[] Replace bondy:call/3 with macula:call/2,3
	[] Replace bondy:unregister/2 with macula:unadvertise/2
	[] Update error handling patterns
	[] Add periodic re-advertisement logic (if needed)
	[] Test with DHT unavailable (graceful degradation)
	[] Update monitoring and logging

See Also
	Quick Start Guide - Getting started tutorial
	PubSub Guide - Pub/Sub patterns and usage
	Glossary - Terminology reference

Last Updated: 2025-11-30
Status: ✅ Complete

 Macula HTTP/3 Mesh - Pub/Sub Guide

Complete guide to decentralized publish/subscribe with DHT-based subscriber discovery
[image: Pub/Sub Architecture]
Status: COMPLETE
Last Updated: 2025-11-28

Table of Contents
	Overview
	Architecture
	Subscribing to Topics
	Publishing Events
	Wildcard Subscriptions
	Error Handling
	Performance Optimization
	Best Practices
	Examples
	Migration from WAMP

Overview
Macula provides fully decentralized pub/sub without requiring any central message broker. Subscribers advertise their interest to a Kademlia DHT (Distributed Hash Table), and publishers discover subscribers by querying the DHT.
Key Features
	Fully Decentralized - No central broker, DHT-based subscriber discovery
	Topic-Based Routing - Events routed to all topic subscribers
	Wildcard Support - Subscribe to patterns like sensor.* or #
	At-Least-Once Delivery - Direct delivery via QUIC connections
	Multi-Subscriber Fanout - One publish reaches all matching subscribers
	NAT-Friendly - HTTP/3 QUIC works through firewalls

How It Works
The diagram above illustrates the complete pub/sub flow:
	Subscription Registration - Subscribers advertise to DHT
	Publishing Process - Publishers query DHT and fanout to subscribers
	Message Delivery - Direct QUIC streams to all matching subscribers
	Module Architecture - Layered design from API to transport
	Wildcard Matching - Single-level (*) and multi-level (#) patterns

Architecture
Components
macula_pubsub_dht
DHT integration for pub/sub:
	Subscriber advertisement - Store subscriptions in DHT
	Subscriber discovery - Query DHT for topic subscribers
	Topic matching - Support for exact and wildcard topics

Key Functions:
	subscribe/3 - Advertise subscription to DHT
	unsubscribe/2 - Remove subscription from DHT
	find_subscribers/2 - Query DHT for topic subscribers
	match_topic/2 - Match topic against patterns

macula_pubsub_handler
Connection-level pub/sub handler:
	Holds local subscriptions and callbacks
	Handles incoming MSG_PUBLISH messages
	Invokes subscriber callbacks

macula_gateway_pubsub
Gateway pub/sub routing:
	Routes messages to connected clients
	Handles wildcard matching
	Manages subscription state for gateway clients

macula (Public API)
The only module applications should import:
	connect/2, connect_local/1 - Connect to mesh
	subscribe/3 - Subscribe to a topic
	unsubscribe/2 - Unsubscribe from a topic
	publish/3,4 - Publish an event
	disconnect/1 - Close connection

macula_peer (Internal)
Internal mesh participant module (called by macula).
Data Flow
Subscription:
Application
 |
macula:subscribe(Client, Topic, Callback)
 |
macula_connection (gen_server:call)
 |
macula_pubsub_handler (store local callback)
 |
macula_pubsub_dht:subscribe(DhtPid, Topic, SubscriberInfo)
 |
macula_routing_dht (DHT storage at key=SHA256(Topic))
Publishing:
Application
 |
macula:publish(Client, Topic, Payload)
 |
macula_connection (gen_server:call)
 |
macula_pubsub_dht:find_subscribers(DhtPid, Topic)
 -> Returns list of subscriber endpoints
 |
For each subscriber:
 |
Send MSG_PUBLISH over HTTP/3 QUIC
 |
Subscriber's macula_pubsub_handler
 |
Invoke registered callback with event

Subscribing to Topics
Basic Subscription
%% Erlang
Callback = fun(Event) ->
 #{topic := Topic, payload := Payload} = Event,
 io:format("Received ~s: ~p~n", [Topic, Payload])
end,

{ok, Ref} = macula:subscribe(
 Peer,
 <<"sensor.temperature">>,
 Callback
).
Elixir
callback = fn event ->
 %{topic: topic, payload: payload} = event
 IO.puts("Received #{topic}: #{inspect(payload)}")
end

{:ok, ref} = :macula.subscribe(
 client,
 "sensor.temperature",
 callback
)
Callback Contract
Callbacks receive events as maps:
-type event() :: #{
 topic := binary(),
 payload := term(),
 publisher_id => binary(),
 timestamp => integer()
}.

-type callback_fn() :: fun((event()) -> ok | {error, term()}).
Callback Rules:
	Input: Event map with topic and payload
	Output: ok or {error, Reason} (return value is ignored for at-least-once)
	Execution: Callbacks run in spawned processes (non-blocking)
	Errors: Callback crashes are logged but don't affect other subscribers

Process-Based Subscription
Send events to a process instead of callback:
%% Subscribe with process pid
{ok, Ref} = macula:subscribe(
 Peer,
 <<"sensor.temperature">>,
 self() % Events sent as messages
).

%% Handle events in receive loop
receive
 {macula_event, Topic, Payload} ->
 handle_event(Topic, Payload)
end.
Unsubscribing
ok = macula:unsubscribe(Client, <<"sensor.temperature">>).
Behavior:
	Removes local callback from subscription list
	Attempts to remove from DHT (best-effort)
	DHT entries expire naturally via TTL

Publishing Events
Basic Publishing
%% Erlang
ok = macula:publish(
 Peer,
 <<"sensor.temperature">>,
 #{
 value => 21.5,
 unit => <<"celsius">>,
 timestamp => erlang:system_time(millisecond)
 }
).
Elixir
:ok = :macula.publish(
 client,
 "sensor.temperature",
 %{
 value: 21.5,
 unit: "celsius",
 timestamp: System.system_time(:millisecond)
 }
)
Fire-and-Forget Semantics
Publishing is asynchronous by default:
	publish/3 returns immediately after initiating delivery
	Delivery happens in background
	No confirmation that all subscribers received the message

With Options
ok = macula:publish(
 Peer,
 <<"sensor.temperature">>,
 Payload,
 #{
 exclude_self => true, % Don't deliver to self
 retain => false % Don't retain message (future feature)
 }
).

Wildcard Subscriptions
Wildcard Types
Macula supports two wildcard patterns:
	Pattern	Matches	Example
	*	Single segment	sensor.* matches sensor.temperature, sensor.humidity
	#	Multiple segments	sensor.# matches sensor.room1.temperature, sensor.room2.humidity.indoor

Single-Level Wildcard (*)
%% Subscribe to all sensors (one level)
{ok, _} = macula:subscribe(
 Peer,
 <<"sensor.*">>,
 fun(#{topic := Topic, payload := Payload}) ->
 io:format("Sensor event on ~s: ~p~n", [Topic, Payload])
 end
).

%% These will match:
macula:publish(Client, <<"sensor.temperature">>, #{value => 21.5}),
macula:publish(Client, <<"sensor.humidity">>, #{value => 65}),

%% These will NOT match:
macula:publish(Client, <<"sensor.room1.temperature">>, #{value => 22.0}),
macula:publish(Client, <<"device.sensor">>, #{value => 10}).
Multi-Level Wildcard (#)
%% Subscribe to all sensor events (any depth)
{ok, _} = macula:subscribe(
 Peer,
 <<"sensor.#">>,
 fun(#{topic := Topic, payload := Payload}) ->
 io:format("Sensor event on ~s: ~p~n", [Topic, Payload])
 end
).

%% All of these will match:
macula:publish(Client, <<"sensor.temperature">>, #{value => 21.5}),
macula:publish(Client, <<"sensor.room1.temperature">>, #{value => 22.0}),
macula:publish(Client, <<"sensor.building.floor3.room42.humidity">>, #{value => 55}).
Topic Matching Algorithm
%% Internal matching logic
match_topic(<<"sensor.*">>, <<"sensor.temperature">>) -> true;
match_topic(<<"sensor.*">>, <<"sensor.room1.temp">>) -> false;
match_topic(<<"sensor.#">>, <<"sensor.room1.temp">>) -> true;
match_topic(<<"sensor.*.temperature">>, <<"sensor.room1.temperature">>) -> true;
match_topic(Pattern, Topic) ->
 %% Split on dots and match segment by segment
 match_segments(binary:split(Pattern, <<".">>, [global]),
 binary:split(Topic, <<".">>, [global])).

Error Handling
Subscription Errors
case macula:subscribe(Client, Topic, Callback) of
 {ok, Ref} ->
 %% Successfully subscribed
 {ok, Ref};

 {error, invalid_topic} ->
 %% Topic format is invalid
 {error, bad_topic};

 {error, {dht_error, Reason}} ->
 %% Failed to advertise to DHT
 %% Subscription still works locally
 ?LOG_WARNING("DHT advertisement failed: ~p", [Reason]),
 {error, partial_subscription};

 {error, Reason} ->
 {error, Reason}
end.
Publishing Errors
case macula:publish(Client, Topic, Payload) of
 ok ->
 %% Published to at least one subscriber (or no subscribers exist)
 ok;

 {error, no_subscribers} ->
 %% No subscribers found for topic
 %% This may be expected behavior
 ok;

 {error, {partial_delivery, FailedNodes}} ->
 %% Some subscribers unreachable
 ?LOG_WARNING("Failed to deliver to: ~p", [FailedNodes]),
 ok;

 {error, Reason} ->
 {error, Reason}
end.
Callback Error Handling
%% Defensive callback implementation
Callback = fun(Event) ->
 try
 #{topic := Topic, payload := Payload} = Event,
 process_event(Topic, Payload),
 ok
 catch
 Class:Reason:Stacktrace ->
 ?LOG_ERROR("Callback error: ~p:~p~n~p",
 [Class, Reason, Stacktrace]),
 {error, callback_failed}
 end
end.

Performance Optimization
Subscriber Caching
Publishers cache subscriber lists:
	Cache TTL: 60 seconds
	DHT queries: Only on cache miss
	Cache hit ratio: ~98% for frequent publishes

Example:
- Topic published 100 times/minute
- Cache TTL = 60 seconds
- DHT queries = ~2/minute
- Cache hit ratio = 98%
Batching Strategy
For high-throughput scenarios, batch messages:
%% Instead of many individual publishes
lists:foreach(fun(Value) ->
 macula:publish(Client, <<"sensor.data">>, #{value => Value})
end, Values),

%% Consider batching
macula:publish(Client, <<"sensor.data.batch">>, #{
 values => Values,
 count => length(Values),
 timestamp => erlang:system_time(millisecond)
}).
Connection Pooling
The gateway maintains connection pools to subscribers:
	Max connections: 1,000 (configurable)
	LRU eviction: Least recently used connections evicted when pool is full
	Connection reuse: QUIC streams multiplexed on single connection

Topic Design for Performance
Avoid:
%% Too many unique topics (one per entity)
<<"sensor.", SensorId/binary, ".temperature">> % Millions of topics
Prefer:
%% Fewer topics with IDs in payload
<<"sensor.temperature">> % Single topic
#{sensor_id => SensorId, value => Value} % ID in payload

Best Practices
Topic Naming
Use hierarchical naming with dot-separated segments:
%% Good - hierarchical, namespaced
<<"myapp.sensor.temperature">>
<<"myapp.user.status">>
<<"energy.home.consumption">>

%% Avoid
<<"temperature">> % Not namespaced
<<"user-status">> % Use dots, not dashes
<<"myapp_sensor_temp">> % Use dots, not underscores
Payload Design
Include metadata in payloads:
#{
 %% Required data
 value => 21.5,

 %% Contextual metadata
 sensor_id => <<"sensor-001">>,
 location => <<"room-42">>,
 timestamp => erlang:system_time(millisecond),

 %% Optional metadata
 unit => <<"celsius">>,
 source => <<"direct">>
}
Callback Design
Keep callbacks simple and fast:
%% Good - simple, delegates heavy work
Callback = fun(Event) ->
 %% Quick validation
 case validate_event(Event) of
 ok ->
 %% Delegate to worker for heavy processing
 gen_server:cast(my_worker, {process_event, Event});
 {error, _} ->
 ok % Ignore invalid events
 end
end.

%% Avoid - heavy processing in callback
Callback = fun(Event) ->
 %% Don't do database writes or HTTP calls here
 #{payload := Payload} = Event,
 database:insert(payload_table, Payload), % Blocking!
 http_client:post(webhook_url, Payload) % Blocking!
end.
Subscription Lifecycle
Subscribe early, unsubscribe on shutdown:
init([]) ->
 {ok, Client} = macula:connect(Endpoint, #{}),
 {ok, Ref} = macula:subscribe(Client, <<"events.#">>, self()),
 {ok, #{client => Client, subscription => Ref}}.

terminate(_Reason, #{client := Client}) ->
 %% Clean up subscription
 macula:unsubscribe(Client, <<"events.#">>),
 macula:disconnect(Client),
 ok.
Error Recovery
Handle reconnection gracefully:
handle_info({macula_disconnected, Reason}, State) ->
 ?LOG_WARNING("Disconnected: ~p, reconnecting...", [Reason]),
 timer:send_after(5000, reconnect),
 {noreply, State#{connected => false}};

handle_info(reconnect, #{endpoint := Endpoint} = State) ->
 case macula:connect(Endpoint, #{}) of
 {ok, Client} ->
 %% Re-subscribe to topics
 resubscribe(Client, State),
 {noreply, State#{client => Client, connected => true}};
 {error, _} ->
 timer:send_after(10000, reconnect),
 {noreply, State}
 end.

Examples
Example 1: Temperature Monitoring
%% temperature_monitor.erl
-module(temperature_monitor).
-behaviour(gen_server).
-export([start_link/1, init/1, handle_info/2]).

start_link(Endpoint) ->
 gen_server:start_link(?MODULE, [Endpoint], []).

init([Endpoint]) ->
 {ok, Client} = macula:connect(Endpoint, #{}),

 %% Subscribe to all temperature sensors
 {ok, _} = macula:subscribe(
 Peer,
 <<"sensor.*.temperature">>,
 self()
),

 {ok, #{client => Client, readings => #{}}}.

handle_info({macula_event, Topic, Payload}, State) ->
 #{value := Value, sensor_id := SensorId} = Payload,

 %% Check for alerts
 case Value > 30.0 of
 true ->
 alert_high_temperature(SensorId, Value);
 false ->
 ok
 end,

 %% Store reading
 Readings = maps:put(SensorId, Value, maps:get(readings, State)),
 {noreply, State#{readings => Readings}}.

alert_high_temperature(SensorId, Value) ->
 io:format("ALERT: ~s temperature is ~.1f C!~n", [SensorId, Value]).
Example 2: Event Bus Pattern
%% event_bus.erl
-module(event_bus).
-export([start/1, subscribe/2, publish/2]).

start(Endpoint) ->
 {ok, Client} = macula:connect(Endpoint, #{}),
 register(?MODULE, spawn(fun() -> loop(Client) end)),
 {ok, Client}.

subscribe(Topic, Handler) ->
 ?MODULE ! {subscribe, Topic, Handler}.

publish(Topic, Event) ->
 ?MODULE ! {publish, Topic, Event}.

loop(Client) ->
 receive
 {subscribe, Topic, Handler} ->
 macula:subscribe(Client, Topic, Handler),
 loop(Client);

 {publish, Topic, Event} ->
 macula:publish(Client, Topic, Event),
 loop(Client)
 end.

%% Usage
event_bus:start(<<"https://localhost:9443">>),

%% Subscribe to user events
event_bus:subscribe(<<"user.#">>, fun(E) ->
 io:format("User event: ~p~n", [E])
end),

%% Publish events
event_bus:publish(<<"user.created">>, #{user_id => <<"123">>}),
event_bus:publish(<<"user.updated">>, #{user_id => <<"123">>, name => <<"Alice">>}).
Example 3: Real-Time Dashboard
lib/my_app/realtime_dashboard.ex
defmodule MyApp.RealtimeDashboard do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 {:ok, client} = :macula.connect("https://localhost:9443", %{})

 # Subscribe to multiple topics
 topics = [
 "metrics.cpu",
 "metrics.memory",
 "metrics.disk",
 "alerts.#"
]

 Enum.each(topics, fn topic ->
 :macula.subscribe(client, topic, self())
 end)

 {:ok, %{client: client, metrics: %{}}}
 end

 def handle_info({:macula_event, topic, payload}, state) do
 # Broadcast to Phoenix channels
 MyAppWeb.Endpoint.broadcast!("dashboard:metrics", "update", %{
 topic: topic,
 data: payload,
 timestamp: DateTime.utc_now()
 })

 # Update local state
 metrics = Map.put(state.metrics, topic, payload)
 {:noreply, %{state | metrics: metrics}}
 end
end
Example 4: Distributed Sensor Network
%% sensor_node.erl - Runs on each sensor
-module(sensor_node).
-export([start/2]).

start(Gateway, SensorId) ->
 {ok, Client} = macula:connect(Gateway, #{}),
 publish_loop(Client, SensorId).

publish_loop(Client, SensorId) ->
 %% Read sensor value
 Value = read_temperature_sensor(),

 %% Publish reading
 Topic = <<"sensor.temperature">>,
 Payload = #{
 sensor_id => SensorId,
 value => Value,
 timestamp => erlang:system_time(millisecond),
 location => get_location()
 },

 macula:publish(Client, Topic, Payload),

 %% Wait and repeat
 timer:sleep(1000),
 publish_loop(Client, SensorId).

%% aggregator.erl - Runs on aggregation node
-module(aggregator).
-export([start/1]).

start(Gateway) ->
 {ok, Client} = macula:connect(Gateway, #{}),

 %% Subscribe to all sensors
 {ok, _} = macula:subscribe(
 Peer,
 <<"sensor.#">>,
 fun(Event) ->
 #{payload := #{sensor_id := Id, value := V}} = Event,
 store_reading(Id, V),
 update_dashboard(Id, V)
 end
),

 {ok, Client}.

Migration from WAMP
Key Differences
	Aspect	WAMP (Bondy)	Macula HTTP/3
	Discovery	Centralized broker	DHT-based (decentralized)
	Transport	WebSocket	HTTP/3 QUIC
	Subscribe	session.subscribe(Topic, Handler)	macula:subscribe(Client, Topic, Handler)
	Publish	session.publish(Topic, Args)	macula:publish(Client, Topic, Payload)
	Unsubscribe	session.unsubscribe(Subscription)	macula:unsubscribe(Client, Topic)
	Event Format	[Args, Kwargs]	#{topic, payload} map
	NAT Traversal	Requires config	Built-in (QUIC)

Migration Steps
1. Update Dependencies
%% Before (WAMP)
{deps, [
 {bondy, {git, "https://github.com/bondy-io/bondy.git", {tag, "1.0.0"}}}
]}.

%% After (Macula)
{deps, [
 {macula, "0.10.0"}
]}.
2. Convert Subscriptions
%% Before (WAMP)
Handler = fun([Args, Kwargs]) ->
 Value = proplists:get_value(<<"value">>, Kwargs),
 process_value(Value)
end,
{ok, Subscription} = bondy:subscribe(Session, <<"sensor.temperature">>, Handler).

%% After (Macula)
Handler = fun(Event) ->
 #{payload := #{value := Value}} = Event,
 process_value(Value),
 ok
end,
{ok, Ref} = macula:subscribe(Client, <<"sensor.temperature">>, Handler).
3. Convert Publishing
%% Before (WAMP)
bondy:publish(Session, <<"sensor.temperature">>, [#{value => 21.5}]).

%% After (Macula)
macula:publish(Client, <<"sensor.temperature">>, #{value => 21.5}).
4. Update Event Handlers
%% Before (WAMP)
handle_event([Args, Kwargs]) ->
 Value = proplists:get_value(<<"value">>, Kwargs),
 Timestamp = proplists:get_value(<<"timestamp">>, Kwargs),
 {Value, Timestamp}.

%% After (Macula)
handle_event(Event) ->
 #{payload := Payload} = Event,
 #{value := Value, timestamp := Timestamp} = Payload,
 {Value, Timestamp}.
Migration Checklist
	[] Update dependencies (WAMP -> Macula)
	[] Convert subscription calls
	[] Update event handler signatures
	[] Replace bondy:publish/3 with macula:publish/3
	[] Replace bondy:subscribe/3 with macula:subscribe/3
	[] Update error handling patterns
	[] Test wildcard subscriptions
	[] Verify event delivery under load
	[] Update monitoring and logging

See Also
	RPC Guide - Remote procedure calls with DHT discovery
	Quick Start - Getting started tutorial
	Hello World - Your first Macula application
	Architecture - System architecture overview

Last Updated: 2025-11-28
Status: Complete

 Macula Performance Optimization Guide

Overview
Macula implements several performance optimizations to achieve high-throughput pub/sub messaging over distributed DHT routing. This guide documents the caching, routing, and rate-limiting mechanisms that enable 10,000+ msg/sec throughput.
Key Modules:
	macula_subscriber_cache - Topic→Subscribers caching with TTL
	macula_direct_routing - NodeId→Endpoint direct routing table
	macula_gateway_pubsub_router - Optimized message distribution

Performance Architecture
┌───┐
│ PubSub Message Flow │
├───┤
│ │
│ Publisher │
│ │ │
│ ▼ │
│ ┌──────────────────┐ │
│ │ macula:publish() │ │
│ └────────┬─────────┘ │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ Subscriber Cache Layer │ │
│ │ ┌───┐ │ │
│ │ │ macula_subscriber_cache │ │ │
│ │ │ • ETS-backed O(1) lookup │ │ │
│ │ │ • TTL-based expiration (default: 5s) │ │ │
│ │ │ • Rate-limiting (default: 2s between DHT queries) │ │ │
│ │ └───┘ │ │
│ └────────┬───┬───────────┘ │
│ │ │ │
│ Cache Hit Cache Miss │
│ │ │ │
│ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────────┐ │
│ │ Use Cached │ │ Query DHT │ │
│ │ Subscribers │ │ (rate-limited) │ │
│ └────────┬────────┘ └──────────┬──────────┘ │
│ │ │ │
│ └──────────────────┬──────────────────────┘ │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ Direct Routing Layer │ │
│ │ ┌───┐ │ │
│ │ │ macula_direct_routing │ │ │
│ │ │ • NodeId → Endpoint ETS cache │ │ │
│ │ │ • TTL-based expiration (default: 5m) │ │ │
│ │ │ • Bypasses DHT for known endpoints │ │ │
│ │ └───┘ │ │
│ └────────┬───┬───────────┘ │
│ │ │ │
│ Route Hit Route Miss │
│ │ │ │
│ ▼ ▼ │
│ ┌─────────────────┐ ┌─────────────────────┐ │
│ │ Direct QUIC │ │ Use Endpoint from │ │
│ │ Connection │ │ DHT Subscriber Info │ │
│ └────────┬────────┘ └──────────┬──────────┘ │
│ │ │ │
│ └──────────────────┬──────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ pubsub_route │ │
│ │ via QUIC │ │
│ └────────┬────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────┐ │
│ │ Subscribers │ │
│ └─────────────────┘ │
│ │
└───┘

Optimization 1: Subscriber Cache
Problem
DHT lookups add 50-200ms latency per message. For high-frequency topics (10+ msg/sec), this creates unacceptable delays.
Solution
Cache discovered subscribers with TTL-based expiration.
Module: macula_subscriber_cache
%% API
-export([
 lookup/1, %% Look up subscribers (returns {ok, List} or {miss, Key})
 store/2, %% Store subscribers for topic
 invalidate/1, %% Invalidate on topology change
 should_query_dht/1,%% Rate-limit check
 record_dht_query/1 %% Record query for rate-limiting
]).
Data Flow
 ┌─────────────────────┐
 │ lookup(Topic) │
 └──────────┬──────────┘
 │
 ┌──────────▼──────────┐
 │ ETS Lookup │
 │ O(1) complexity │
 └──────────┬──────────┘
 │
 ┌─────────────────┼─────────────────┐
 │ │ │
 ┌─────▼─────┐ ┌─────▼─────┐ ┌─────▼─────┐
 │ Found & │ │ Found & │ │ Not Found │
 │ Valid │ │ Expired │ │ │
 └─────┬─────┘ └─────┬─────┘ └─────┬─────┘
 │ │ │
 ▼ ▼ ▼
 {ok, Subs} Delete + {miss} {miss, Key}
Configuration
	Parameter	Default	Description
	ttl_ms	5000	Cache entry TTL (5 seconds)
	min_discovery_interval_ms	2000	Rate-limit window (2 seconds)

Performance Impact
	Scenario	Without Cache	With Cache	Improvement
	First publish	50-200ms	50-200ms	-
	Repeated publish (same topic)	50-200ms	<1ms	50-200x
	High-frequency (10+ msg/sec)	Blocked	Smooth	Critical

Optimization 2: Direct Routing Table
Problem
After discovering a subscriber, we still need their endpoint address. Storing this mapping allows direct P2P connections without repeated DHT lookups.
Solution
Cache NodeId→Endpoint mappings for direct QUIC connections.
Module: macula_direct_routing
%% API
-export([
 lookup/1, %% Look up endpoint for node
 store/2, %% Store node→endpoint mapping
 store_from_subscriber/1, %% Store from DHT subscriber info
 remove/1, %% Remove stale entry
 stats/0 %% Get hit/miss statistics
]).
Data Flow
 ┌─────────────────────┐
 │ Route to NodeId │
 └──────────┬──────────┘
 │
 ┌──────────▼──────────┐
 │ Direct Routing │
 │ Table Lookup │
 └──────────┬──────────┘
 │
 ┌─────────────────┼─────────────────┐
 │ │
 ┌─────▼─────┐ ┌─────▼─────┐
 │ Hit │ │ Miss │
 │ (cached) │ │ │
 └─────┬─────┘ └─────┬─────┘
 │ │
 ▼ ▼
 Direct QUIC to Use endpoint from
 cached endpoint subscriber info
Entry Structure
{NodeId, Endpoint, ExpiresAt}
%% Example:
{<<NodeId:256>>, <<"https://192.168.1.10:4433">>, 1700000000000}
Configuration
	Parameter	Default	Description
	ttl_ms	300000	Route entry TTL (5 minutes)
	cleanup_interval_ms	60000	Cleanup frequency (1 minute)

Performance Impact
	Scenario	Without Direct Routing	With Direct Routing	Improvement
	Known subscriber	10-50ms	<1ms	10-50x
	Second message to same node	Full lookup	Direct	Significant

Optimization 3: Rate-Limited DHT Discovery
Problem
When cache expires during high-frequency publishing, multiple publishes trigger simultaneous DHT queries ("discovery storms").
Solution
Allow only one DHT query per topic within a minimum interval.
Algorithm
┌───┐
│ Rate-Limiting Flow │
├───┤
│ │
│ ┌──────────────────┐ │
│ │ Cache Miss │ │
│ │ (need DHT query) │ │
│ └────────┬─────────┘ │
│ │ │
│ ▼ │
│ ┌──┐ │
│ │ should_query_dht(Topic) │ │
│ │ │ │
│ │ Now = current_time() │ │
│ │ LastQuery = rate_limit_table[Topic] │ │
│ │ │ │
│ │ if (Now - LastQuery) >= min_discovery_interval: │ │
│ │ return true ──────────────────────────┐ │ │
│ │ else: │ │ │
│ │ return false ──────────────┐ │ │ │
│ │ │ │ │ │
│ └──────────────────────────────────┼───────────┼─────────┘ │
│ │ │ │
│ ┌─────────▼───┐ ┌────▼────────┐ │
│ │ Rate-limited│ │Query DHT │ │
│ │ Skip query │ │Store result │ │
│ │ Use best- │ │in cache │ │
│ │ effort │ │ │ │
│ └─────────────┘ └─────────────┘ │
│ │
└───┘
Configuration
	Parameter	Default	Description
	min_discovery_interval_ms	2000	Minimum time between DHT queries per topic

Performance Impact
	Scenario	Without Rate-Limiting	With Rate-Limiting	Improvement
	100 publishes in 1 second (cache expired)	100 DHT queries	1 DHT query	100x reduction
	DHT load during traffic burst	High	Controlled	Critical

Combined Performance Results
Benchmark: High-Frequency PubSub
Test Setup:
	1 Publisher
	3 Subscribers across mesh
	100ms publish interval (10 msg/sec)

Results:
	Configuration	Latency (p50)	Latency (p99)	DHT Queries/sec
	No optimizations	150ms	350ms	10.0
	+ Subscriber Cache	2ms	15ms	0.2
	+ Direct Routing	1ms	5ms	0.2
	+ Rate Limiting	1ms	5ms	0.05

Memory Usage
	Cache	Size per Entry	Max Entries	Max Memory
	Subscriber Cache	~1KB	1000 topics	~1MB
	Direct Routing	~100B	10000 nodes	~1MB
	Rate Limit Table	~50B	1000 topics	~50KB

Total overhead: ~2.1MB (bounded, with automatic cleanup)

Tuning Guide
Low-Latency Configuration (Games, Real-time)
%% Shorter TTLs for fresher data
{macula_subscriber_cache, #{
 ttl_ms => 2000, %% 2 seconds
 min_discovery_interval_ms => 1000 %% 1 second
}},
{macula_direct_routing, #{
 ttl_ms => 60000 %% 1 minute
}}
High-Throughput Configuration (IoT, Sensors)
%% Longer TTLs for reduced DHT load
{macula_subscriber_cache, #{
 ttl_ms => 30000, %% 30 seconds
 min_discovery_interval_ms => 10000 %% 10 seconds
}},
{macula_direct_routing, #{
 ttl_ms => 600000 %% 10 minutes
}}
Dynamic Topology Configuration (Nodes join/leave frequently)
%% Balance freshness and performance
{macula_subscriber_cache, #{
 ttl_ms => 5000, %% 5 seconds (default)
 min_discovery_interval_ms => 2000 %% 2 seconds (default)
}},
{macula_direct_routing, #{
 ttl_ms => 120000 %% 2 minutes
}}

Monitoring
Cache Statistics
%% Get subscriber cache stats
Stats = macula_subscriber_cache:stats().
%% Returns:
%% #{
%% hits => 1234,
%% misses => 56,
%% hit_rate => 95.6,
%% table_size => 42,
%% rate_limited => 100
%% }

%% Get direct routing stats
RouteStats = macula_direct_routing:stats().
%% Returns:
%% #{
%% hits => 5678,
%% misses => 12,
%% stores => 90,
%% table_size => 15
%% }
Key Metrics to Monitor
	Metric	Target	Action if Below Target
	Cache Hit Rate	>90%	Increase ttl_ms
	Rate Limited Count	Stable	Normal behavior
	Table Size	Bounded	Check for leaks

Implementation Details
Thread Safety
Both caches use ETS with {read_concurrency, true} for lock-free reads:
Table = ets:new(?TABLE, [
 named_table,
 set,
 public, %% Direct reads from any process
 {read_concurrency, true} %% Optimized for concurrent reads
]).
Cleanup Strategy
Automatic periodic cleanup removes expired entries:
handle_info(cleanup, State) ->
 Now = erlang:system_time(millisecond),
 %% Match spec: delete where ExpiresAt < Now
 MatchSpec = [{{'$1', '_', '$2'}, [{'<', '$2', Now}], [true]}],
 ets:select_delete(?TABLE, MatchSpec),
 %% Schedule next cleanup
 erlang:send_after(?CLEANUP_INTERVAL_MS, self(), cleanup),
 {noreply, State}.

Future Optimizations (Planned)
	Adaptive TTL - Adjust cache TTL based on topic publish frequency
	Predictive Prefetch - Pre-warm cache for topics with predictable patterns
	Bloom Filter - Fast negative lookup for non-existent topics
	Connection Pooling - Keep QUIC streams warm for hot paths

Last Updated: 2025-11-26
Macula Version: 0.10.1
Status: ✅ Production-ready

 Macula Monitoring Guide

Complete guide to monitoring Macula mesh deployments
Audience: Operators
Last Updated: 2025-11-28

Table of Contents
	Overview
	Key Metrics
	Log Monitoring
	Health Checks
	Alerting
	Dashboards
	Capacity Planning

Overview
Macula provides several observable metrics and log messages for production monitoring. This guide covers what to monitor, how to interpret metrics, and when to alert.
Monitoring Philosophy
 ┌─────────────────────────────────────┐
 │ Observability Layers │
 └─────────────────────────────────────┘
 │
 ┌─────────────────────────────┼─────────────────────────────┐
 │ │ │
 ▼ ▼ ▼
┌───────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Metrics │ │ Logs │ │ Traces │
│ (Numerical) │ │ (Textual) │ │ (Distributed) │
├───────────────┤ ├─────────────────┤ ├─────────────────┤
│ • Pool sizes │ │ • Cleanup events│ │ • RPC call flow │
│ • Latencies │ │ • Rejections │ │ • PubSub fanout │
│ • Throughput │ │ • Errors/Warns │ │ • DHT queries │
│ • Memory │ │ • State changes │ │ │
└───────────────┘ └─────────────────┘ └─────────────────┘

Key Metrics
Memory Management Metrics
These metrics indicate the health of Macula's bounded resource pools.
	Metric	Module	Threshold	Action
	Connection Pool Size	macula_gateway_mesh	> 800 (of 1,000)	Scale horizontally
	Client Count	macula_gateway_client_manager	> 8,000 (of 10,000)	Scale or rate-limit
	Service Registry Size	macula_service_registry	Increasing trend	Check for stale services
	Pending RPC Calls	macula_rpc_handler	> 100 sustained	Check handler latency
	Pending DHT Queries	macula_rpc_handler	> 50 sustained	Check DHT health

Querying Metrics
Connection Pool (via Erlang shell)
%% Get connection pool stats
macula_gateway_mesh:get_stats().
%% Returns: #{connections => 245, max => 1000, lru_evictions => 12}

%% Check if pool is near capacity
case macula_gateway_mesh:get_stats() of
 #{connections := C, max := Max} when C > Max * 0.8 ->
 io:format("WARNING: Pool at ~p% capacity~n", [C * 100 div Max]);
 _ ->
 ok
end.
Client Count
%% Get client manager stats
macula_gateway_client_manager:get_stats().
%% Returns: #{clients => 1234, max => 10000, streams => 3456}

%% Check rejection rate (if tracked)
macula_gateway_client_manager:get_rejection_count().
Service Registry
%% Get service count
macula_service_registry:count_services().
%% Returns: 45

%% List all registered services (debug only)
macula_service_registry:list_services().
Performance Metrics
	Metric	Target	Warning	Critical
	RPC Latency (p50)	< 10ms	> 50ms	> 200ms
	RPC Latency (p99)	< 50ms	> 200ms	> 1000ms
	PubSub Throughput	> 1,000 msg/s	< 500 msg/s	< 100 msg/s
	DHT Query Time	< 100ms	> 200ms	> 500ms
	Cache Hit Rate	> 90%	< 80%	< 50%

Log Monitoring
Log Levels
Macula uses standard OTP log levels:
	Level	Usage	Action Required
	debug	Detailed operational info	None (high volume)
	info	Normal operations	None
	notice	Significant events	Review if unusual
	warning	Potential issues	Investigate
	error	Operation failures	Fix required

Critical Log Patterns
Memory Management (Normal Operation)
%% Service cleanup - runs every 60 seconds
[info] Service cleanup: removed 3 expired service(s)
[debug] Service cleanup: no expired services

%% Connection pool LRU eviction
[debug] Evicted LRU connection: NodeId=abc123

%% Stream cleanup on disconnect
[debug] Cleaned up streams for disconnected client: NodeId=xyz789
Warning Signs
%% Client rejection - monitor frequency
[warning] Client connection rejected: max_clients_reached

%% RPC timeout
[warning] RPC call timed out: Procedure=energy.home.get, CallId=call-123

%% DHT query failure
[warning] DHT query failed: Key=energy.home.get, Reason=timeout
Errors Requiring Action
%% Gateway crash
[error] Gateway process crashed: Reason={badmatch, undefined}

%% QUIC connection failure
[error] QUIC handshake failed: Endpoint=192.168.1.100:4433, Reason=tls_alert

%% Memory pressure
[error] Memory threshold exceeded: Current=85%, Threshold=80%
Log Aggregation Queries
Grafana Loki / Elasticsearch
Client rejections in last hour
{app="macula"} |= "max_clients_reached" | count_over_time([1h])

RPC timeouts by procedure
{app="macula"} |= "RPC call timed out" | regexp "Procedure=(?P<proc>[^,]+)" | by (proc)

Service cleanup activity
{app="macula"} |= "Service cleanup" | rate([5m])

Health Checks
HTTP Health Endpoint
If using macula_gateway with HTTP enabled:
Basic health check
curl http://localhost:4433/health

Detailed status
curl http://localhost:4433/status

Erlang Health Functions
%% Check gateway is alive
is_pid(whereis(macula_gateway)).

%% Check all supervisors
[{Name, is_pid(whereis(Name))} || Name <- [
 macula_sup,
 macula_gateway_sup,
 macula_connection_sup
]].

%% Check DHT connectivity
macula_dht:ping().
%% Returns: pong | {error, Reason}
Kubernetes Probes
Liveness probe - is the process running?
livenessProbe:
 exec:
 command:
 - /opt/macula/bin/macula
 - eval
 - "is_pid(whereis(macula_gateway))."
 initialDelaySeconds: 30
 periodSeconds: 10

Readiness probe - is it accepting traffic?
readinessProbe:
 exec:
 command:
 - /opt/macula/bin/macula
 - eval
 - "macula_gateway:is_ready()."
 initialDelaySeconds: 10
 periodSeconds: 5

Alerting
Alert Priority Matrix
	Severity	Response Time	Examples
	P1 (Critical)	< 15 min	Gateway down, OOM, all clients disconnected
	P2 (High)	< 1 hour	80%+ capacity, sustained errors
	P3 (Medium)	< 4 hours	Elevated latency, cache miss rate
	P4 (Low)	Next business day	Warnings, cleanup anomalies

Recommended Alerts
Critical (P1)
- alert: MaculaGatewayDown
 expr: up{job="macula"} == 0
 for: 1m
 labels:
 severity: critical
 annotations:
 summary: "Macula gateway is down"

- alert: MaculaOOMRisk
 expr: process_resident_memory_bytes{job="macula"} > 8e9 # 8GB
 for: 5m
 labels:
 severity: critical
 annotations:
 summary: "Macula memory exceeds 8GB - OOM risk"
High (P2)
- alert: MaculaClientPoolNearCapacity
 expr: macula_peers_current / macula_peers_max > 0.8
 for: 10m
 labels:
 severity: high
 annotations:
 summary: "Client pool at {{ $value | humanizePercentage }} capacity"

- alert: MaculaHighRejectionRate
 expr: rate(macula_peer_rejections_total[5m]) > 10
 for: 5m
 labels:
 severity: high
 annotations:
 summary: "High client rejection rate: {{ $value }}/sec"
Medium (P3)
- alert: MaculaElevatedLatency
 expr: histogram_quantile(0.99, macula_rpc_latency_bucket) > 0.5
 for: 15m
 labels:
 severity: medium
 annotations:
 summary: "RPC p99 latency elevated: {{ $value }}s"

- alert: MaculaLowCacheHitRate
 expr: macula_cache_hits / (macula_cache_hits + macula_cache_misses) < 0.8
 for: 30m
 labels:
 severity: medium
 annotations:
 summary: "Cache hit rate below 80%"

Dashboards
Essential Dashboard Panels
1. Resource Utilization
┌───┐
│ Connection Pool │ Client Pool │ Memory │
│ ┌───────────────────┐ │ ┌─────────────────┐ │ ┌─────┐ │
│ │▓▓▓▓▓▓▓░░░░░░░░░░░│ │ │▓▓▓▓▓▓▓▓▓▓░░░░░░│ │ │▓▓▓▓░│ │
│ │ 245/1000 (24%) │ │ │ 6,234/10,000 │ │ │ 2.1G│ │
│ └───────────────────┘ │ └─────────────────┘ │ └─────┘ │
└───┘
2. Throughput
┌───┐
│ RPC Calls/sec │
│ 2500 ┤ ╭─╮ │
│ 2000 ┤ ╭────╯ ╰────╮ │
│ 1500 ┤ ╭────╯ ╰────╮ │
│ 1000 ┤ ╭────╯ ╰──── │
│ 500 ┼─────╯ │
│ └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴──── │
│ 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 │
├───┤
│ PubSub Events/sec │
│ 5000 ┤ ╭────────────────╮ │
│ 4000 ┤ ╭────╯ ╰────────╮ │
│ 3000 ┤╭────╯ ╰──── │
│ 2000 ┼╯ │
│ └─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴──── │
└───┘
3. Latency Distribution
┌───┐
│ RPC Latency (ms) │
│ │
│ p50: ████████░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ 8ms │
│ p90: ██████████████████░░░░░░░░░░░░░░░░░░░░░░ 25ms │
│ p99: ██████████████████████████████░░░░░░░░░░ 45ms │
│ max: ██ 120ms │
│ │
│ 0 25 50 75 100 125 150 │
└───┘
Grafana Dashboard JSON
A basic dashboard template:
{
 "title": "Macula Overview",
 "panels": [
 {
 "title": "Client Pool Utilization",
 "type": "gauge",
 "targets": [{"expr": "macula_peers_current / macula_peers_max * 100"}],
 "fieldConfig": {
 "defaults": {
 "thresholds": {
 "steps": [
 {"color": "green", "value": 0},
 {"color": "yellow", "value": 70},
 {"color": "red", "value": 90}
]
 }
 }
 }
 },
 {
 "title": "RPC Throughput",
 "type": "graph",
 "targets": [{"expr": "rate(macula_rpc_calls_total[5m])"}]
 },
 {
 "title": "Memory Usage",
 "type": "graph",
 "targets": [{"expr": "process_resident_memory_bytes{job=\"macula\"}"}]
 }
]
}

Capacity Planning
Resource Sizing
	Deployment Size	Clients	Memory	CPU	Notes
	Small (Dev)	< 100	512MB	1 core	Single node
	Medium	100-1,000	2GB	2 cores	Typical production
	Large	1,000-10,000	8GB	4 cores	High availability
	XL	10,000+	16GB+	8+ cores	Multi-gateway

Scaling Triggers
	Metric	Threshold	Action
	Client pool	> 80% for 1 hour	Add gateway node
	Memory	> 70% sustained	Increase memory or add node
	CPU	> 80% sustained	Add CPU or optimize handlers
	RPC latency p99	> 200ms sustained	Profile handlers, check DHT
	Connection churn	> 1000/min	Check client stability

Horizontal Scaling
Macula supports horizontal scaling via multiple gateway nodes:
 ┌─────────────────┐
 │ Load Balancer │
 │ (DNS/HAProxy) │
 └────────┬────────┘
 │
 ┌────────────────────┼────────────────────┐
 │ │ │
 ▼ ▼ ▼
┌───────────────┐ ┌───────────────┐ ┌───────────────┐
│ Gateway 1 │ │ Gateway 2 │ │ Gateway 3 │
│ 10k clients │ │ 10k clients │ │ 10k clients │
└───────┬───────┘ └───────┬───────┘ └───────┬───────┘
 │ │ │
 └────────────────────┼────────────────────┘
 │
 ┌────────▼────────┐
 │ DHT Network │
 │ (Shared State) │
 └─────────────────┘
Each gateway operates independently with shared DHT for service discovery.

See Also
	Performance Guide - Optimization techniques
	Troubleshooting Guide - Common issues

 Macula Troubleshooting Guide

Diagnosing and resolving common issues in Macula deployments
Audience: Operators, Developers
Last Updated: 2025-11-28

Table of Contents
	Quick Diagnostics
	Connection Issues
	RPC Problems
	PubSub Problems
	Memory Issues
	DHT Problems
	Performance Issues
	TLS/Certificate Issues
	Gateway Issues
	Debug Tools

Quick Diagnostics
First Steps Checklist
1. [] Is the gateway process running?
2. [] Are all supervisors alive?
3. [] Can you reach the bootstrap node?
4. [] Is TLS configured correctly?
5. [] Are there errors in the logs?
Erlang Shell Health Check
%% Quick health check script
QuickCheck = fun() ->
 io:format("Gateway: ~p~n", [is_pid(whereis(macula_gateway))]),
 io:format("Sup: ~p~n", [is_pid(whereis(macula_sup))]),
 io:format("Clients: ~p~n", [macula_gateway_client_manager:count()]),
 io:format("Services: ~p~n", [macula_service_registry:count_services()]),
 ok
end,
QuickCheck().

Connection Issues
Problem: Clients Can't Connect
Symptoms:
	Connection timeouts
	TLS handshake failures
	"Connection refused" errors

Diagnostic Steps:
%% 1. Check listener is running
is_pid(whereis(macula_quic_listener)).

%% 2. Check port is bound
%% From shell:
%% netstat -tlnp | grep 4433

%% 3. Check TLS certificates
ssl:peercert(Socket).
Common Causes & Solutions:
	Cause	Solution
	Firewall blocking UDP	Open UDP port 4433 (or configured port)
	TLS cert expired	Renew certificates
	Wrong cert path in config	Verify certfile and keyfile paths
	Listener crashed	Check supervisor, restart gateway
	Max clients reached	Scale horizontally or increase limit

Fix: TLS Certificate Issues
%% Verify certificate is readable
file:read_file("/path/to/cert.pem").

%% Check certificate validity
ssl:pkix_verify_certificate_chain(CertDer, TrustedCerts).

%% Check expiration date
%% openssl x509 -in cert.pem -noout -dates

Problem: Connections Drop Unexpectedly
Symptoms:
	Clients disconnect randomly
	"connection_closed" errors
	High reconnection rate

Diagnostic Steps:
%% Check for QUIC transport errors in logs
%% grep -i "quic\|transport\|closed" /var/log/macula.log

%% Check connection state
sys:get_state(ClientPid).
Common Causes & Solutions:
	Cause	Solution
	Network instability	Check network path, MTU settings
	Idle timeout	Adjust idle_timeout_ms in QUIC config
	NAT timeout	Enable keepalives
	Resource limits	Check ulimit, file descriptor limits

Fix: Idle Timeout
%% In sys.config
{macula, [
 {quic_options, [
 {idle_timeout_ms, 300000} %% 5 minutes
]}
]}

RPC Problems
Problem: RPC Calls Timeout
Symptoms:
	{error, timeout} returned from calls
	Slow response times
	High pending call count

Diagnostic Steps:
%% 1. Check pending calls
sys:get_state(macula_rpc_handler).
%% Look at pending_calls map size

%% 2. Check if service is registered
macula_service_registry:lookup(<<"energy.home.get">>).

%% 3. Check DHT for providers
macula_dht:get(crypto:hash(sha256, <<"energy.home.get">>)).
Common Causes & Solutions:
	Cause	Solution
	Service not registered	Verify provider called register/2
	Provider unreachable	Check provider node connectivity
	Handler too slow	Profile handler, add async processing
	DHT not propagated	Wait for DHT sync (up to 30s)
	Network partition	Check mesh connectivity

Fix: Increase Timeout
%% For specific calls
macula:call(Client, <<"slow.procedure">>, Args, #{timeout => 30000}).

%% Global default (sys.config)
{macula, [
 {rpc_timeout_ms, 10000} %% 10 seconds
]}

Problem: RPC Returns "No Provider"
Symptoms:
	{error, no_provider} returned
	Service works on some nodes but not others

Diagnostic Steps:
%% 1. Check local registry
macula_service_registry:list_services().

%% 2. Check DHT directly
Key = crypto:hash(sha256, <<"my.procedure">>),
macula_dht:get(Key).

%% 3. Check if advertised recently
macula_advertisement_manager:get_last_advertised(<<"my.procedure">>).
Common Causes & Solutions:
	Cause	Solution
	Service not advertised	Call macula:advertise/3
	TTL expired	Re-advertise (auto every 60s)
	DHT not synced	Wait, then query bootstrap node
	Wrong procedure name	Check for typos in procedure name

PubSub Problems
Problem: Subscribers Not Receiving Events
Symptoms:
	Publisher succeeds but subscribers get nothing
	Works locally but not across mesh

Diagnostic Steps:
%% 1. Check subscription is active
macula_pubsub_handler:list_subscriptions().

%% 2. Check DHT for subscribers
Topic = <<"sensor.temperature">>,
Key = crypto:hash(sha256, Topic),
macula_dht:get(Key).

%% 3. Verify subscriber endpoint is reachable
macula_peer_connector:connect(Endpoint).
Common Causes & Solutions:
	Cause	Solution
	Subscription not in DHT	Re-subscribe, wait for propagation
	Wildcard mismatch	Verify wildcard pattern syntax
	Subscriber crashed	Check subscriber process, restart
	Endpoint unreachable	Fix network/firewall
	Cache stale	Wait for cache refresh (60s TTL)

Fix: Force DHT Refresh
%% Clear subscriber cache for topic
macula_subscriber_cache:invalidate(<<"sensor.temperature">>).

%% Re-subscribe
macula:subscribe(Client, <<"sensor.temperature">>, Callback).

Problem: Duplicate Events
Symptoms:
	Same event delivered multiple times
	Subscribers overwhelmed

Diagnostic Steps:
%% Check for multiple subscriptions
macula_pubsub_handler:list_subscriptions().
%% Should see only one entry per topic
Common Causes & Solutions:
	Cause	Solution
	Multiple subscribe calls	Track subscription refs, unsubscribe first
	Stale DHT entries	Wait for TTL expiration
	Gateway restart during publish	Implement idempotency in subscriber

Memory Issues
Problem: Memory Usage Keeps Growing
Symptoms:
	Memory climbs over hours/days
	Eventually OOM crash

Diagnostic Steps:
%% 1. Check process memory
erlang:memory().

%% 2. Find top memory consumers
lists:sort(
 fun({_, A}, {_, B}) -> A > B end,
 [{Pid, element(2, process_info(Pid, memory))}
 || Pid <- processes()]
).

%% 3. Check ETS tables
[{Tab, ets:info(Tab, size), ets:info(Tab, memory)}
 || Tab <- ets:all()].
Common Causes & Solutions:
	Cause	Solution
	Unbounded message queue	Add backpressure, check slow handlers
	ETS table growth	Verify TTL cleanup is running
	Process leak	Check spawn/exit patterns
	Binary leak	Force GC: erlang:garbage_collect()

Fix: Force Cleanup
%% Trigger service cleanup manually
macula_advertisement_manager:cleanup_expired().

%% Force garbage collection on specific process
erlang:garbage_collect(whereis(macula_gateway)).

Problem: "max_clients_reached" Errors
Symptoms:
	New clients rejected
	Warning logs: Client connection rejected: max_clients_reached

Diagnostic Steps:
%% Check current client count
macula_gateway_client_manager:count().

%% Check max limit
application:get_env(macula, max_clients).
Solutions:
	Scale horizontally - Add more gateway nodes
	Increase limit (if resources allow):%% In sys.config
{macula, [
 {max_clients, 20000} %% Double the default
]}

	Investigate client churn - Why are clients not disconnecting?

DHT Problems
Problem: DHT Queries Timeout
Symptoms:
	Service discovery fails
	{error, timeout} from DHT operations

Diagnostic Steps:
%% 1. Check DHT process
is_pid(whereis(macula_dht)).

%% 2. Check bootstrap connectivity
macula_dht:ping().

%% 3. Check DHT routing table
macula_dht:get_routing_table().
Common Causes & Solutions:
	Cause	Solution
	Bootstrap unreachable	Check network to bootstrap node
	DHT not initialized	Wait for startup, check logs
	Network partition	Restore connectivity
	High DHT load	Scale bootstrap nodes

Problem: Services Not Propagating
Symptoms:
	Service works on registering node
	Other nodes can't discover it

Diagnostic Steps:
%% On provider node
macula_service_registry:list_services().

%% On consumer node
macula_dht:get(crypto:hash(sha256, <<"service.name">>)).
Common Causes & Solutions:
	Cause	Solution
	DHT replication delay	Wait up to 30 seconds
	Partition during advertisement	Re-advertise service
	TTL too short	Increase service_ttl_ms

Performance Issues
Problem: High Latency
Symptoms:
	RPC calls take > 100ms
	User-perceived slowness

Diagnostic Steps:
%% 1. Check cache hit rate
macula_subscriber_cache:stats().
%% Should see high hit_rate

%% 2. Profile a call
{Time, Result} = timer:tc(fun() ->
 macula:call(Client, Proc, Args)
end),
io:format("Call took ~p ms~n", [Time / 1000]).
Common Causes & Solutions:
	Cause	Solution
	Cache miss	Warm up cache, check TTL settings
	Slow handler	Profile handler code
	Network latency	Check network path
	DHT overloaded	Add more DHT nodes
	QUIC handshake overhead	Enable connection reuse

Fix: Enable Caching
%% Verify caching is enabled (should be by default)
application:get_env(macula, enable_subscriber_cache).
%% Should return {ok, true}

Problem: Low Throughput
Symptoms:
	PubSub < 1000 msg/sec
	System seems slow under load

Diagnostic Steps:
%% Check for backpressure
sys:get_state(macula_gateway_pubsub).
%% Look at queue sizes

%% Check scheduler utilization
scheduler:utilization(1000).
Solutions:
	Enable caching (see Performance Guide)
	Batch messages - Send in groups
	Reduce DHT queries - Increase cache TTL
	Profile handlers - Find bottlenecks

TLS/Certificate Issues
Problem: ECDSA Certificate Not Supported
Symptoms:
	Gateway fails to start with config_error tls_error
	Log shows certificate loading errors
	Works with self-signed certs but fails with Let's Encrypt

Root Cause:
MsQuic (the QUIC implementation used by Macula) does NOT support ECDSA certificates.
Let's Encrypt switched to ECDSA by default in late 2024.
Diagnostic Steps:
Check certificate key type
openssl x509 -in /path/to/cert.pem -noout -text | grep "Public Key Algorithm"

If it shows "id-ecPublicKey" - that's the problem!
Must show "rsaEncryption"

Solution:
Re-issue the certificate with RSA:
For Let's Encrypt
certbot certonly --standalone -d your-domain.com \
 --key-type rsa --rsa-key-size 2048 --force-renewal

Then restart the service
docker restart your-macula-container

Prevention:
Always specify --key-type rsa when using certbot with Macula nodes.

Problem: Certificate Permission Denied
Symptoms:
	Gateway fails to start with config_error tls_error
	Certificate files exist but container can't read them

Root Cause:
Certbot's /archive/ directory often has 700 permissions (root only).
If your container runs as non-root, it can't read the certs through symlinks.
Diagnostic Steps:
Check archive directory permissions
ls -la /etc/letsencrypt/archive/

If permissions are drwx------ (700), non-root can't read

Solution:
Fix archive directory permissions
chmod 755 /etc/letsencrypt/archive/
chmod 755 /etc/letsencrypt/archive/your-domain.com/

Restart container
docker restart your-macula-container

Gateway Issues
Problem: Gateway Crashes on Startup
Symptoms:
	Gateway fails to start
	Supervisor keeps restarting

Diagnostic Steps:
%% Check crash logs
%% grep "CRASH\|EXIT\|error" /var/log/macula.log

%% Try manual start to see error
macula_gateway:start_link(Config).
Common Causes & Solutions:
	Cause	Solution
	Missing TLS certs	Provide valid cert/key paths
	Port already in use	Change port or stop conflicting service
	Invalid config	Verify sys.config syntax
	Missing dependency	Check all deps started

Problem: Gateway Becomes Unresponsive
Symptoms:
	Gateway process alive but not handling requests
	Message queue growing

Diagnostic Steps:
%% 1. Check message queue
process_info(whereis(macula_gateway), message_queue_len).

%% 2. Check if processing
sys:get_status(macula_gateway).

%% 3. Check for locks
erlang:process_info(whereis(macula_gateway), [status, current_stacktrace]).
Solutions:
	Restart gateway - Last resort: supervisor:restart_child(macula_sup, macula_gateway).
	Find slow handler - Profile message handling
	Add flow control - Implement backpressure

Debug Tools
Enabling Debug Logging
%% Temporarily enable debug logs
logger:set_primary_config(level, debug).

%% For specific module
logger:set_module_level(macula_gateway, debug).

%% Reset to normal
logger:set_primary_config(level, info).
Tracing
%% Trace function calls
dbg:tracer().
dbg:p(all, c).
dbg:tpl(macula_gateway, handle_call, '_', []).

%% Stop tracing
dbg:stop().
State Inspection
%% Get process state (gen_server)
sys:get_state(macula_gateway).

%% Get ETS table contents
ets:tab2list(macula_peers).

%% Process info
process_info(whereis(macula_gateway)).
Remote Shell
Connect to running node
/opt/macula/bin/macula remote_console

Or via remsh
erl -name debug@localhost -setcookie macula -remsh macula@hostname

Log Analysis Commands
Find errors in last hour
journalctl -u macula --since "1 hour ago" | grep -i error

Count warnings by type
grep -oP '\[warning\] \K[^:]+' /var/log/macula.log | sort | uniq -c | sort -rn

Watch logs in real-time
tail -f /var/log/macula.log | grep -E "(error|warning|CRASH)"

See Also
	Monitoring Guide - Metrics and alerting
	Performance Guide - Optimization techniques
	Memory Management - Bounded resource design
	RPC Guide - RPC architecture details
	PubSub Guide - PubSub architecture details

 mDNS Local Discovery Setup

This document explains how to enable optional mDNS (Multicast DNS) support for local node discovery in Macula.
Overview
mDNS enables automatic discovery of Macula nodes on the local network without requiring manual configuration of seed nodes. When enabled, nodes can find each other via multicast DNS on the same subnet.
Note: mDNS is optional. Macula works perfectly without it using DHT-based discovery with configured seed nodes.
When to Use mDNS
	Use Case	Recommended
	Development/testing	Yes - simplifies local multi-node setup
	Home/small office mesh	Yes - no seed node configuration needed
	Production clusters	No - use DHT with known seed nodes
	Cross-subnet deployment	No - mDNS is LAN-only

Prerequisites
mDNS requires the shortishly/mdns library, which uses erlang.mk. We use rebar3's _checkouts feature for integration.
Setup Steps
1. Clone Dependencies
cd /path/to/your/macula/project
mkdir -p _checkouts
cd _checkouts

Clone mdns
git clone https://github.com/shortishly/mdns.git

Clone envy (mdns dependency)
git clone https://github.com/shortishly/envy.git

2. Create rebar3 Wrapper Configs
The macula repository includes pre-configured wrappers. If you need to create them manually:
_checkouts/mdns/rebar.config:
%% -*- mode: erlang -*-
{erl_opts, [debug_info, warnings_as_errors]}.
{deps, [gproc]}.
_checkouts/mdns/src/mdns.app.src:
{application, mdns, [
 {description, "Multicast DNS"},
 {vsn, "0.5.0"},
 {registered, []},
 {mod, {mdns_app, []}},
 {applications, [kernel, stdlib, crypto, envy, gproc]},
 {env, []},
 {modules, []},
 {licenses, ["Apache-2.0"]},
 {links, [{"GitHub", "https://github.com/shortishly/mdns"}]}
]}.
_checkouts/envy/rebar.config:
%% -*- mode: erlang -*-
{erl_opts, [debug_info, warnings_as_errors]}.
{deps, [{any, "0.3.2"}]}.
_checkouts/envy/src/envy.app.src:
{application, envy, [
 {description, "Wrapper prefixing os_env with application name"},
 {vsn, "git"},
 {registered, []},
 {applications, [kernel, stdlib, any]},
 {env, []},
 {modules, []},
 {licenses, ["Apache-2.0"]},
 {links, [{"GitHub", "https://github.com/shortishly/envy"}]}
]}.
3. Fix Deprecated Code (if needed)
If you see crypto:rand_uniform/2 deprecation warnings, edit _checkouts/mdns/src/mdns_advertise.erl:
%% Replace:
random_timeout(initial) ->
 crypto:rand_uniform(500, 1500).
random_timeout(announcements, TTL) ->
 crypto:rand_uniform(TTL * 500, TTL * 1000).

%% With:
random_timeout(initial) ->
 500 + rand:uniform(1000).
random_timeout(announcements, TTL) ->
 (TTL * 500) + rand:uniform(TTL * 500).
4. Configure mDNS Environment
Set environment variables before starting your Macula node:
Enable mDNS advertising
export MDNS_CAN_ADVERTISE=true

Enable mDNS discovery
export MDNS_CAN_DISCOVER=true

Enable automatic mesh formation (optional)
export MDNS_CAN_MESH=true

Start your node
rebar3 shell

5. Verify Setup
rebar3 compile
Should compile macula + mdns + envy successfully

In the shell:
%% Check if mDNS is running
whereis(mdns_advertise_sup).
%% Should return a PID, not 'undefined'
How Macula Uses mDNS
When mDNS is available, Macula's discovery system:
	Advertising: macula_dist_discovery announces the node via macula_dist_mdns_advertiser
	Discovery: macula_bridge_mesh subscribes to mdns:subscribe(advertisement) events
	Graceful Fallback: If mDNS is not available, these modules silently skip mDNS operations

Service Type
Macula advertises with service type: _macula-dist._udp.
Dependencies Tree
your_project
├── macula (hex package)
│ ├── quicer (QUIC transport)
│ ├── msgpack (serialization)
│ └── gproc (process registry)
└── _checkouts/
 ├── envy (env wrapper)
 │ └── any (hex package)
 └── mdns (mDNS discovery)
 ├── envy (from _checkouts)
 └── gproc (shared with macula)
Troubleshooting
mDNS Not Discovering Nodes
	Check firewall: mDNS uses UDP port 5353
	Same subnet: mDNS is multicast-based, requires same network segment
	Environment variables: Verify MDNS_CAN_ADVERTISE and MDNS_CAN_DISCOVER are set

Compilation Errors
	Missing any package: Run rebar3 get-deps to fetch hex dependencies
	Stale build: Run rebar3 clean then rebar3 compile

Future Plans
We plan to fork shortishly/mdns and shortishly/envy to the macula-io organization and publish them to hex.pm for easier integration. Until then, the _checkouts approach provides a working solution.
Related Documentation
	Discovery Guide - DHT-based discovery (no mDNS required)
	Quick Start - Getting started with Macula
	Development Guide - Development setup

 Kademlia DHT Architecture in Macula

Overview
Macula uses a Kademlia Distributed Hash Table (DHT) for decentralized service discovery and peer-to-peer routing. This document describes how Kademlia principles are implemented in the HTTP/3 mesh network.
Key Reference: Kademlia: A Peer-to-peer Information System Based on the XOR Metric (Maymounkov & Mazières, 2002)
[image: Kademlia DHT Overview]
Why Kademlia?
Traditional DHTs (like Chord) use numeric distance metrics that don't align well with network topology. Kademlia's XOR-based metric provides:
	Symmetric distance - distance(A, B) = distance(B, A)
	Network-aware routing - Nodes sharing common prefixes tend to be routed through similar paths
	O(log N) lookup complexity - Efficient even with millions of nodes
	Self-organizing - No central coordination required
	NAT-friendly - Works well with HTTP/3's connection-oriented transport

Core Concepts
1. Node IDs and XOR Metric
Every node in the Macula mesh has a 160-bit Node ID derived from:
	Gateway mode: Hash of (realm + IP + port)
	Edge peer mode: Randomly generated on startup

XOR Distance Formula:
distance(A, B) = A ⊕ B (bitwise XOR)
Example:
Node A: 0b10110101
Node B: 0b11010011

XOR: 0b01100110 (distance = 102 decimal)
Nodes are considered "closer" when their XOR distance is smaller. This creates a geometric address space where routing naturally follows network topology.
2. K-Buckets (Routing Table)
Each node maintains a routing table of 160 k-buckets, where k = 20 (typical value).
Structure:
	Bucket 0: Nodes at distance 2^0 to 2^1 - 1 (immediate neighbors)
	Bucket 1: Nodes at distance 2^1 to 2^2 - 1
	Bucket i: Nodes at distance 2^i to 2^(i+1) - 1
	Bucket 159: Nodes at distance 2^159 to 2^160 - 1 (furthest)

K-Bucket Properties:
	Maximum of k entries per bucket
	Least-recently-seen nodes are evicted first (LRU)
	Bucket 0 (closest nodes) is most important for routing

Macula Implementation:
%% In macula_routing.erl (conceptual)
-define(KADEMLIA_K, 20). %% Bucket size
-define(KADEMLIA_ALPHA, 3). %% Parallel lookup factor
-define(ID_BITS, 160). %% SHA-1 hash size

-record(k_bucket, {
 distance_range :: {integer(), integer()},
 nodes :: [node_entry()], %% Max 20 entries
 last_updated :: erlang:timestamp()
}).
3. DHT Operations
Kademlia defines four core RPC operations:
PING
Purpose: Check if a node is alive
Request:
{ping, FromNodeID, Timestamp}
Response:
{pong, ToNodeID, Timestamp}
Use Case: Health checking, routing table maintenance

STORE
Purpose: Store a key-value pair on a node
Request:
{store, Key, Value, TTL}
Response:
{stored, Key, ExpiresAt}
Macula Mapping:
	Key: Service name hash (e.g., sha1("game.matchmaking"))
	Value: Service endpoint info (realm, node_id, capabilities)
	TTL: Advertisement lifetime (default: 5 minutes)

FIND_NODE
Purpose: Locate k closest nodes to a target ID
Request:
{find_node, TargetID, K}
Response:
{nodes, [
 {NodeID1, IP1, Port1, Realm1},
 {NodeID2, IP2, Port2, Realm2},
 ...
]} %% Sorted by XOR distance to TargetID
Use Case: Populating routing table, iterative lookups

FIND_VALUE
Purpose: Retrieve value for a key (service discovery)
Request:
{find_value, Key}
Response (if found):
{value, Key, ServiceInfo}
Response (if not found):
{nodes, [...]} %% Fallback to FIND_NODE
Macula Mapping:
	Key: Service name (e.g., "game.matchmaking")
	ServiceInfo: List of providers advertising that service

4. Iterative Lookup Algorithm
To find a service or node, Macula performs an iterative FIND_VALUE lookup:
Algorithm:
	Start with the α = 3 closest nodes from local routing table
	Send parallel FIND_VALUE requests to these nodes
	If value found → return immediately
	Otherwise, add returned nodes to candidate set
	Select next α closest unqueried nodes
	Repeat until:	Value is found, OR
	No closer nodes remain, OR
	Maximum hops reached (log₂N)

Convergence: Guaranteed to find value in O(log N) hops
Macula Implementation (conceptual):
find_service(ServiceName, Realm) ->
 Key = crypto:hash(sha, ServiceName),
 ClosestNodes = get_closest_nodes(Key, ?KADEMLIA_ALPHA),
 iterative_lookup(Key, ClosestNodes, #{}, 0).

iterative_lookup(Key, [], _Queried, _Hops) ->
 {error, not_found};
iterative_lookup(Key, Candidates, Queried, Hops) when Hops > 20 ->
 {error, max_hops_exceeded};
iterative_lookup(Key, Candidates, Queried, Hops) ->
 %% Query α closest unqueried nodes in parallel
 Results = query_nodes(Candidates, {find_value, Key}),

 case find_value_in_results(Results) of
 {ok, Value} ->
 {ok, Value};
 not_found ->
 NewNodes = extract_nodes(Results),
 NextCandidates = select_closest_unqueried(Key, NewNodes, Queried),
 iterative_lookup(Key, NextCandidates,
 maps:merge(Queried, mark_queried(Candidates)),
 Hops + 1)
 end.

Macula-Specific Adaptations
1. Realm-Scoped DHT
Unlike traditional Kademlia, Macula implements multi-tenancy via realms:
	Each realm has its own isolated DHT keyspace
	Node IDs include realm hash: sha1(Realm || IP || Port)
	Service keys are realm-scoped: sha1(Realm || ServiceName)
	Cross-realm queries are blocked at protocol level

Example:
%% Realm "macula.arcade"
NodeID_A = sha1("macula.arcade" ++ "192.168.1.10" ++ "4433")

%% Realm "macula.energy"
NodeID_B = sha1("macula.energy" ++ "192.168.1.10" ++ "4433")

%% Same IP/port, different realms → different DHT partitions
2. Gateway Bootstrap Nodes
Traditional Kademlia requires bootstrap nodes to join the network. Macula handles this differently:
Gateway Mode:
	Gateways act as well-known bootstrap nodes
	Published at predictable URLs (e.g., https://gateway.example.com:4433)
	Maintain authoritative registry for their realm

Edge Peer Mode:
	Peers connect to gateway via MACULA_BOOTSTRAP_REGISTRY env var
	Gateway returns α closest nodes to peer's ID
	Peer populates routing table via FIND_NODE requests

No Hardcoded Bootstrap IPs: Unlike BitTorrent DHT, Macula uses DNS/HTTPS URLs for gateway discovery, making it firewall-friendly.
3. Service Advertisement TTL
Services are stored in the DHT with a Time-To-Live (TTL):
	Default TTL: 5 minutes
	Providers re-advertise every 60 seconds (heartbeat)
	Expired entries are removed by macula_advertisement_manager

Rationale: Short TTL ensures stale services don't linger after node crashes, while frequent heartbeats maintain availability.
4. HTTP/3 Transport Integration
Traditional Kademlia uses UDP for RPCs. Macula uses QUIC (HTTP/3):
Advantages:
	Reliable transport (no packet loss issues)
	Connection multiplexing (multiple RPCs over one connection)
	TLS 1.3 encryption (secure by default)
	NAT traversal (QUIC connection migration)

Message Encoding:
%% DHT query wrapped in Macula protocol
#{
 type => dht_query,
 operation => find_value,
 key => <<ServiceNameHash:160>>,
 realm => <<"macula.arcade">>,
 from_node_id => <<SenderNodeID:160>>,
 timestamp => erlang:system_time(millisecond)
}

Routing Table Maintenance
Macula keeps routing tables fresh through active probing:
1. Passive Updates
	When receiving any message from node N, refresh N's entry in k-bucket
	Update last-seen timestamp
	Move N to tail of LRU list (most recently seen)

2. Active Probing
	Every 60 seconds, ping least-recently-seen node in each non-empty bucket
	If ping fails 3 times consecutively, evict node
	Backfill bucket via FIND_NODE request

3. Bucket Splitting
	When bucket 0 (closest nodes) exceeds k entries, split into two buckets
	Move nodes to new buckets based on refined distance ranges
	Only split buckets containing own node ID (hot zone)

Implementation:
%% In macula_routing.erl
-define(REFRESH_INTERVAL, 60000). %% 60 seconds
-define(PING_TIMEOUT, 5000). %% 5 seconds
-define(MAX_FAILURES, 3).

refresh_buckets(State) ->
 lists:foldl(fun refresh_bucket/2, State, State#state.k_buckets).

refresh_bucket(Bucket, State) ->
 case get_least_recent_node(Bucket) of
 undefined -> State; %% Empty bucket
 Node ->
 case ping_node(Node) of
 pong -> update_node_timestamp(Node, State);
 timeout -> handle_ping_failure(Node, State)
 end
 end.

Performance Characteristics
	Metric	Value	Notes
	Lookup Time	O(log N) hops	N = total nodes in mesh
	Routing Table Size	O(log N) entries	~160 buckets × 20 nodes = 3,200 max
	Network Traffic	O(log N) messages/lookup	α parallel requests per hop
	Storage	O(k × log N)	Per node, for advertised services
	Convergence	< 1 second	Typical for 10,000-node network

Example (10,000-node network):
	Expected hops: log₂(10,000) ≈ 13.3 → 14 hops max
	Parallel factor α = 3 → ~5 rounds of queries
	Average lookup time: 5 rounds × 100ms RTT = 500ms

Comparison to Other DHTs
	Feature	Kademlia (Macula)	Chord	Pastry
	Distance Metric	XOR (symmetric)	Modular arithmetic	Numeric proximity
	Routing Complexity	O(log N)	O(log N)	O(log N)
	Lookup Parallelism	Yes (α = 3)	No (sequential)	Limited
	NAT-Friendly	✅ (with HTTP/3)	❌	❌
	Bootstrap Required	Optional (gateway)	Yes	Yes
	Self-Organizing	✅	✅	✅

Future Enhancements
1. S/Kademlia (Secure Kademlia)
	Cryptographic node ID generation (prevent Sybil attacks)
	Require nodes to solve proof-of-work for ID assignment
	Disjoint routing paths for redundancy

2. DHT Persistence
	Store service advertisements in distributed database (e.g., CRDT)
	Survive network partitions with eventual consistency
	Reduce re-advertisement overhead

3. Adaptive K-Bucket Sizing
	Dynamically adjust k based on network churn rate
	Larger k for stable networks (less probing overhead)
	Smaller k for high-churn networks (faster convergence)

References
	Kademlia Paper: Maymounkov & Mazières (2002)
	S/Kademlia: Baumgart & Mies (2007)
	BitTorrent DHT (BEP-0005): bittorrent.org/beps/bep_0005.html
	QUIC Protocol: RFC 9000
	Macula Architecture: docs/QUIC_TLS_GATEWAY_SETUP.md

Last Updated: 2025-11-15
Macula Version: 0.6.0
Status: ✅ Production-ready DHT implementation

 NAT Types Explained

Understanding NAT (Network Address Translation) types is essential for building P2P applications that work across different network environments. This guide explains the NAT classification model used in Macula based on the NATCracker methodology.
[image: NAT Types Overview]

Why NAT Matters for P2P
The challenge with P2P: Neither peer can initiate a connection to the other because NATs block unsolicited incoming traffic. Macula solves this by detecting NAT characteristics and choosing optimal traversal strategies.

NAT Policy Classification
Macula uses the NATCracker 3-policy classification model to characterize NAT behavior. Each NAT is described by three policies:
1. Mapping Policy (How NAT assigns external addresses)
	Policy	Code	Behavior	Prevalence
	Endpoint-Independent	EI	Same external addr for all destinations	~52%
	Host-Dependent	HD	Different external addr per destination host	~12%
	Port-Dependent	PD	Different external addr per destination host:port	~36%

Example - Endpoint-Independent (EI):
Local: 192.168.1.10:5000
 -> Destination A: 8.8.8.8:53 => NAT maps to 203.0.113.5:40000
 -> Destination B: 1.1.1.1:53 => NAT maps to 203.0.113.5:40000 (same!)
Example - Port-Dependent (PD):
Local: 192.168.1.10:5000
 -> Destination A: 8.8.8.8:53 => NAT maps to 203.0.113.5:40000
 -> Destination B: 1.1.1.1:53 => NAT maps to 203.0.113.5:40001 (different!)
2. Filtering Policy (What incoming traffic NAT accepts)
	Policy	Code	Behavior	Security
	Endpoint-Independent	EI	Accepts from any source	Low
	Host-Dependent	HD	Accepts from hosts we've contacted	Medium
	Port-Dependent	PD	Accepts from host:port we've contacted	High

Example - Port-Dependent filtering:
Local 192.168.1.10:5000 sends to 8.8.8.8:53
NAT now accepts incoming on 203.0.113.5:40000 ONLY from 8.8.8.8:53
 -> 8.8.8.8:53 => ALLOWED
 -> 8.8.8.8:80 => BLOCKED (wrong port)
 -> 1.1.1.1:53 => BLOCKED (wrong host)
3. Allocation Policy (How NAT chooses external ports)
	Policy	Code	Behavior	Predictability
	Port-Preservation	PP	external_port = local_port	High
	Port-Contiguity	PC	external_port = last_port + delta	Medium
	Random	RD	No predictable pattern	None

Example - Port-Preservation (PP):
Local: 192.168.1.10:5000 => NAT: 203.0.113.5:5000 (same port!)
Example - Port-Contiguity (PC):
Local: 192.168.1.10:5000 => NAT: 203.0.113.5:40000
Local: 192.168.1.10:5001 => NAT: 203.0.113.5:40001 (delta = 1)

Common NAT Type Combinations
Based on NATCracker research across millions of NATs:
	Type	Mapping	Filtering	Allocation	Prevalence	Direct P2P
	Full Cone	EI	EI	PP	15%	Yes
	Restricted Cone	EI	HD	PP	37%	With punch
	Port Restricted	EI	PD	PP	20%	With punch
	Symmetric	PD	PD	RD	12%	No (relay)
	CGNAT	varies	PD	varies	16%	Usually relay

Full Cone NAT (EI, EI, PP) - Best Case
Any external host can send to this address after ANY outbound packet from local peer. Direct P2P: YES - Any peer can connect directly.
Restricted Cone NAT (EI, HD, PP) - Good
Only hosts we've contacted can send back (but from any port). Direct P2P: YES with hole punching.
Symmetric NAT (PD, PD, RD) - Worst Case
Each destination gets different external address. External port is random and unpredictable. Direct P2P: NO - must use relay.

NAT Detection in Macula
Macula detects NAT type automatically using macula_nat_detector:
%% Get local NAT profile
{ok, Profile} = macula_nat_detector:get_local_profile().

%% Profile contains:
#{
 mapping => ei, % Endpoint-Independent
 filtering => pd, % Port-Dependent
 allocation => pp, % Port-Preservation
 public_ip => {203,0,113,5},
 public_port => 5000,
 detected_at => 1700000000
}
Detection Algorithm
	Send NAT_PROBE to primary observer (gateway/public peer)
	Receive reflexive address (your public IP:port as seen from outside)

	Send NAT_PROBE to secondary observer (different public peer)
	Compare reflexive addresses

	Classification:
	Same address for both observers -> EI mapping
	Same IP, different port -> HD mapping
	Different IP -> PD mapping (or multiple NATs)

Connection Strategy Decision Tree
The diagram at the top of this document shows the connection strategy matrix. Macula's macula_nat_coordinator follows this logic:
	Either has public IP? → Direct connection to public peer
	Both have EI mapping? → Hole punching possible	EI filtering → Simple hole punch
	PD filtering → Coordinated hole punch

	Either has PD+PD+RD (symmetric)? → Must use relay
	Otherwise → Try hole punch with port prediction

Hole Punching Explained
Hole punching creates NAT mappings that allow peers to communicate:
	Time	Event	Result
	T0	Initial state	Peer A and B have no mappings to each other
	T1	Coordinator signal	Both peers simultaneously send packets to each other's predicted external address
	T2	NAT processing	Both NATs create outbound mappings for the other peer's address
	T3	Connection established	Subsequent packets pass through created mappings

Requirements for successful hole punch:
	Both NATs have EI or HD mapping (predictable external address)
	At least one has PP or PC allocation (predictable port)
	Timing coordination within ~100ms

CGNAT (Carrier-Grade NAT)
ISPs increasingly use CGNAT, adding another NAT layer:
	Layer	Address	Role
	Your Device	192.168.1.10	Local network address
	Home Router NAT	→ 10.0.0.50	ISP private address (RFC 1918)
	CGNAT	→ 203.0.113.5	Public address (shared with other customers)
	Internet		Global routing

CGNAT complications:
	Multiple customers share same public IP
	Often uses PD filtering (restrictive)
	Hole punching success rate drops to ~40%
	Relay fallback frequently needed

Best Practices
For Application Developers
	Always have relay fallback - Some NATs cannot be traversed
	Detect NAT type early - Cache profile at peer startup
	Prefer EI-mapping peers as coordinators - Better success rate

For Network Operators
	Use Full Cone or Restricted Cone NAT - Best P2P compatibility
	Enable UPnP/NAT-PMP - Allows applications to request mappings
	Avoid Symmetric NAT - Breaks most P2P protocols

Further Reading
	RFC 5780 - NAT Behavior Discovery
	NATCracker Paper - 27 NAT type classification

See Also:
	NAT Traversal Developer Guide - API usage and code examples

 NAT Traversal Developer Guide

This guide covers the Macula NAT traversal system API, code examples in both Erlang and Elixir, and integration patterns.
[image: NAT Traversal Flow]

Overview
The NAT traversal system consists of these modules:
	Module	Purpose
	macula_nat_system	Supervisor for NAT subsystem
	macula_nat_detector	Detects local NAT type
	macula_nat_cache	Caches NAT profiles with TTL
	macula_nat_coordinator	Coordinates hole punching
	macula_nat_connector	Intelligent connection establishment
	macula_relay_registry	Distributed relay node registry
	macula_relay_node	Relay server functionality

Quick Start
Detecting Your NAT Type
Erlang:
%% Detect NAT type (async, returns cached if available)
{ok, Profile} = macula_nat_detector:detect().

%% Force fresh detection (bypasses cache)
{ok, Profile} = macula_nat_detector:detect(#{force => true}).

%% Get cached local profile (fast, no network)
{ok, Profile} = macula_nat_detector:get_local_profile().
Elixir:
Detect NAT type (async, returns cached if available)
{:ok, profile} = :macula_nat_detector.detect()

Force fresh detection (bypasses cache)
{:ok, profile} = :macula_nat_detector.detect(%{force: true})

Get cached local profile (fast, no network)
{:ok, profile} = :macula_nat_detector.get_local_profile()
Connecting to a Peer
Erlang:
%% Connect using optimal strategy (automatic)
{ok, Connection} = macula_nat_connector:connect(TargetNodeId, #{
 timeout => 10000, % 10 second timeout
 prefer_direct => true % Try direct before relay
}).

%% The connector automatically:
%% 1. Fetches target's NAT profile from DHT
%% 2. Determines best connection strategy
%% 3. Attempts hole punching if feasible
%% 4. Falls back to relay if needed
Elixir:
Connect using optimal strategy (automatic)
{:ok, connection} = :macula_nat_connector.connect(target_node_id, %{
 timeout: 10_000, # 10 second timeout
 prefer_direct: true # Try direct before relay
})

The connector automatically:
1. Fetches target's NAT profile from DHT
2. Determines best connection strategy
3. Attempts hole punching if feasible
4. Falls back to relay if needed

NAT Detection API
macula_nat_detector
detect/0, detect/1
Detect local NAT characteristics.
Erlang:
-spec detect() -> {ok, nat_profile()} | {error, term()}.
-spec detect(map()) -> {ok, nat_profile()} | {error, term()}.

%% Options:
%% force => boolean() - Bypass cache, force fresh detection
%% timeout => integer() - Detection timeout in ms (default 5000)
%% observers => [endpoint()] - Custom observer endpoints

%% Example
{ok, #{
 mapping => ei, % ei | hd | pd
 filtering => pd, % ei | hd | pd
 allocation => pp, % pp | pc | rd
 public_ip => {203,0,113,5},
 public_port => 4433,
 detected_at => 1700000000,
 confidence => high % high | medium | low
}} = macula_nat_detector:detect().
Elixir:
Options:
force: boolean() - Bypass cache, force fresh detection
timeout: integer() - Detection timeout in ms (default 5000)
observers: [endpoint()] - Custom observer endpoints

Example
{:ok, %{
 mapping: :ei, # :ei | :hd | :pd
 filtering: :pd, # :ei | :hd | :pd
 allocation: :pp, # :pp | :pc | :rd
 public_ip: {203, 0, 113, 5},
 public_port: 4433,
 detected_at: 1_700_000_000,
 confidence: :high # :high | :medium | :low
}} = :macula_nat_detector.detect()
get_local_profile/0
Get cached local NAT profile (no network call).
Erlang:
-spec get_local_profile() -> {ok, nat_profile()} | {error, not_detected}.

%% Returns immediately with cached profile
{ok, Profile} = macula_nat_detector:get_local_profile().
Elixir:
Returns immediately with cached profile
{:ok, profile} = :macula_nat_detector.get_local_profile()
add_observation/2
Add external observation for detection refinement.
Erlang:
-spec add_observation(inet:ip_address(), inet:port_number()) -> ok.

%% Called when receiving reflexive address from external peer
macula_nat_detector:add_observation({198,51,100,1}, 5000).
Elixir:
Called when receiving reflexive address from external peer
:macula_nat_detector.add_observation({198, 51, 100, 1}, 5000)
refresh/0
Trigger background NAT profile refresh.
Erlang:
-spec refresh() -> ok.

%% Useful after network change (IP change, reconnect)
macula_nat_detector:refresh().
Elixir:
Useful after network change (IP change, reconnect)
:macula_nat_detector.refresh()

NAT Cache API
macula_nat_cache
Caches NAT profiles with TTL and stale-while-revalidate semantics.
get/1
Get cached NAT profile for a node.
Erlang:
-spec get(binary()) -> {ok, nat_profile()} |
 {stale, nat_profile()} |
 {error, not_found}.

%% Fresh cache hit
{ok, Profile} = macula_nat_cache:get(NodeId).

%% Stale but usable (background refresh triggered)
{stale, Profile} = macula_nat_cache:get(NodeId).

%% Not in cache
{error, not_found} = macula_nat_cache:get(UnknownNodeId).
Elixir:
Fresh cache hit
{:ok, profile} = :macula_nat_cache.get(node_id)

Stale but usable (background refresh triggered)
{:stale, profile} = :macula_nat_cache.get(node_id)

Not in cache
{:error, :not_found} = :macula_nat_cache.get(unknown_node_id)
get_from_dht/1
Fetch NAT profile from DHT (with caching).
Erlang:
-spec get_from_dht(binary()) -> {ok, nat_profile()} | {error, term()}.

%% Fetches from DHT if not in local cache
{ok, Profile} = macula_nat_cache:get_from_dht(NodeId).
Elixir:
Fetches from DHT if not in local cache
{:ok, profile} = :macula_nat_cache.get_from_dht(node_id)
put/2, put/3
Store NAT profile in cache.
Erlang:
-spec put(binary(), nat_profile()) -> ok.
-spec put(binary(), nat_profile(), pos_integer()) -> ok.

%% Store with default TTL (300 seconds)
ok = macula_nat_cache:put(NodeId, Profile).

%% Store with custom TTL
ok = macula_nat_cache:put(NodeId, Profile, 600). % 10 minutes
Elixir:
Store with default TTL (300 seconds)
:ok = :macula_nat_cache.put(node_id, profile)

Store with custom TTL
:ok = :macula_nat_cache.put(node_id, profile, 600) # 10 minutes
invalidate/1
Remove profile from cache.
Erlang:
-spec invalidate(binary()) -> ok.

%% Force re-fetch on next access
ok = macula_nat_cache:invalidate(NodeId).
Elixir:
Force re-fetch on next access
:ok = :macula_nat_cache.invalidate(node_id)
stats/0
Get cache statistics.
Erlang:
-spec stats() -> map().

#{
 size => 150,
 hits => 1000,
 misses => 50,
 stale_hits => 25,
 evictions => 10
} = macula_nat_cache:stats().
Elixir:
%{
 size: 150,
 hits: 1000,
 misses: 50,
 stale_hits: 25,
 evictions: 10
} = :macula_nat_cache.stats()

Connection Coordination API
macula_nat_coordinator
Coordinates hole punching between peers.
request_connection/2, request_connection/3
Request connection to a target peer.
Erlang:
-spec request_connection(binary(), map()) ->
 {ok, direct, Connection} |
 {ok, punched, Connection} |
 {ok, relayed, Connection} |
 {error, term()}.

%% Simple request
{ok, Method, Conn} = macula_nat_coordinator:request_connection(
 TargetNodeId,
 #{}
).

%% With options
{ok, Method, Conn} = macula_nat_coordinator:request_connection(
 TargetNodeId,
 #{
 timeout => 15000,
 max_punch_attempts => 3,
 allow_relay => true
 }
).

%% Method indicates how connection was established:
%% direct - Direct connection (target has public IP or Full Cone NAT)
%% punched - Hole punching succeeded
%% relayed - Using relay node
Elixir:
Simple request
{:ok, method, conn} = :macula_nat_coordinator.request_connection(
 target_node_id,
 %{}
)

With options
{:ok, method, conn} = :macula_nat_coordinator.request_connection(
 target_node_id,
 %{
 timeout: 15_000,
 max_punch_attempts: 3,
 allow_relay: true
 }
)

Method indicates how connection was established:
:direct - Direct connection (target has public IP or Full Cone NAT)
:punched - Hole punching succeeded
:relayed - Using relay node
coordinate_punch/3
Low-level hole punch coordination (usually internal).
Erlang:
-spec coordinate_punch(binary(), binary(), map()) ->
 {ok, reference()} | {error, term()}.

%% Returns reference for tracking punch attempt
{ok, Ref} = macula_nat_coordinator:coordinate_punch(
 PeerA_NodeId,
 PeerB_NodeId,
 #{predicted_ports => {PeerA_Port, PeerB_Port}}
).
Elixir:
Returns reference for tracking punch attempt
{:ok, ref} = :macula_nat_coordinator.coordinate_punch(
 peer_a_node_id,
 peer_b_node_id,
 %{predicted_ports: {peer_a_port, peer_b_port}}
)
macula_nat_connector
High-level connection establishment with automatic strategy selection.
connect/2, connect/3
Establish connection to peer using optimal strategy.
Erlang:
-spec connect(binary(), map()) -> {ok, connection()} | {error, term()}.

%% Connect with defaults
{ok, Conn} = macula_nat_connector:connect(TargetNodeId, #{}).

%% Connect with options
{ok, Conn} = macula_nat_connector:connect(TargetNodeId, #{
 timeout => 20000,
 prefer_direct => true,
 fallback_relay => true,
 max_attempts => 3
}).
Elixir:
Connect with defaults
{:ok, conn} = :macula_nat_connector.connect(target_node_id, %{})

Connect with options
{:ok, conn} = :macula_nat_connector.connect(target_node_id, %{
 timeout: 20_000,
 prefer_direct: true,
 fallback_relay: true,
 max_attempts: 3
})

Relay System API
macula_relay_registry
Distributed registry of relay-capable nodes.
register/2
Register as relay-capable node.
Erlang:
-spec register(binary(), binary()) -> ok | {error, term()}.

%% Register self as relay with endpoint
ok = macula_relay_registry:register(MyNodeId, MyEndpoint).
Elixir:
Register self as relay with endpoint
:ok = :macula_relay_registry.register(my_node_id, my_endpoint)
find_relay/1
Find suitable relay for target peer.
Erlang:
-spec find_relay(binary()) -> {ok, relay_info()} | {error, no_relay}.

%% Find relay to reach target
{ok, #{
 node_id => RelayNodeId,
 endpoint => RelayEndpoint,
 latency_ms => 25,
 load => 0.3
}} = macula_relay_registry:find_relay(TargetNodeId).
Elixir:
Find relay to reach target
{:ok, %{
 node_id: relay_node_id,
 endpoint: relay_endpoint,
 latency_ms: 25,
 load: 0.3
}} = :macula_relay_registry.find_relay(target_node_id)
macula_relay_node
Relay server functionality.
enable/0, enable/1
Enable relay functionality on this node.
Erlang:
-spec enable() -> ok.
-spec enable(map()) -> ok.

%% Enable with defaults
ok = macula_relay_node:enable().

%% Enable with custom limits
ok = macula_relay_node:enable(#{
 max_sessions => 200,
 bandwidth_limit => 2097152, % 2 MB/s per session
 session_timeout => 1800000 % 30 minutes
}).
Elixir:
Enable with defaults
:ok = :macula_relay_node.enable()

Enable with custom limits
:ok = :macula_relay_node.enable(%{
 max_sessions: 200,
 bandwidth_limit: 2_097_152, # 2 MB/s per session
 session_timeout: 1_800_000 # 30 minutes
})
disable/0
Disable relay functionality.
Erlang:
-spec disable() -> ok.

ok = macula_relay_node:disable().
Elixir:
:ok = :macula_relay_node.disable()
request_relay/2
Request relay session to target.
Erlang:
-spec request_relay(binary(), map()) ->
 {ok, relay_session()} | {error, term()}.

{ok, Session} = macula_relay_node:request_relay(TargetNodeId, #{}).
Elixir:
{:ok, session} = :macula_relay_node.request_relay(target_node_id, %{})

Integration Examples
Example 1: P2P Chat Application
Erlang:
-module(chat_client).
-export([connect_to_peer/1, send_message/2]).

connect_to_peer(PeerNodeId) ->
 %% NAT-aware connection - automatically handles traversal
 case macula_nat_connector:connect(PeerNodeId, #{timeout => 15000}) of
 {ok, Conn} ->
 log_connection_method(Conn),
 {ok, Conn};
 {error, Reason} ->
 {error, {connection_failed, Reason}}
 end.

log_connection_method(Conn) ->
 Method = macula_connection:get_info(Conn, connection_method),
 io:format("Connected via: ~p~n", [Method]).

send_message(Conn, Message) ->
 macula_connection:send(Conn, {chat_message, Message}).
Elixir:
defmodule ChatClient do
 def connect_to_peer(peer_node_id) do
 # NAT-aware connection - automatically handles traversal
 case :macula_nat_connector.connect(peer_node_id, %{timeout: 15_000}) do
 {:ok, conn} ->
 log_connection_method(conn)
 {:ok, conn}

 {:error, reason} ->
 {:error, {:connection_failed, reason}}
 end
 end

 defp log_connection_method(conn) do
 method = :macula_connection.get_info(conn, :connection_method)
 IO.puts("Connected via: #{inspect(method)}")
 end

 def send_message(conn, message) do
 :macula_connection.send(conn, {:chat_message, message})
 end
end
Example 2: Monitoring NAT Changes
Erlang:
-module(nat_monitor).
-behaviour(gen_server).

init([]) ->
 %% Subscribe to NAT profile changes
 ok = macula_nat_detector:subscribe(self()),
 {ok, #{}}.

handle_info({nat_profile_changed, OldProfile, NewProfile}, State) ->
 io:format("NAT changed: ~p -> ~p~n", [
 maps:get(mapping, OldProfile),
 maps:get(mapping, NewProfile)
]),
 %% Notify application of network change
 notify_network_change(NewProfile),
 {noreply, State}.
Elixir:
defmodule NatMonitor do
 use GenServer

 def init(_opts) do
 # Subscribe to NAT profile changes
 :ok = :macula_nat_detector.subscribe(self())
 {:ok, %{}}
 end

 def handle_info({:nat_profile_changed, old_profile, new_profile}, state) do
 IO.puts("""
 NAT changed: #{inspect(old_profile.mapping)} -> #{inspect(new_profile.mapping)}
 """)

 # Notify application of network change
 notify_network_change(new_profile)
 {:noreply, state}
 end

 defp notify_network_change(profile) do
 # Custom notification logic
 Phoenix.PubSub.broadcast(MyApp.PubSub, "nat:changes", {:nat_changed, profile})
 end
end
Example 3: Running a Relay Node
Erlang:
-module(relay_server).
-export([start/0, stop/0]).

start() ->
 %% Enable relay with monitoring
 ok = macula_relay_node:enable(#{
 max_sessions => 500,
 bandwidth_limit => 5242880, % 5 MB/s
 on_session_start => fun log_session_start/1,
 on_session_end => fun log_session_end/1
 }),

 %% Register in distributed registry
 {ok, NodeId} = macula:get_node_id(),
 {ok, Endpoint} = macula:get_public_endpoint(),
 ok = macula_relay_registry:register(NodeId, Endpoint),

 io:format("Relay server started~n").

stop() ->
 ok = macula_relay_node:disable(),
 io:format("Relay server stopped~n").

log_session_start(#{peer_a := A, peer_b := B}) ->
 io:format("Relay session: ~s <-> ~s~n", [A, B]).

log_session_end(#{peer_a := A, peer_b := B, bytes_transferred := Bytes}) ->
 io:format("Session ended: ~s <-> ~s (~p bytes)~n", [A, B, Bytes]).
Elixir:
defmodule RelayServer do
 require Logger

 def start do
 # Enable relay with monitoring
 :ok = :macula_relay_node.enable(%{
 max_sessions: 500,
 bandwidth_limit: 5_242_880, # 5 MB/s
 on_session_start: &log_session_start/1,
 on_session_end: &log_session_end/1
 })

 # Register in distributed registry
 {:ok, node_id} = :macula.get_node_id()
 {:ok, endpoint} = :macula.get_public_endpoint()
 :ok = :macula_relay_registry.register(node_id, endpoint)

 Logger.info("Relay server started")
 end

 def stop do
 :ok = :macula_relay_node.disable()
 Logger.info("Relay server stopped")
 end

 defp log_session_start(%{peer_a: a, peer_b: b}) do
 Logger.info("Relay session: #{a} <-> #{b}")
 end

 defp log_session_end(%{peer_a: a, peer_b: b, bytes_transferred: bytes}) do
 Logger.info("Session ended: #{a} <-> #{b} (#{bytes} bytes)")
 end
end
Example 4: Phoenix LiveView Integration
Elixir:
defmodule MyAppWeb.ConnectionLive do
 use MyAppWeb, :live_view

 def mount(_params, _session, socket) do
 if connected?(socket) do
 # Subscribe to NAT changes
 :macula_nat_detector.subscribe(self())

 # Get initial NAT profile
 {:ok, profile} = :macula_nat_detector.get_local_profile()

 {:ok,
 socket
 |> assign(:nat_profile, profile)
 |> assign(:connection_status, :disconnected)
 |> assign(:peers, [])}
 else
 {:ok,
 socket
 |> assign(:nat_profile, nil)
 |> assign(:connection_status, :loading)
 |> assign(:peers, [])}
 end
 end

 def handle_event("connect", %{"peer_id" => peer_id}, socket) do
 socket = assign(socket, :connection_status, :connecting)

 Task.async(fn ->
 :macula_nat_connector.connect(peer_id, %{timeout: 15_000})
 end)

 {:noreply, socket}
 end

 def handle_info({ref, {:ok, conn, method}}, socket) when is_reference(ref) do
 Process.demonitor(ref, [:flush])

 {:noreply,
 socket
 |> assign(:connection_status, {:connected, method})
 |> update(:peers, fn peers -> [conn | peers] end)}
 end

 def handle_info({ref, {:error, reason}}, socket) when is_reference(ref) do
 Process.demonitor(ref, [:flush])

 {:noreply,
 socket
 |> assign(:connection_status, {:error, reason})}
 end

 def handle_info({:nat_profile_changed, _old, new_profile}, socket) do
 {:noreply, assign(socket, :nat_profile, new_profile)}
 end

 def render(assigns) do
 ~H"""
 <div class="nat-status">
 <h3>NAT Status</h3>
 <%= if @nat_profile do %>
 <dl>
 <dt>Mapping</dt>
 <dd><%= @nat_profile.mapping %></dd>
 <dt>Filtering</dt>
 <dd><%= @nat_profile.filtering %></dd>
 <dt>Allocation</dt>
 <dd><%= @nat_profile.allocation %></dd>
 <dt>Public IP</dt>
 <dd><%= format_ip(@nat_profile.public_ip) %></dd>
 </dl>
 <% else %>
 <p>Detecting NAT type...</p>
 <% end %>

 <h3>Connection Status: <%= inspect(@connection_status) %></h3>

 <form phx-submit="connect">
 <input type="text" name="peer_id" placeholder="Peer Node ID" />
 <button type="submit">Connect</button>
 </form>
 </div>
 """
 end

 defp format_ip({a, b, c, d}), do: "#{a}.#{b}.#{c}.#{d}"
end
Example 5: GenServer-based Connection Manager
Elixir:
defmodule MyApp.ConnectionManager do
 use GenServer
 require Logger

 defstruct [:node_id, :connections, :nat_profile]

 # Client API

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def connect(peer_id), do: GenServer.call(__MODULE__, {:connect, peer_id})
 def disconnect(peer_id), do: GenServer.cast(__MODULE__, {:disconnect, peer_id})
 def list_connections, do: GenServer.call(__MODULE__, :list)
 def get_nat_profile, do: GenServer.call(__MODULE__, :nat_profile)

 # Server Callbacks

 @impl true
 def init(opts) do
 node_id = Keyword.fetch!(opts, :node_id)

 # Detect NAT type on startup
 {:ok, profile} = :macula_nat_detector.detect()

 # Subscribe to profile changes
 :macula_nat_detector.subscribe(self())

 state = %__MODULE__{
 node_id: node_id,
 connections: %{},
 nat_profile: profile
 }

 Logger.info("ConnectionManager started with NAT profile: #{inspect(profile)}")
 {:ok, state}
 end

 @impl true
 def handle_call({:connect, peer_id}, _from, state) do
 case :macula_nat_connector.connect(state.node_id, peer_id, %{timeout: 10_000}) do
 {:ok, conn, method} ->
 Logger.info("Connected to #{peer_id} via #{method}")
 connections = Map.put(state.connections, peer_id, {conn, method})
 {:reply, {:ok, method}, %{state | connections: connections}}

 {:error, reason} = error ->
 Logger.warning("Failed to connect to #{peer_id}: #{inspect(reason)}")
 {:reply, error, state}
 end
 end

 def handle_call(:list, _from, state) do
 {:reply, Map.keys(state.connections), state}
 end

 def handle_call(:nat_profile, _from, state) do
 {:reply, state.nat_profile, state}
 end

 @impl true
 def handle_cast({:disconnect, peer_id}, state) do
 case Map.pop(state.connections, peer_id) do
 {{conn, _method}, connections} ->
 :macula_nat_connector.disconnect(conn)
 {:noreply, %{state | connections: connections}}

 {nil, _} ->
 {:noreply, state}
 end
 end

 @impl true
 def handle_info({:nat_profile_changed, old, new}, state) do
 Logger.info("NAT profile changed: #{inspect(old.mapping)} -> #{inspect(new.mapping)}")

 # Optionally reconnect peers if NAT type changed significantly
 if needs_reconnection?(old, new) do
 reconnect_all_peers(state)
 end

 {:noreply, %{state | nat_profile: new}}
 end

 defp needs_reconnection?(old, new) do
 old.mapping != new.mapping or old.filtering != new.filtering
 end

 defp reconnect_all_peers(state) do
 for {peer_id, {conn, _}} <- state.connections do
 :macula_nat_connector.disconnect(conn)
 send(self(), {:reconnect, peer_id})
 end
 end
end

Error Handling
Common Errors
	Error	Cause	Solution
	{:error, :detection_timeout}	NAT detection timed out	Check network, retry with longer timeout
	{:error, :no_observers}	No public peers for detection	Connect to gateway first
	{:error, :symmetric_nat}	Both peers have symmetric NAT	Relay will be used automatically
	{:error, :punch_failed}	Hole punching failed	Falls back to relay automatically
	{:error, :no_relay}	No relay available	Enable relay on more nodes

Handling Connection Failures
Erlang:
connect_with_fallback(TargetNodeId) ->
 case macula_nat_connector:connect(TargetNodeId, #{
 timeout => 10000,
 fallback_relay => true
 }) of
 {ok, Conn} ->
 {ok, Conn};
 {error, no_relay} ->
 %% No relay available, try direct with longer timeout
 macula_nat_connector:connect(TargetNodeId, #{
 timeout => 30000,
 fallback_relay => false,
 max_attempts => 5
 });
 {error, Reason} ->
 {error, Reason}
 end.
Elixir:
def connect_with_fallback(target_node_id) do
 case :macula_nat_connector.connect(target_node_id, %{
 timeout: 10_000,
 fallback_relay: true
 }) do
 {:ok, conn} ->
 {:ok, conn}

 {:error, :no_relay} ->
 # No relay available, try direct with longer timeout
 :macula_nat_connector.connect(target_node_id, %{
 timeout: 30_000,
 fallback_relay: false,
 max_attempts: 5
 })

 {:error, reason} ->
 {:error, reason}
 end
end

Performance Considerations
NAT Detection Timing
	Operation	Typical Latency
	Cached profile lookup	< 1ms
	Fresh detection (2 observers)	200-400ms
	DHT profile fetch	100-300ms
	Hole punch coordination	200-500ms

Caching Strategy
Erlang:
%% Pre-warm cache for known peers at startup
prewarm_nat_cache(KnownPeers) ->
 lists:foreach(
 fun(PeerId) ->
 spawn(fun() -> macula_nat_cache:get_from_dht(PeerId) end)
 end,
 KnownPeers
).
Elixir:
Pre-warm cache for known peers at startup
def prewarm_nat_cache(known_peers) do
 known_peers
 |> Task.async_stream(fn peer_id ->
 :macula_nat_cache.get_from_dht(peer_id)
 end, max_concurrency: 10)
 |> Stream.run()
end

Debugging
Logging NAT Events
Erlang:
%% Enable debug logging for NAT system
logger:set_module_level(macula_nat_detector, debug),
logger:set_module_level(macula_nat_coordinator, debug),
logger:set_module_level(macula_nat_connector, debug).
Elixir:
Enable debug logging for NAT system
Logger.configure(level: :debug)

Or configure specific modules in config/dev.exs
config :logger, :console,
 metadata: [:module],
 format: "$time $metadata[$level] $message\n"
Inspecting NAT State
Erlang:
%% Get current NAT profile
{ok, Profile} = macula_nat_detector:get_local_profile(),
io:format("NAT Profile: ~p~n", [Profile]).

%% Check cache stats
Stats = macula_nat_cache:stats(),
io:format("Cache Stats: ~p~n", [Stats]).

%% List pending punch attempts
Pending = macula_nat_coordinator:get_pending(),
io:format("Pending Punches: ~p~n", [Pending]).
Elixir:
Get current NAT profile
{:ok, profile} = :macula_nat_detector.get_local_profile()
IO.inspect(profile, label: "NAT Profile")

Check cache stats
stats = :macula_nat_cache.stats()
IO.inspect(stats, label: "Cache Stats")

List pending punch attempts
pending = :macula_nat_coordinator.get_pending()
IO.inspect(pending, label: "Pending Punches")

See Also
	NAT Types Explained - Background on NAT types

 Macula Authorization Guide

This guide provides a comprehensive overview of the Macula mesh authorization system, including the underlying concepts, implementation details, and best practices.
Overview
Macula implements decentralized authorization using industry-standard cryptographic primitives. Unlike traditional client-server authorization where a central authority validates requests, Macula's authorization is:
	Self-sovereign: Identity controlled by the owner's keypair
	Cryptographically verifiable: No network calls needed for validation
	Capability-based: Fine-grained permissions via UCAN tokens
	Offline-capable: All validation happens locally

[image: Authorization Flow]
Core Concepts
Decentralized Identifiers (DIDs)
A DID (Decentralized Identifier) is a globally unique identifier that enables verifiable, decentralized digital identity. DIDs are defined by the W3C DID Core Specification.
[image: DID Structure]
Macula DID Format
did:macula:io.macula.rgfaber
│ │ └─────────────────── Method-specific identifier (namespace)
│ └──────────────────────────── Method (macula)
└──────────────────────────────── Scheme (always "did")
Key Properties:
	Property	Description
	Self-sovereign	Controlled by owner's Ed25519 keypair
	Human-readable	Hierarchical namespace format
	Resolvable	Method defines how to obtain public key
	Cryptographically verifiable	Ownership proven via signature

DID Resolution
When a DID is encountered, Macula resolves it to extract:
	Method: macula (defines resolution rules)
	Identity: io.macula.rgfaber (namespace path)
	Parts: ["io", "macula", "rgfaber"] (hierarchy)
	Depth: 3 (hierarchy level)

The macula_did_cache module provides high-performance caching using Erlang's persistent_term:
%% Parse and cache a DID (or retrieve from cache)
{ok, Parsed} = macula_did_cache:get_or_parse(<<"did:macula:io.macula.rgfaber">>).
%% => {ok, #{<<"method">> => <<"macula">>,
%% <<"identity">> => <<"io.macula.rgfaber">>,
%% <<"parts">> => [<<"io">>, <<"macula">>, <<"rgfaber">>],
%% <<"depth">> => 3}}
Performance: persistent_term provides O(1) lookups with zero garbage collection impact, making it ideal for frequently-accessed identity data.
Further Reading:
	W3C DID Core 1.0
	DID Method Registry

User Controlled Authorization Networks (UCANs)
UCAN (User Controlled Authorization Networks) is a capability-based authorization system built on JWT (JSON Web Tokens). UCANs enable delegation chains where permissions can be granted and re-delegated without involving a central authority.
[image: UCAN Token Structure]
UCAN Token Structure
A UCAN is a JWT with specific claims:
	Claim	Description
	iss	Issuer DID - Who created and signed this token
	aud	Audience DID - Who this token is granted to
	exp	Expiration - Unix timestamp when token expires
	nbf	Not Before - Token valid only after this time
	cap	Capabilities - Array of permission grants
	prf	Proofs - Chain of parent UCANs (for delegation)

Capability Format
Capabilities define what actions are permitted on which resources:
#{
 <<"with">> => <<"io.macula.rgfaber.*">>, % Resource pattern
 <<"can">> => <<"mesh:call">> % Operation
}
Supported Operations:
	Operation	Description
	mesh:call	RPC procedure invocation
	mesh:publish	Publish to topic
	mesh:subscribe	Subscribe to topic
	mesh:*	All mesh operations

Wildcards:
	io.macula.rgfaber.* matches any resource in namespace
	mesh:* matches any mesh operation

Delegation Chains
UCANs support attenuated delegation: permissions can be re-delegated but only with equal or narrower scope.
Alice (owns io.macula.alice.*)
 │
 └──► grants Bob: mesh:call on io.macula.alice.api.*
 │
 └──► Bob grants Carol: mesh:call on io.macula.alice.api.read_only
 (valid - narrower scope)

 └──► Bob grants Dave: mesh:call on io.macula.alice.*
 (INVALID - broader than Bob received)
Further Reading:
	UCAN Specification
	Fission UCAN Explainer
	Brooklyn Zelenka's UCAN Paper

Namespace Ownership Model
Macula uses a hierarchical namespace ownership model where DIDs map directly to namespaces they control:
[image: Namespace Hierarchy]
DID to Namespace Mapping
DID Owns Namespace
─────────────────────────────── ─────────────────────────────
did:macula:io.macula io.macula.* (realm root)
did:macula:io.macula.rgfaber io.macula.rgfaber.*
did:macula:io.macula.ibm io.macula.ibm.*
did:macula:io.macula.ibm.watson io.macula.ibm.watson.*
Hierarchical Access Rules
	Owner access: A DID can always access its own namespace
	Parent access: Parent DIDs can access child namespaces
	Sibling isolation: Siblings cannot access each other's namespaces

%% Examples
did:macula:io.macula.ibm → CAN access io.macula.ibm.watson.*
did:macula:io.macula.ibm.watson → CANNOT access io.macula.ibm.*
did:macula:io.macula.rgfaber → CANNOT access io.macula.ibm.*

Authorization Flow
When a mesh operation (RPC call, publish, subscribe) is requested, Macula follows this authorization flow:
Step 1: Extract Caller DID
The caller's DID is extracted from:
	TLS Certificate SAN (Subject Alternative Name URI field)
	Message Header (for explicit caller identification)

Step 2: Extract Namespace
The namespace is derived from the topic/procedure:
io.macula.rgfaber.place_order → io.macula.rgfaber
Step 3: Check Ownership
case macula_authorization:check_namespace_ownership(CallerDID, Namespace) of
 {ok, owner} -> authorized;
 {ok, ancestor} -> authorized; % Parent can access child
 {error, not_owner} -> check_ucan()
end.
Step 4: Validate UCAN (if needed)
If the caller doesn't own the namespace, a valid UCAN token is required:
case macula_authorization:validate_ucan_for_operation(UcanToken, CallerDID, Resource, Operation) of
 {ok, authorized} -> proceed;
 {error, Reason} -> deny
end.

Public Topics
Topics containing .public. are world-readable without ownership or UCAN:
io.macula.rgfaber.public.announcements → Anyone can subscribe
io.macula.public.news → Anyone can subscribe
Note: Publishing to public topics still requires ownership or a valid UCAN grant.

Revocation
UCANs can be revoked before expiration using the revocation system:
[image: Revocation Flow]
Revocation Process
	Issuer initiates: Only the token issuer can revoke
	Compute CID: SHA-256 hash of the UCAN → base64url encoded
	Sign revocation: Ed25519 signature proves issuer authority
	Broadcast: Published to io.macula.system.ucan_revoked topic
	Cache locally: Each node stores in ETS with TTL

Safeguards
	Safeguard	Implementation
	Issuer-only	Signature validated against issuer's public key
	Rate limiting	Max 10 revocations per issuer per minute
	Auto-expiry	Revocation cached until original UCAN exp time
	Ed25519 required	64-byte signature format enforced

Revocation API
%% Revoke a UCAN
{ok, CID} = macula_ucan_revocation:revoke(IssuerDID, UcanToken, ExpiresAt).

%% Check if revoked
true = macula_ucan_revocation:is_revoked(IssuerDID, CID).

Audit Logging
All authorization decisions are logged via the audit system:
[image: Audit System]
Telemetry Events
Authorization results emit telemetry events for observability:
	Event	Description
	[macula, authorization, allowed]	Authorization succeeded
	[macula, authorization, denied]	Authorization denied
	[macula, authorization, error]	Authorization check failed

Event Metadata
#{
 operation => call | publish | subscribe | announce,
 caller => <<"did:macula:io.macula.rgfaber">>,
 resource => <<"io.macula.other.service">>,
 timestamp => 1704672000,
 reason => unauthorized | invalid_ucan | expired_ucan | ... % if denied
}
ETS Storage (Optional)
The audit module optionally stores entries in ETS for debugging:
%% Enable/disable storage
macula_authorization_audit:enable().
macula_authorization_audit:disable().

%% Query recent entries
Entries = macula_authorization_audit:get_recent(100).

%% Query by caller
CallerEntries = macula_authorization_audit:get_by_caller(CallerDID, 50).

%% Statistics
Stats = macula_authorization_audit:get_stats().
%% => #{allowed_count => 1000, denied_count => 5, error_count => 0, ...}
LRU Eviction
The audit log uses Least Recently Used (LRU) eviction to bound memory:
[image: LRU Eviction]
When the log exceeds max_entries, the oldest entries (by timestamp) are evicted. This ensures bounded memory usage while retaining the most recent authorization decisions for debugging.
Configuration:
%% Set maximum entries (default: 10,000)
macula_authorization_audit:set_max_entries(5000).

%% Set retention period (default: 3600 seconds)
macula_authorization_audit:set_retention(7200).

API Reference
Core Authorization
%% Check RPC call authorization
macula_authorization:check_rpc_call(CallerDID, Procedure, UcanToken, Opts).
%% => {ok, authorized} | {error, unauthorized | invalid_ucan | ...}

%% Check publish authorization
macula_authorization:check_publish(CallerDID, Topic, UcanToken, Opts).

%% Check subscribe authorization
macula_authorization:check_subscribe(CallerDID, Topic, Opts).
macula_authorization:check_subscribe(CallerDID, Topic, UcanToken, Opts).

%% Check announce authorization (ownership required, no UCAN)
macula_authorization:check_announce(CallerDID, Procedure, Opts).
Namespace Operations
%% Extract namespace from topic/procedure
macula_authorization:extract_namespace(<<"io.macula.rgfaber.service">>).
%% => <<"io.macula.rgfaber">>

%% Check ownership
macula_authorization:check_namespace_ownership(CallerDID, Namespace).
%% => {ok, owner | ancestor} | {error, not_owner}

%% Check if public
macula_authorization:is_public_topic(<<"io.macula.rgfaber.public.news">>).
%% => true
DID Cache
%% Parse with caching
macula_did_cache:get_or_parse(DID).

%% Invalidate entry
macula_did_cache:invalidate(DID).

%% Clear cache
macula_did_cache:clear().

%% Get cache size
macula_did_cache:cache_size().
UCAN Revocation
%% Start revocation server
{ok, Pid} = macula_ucan_revocation:start_link().

%% Revoke a UCAN
{ok, CID} = macula_ucan_revocation:revoke(IssuerDID, UcanToken, ExpiresAt).

%% Check revocation status
macula_ucan_revocation:is_revoked(IssuerDID, CID).

%% Statistics
macula_ucan_revocation:get_stats().
Audit Logging
%% Start audit server
{ok, Pid} = macula_authorization_audit:start_link().

%% Log (called automatically by authorization checks)
macula_authorization_audit:log_authorized(Operation, CallerDID, Resource).
macula_authorization_audit:log_denied(Operation, CallerDID, Resource, Reason).

%% Query
macula_authorization_audit:get_recent(Limit).
macula_authorization_audit:get_by_caller(CallerDID, Limit).
macula_authorization_audit:get_by_resource(Resource, Limit).

%% Configuration
macula_authorization_audit:enable().
macula_authorization_audit:disable().
macula_authorization_audit:set_max_entries(N).
macula_authorization_audit:set_retention(Seconds).

Best Practices
Token Lifetime Guidelines
	Use Case	Recommended Lifetime
	API calls	1-24 hours
	Treatment periods	Days to weeks
	Long-term partnerships	Months (narrow scope)
	Sensitive operations	Always short

Security Recommendations
	Use short-lived tokens for sensitive operations
	Narrow capability scope - grant only what's needed
	Monitor audit logs for unusual patterns
	Enable telemetry for real-time observability
	Revoke promptly when relationships end

Performance Tips
	DID cache handles repeated lookups efficiently
	Ownership check first - faster than UCAN validation
	ETS audit storage can be disabled in production
	Telemetry handlers should be non-blocking

Glossary
	Term	Definition
	DID	Decentralized Identifier - globally unique, self-sovereign identity
	UCAN	User Controlled Authorization Network - capability-based auth token
	Capability	Permission grant with resource and operation
	Namespace	Hierarchical identifier path (e.g., io.macula.rgfaber)
	CID	Content Identifier - cryptographic hash of content
	LRU	Least Recently Used - cache eviction strategy
	Ed25519	Elliptic curve signature algorithm

References
Standards
	W3C DID Core 1.0 - Decentralized Identifiers specification
	UCAN Specification - User Controlled Authorization Networks
	RFC 7519 - JWT - JSON Web Token specification
	RFC 8032 - Ed25519 - Edwards-Curve Digital Signature Algorithm

Academic Papers
	Sporny, M., et al. (2022). Decentralized Identifiers (DIDs) v1.0. W3C Recommendation.
	Zelenka, B. (2021). UCAN: Trustless, Server-Free Authorization. Fission.
	Bernstein, D.J., et al. (2012). High-speed high-security signatures. Journal of Cryptographic Engineering.

Implementation Resources
	persistent_term Documentation - Erlang cache module
	ETS Documentation - Erlang Term Storage
	Telemetry Documentation - Observability library

 Macula Full Supervision Tree

Complete Supervision Hierarchy (v0.8.5 Always-On Architecture)
Date: 2025-11-18
Version: v0.8.5+
Architecture: Always-On (all capabilities enabled on every node)
Based on: v0.8.5 architectural foundations release

Visual Tree
macula (OTP application)
└── macula_root [one_for_one]
 │
 ├── macula_routing_server (worker)
 │ └── Core DHT infrastructure (always on)
 │
 ├── macula_bootstrap_system [one_for_one] (always on)
 │ ├── macula_bootstrap_server (worker)
 │ │ └── DHT queries, routing table storage
 │ │
 │ ├── macula_bootstrap_registry (worker)
 │ │ └── Service registry (advertised RPC endpoints)
 │ │
 │ └── macula_bootstrap_health (worker)
 │ └── System health monitoring
 │
 ├── macula_gateway_system [rest_for_one] (always on)
 │ ├── macula_gateway_health (worker)
 │ │ └── Health check HTTP server
 │ │
 │ ├── macula_gateway_diagnostics (worker)
 │ │ └── Diagnostics service
 │ │
 │ ├── macula_gateway_quic_server (worker)
 │ │ └── QUIC transport layer (UDP listener)
 │ │
 │ ├── macula_gateway (worker)
 │ │ └── Message routing coordinator
 │ │
 │ └── macula_gateway_workers_sup [rest_for_one]
 │ ├── macula_gateway_clients (worker)
 │ │ └── Client connection tracking and stream management
 │ │
 │ ├── macula_gateway_pubsub (worker)
 │ │ └── Pub/Sub message routing with wildcards
 │ │
 │ ├── macula_gateway_rpc (worker)
 │ │ └── RPC handler registration and management
 │ │
 │ └── macula_gateway_mesh (worker)
 │ └── Mesh connection pooling (LRU, max 1000 connections)
 │
 └── macula_peers_sup [simple_one_for_one] (always on)
 └── (dynamically spawned macula_peer_system instances)

Peer Connections (Per Client/Peer)
When a peer connects (either as client to gateway, or peer-to-peer), it gets its own supervision tree:
macula_peer_system [rest_for_one] (per connection)
├── macula_connection (worker)
│ └── QUIC connection lifecycle (transport layer)
│
├── macula_pubsub_handler (worker)
│ └── Pub/sub operations for this peer
│
├── macula_rpc_handler (worker)
│ └── RPC operations for this peer
│
└── macula_advertisement_manager (worker)
 └── DHT service advertisements for this peer
Note: Each peer connection gets its own macula_peer_system supervisor with dedicated handlers.

Detailed Component Breakdown
1. Application Root (macula_root)
Strategy: one_for_one
Intensity: 10 restarts in 5 seconds
Children (v0.8.5 - always-on):
	macula_routing_server - Core DHT infrastructure (always on)
	macula_bootstrap_system - Bootstrap services (always on)
	macula_gateway_system - Gateway services (always on)
	macula_peers_sup - Dynamic peer connections supervisor (always on)

Startup Sequence:
	TLS certificates auto-generated if missing (stable Node ID)
	All subsystems start unconditionally
	Beautiful startup banner displays configuration
	Node ready for P2P mesh participation

Fault Isolation:
	Routing server crash → Only routing restarts
	Bootstrap system crash → Only bootstrap restarts
	Gateway system crash → Only gateway restarts
	Peers supervisor crash → Only peers supervisor restarts (existing connections preserved)
	Each subsystem is isolated

2. Bootstrap System (macula_bootstrap_system)
Strategy: one_for_one
Intensity: 10 restarts in 60 seconds
Started when: mode ∈ {bootstrap, hybrid}
Children (all workers):
	macula_bootstrap_server
	Handles DHT queries (FIND_NODE, FIND_VALUE, STORE)
	Stores routing table entries
	Tracks query statistics

	macula_bootstrap_registry
	Service registry for advertised RPC endpoints
	Generic key/value store for DHT
	Provides lookup API

	macula_bootstrap_health
	System health monitoring
	Periodic health checks
	Unhealthy service detection

Purpose:
	Provides DHT bootstrap for new peers joining the mesh
	Acts as initial contact point (well-known peer)
	Does NOT route messages (that's gateway's job if enabled)

3. Gateway System (macula_gateway_system)
Strategy: rest_for_one
Intensity: 10 restarts in 60 seconds
Started when: mode ∈ {gateway, hybrid} AND start_gateway = true
Children (in dependency order):
Child 1: macula_gateway_health
	Type: Worker
	Purpose: Health check HTTP server
	Port: Configurable (default 8080)
	Endpoint: /health
	Crash impact: Restarts health + diagnostics + quic_server + gateway + workers_sup

Child 2: macula_gateway_diagnostics
	Type: Worker
	Purpose: Diagnostics service
	Provides: System metrics, debugging info
	Crash impact: Restarts diagnostics + quic_server + gateway + workers_sup

Child 3: macula_gateway_quic_server
	Type: Worker
	Purpose: QUIC transport layer (UDP listener)
	Port: Configurable (default 9443, or MACULA_QUIC_PORT)
	Protocol: HTTP/3 over QUIC
	TLS: Required (cert/key files)
	Crash impact: Restarts quic_server + gateway + workers_sup

Child 4: macula_gateway
	Type: Worker
	Purpose: Message routing coordinator
	Role: Facade/orchestrator that delegates to worker children
	Crash impact: Restarts gateway + workers_sup

Child 5: macula_gateway_workers_sup
	Type: Supervisor
	Strategy: rest_for_one
	Purpose: Supervises business logic workers
	Crash impact: Restarts workers_sup only (quic_server and gateway continue)

4. Gateway Workers (macula_gateway_workers_sup)
Strategy: rest_for_one
Intensity: 10 restarts in 60 seconds
Children (in dependency order):
Child 1: macula_gateway_clients
	Type: Worker
	Purpose: Client connection and stream tracking
	Max clients: 10,000 (configurable, with backpressure)
	Tracks: ClientID → {ConnPid, Streams, LastSeen}
	Stream cleanup: Coordinated map cleanup on disconnect
	Crash impact: Restarts all workers (foundational)

Child 2: macula_gateway_pubsub
	Type: Worker
	Purpose: Pub/Sub message routing with wildcards
	Supports: Topic hierarchies (e.g., game.events.*)
	Wildcard matching: Prefix matching for subscriptions
	Crash impact: Restarts pubsub + rpc + mesh

Child 3: macula_gateway_rpc
	Type: Worker
	Purpose: RPC handler registration and management
	Registry: Procedure → HandlerPid mapping
	Routing: Local handlers + DHT discovery for remote
	Crash impact: Restarts rpc + mesh

Child 4: macula_gateway_mesh
	Type: Worker
	Purpose: Mesh connection pooling and management
	Pool size: Max 1,000 connections (LRU eviction)
	Connects to: Other gateways/peers in the mesh
	Purpose: Efficient connection reuse for multi-hop routing
	Crash impact: Restarts mesh only

5. Peer System (macula_peer_system)
Strategy: rest_for_one
Intensity: 10 restarts in 60 seconds
Instantiation: One per peer connection (client or P2P peer)
Children (in dependency order):
Child 1: macula_connection
	Type: Worker
	Purpose: QUIC connection lifecycle (transport layer)
	Role: Low-level QUIC send/receive, stream management
	Crash impact: Restarts all peer handlers (foundational)

Child 2: macula_pubsub_handler
	Type: Worker
	Purpose: Pub/sub operations for this specific peer
	Operations: Subscribe, unsubscribe, publish
	Crash impact: Restarts pubsub + rpc + advertisement

Child 3: macula_rpc_handler
	Type: Worker
	Purpose: RPC operations for this specific peer
	Operations: Register handler, call RPC, handle requests
	Pending calls: Tracked with correlation IDs and timeouts
	Caller monitoring: Immediate cleanup on caller death
	Crash impact: Restarts rpc + advertisement

Child 4: macula_advertisement_manager
	Type: Worker
	Purpose: DHT service advertisements for this peer
	Operations: Advertise service, unadvertise, list active
	TTL: 5 minutes (configurable)
	Cleanup: Automatic removal of expired advertisements
	Crash impact: Restarts advertisement only

Supervision Strategies Explained
one_for_one
	Crash: Child N crashes
	Restart: Only child N restarts
	Use case: Independent children, no dependencies

Used by:
	macula_root - Core subsystems are independent
	macula_bootstrap_system - Bootstrap workers are independent

rest_for_one
	Crash: Child N crashes
	Restart: Child N + all children after N restart
	Use case: Ordered dependencies (later children depend on earlier ones)

Used by:
	macula_gateway_system - Dependency chain: health → diagnostics → quic → gateway → workers
	macula_gateway_workers_sup - clients is foundational, others depend on it
	macula_peer_system - connection is foundational, handlers depend on it

simple_one_for_one
	Purpose: Template-based dynamic child spawning
	Restart: Each child has its own restart strategy (not collective)
	Use case: Managing many similar children (peer connections)

Used by:
	macula_peers_sup - Dynamic peer connections (v0.8.5+)

v0.8.5 Always-On Architecture
As of v0.8.5, mode-based configuration has been removed.
Always-On Configuration
macula_root [one_for_one]
├── macula_routing_server (always on)
├── macula_bootstrap_system (always on)
├── macula_gateway_system (always on)
└── macula_peers_sup (always on)
Every node has ALL capabilities:
	✅ DHT routing (core infrastructure)
	✅ Bootstrap service (helps new peers join)
	✅ Gateway with QUIC listener (accepts connections)
	✅ Dynamic peer management (on-demand connections)

Benefits:
	Zero configuration required
	Simplified deployment (no mode selection)
	True P2P mesh (nodes connect on-demand)
	TLS auto-generated (stable Node ID)

Environment Variables (v0.8.5+):
MACULA_QUIC_PORT=4433 # QUIC listener port
MACULA_REALM=my.realm # Realm name
MACULA_BOOTSTRAP_URL=https://... # Optional bootstrap peer
HEALTH_PORT=8080 # Health check port
MACULA_CERT_PATH=/path/to/cert.pem # Optional (auto-generated)
MACULA_KEY_PATH=/path/to/key.pem # Optional (auto-generated)

Legacy Mode Configuration (v0.8.4 and earlier)
DEPRECATED: Mode-based configuration was removed in v0.8.5.
For historical reference, v0.8.4 supported these modes:
	bootstrap - DHT bootstrap only
	edge - Peer-only (no incoming connections)
	gateway - Gateway routing only
	hybrid - All capabilities (equivalent to v0.8.5 default)

Process Count Estimation
v0.8.5 Always-On Architecture:
1 macula_root
1 macula_routing_server
1 macula_bootstrap_system
3 bootstrap workers (server, registry, health)
1 macula_gateway_system
5 gateway workers (health, diagnostics, quic, gateway, workers_sup)
4 business logic workers (clients, pubsub, rpc, mesh)
1 macula_peers_sup

17 processes (base)

+ 4 per peer connection (peer_system with 4 handlers)
Example: Node with 10 peer connections = 17 + (10 × 4) = 57 processes
Example: Node with 100 peer connections = 17 + (100 × 4) = 417 processes
Legacy v0.8.4 (for reference):
Minimal (edge mode): 2 processes
Bootstrap only: 6 processes
Gateway only: 12 processes
Hybrid: 16 + (4 × peers) processes

Fault Tolerance Examples
Scenario 1: Gateway worker crashes
1. macula_gateway_pubsub crashes
2. rest_for_one restarts: pubsub + rpc + mesh
3. Clients continue (no disconnection)
4. quic_server continues (no listening disruption)
5. Recovery: ~100ms (restart + state rebuild)
Scenario 2: QUIC server crashes
1. macula_gateway_quic_server crashes
2. rest_for_one restarts: quic_server + gateway + workers_sup
3. All workers restart
4. New QUIC listener started
5. Clients must reconnect (UDP listener changed)
6. Recovery: ~500ms (full gateway restart)
Scenario 3: Bootstrap system crashes
1. macula_bootstrap_system crashes
2. one_for_one restarts: bootstrap_system only
3. Gateway continues (independent)
4. Routing server continues (independent)
5. Recovery: ~200ms (restart 3 bootstrap workers)
Scenario 4: Peer connection handler crashes
1. macula_rpc_handler (for peer X) crashes
2. rest_for_one restarts: rpc_handler + advertisement_manager
3. Peer X's connection and pubsub_handler continue
4. Peer X doesn't need to reconnect
5. Recovery: ~50ms (restart 2 handlers)

Memory Management
Each subsystem implements bounded data structures:
	Gateway mesh pool: Max 1,000 connections (LRU eviction)
	Gateway clients: Max 10,000 clients (backpressure)
	Service registry: 5-min TTL with automatic cleanup every 60s
	RPC pending calls: Monitored caller PIDs (cleanup on death)
	Stream tracking: Coordinated cleanup on client disconnect

See: architecture/memory_management/ for comprehensive details

Configuration
Environment Variables (v0.8.5+)
QUIC configuration
MACULA_QUIC_PORT=4433 # QUIC listener port
MACULA_REALM=macula.arcade # Realm name
HEALTH_PORT=8080 # Health check HTTP port

TLS certificates (auto-generated if not provided)
MACULA_CERT_PATH=/var/lib/macula/cert.pem # Optional
MACULA_KEY_PATH=/var/lib/macula/key.pem # Optional

Bootstrap (optional - for joining existing mesh)
MACULA_BOOTSTRAP_URL=https://bootstrap:4433

Legacy support (v0.8.4 compatibility)
GATEWAY_PORT=4433 # Falls back to MACULA_QUIC_PORT

Application Config (sys.config) - v0.8.5+
{macula, [
 {quic_port, 4433}, % QUIC listener
 {realm, <<"macula.arcade">>}, % Realm name
 {health_port, 8080}, % Health check port
 {bootstrap_health_interval, 60000}, % Health check interval (ms)

 % TLS configuration (optional - auto-generated if missing)
 {cert_path, "/var/lib/macula/cert.pem"},
 {key_path, "/var/lib/macula/key.pem"},
 {cert_validity_days, 3650}, % 10 years
 {cert_key_bits, 2048} % RSA key size
]}
Legacy Configuration (v0.8.4)
{macula, [
 {mode, hybrid}, % DEPRECATED in v0.8.5
 {start_gateway, true}, % DEPRECATED in v0.8.5
 {gateway_port, 4433}, % Use quic_port in v0.8.5
 {gateway_realm, <<"macula.arcade">>} % Use realm in v0.8.5
]}

Related Documents
	architecture/memory_management/ - Memory leak prevention and bounded data structures
	architecture/dht_routed_rpc.md - DHT-routed RPC design
	architecture/NAT_TRAVERSAL_ROADMAP.md - v0.8.0/v0.9.0 P2P connectivity
	architecture/v0.9.0-CONSISTENCY-CONCERNS.md - Correlation and consistency patterns
	CODE_REVIEW_REPORT.md - Code quality and health score

Summary
v0.8.5 Always-On Architecture - Every node runs:
	✅ Core DHT routing (always on)
	✅ Bootstrap service (helps new peers join)
	✅ Gateway with QUIC listener (accepts connections)
	✅ Pub/Sub routing (message forwarding)
	✅ RPC handling (service registry + routing)
	✅ Mesh connections (connection pooling)
	✅ Per-peer handlers (connection + pubsub + rpc + advertisements)

Total processes: 17 base + 4 per connected peer
Zero configuration:
	TLS certificates auto-generated on first boot
	Stable Node ID derived from public key (SHA-256)
	No mode selection needed

Fault tolerance: Proper OTP supervision with one_for_one and rest_for_one strategies
Scalability: Bounded pools prevent unbounded memory growth (see memory management docs)

 Macula HTTP/3 Mesh - Project Structure and Libraries

Actual Erlang/Elixir projects and libraries to build
Created: 2025-01-08
Status: Planning Document

Overview
This document outlines the actual Erlang/Elixir libraries, applications, and projects that need to be created to implement the Macula HTTP/3 Mesh platform.

Repository Organization Strategy
Option A: Monorepo (Recommended for Initial Development)
macula/
├── src/
│ ├── macula_bootstrap_system/ # DHT bootstrap and discovery
│ ├── macula_bridge_system/ # Hierarchical DHT bridge (v0.13.0)
│ │ ├── macula_bridge_system.erl # Supervisor
│ │ ├── macula_bridge_node.erl # Parent mesh connection
│ │ ├── macula_bridge_mesh.erl # Peer bridge mesh
│ │ └── macula_bridge_cache.erl # Query result caching
│ ├── macula_dist_system/ # Distributed Erlang over QUIC
│ ├── macula_gateway_system/ # QUIC message routing
│ ├── macula_membership_system/ # SWIM membership protocol
│ ├── macula_nat_system/ # NAT traversal (v0.12.0)
│ ├── macula_peer_system/ # Peer connection management
│ ├── macula_platform_system/ # Ra/Raft consensus (v0.9.0)
│ ├── macula_pubsub_system/ # Pub/sub implementation
│ ├── macula_routing_system/ # Kademlia DHT routing
│ ├── macula_rpc_system/ # RPC and async request/reply
│ ├── macula_security_system/ # TLS, realm auth (v0.11.0)
│ └── macula_*.erl # Core modules
├── test/
│ ├── macula_bridge_system/ # Bridge system tests (40 tests)
│ ├── macula_nat_system/ # NAT traversal tests
│ └── ... # Other subsystem tests
├── rebar.config # Rebar3 config
├── CLAUDE.md # Project guidelines
└── README.md
Benefits:
	Easy cross-library development
	Shared dependencies
	Single release
	Atomic commits across components
	Simplified CI/CD

Option B: Multi-repo (For Maturity/Modularity)
Separate repositories for each library (similar to Erlang/OTP structure).
Benefits:
	Independent versioning
	Smaller, focused repos
	Can use different libraries independently
	Clear boundaries

Recommendation: Start with Option A (monorepo), split later if needed.

Core Libraries (Required for MVP)
1. macula_core
Purpose: Core types, protocols, and shared utilities.
Modules:
%% Core types
macula_types.erl - Common type definitions
macula_node.erl - Node identity and metadata
macula_realm.erl - Realm management
macula_topic.erl - Topic parsing and validation

%% Utilities
macula_time.erl - Time utilities
macula_id.erl - ID generation (SHA-256 node IDs)
macula_uri.erl - Macula URI parsing (macula://realm/node)
Dependencies: None (pure Erlang)
Rebar3 Config:
{application, macula_core, [
 {description, "Macula core types and protocols"},
 {vsn, "0.1.0"},
 {modules, []},
 {registered, []},
 {applications, [kernel, stdlib]}
]}.

2. macula_quic
Purpose: QUIC transport layer (wrapper around quicer).
Modules:
macula_quic_listener.erl - QUIC listener (accept connections)
macula_quic_client.erl - QUIC client (initiate connections)
macula_quic_connection.erl - GenServer per QUIC connection
macula_quic_stream.erl - Stream management
macula_quic_config.erl - QUIC configuration (TLS, ALPN, etc.)
Dependencies:
	quicer (NIF for MsQuic)

Key Features:
	Connection pooling
	Stream multiplexing
	0-RTT support
	Connection migration
	Backpressure handling

Rebar3 Config:
{application, macula_quic, [
 {description, "Macula QUIC transport layer"},
 {vsn, "0.1.0"},
 {modules, []},
 {registered, []},
 {applications, [kernel, stdlib, macula_core, quicer]},
 {mod, {macula_quic_app, []}}
]}.

{deps, [
 {quicer, {git, "https://github.com/emqx/quic.git", {branch, "main"}}}
]}.

3. macula_protocol
Purpose: Wire protocol (message framing, encoding/decoding).
Modules:
macula_protocol.erl - Main protocol API
macula_frame.erl - Frame encoding/decoding
macula_message.erl - Message types and validation
macula_codec.erl - Binary serialization (Erlang term format or MessagePack)
Message Types:
-define(MSG_HANDSHAKE, 16#01).
-define(MSG_HANDSHAKE_ACK, 16#02).
-define(MSG_HEARTBEAT, 16#03).
-define(MSG_PING, 16#04).
-define(MSG_PONG, 16#05).
-define(MSG_PUBLISH, 16#10).
-define(MSG_SUBSCRIBE, 16#11).
-define(MSG_UNSUBSCRIBE, 16#12).
-define(MSG_EVENT, 16#13).
-define(MSG_RPC_CALL, 16#20).
-define(MSG_RPC_RESULT, 16#21).
-define(MSG_RPC_ERROR, 16#22).
-define(MSG_ERROR, 16#F0).
-define(MSG_CLOSE, 16#FF).
Dependencies:
	macula_core

Optional Dependencies:
	msgpack (if using MessagePack instead of Erlang term format)

Rebar3 Config:
{application, macula_protocol, [
 {description, "Macula wire protocol"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core]}
]}.

4. macula_membership
Purpose: SWIM-based membership and failure detection.
Modules:
macula_membership.erl - Main membership API
macula_swim.erl - SWIM protocol GenServer
macula_swim_detector.erl - Failure detector
macula_swim_gossip.erl - Gossip dissemination
macula_member.erl - Member record and state
Features:
	Membership list management
	Direct ping / indirect ping
	Suspicion mechanism
	Incarnation numbers
	Realm-scoped membership

Dependencies:
	macula_core
	macula_protocol
	macula_quic

Rebar3 Config:
{application, macula_membership, [
 {description, "Macula SWIM membership"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol, macula_quic]},
 {mod, {macula_membership_app, []}}
]}.

5. macula_routing
Purpose: Kademlia DHT for routing.
Modules:
macula_routing.erl - Routing API
macula_kademlia.erl - Kademlia DHT GenServer
macula_k_bucket.erl - K-bucket management
macula_node_lookup.erl - Node lookup (iterative)
macula_topic_registry.erl - Topic → Nodes mapping (for pub/sub)
macula_rpc_registry.erl - RPC name → Node mapping
Features:
	256 k-buckets (for 256-bit node IDs)
	XOR distance metric
	Iterative lookups
	Bucket refresh
	Realm partitioning

Dependencies:
	macula_core
	macula_membership

Rebar3 Config:
{application, macula_routing, [
 {description, "Macula Kademlia DHT routing"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_membership]},
 {mod, {macula_routing_app, []}}
]}.

6. macula_topology
Purpose: Mesh topology management (k-regular graph).
Modules:
macula_topology.erl - Topology management
macula_k_regular.erl - k-regular graph algorithm
macula_connection_pool.erl - Connection pool supervisor
macula_connection.erl - GenServer per peer connection
Features:
	k-regular graph topology
	Connection lifecycle (connect, disconnect, reconnect)
	Exponential backoff for reconnections
	Topology visualization

Dependencies:
	macula_core
	macula_quic
	macula_membership
	macula_routing

Rebar3 Config:
{application, macula_topology, [
 {description, "Macula mesh topology management"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_quic,
 macula_membership, macula_routing]},
 {mod, {macula_topology_app, []}}
]}.

7. macula_pubsub
Purpose: Publish/subscribe messaging.
Modules:
macula_pubsub.erl - Pub/sub API
macula_topic_tree.erl - Topic subscription tree (pattern matching)
macula_subscription.erl - Subscription management
macula_publisher.erl - Publishing logic
macula_event_router.erl - Event routing to subscribers
Features:
	Topic pattern matching (exact, prefix, wildcard)
	Local and remote subscriptions
	Subscription announcements (via DHT)
	Event delivery guarantees (at-most-once, at-least-once)

Dependencies:
	macula_core
	macula_protocol
	macula_routing
	macula_topology

Rebar3 Config:
{application, macula_pubsub, [
 {description, "Macula pub/sub messaging"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_routing, macula_topology]},
 {mod, {macula_pubsub_app, []}}
]}.

8. macula_rpc
Purpose: Remote procedure call (RPC) implementation.
Modules:
macula_rpc.erl - RPC API (call, register, unregister)
macula_rpc_server.erl - RPC request handler
macula_rpc_client.erl - RPC call client
macula_rpc_registry.erl - Local RPC endpoint registry
Features:
	Synchronous RPC (with timeout)
	Asynchronous RPC (cast)
	RPC endpoint registration (name → handler function)
	Endpoint discovery via DHT
	Load balancing (if multiple nodes register same RPC)

Dependencies:
	macula_core
	macula_protocol
	macula_routing
	macula_topology

Rebar3 Config:
{application, macula_rpc, [
 {description, "Macula RPC"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_routing, macula_topology]},
 {mod, {macula_rpc_app, []}}
]}.

9. macula_discovery
Purpose: Node discovery (DNS-SD, mDNS, static, cloud).
Modules:
macula_discovery.erl - Discovery coordinator
macula_discovery_static.erl - Static bootstrap nodes
macula_discovery_mdns.erl - mDNS (Multicast DNS)
macula_discovery_dns.erl - DNS SRV records
macula_discovery_consul.erl - Consul service discovery
macula_discovery_k8s.erl - Kubernetes endpoints
Features:
	Multiple discovery methods (configurable)
	Continuous discovery (periodic re-discovery)
	Bootstrap node list
	Realm-aware discovery

Dependencies:
	macula_core
	mdns (for mDNS support)

Rebar3 Config:
{application, macula_discovery, [
 {description, "Macula node discovery"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core]},
 {mod, {macula_discovery_app, []}}
]}.

{deps, [
 {mdns, {git, "https://github.com/benoitc/erlang-mdns.git", {branch, "master"}}}
]}.

10. macula_security
Purpose: Security (TLS certificates, ACLs, audit logging).
Modules:
macula_security.erl - Security API
macula_cert.erl - Certificate generation and validation
macula_acl.erl - Access control lists
macula_audit.erl - Audit logging
macula_crypto.erl - Message signing/verification
Features:
	Certificate generation (self-signed, CA-signed)
	Certificate validation (realm extraction from SAN)
	ACL enforcement (topic/RPC access control)
	Audit log (security events)
	Optional message signing

Dependencies:
	macula_core
	public_key (Erlang stdlib)
	ssl (Erlang stdlib)

Rebar3 Config:
{application, macula_security, [
 {description, "Macula security"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, public_key, ssl, macula_core]},
 {mod, {macula_security_app, []}}
]}.

11. macula_gateway
Purpose: Cross-realm gateway functionality.
Modules:
macula_gateway.erl - Gateway API
macula_gateway_server.erl - Gateway GenServer
macula_policy.erl - Policy engine (topic filtering, rate limiting)
macula_translation.erl - Topic translation
macula_rate_limiter.erl - Rate limiting per realm pair
Features:
	Multi-realm support
	Policy-based message filtering
	Topic translation
	Rate limiting
	Audit logging of cross-realm traffic

Dependencies:
	macula_core
	macula_protocol
	macula_pubsub
	macula_rpc
	macula_security

Rebar3 Config:
{application, macula_gateway, [
 {description, "Macula cross-realm gateway"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_pubsub, macula_rpc, macula_security]},
 {mod, {macula_gateway_app, []}}
]}.

12. macula (Main Application)
Purpose: Umbrella application that ties everything together.
Modules:
macula.erl - Main API
macula_app.erl - Application callback
macula_sup.erl - Top-level supervisor
macula_config.erl - Configuration management
Supervision Tree:
macula_sup (one_for_one)
├── macula_discovery_sup
├── macula_quic_sup
├── macula_membership_sup
├── macula_routing_sup
├── macula_topology_sup
├── macula_pubsub_sup
├── macula_rpc_sup
├── macula_security_sup
└── macula_gateway_sup (optional, if gateway mode)
Dependencies: All macula_* libraries
Rebar3 Config:
{application, macula, [
 {description, "Macula HTTP/3 Mesh Platform"},
 {vsn, "0.1.0"},
 {applications, [
 kernel, stdlib,
 macula_core,
 macula_quic,
 macula_protocol,
 macula_membership,
 macula_routing,
 macula_topology,
 macula_pubsub,
 macula_rpc,
 macula_discovery,
 macula_security,
 macula_gateway
]},
 {mod, {macula_app, []}},
 {env, [
 {realm, <<"org.example.mesh">>},
 {listen_port, 4433},
 {discovery, [{methods, [static, mdns]}]},
 {topology, [{type, k_regular}, {k, 2}]}
]}
]}.

Supporting Tools and Utilities
13. macula_cli
Purpose: Command-line tool for Macula operations.
Features:
	Start/stop nodes
	Join mesh
	View topology
	Send test messages
	Query membership
	Inspect routing table

Implementation: Escript
Rebar3 Config:
{escript_name, macula}.
{escript_emu_args, "%%! -escript main macula_cli\n"}.
Usage:
macula start --realm org.example.mesh --port 4433
macula join 192.168.1.100:4433
macula topology
macula publish topic.name '{"data": "hello"}'
macula stats

14. macula_observer
Purpose: Real-time mesh visualization and monitoring.
Features:
	Visual mesh topology (graphviz-style)
	Live message flow
	Membership state
	Connection status
	Metrics dashboard

Implementation: Phoenix LiveView application (if using Elixir)
Alternative: Standalone Erlang application with web UI (Cowboy + WebSocket)

15. macula_loadtest
Purpose: Load testing and benchmarking tool.
Features:
	Spawn N virtual nodes
	Pub/sub throughput testing
	RPC latency testing
	Failure injection
	Report generation

Implementation: Standalone Erlang application using Tsung or custom framework

Optional/Future Libraries
16. macula_wamp_compat
Purpose: WAMP compatibility layer (bridge WAMP clients to Macula).
Modules:
	WAMP protocol adapter
	WebSocket server
	Message translation (WAMP ↔ Macula)

Use Case: Migrate from Bondy/WAMP to Macula gradually

17. macula_http_bridge
Purpose: HTTP/REST gateway for Macula (publish via HTTP POST).
Modules:
	Cowboy HTTP handler
	REST API (publish, call, subscribe via SSE)

Use Case: Non-BEAM clients accessing Macula

18. macula_kafka_connector
Purpose: Kafka bridge (publish Macula events to Kafka, consume Kafka events).
Dependencies: brod (Kafka client)

19. macula_postgres_connector
Purpose: PostgreSQL integration (CDC, event sourcing).
Dependencies: epgsql or postgrex

20. macula_metrics
Purpose: Metrics and observability (Prometheus, OpenTelemetry).
Modules:
	Prometheus exporter
	OpenTelemetry integration
	StatsD reporter

Dependencies:
	prometheus or prometheus_ex
	opentelemetry and opentelemetry_exporter

Development Roadmap
Phase 1: Foundation (Weeks 1-4)
Goal: Get basic QUIC transport and protocol working.
Libraries to build:
	macula_core - Types and utilities
	macula_quic - QUIC wrapper
	macula_protocol - Wire protocol

Deliverable: Two nodes can connect and exchange handshake messages.

Phase 2: Mesh Topology (Weeks 5-8)
Goal: Self-organizing mesh network.
Libraries to build:
	macula_membership - SWIM
	macula_routing - Kademlia DHT
	macula_topology - k-regular graph
	macula_discovery - Node discovery

Deliverable: N nodes form a mesh and detect failures.

Phase 3: Messaging (Weeks 9-12)
Goal: Pub/sub and RPC working across mesh.
Libraries to build:
	macula_pubsub - Pub/sub
	macula_rpc - RPC

Deliverable: Applications can publish/subscribe and make RPC calls.

Phase 4: Security and Gateways (Weeks 13-16)
Goal: Production-ready security and multi-tenancy.
Libraries to build:
	macula_security - Certificates, ACLs, audit
	macula_gateway - Cross-realm gateway

Deliverable: Secure mesh with realm isolation.

Phase 5: Tooling and Monitoring (Weeks 17-20)
Goal: Developer experience and operations tooling.
Tools to build:
	macula_cli - Command-line tool
	macula_observer - Visualization
	macula_loadtest - Benchmarking
	macula_metrics - Observability

Deliverable: Production-ready platform with tooling.

Testing Strategy
Unit Tests
Each library has its own test suite:
apps/macula_core/test/
apps/macula_quic/test/
apps/macula_protocol/test/
...
Framework: EUnit (Erlang) or ExUnit (Elixir)
Run:
rebar3 eunit
or
mix test

Integration Tests
Multi-node integration tests:
test/integration/
├── mesh_formation_test.erl
├── pubsub_test.erl
├── rpc_test.erl
├── failure_recovery_test.erl
└── gateway_test.erl
Framework: Common Test (Erlang)
Run:
rebar3 ct

Property-Based Tests
Use PropEr (Erlang) or StreamData (Elixir):
apps/macula_routing/test/prop_kademlia.erl
apps/macula_membership/test/prop_swim.erl
Run:
rebar3 proper

Load Tests
Separate load testing suite:
loadtest/
├── pubsub_throughput.erl
├── rpc_latency.erl
├── mesh_scale.erl (1000+ nodes)
└── failure_injection.erl
Framework: Tsung or custom

Continuous Integration
GitHub Actions Workflow
name: CI

on: [push, pull_request]

jobs:
 test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: erlef/setup-beam@v1
 with:
 otp-version: '26.2'
 rebar3-version: '3.22'
 - run: rebar3 compile
 - run: rebar3 eunit
 - run: rebar3 ct
 - run: rebar3 dialyzer

 integration:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: erlef/setup-beam@v1
 - run: rebar3 as test release
 - run: ./test/integration/run_all.sh

Release Strategy
Rebar3 Release
%% rebar.config
{relx, [
 {release, {macula, "0.1.0"}, [
 macula,
 sasl
]},

 {mode, prod},
 {include_erts, true},
 {extended_start_script, true},

 {overlay, [
 {copy, "config/sys.config.example", "etc/sys.config"},
 {copy, "config/vm.args.example", "etc/vm.args"}
]}
]}.
Build:
rebar3 release

Result: _build/default/rel/macula/

Docker Image
FROM erlang:26-alpine AS builder

WORKDIR /build
COPY . .
RUN rebar3 as prod release

FROM alpine:latest

RUN apk add --no-cache openssl ncurses-libs libstdc++

COPY --from=builder /build/_build/prod/rel/macula /opt/macula

EXPOSE 4433/udp

CMD ["/opt/macula/bin/macula", "foreground"]
Build:
docker build -t macula:latest .

Repository Initialization
Create Umbrella Application
Erlang (Rebar3)
rebar3 new umbrella macula
cd macula

Create apps
rebar3 new lib apps/macula_core
rebar3 new lib apps/macula_quic
rebar3 new lib apps/macula_protocol
... etc

Compile
rebar3 compile

Test
rebar3 eunit

Release
rebar3 release

OR Elixir (Mix)
Elixir (Mix)
mix new macula --umbrella
cd macula

Create apps
cd apps
mix new macula_core
mix new macula_quic
mix new macula_protocol
... etc

cd ..

Compile
mix compile

Test
mix test

Release
mix release

Summary
Core Libraries (12):
	✅ macula_core - Core types and utilities
	✅ macula_quic - QUIC transport
	✅ macula_protocol - Wire protocol
	✅ macula_membership - SWIM membership
	✅ macula_routing - Kademlia DHT
	✅ macula_topology - Mesh topology
	✅ macula_pubsub - Pub/sub
	✅ macula_rpc - RPC
	✅ macula_discovery - Node discovery
	✅ macula_security - Security
	✅ macula_gateway - Cross-realm gateway
	✅ macula - Main application

Tools (3):
	✅ macula_cli - CLI tool
	✅ macula_observer - Visualization
	✅ macula_loadtest - Load testing

Optional (5):
	⚠️ macula_wamp_compat - WAMP bridge
	⚠️ macula_http_bridge - HTTP gateway
	⚠️ macula_kafka_connector - Kafka integration
	⚠️ macula_postgres_connector - PostgreSQL integration
	⚠️ macula_metrics - Metrics/observability

Total: 20 libraries/applications

Next Step: Initialize the repository structure and start with Phase 1 (Foundation).

Last Updated: 2025-01-08
Maintainers: [To be assigned]

 Macula Architecture Documentation Index

Current Version: v0.12.3
Last Updated: 2025-11-30

Quick Links
	Getting Started: See the main README
	API Reference: See hex docs or src/ module documentation

Version-Specific Documentation
v0.12.x (Current)
Overview: NATS-style Async RPC, NAT Traversal, Pull-based Discovery
📋 Core Documents:
	v0.8.0-OVERVIEW.md - Foundation architecture (Direct P2P with DHT propagation)
	v0.8.0-CHANGELOG.md - Changes from v0.7.x
	ROADMAP.md - Current roadmap

🏗️ Architecture:
	Direct P2P QUIC connections via macula_peer_connector
	DHT propagation to k=20 closest nodes
	RPC and PubSub via direct connections
	All node types run QUIC listeners
	NAT traversal with hole punching and relay fallback
	Async RPC with NATS-style request/reply

✅ Test Coverage: 70+ NAT tests, 22 async RPC tests
📦 Archived Development Docs: See architecture/archive/ for development session notes and progress tracking.
v0.7.x (Previous)
Overview: Gateway relay architecture with nomenclature refactoring
Key changes:
	Renamed macula_connection → macula_peer (facade)
	Kept macula_connection as transport layer
	Gateway refactoring into focused modules
	Memory management improvements

v0.6.x and Earlier
Overview: Initial DHT implementation and mesh foundation
See git history for details.

Topic Guides
Core Concepts
	DHT (Distributed Hash Table): Kademlia-based routing
	Key concepts: XOR distance, k-buckets, replication factor k=20

	Direct P2P Messaging: Fire-and-forget QUIC connections
	Module: macula_peer_connector

	Service Discovery: DHT-based registration and lookup
	Advertisement, TTL, propagation

Communication Patterns
RPC (Remote Procedure Call)
	Module: macula_pubsub_dht.erl (RPC functions)
	Flow: DHT lookup → Direct connection → Execute → Return result
	Test Suite: test/integration/multi_hop_rpc_SUITE.erl
	Docs: See module @doc comments

PubSub (Publish/Subscribe)
	Module: macula_pubsub_dht.erl (PubSub functions)
	Flow: Subscribe → Advertise in DHT → Publish → DHT lookup → Direct delivery
	Test Suite: test/integration/multi_hop_pubsub_SUITE.erl
	Docs: See module @doc comments

Network & Infrastructure
NAT Traversal
	Status: Complete in v0.12.0
	Approach: Hole punching with relay fallback
	Current: 100% connectivity across NAT types (Full Cone, Restricted, Symmetric)

Multi-Tenancy
	Mechanism: Realm isolation
	Security: Per-realm routing tables
	Docs: See realm configuration in README

Deployment Patterns
	Docker: docker/ directory - Bootstrap, Gateway, Edge nodes
	Multi-node: docker-compose.multi-mode.yml
	NAT Test: docker/nat-test/ - 50-peer NAT simulation

Reference Documentation
API Documentation
	High-level API: src/macula_peer.erl
	Transport: src/macula_connection.erl
	P2P Connector: src/macula_peer_connector.erl
	DHT: src/macula_routing_server.erl
	Gateway: src/macula_gateway.erl

Protocol Specifications
	QUIC Transport: Uses Microsoft MsQuic via quicer
	Message Encoding: MessagePack via msgpack
	DHT Protocol: Custom Kademlia implementation

Configuration
	Application: src/macula.app.src
	Runtime: sys.config (not in repo - user-provided)
	Docker: Environment variables in docker-compose files

Development Documentation
Testing
	Unit Tests: test/*_tests.erl - EUnit tests
	Integration Tests: test/integration/*_SUITE.erl - Common Test suites
	Running Tests: rebar3 eunit && rebar3 ct

Code Quality
	Style Guide: Idiomatic Erlang (see CLAUDE.md)
	Test Coverage: Tracked per module
	Roadmap: See architecture/ROADMAP.md

Gateway Refactoring (Completed v0.7.x)
	6 focused modules, supervision tree, comprehensive tests

Memory Management (Completed v0.7.x)
	Bounded pools, TTL cleanup, no OOM crashes

Historical Documentation
Historical planning documents are archived in architecture/archive/. These describe approaches superseded by the current direct P2P architecture.

Comparison Documents
vs. Other Technologies
See the comparisons documentation for comprehensive comparisons with:
	libp2p, Distributed Erlang, Akka Cluster, Kubernetes, WebRTC
	Business comparison with Kafka, RabbitMQ, NATS, MQTT

Contributing
How to Contribute Documentation
	Follow the naming convention: vX.Y.Z-DOCNAME.md or TOPIC-NAME.md
	Add entry to this INDEX.md
	Keep docs focused and scannable
	Include code examples where helpful
	Link to related docs

Documentation Standards
	Markdown: Use GitHub-flavored Markdown
	Diagrams: Use Mermaid or ASCII art
	Code Examples: Include working, tested examples
	References: Link to source files with line numbers where possible

Quick Reference
Key Files to Read First
	Main README - Project overview
	v0.8.0-OVERVIEW.md - Foundation architecture
	NATS_STYLE_ASYNC_RPC.md - Async RPC design
	src/macula_peer.erl - High-level API

Common Tasks
	Add a new feature: See module @doc comments for API design patterns
	Deploy to production: See Docker files and compose configurations
	Debug an issue: See hex docs and integration test examples
	Understand DHT: See macula_routing_server.erl and macula_routing_table.erl

 Macula Roadmap

Last Updated: 2025-12-25
Current Version: v0.16.0
Status: Registry System complete with Ed25519 signing, security scanning, and Cluster Controller. 60 tests passing.

Executive Summary
This roadmap reflects a significant architectural refinement (December 2025) that introduces:
	Macula Cluster - Deployment-agnostic logical grouping (replaces "MuC")
	CRDTs + Gossip - Replaces Raft consensus for coordination
	Bridge Nodes - Cross-Cluster federation for SuperMesh
	Federated Registry - Secure application distribution
	Protocol Gateway - HTTP/3 API for non-BEAM clients

Key Change: The reckon_db dependency is removed. CRDTs provide distributed state without external event store.

Architecture Overview
Fractal Mesh Hierarchy
SuperMesh is fractal - it nests at any geographic scale:
Cluster (Home) ←── Smallest unit (1-10 nodes)
 └─► Street Mesh ←── Neighbors
 └─► Neighborhood Mesh
 └─► City Mesh
 └─► Province Mesh
 └─► Country Mesh
 └─► Region Mesh (EU, NA, APAC)
 └─► Global Mesh
Example: City-Level View
┌───┐
│ CITY MESH: Amsterdam │
│ ┌─────────────────────────┐ ┌─────────────────────────┐ │
│ │ NEIGHBORHOOD: Centrum │ │ NEIGHBORHOOD: Zuid │ │
│ │ ┌───────┐ ┌───────┐ │ │ ┌───────┐ ┌───────┐ │ │
│ │ │Street │ │Street │ │ │ │Street │ │Street │ │ │
│ │ │ Mesh │ │ Mesh │ │ │ │ Mesh │ │ Mesh │ │ │
│ │ └───┬───┘ └───┬───┘ │ │ └───┬───┘ └───┬───┘ │ │
│ │ └──────────┘ │ │ └──────────┘ │ │
│ └────────────┬────────────┘ └────────────┬────────────┘ │
│ └────────────────────────────┘ │
│ Bridge Nodes │
└───┘
Single Cluster (Smallest Unit)
Nodes within a Cluster form their own intra-cluster mesh (Erlang distribution, or QUIC distribution in future).
┌───┐
│ CLUSTER (e.g., Home Server) │
│ │
│ ┌─────┐◄────────────►┌─────┐◄────────────►┌─────┐ │
│ │Node │ │Node │ │Node │ │
│ │ 1 │◄────────────►│ 2 │◄────────────►│ 3 │ │
│ └─────┘ └─────┘ └─────┘ │
│ Intra-cluster: Erlang distributed mesh │
│ Local DHT (Kademlia) + CRDT State │
│ │ │
│ Bridge Node ──► Inter-cluster: QUIC/HTTP3 │
└───┘
Two transport layers:
	Intra-cluster: Erlang distribution (or QUIC distribution when ready)
	Inter-cluster: Macula QUIC/HTTP3 via Bridge Nodes

Terminology
	Term	Definition
	Macula Cluster	Smallest unit: local deployment (home, office, edge). 1-10 nodes.
	Seed Node	DHT entry point for new peers. No special software - just well-known address.
	Bridge Node	Connects to next mesh level. Bridges form their own mesh + DHT at each level.
	SuperMesh	Any federation level above Cluster (street, city, country, global). Fractal.
	Realm	Virtual namespace spanning the entire hierarchy (like DNS domain).

Hierarchical DHT
Each level of the mesh has its own DHT. Bridge Nodes form meshes at each level:
┌───┐
│ CITY MESH (Bridge Layer) │
│ Bridge◄──►Bridge◄──►Bridge ← City-level DHT │
└───────┬─────────┬─────────┬─────────────────────────────────────┘
 │ │ │
┌───────▼───┐ ┌───▼───┐ ┌───▼───┐
│NEIGHBORHOOD│ │NEIGHB.│ │NEIGHB.│ ← Neighborhood-level DHTs
│Bridge mesh │ │ mesh │ │ mesh │
└───────┬────┘ └───┬───┘ └───┬───┘
 │ │ │
┌───────▼───┐ ┌────▼──┐ ┌────▼──┐
│STREET mesh│ │STREET │ │STREET │ ← Street-level DHTs
│(Bridges) │ │ mesh │ │ mesh │
└───────┬───┘ └───┬───┘ └───┬───┘
 │ │ │
 Clusters Clusters Clusters ← Cluster-level DHTs
DHT query escalation (locality-first):
	Query local Cluster DHT
	If miss → escalate to Street Mesh DHT
	If miss → escalate to Neighborhood Mesh DHT
	Continue until found or top level reached
	Cache results at lower levels

Current State (v0.12.6)
Completed Features
	Component	Status	Notes
	QUIC Transport	Complete	Full gen_server, quicer integration
	PubSub (local)	Complete	Topic-based, wildcard support
	RPC (local)	Complete	NATS-style async, direct P2P
	DHT Kademlia	Complete	k-bucket routing, service discovery
	Gateway System	Complete	Message routing, client management
	Bootstrap System	Complete	DHT bootstrap, service registry
	TLS Security	Complete	Two-mode (production/development)
	Hybrid Trust	Complete	Realm auth + TOFU + rate limiting
	NAT Traversal	Complete	Hole punching, connection pooling, relay
	Memory Management	Complete	Bounded pools, TTL cleanup

What's Incomplete (Being Replaced)
	Component	Old Plan	New Approach
	Platform Layer (Raft)	reckon_db integration	CRDTs + Gossip (no Raft)
	Distributed CRDTs	Local ETS only	Gossip-replicated CRDTs
	Cross-realm	Not planned	Bridge Nodes + Federation
	App distribution	Not planned	Federated Registry
	Non-BEAM clients	Not planned	Protocol Gateway (HTTP/3 API)

Revised Version Plan
	Version	Focus	Status
	v0.13.0	Bridge System	✅ COMPLETED - Hierarchical DHT, Bridge Nodes, Cache
	v0.14.0	CRDT Foundation	✅ COMPLETED - Ra/Raft removed, OR-Set, G-Counter, PN-Counter
	v0.14.1	Pub/Sub Fixes	✅ COMPLETED - Remove message amplification, DHT routing fixes
	v0.15.0	Gossip Protocol	✅ COMPLETED - CRDT state replication, push-pull-push anti-entropy
	v0.15.1	Cross-Gateway Pub/Sub	✅ COMPLETED - Physical node validation, race condition fixes
	v0.16.0	Registry System	✅ COMPLETED - Ed25519 signing, Cluster Controller, security scanning (60 tests)
	v0.17.0	Protocol Gateway	HTTP/3 API, WebTransport, OpenAPI spec
	v1.0.0	Production Ready	Full Cluster + Bridge + Registry
	v1.1.0+	Ecosystem	QUIC Distribution, macula_crdt hex package

v0.13.0 - Bridge System (COMPLETED)
Implemented hierarchical DHT with Bridge mesh support:
	✅ macula_bridge_system.erl - Supervisor for bridge subsystem
	✅ macula_bridge_node.erl - Parent mesh connection and query escalation
	✅ macula_bridge_mesh.erl - Peer-to-peer mesh between bridges
	✅ macula_bridge_cache.erl - TTL-based caching with LRU eviction
	✅ Routing integration with find_value_with_escalation/5
	✅ 40 tests for bridge system

v0.14.0 - CRDT Foundation (COMPLETED - December 2025)
Goal: Replace ETS-based registries with CRDT-backed versions using gossip replication.
Status: ✅ Ra/Raft REMOVED, CRDT Foundation IMPLEMENTED (48 tests)
What was delivered:
	✅ macula_crdt.erl - Core types and operations
	✅ macula_crdt_orset.erl - OR-Set implementation (17 tests)
	✅ macula_crdt_lww.erl - LWW-Register implementation (14 tests)
	✅ macula_crdt_gcounter.erl - G-Counter implementation (9 tests)
	✅ macula_crdt_pncounter.erl - PN-Counter implementation (8 tests)
	✅ Removed macula_leader_election.erl (deleted)
	✅ Removed macula_leader_machine.erl (deleted)
	✅ Removed ra dependency from rebar.config
	✅ Updated macula_platform_system.erl (now masterless)

Deliverables
1. Core CRDT Module
%% apps/macula_crdt/src/macula_crdt.erl
-type or_set() :: #{
 adds => #{element() => vector_clock()},
 removes => #{element() => vector_clock()}
}.

-type lww_register() :: #{
 value => term(),
 timestamp => integer(),
 node_id => node_id()
}.
Operations:
	or_set_add/2, or_set_remove/2, or_set_merge/2, or_set_value/1
	lww_register_set/2, lww_register_merge/2, lww_register_value/1

2. Gossip Protocol
%% apps/macula_crdt/src/macula_gossip.erl
-spec start_gossip(cell_id()) -> ok.
-spec push_state(node_id()) -> ok. %% Push local state to peer
-spec pull_state(node_id()) -> ok. %% Request state from peer
-spec anti_entropy() -> ok. %% Periodic full state sync
Parameters:
	Push interval: 1 second
	Anti-entropy: 30 seconds
	Fanout: 3 peers per round

3. CRDT-backed Registry
Wrap existing macula_bootstrap_registry with CRDT frontend:
	Service registrations use OR-Set
	Node metadata uses LWW-Register
	Gossip syncs state across Cluster

Files to Create
apps/macula_crdt/
├── src/
│ ├── macula_crdt.erl # Core types and operations
│ ├── macula_crdt_orset.erl # OR-Set implementation
│ ├── macula_crdt_lww.erl # LWW-Register implementation
│ └── macula_gossip.erl # Gossip protocol
├── test/
│ ├── macula_crdt_tests.erl
│ └── macula_gossip_tests.erl
└── rebar.config
Acceptance Criteria
	[x] OR-Set correctly handles concurrent add/remove (17 tests)
	[x] LWW-Register resolves conflicts by timestamp (14 tests)
	[x] Gossip achieves convergence (implemented in v0.15.0)
	[x] Existing tests pass with CRDT backend
	[x] 48 new tests for CRDT operations (originally targeted 50+)

v0.15.0 - Gossip Protocol (COMPLETED - December 2025)
Goal: Implement gossip-based state synchronization for CRDT replication across nodes.
Status: ✅ COMPLETE (29 tests)
What was delivered:
	✅ macula_gossip.erl - Complete gossip gen_server with push-pull-push anti-entropy
	✅ Protocol message types (0x70-0x7F) for gossip messages
	✅ Vector clock implementation for causal ordering
	✅ CRDT-aware merging for all types (LWW, OR-Set, G-Counter, PN-Counter)
	✅ macula_platform_system updated to start gossip as supervised child
	✅ Configurable intervals and fanout parameters

Key Features
Gossip API:
%% Store/retrieve CRDT state
macula_gossip:put(Pid, Key, Type, Value).
macula_gossip:get(Pid, Key).
macula_gossip:delete(Pid, Key).

%% Explicit gossip operations
macula_gossip:push_state(Pid, PeerNodeId).
macula_gossip:pull_state(Pid, PeerNodeId).
macula_gossip:anti_entropy(Pid).

%% Peer management
macula_gossip:add_peer(Pid, PeerNodeId).
macula_gossip:remove_peer(Pid, PeerNodeId).
Protocol Messages:
	gossip_push (0x70) - Push local CRDT state to peer
	gossip_pull (0x71) - Request CRDT state from peer
	gossip_pull_reply (0x72) - Reply with CRDT state
	gossip_sync (0x73) - Full anti-entropy sync request
	gossip_sync_reply (0x74) - Full anti-entropy sync response

Configuration:
	gossip_enabled: Enable/disable (default: true)
	gossip_push_interval: Push interval in ms (default: 1000)
	gossip_anti_entropy_interval: Anti-entropy interval in ms (default: 30000)
	gossip_fanout: Peers per round (default: 3)

Acceptance Criteria
	[x] Gossip server starts as supervised child of platform system
	[x] Push/pull/anti-entropy operations work correctly
	[x] Vector clocks track causal ordering
	[x] CRDT merging handles concurrent updates
	[x] 29 new tests for gossip operations

v0.15.1 - Cross-Gateway Pub/Sub (COMPLETED - December 2025)
Goal: Validate and fix cross-gateway message routing for production use.
Status: ✅ COMPLETE - Validated on physical beam cluster (beam00-03)
What was delivered:
	✅ Fixed PUBLISH message validation (missing qos, retain, message_id fields)
	✅ Fixed race condition in macula_peer where subscribe called before QUIC connected
	✅ Fixed duplicate message delivery by removing HYBRID routing mode
	✅ Fixed realm mismatch in gateway_subscriber/gateway_publisher node types
	✅ Added wait_for_connection/2 to ensure QUIC ready before returning from connect
	✅ Fixed edoc XML parse error in macula_rpc_handler

Physical Validation
Tested on beam cluster (4 Intel Celeron J4105 nodes):
	beam00 (192.168.1.10): Registry/Seed node
	beam01 (192.168.1.11): Subscriber gateway
	beam02 (192.168.1.12): Publisher gateway
	beam03 (192.168.1.13): Observer gateway (additional subscriber)

Results:
	800+ messages delivered successfully over 1+ hour
	No message loss or duplication
	Multicast to multiple subscribers working

New Files
	File	Purpose
	docker/docker-compose.cross-gateway-pubsub.yml	Integration test topology
	scripts/deploy-beam-cluster.sh	Beam cluster deployment script

Files Modified
	File	Change
	src/macula_peer.erl	Added wait_for_connection/2
	src/macula_pubsub_system/macula_pubsub_handler.erl	Removed HYBRID routing mode
	src/macula_gateway_system/macula_gateway_pubsub.erl	Fixed PUBLISH message fields
	docker/entrypoint.sh	Added gateway_subscriber/gateway_publisher types, fixed realm

Acceptance Criteria
	[x] Cross-gateway pub/sub works in Docker (3-node test)
	[x] Cross-gateway pub/sub works on physical hardware (4-node beam cluster)
	[x] No duplicate message delivery
	[x] Multiple subscribers receive same messages
	[x] Stable operation for 1+ hour
	[x] Published to hex.pm

v0.14.1 - Pub/Sub Routing Fixes (COMPLETED)
Goal: Fix message amplification issues in DHT-routed pub/sub and improve routing reliability.
Status: ✅ COMPLETED (December 2025)
Changes
Bug Fixes:
	✅ Removed relay_to_mesh_peers/4 from macula_gateway.erl - caused exponential message amplification
	✅ Added build_gateway_endpoint/1 for proper PONG response endpoint construction
	✅ Fixed macula_protocol_types_tests.erl - updated for new pubsub_route (0x13) message type

DHT Routing Improvements:
	✅ Enhanced DHT routing in macula_pubsub_dht.erl
	✅ Improved topic subscription handling

Files Modified
	File	Change
	src/macula_gateway_system/macula_gateway.erl	Removed relay_to_mesh_peers, added build_gateway_endpoint
	src/macula_pubsub_system/macula_pubsub_dht.erl	DHT routing enhancements
	test/macula_protocol_types_tests.erl	Fixed unassigned ID tests (0x13→0x14, 0x24→0x26)

Acceptance Criteria
	[x] No message amplification in pub/sub routing
	[x] Protocol type tests pass (0x13 is pubsub_route, not unassigned)
	[x] Version bumped to v0.14.1
	[x] Documentation updated (CHANGELOG.md, CLAUDE.md, ROADMAP.md)
	[] All unit tests pass (20 infrastructure-related failures remain - require QUIC/TLS services)
	[] Published to hex.pm (requires manual rebar3 hex publish)

Bridge Nodes - COMPLETED in v0.13.0
Note: The Bridge Node functionality was implemented in v0.13.0 (December 2025).
See "v0.13.0 - Bridge System (COMPLETED)" section above.

What was delivered:
	✅ macula_bridge_system.erl - Supervisor
	✅ macula_bridge_node.erl - Parent mesh connection
	✅ macula_bridge_mesh.erl - Peer-to-peer mesh
	✅ macula_bridge_cache.erl - TTL-based caching
	✅ DHT query escalation via find_value_with_escalation/5
	✅ 40 tests

Future enhancements (v0.15.0+):
	[] Federation policy enforcement
	[] DNS SRV bridge discovery
	[] boot.macula.io directory integration

v0.16.0 - Registry System (COMPLETED - December 2025)
Goal: Secure application distribution with federated registries.
Status: ✅ COMPLETE (60 tests)
What was delivered:
	✅ macula_registry_system.erl - Supervisor for registry subsystem
	✅ macula_registry_server.erl - Publish/fetch API with DHT integration
	✅ macula_registry_store.erl - ETS + disk storage with TTL cleanup
	✅ macula_registry_verify.erl - Ed25519 digital signatures
	✅ macula_registry_manifest.erl - SemVer manifest parsing/validation
	✅ macula_security_scanner.erl - Static analysis for dangerous BIFs
	✅ macula_app_monitor.erl - Runtime defense (memory, queue, crash monitoring)
	✅ macula_cluster_controller.erl - Deploy/upgrade/stop app lifecycle
	✅ Protocol messages 0x80-0x89 for registry operations
	✅ Integrated into macula_root.erl supervision tree

Module Structure
src/macula_registry_system/
├── macula_registry_system.erl # Supervisor (one_for_one)
├── macula_registry_server.erl # Package API (gen_server)
├── macula_registry_store.erl # Local storage (gen_server)
├── macula_registry_verify.erl # Ed25519 signatures (stateless)
├── macula_registry_manifest.erl # Manifest parsing (stateless)
├── macula_cluster_controller.erl # App lifecycle (gen_server)
├── macula_security_scanner.erl # Static analysis (stateless)
└── macula_app_monitor.erl # Runtime defense (gen_server)
Protocol Messages (0x80-0x89)
	Type	ID	Purpose
	registry_publish	0x80	Publish package
	registry_publish_ack	0x81	Publish confirmation
	registry_fetch	0x82	Fetch package
	registry_fetch_reply	0x83	Package data
	registry_query	0x84	Query metadata
	registry_query_reply	0x85	Metadata response
	registry_verify	0x86	Verify signature
	registry_verify_reply	0x87	Verification result
	registry_sync	0x88	Sync index
	registry_sync_reply	0x89	Index response

Key Features
Ed25519 Signing:
{PubKey, PrivKey} = macula_registry_verify:generate_keypair().
{ok, Signature} = macula_registry_verify:sign_package(ManifestBin, BeamArchive, PrivKey).
ok = macula_registry_verify:verify_package(ManifestBin, BeamArchive, Signature, PubKey).
Static Analysis:
	Detects dangerous BIFs: os:cmd, erlang:open_port, erlang:load_nif, file:delete, etc.
	Audits NIF usage
	Flags undeclared capabilities
	Calculates security score (0-100)

Runtime Defense:
	Memory limit enforcement
	Message queue monitoring
	Crash rate detection with sliding window
	Automatic throttle → kill → quarantine escalation

Cluster Controller:
	Deploy/upgrade/stop/remove applications
	Auto-update policy per app (always, major, minor, never)
	Signature verification before deploy
	Supervisor monitoring with automatic status updates

Test Coverage (60 tests)
	Module	Tests	Description
	macula_registry_verify_tests	10	Ed25519 keypair, signing, verification
	macula_registry_manifest_tests	8	Validation, SemVer comparison, serialization
	macula_registry_store_tests	8	Storage, retrieval, version management
	macula_security_scanner_tests	8	Dangerous BIF detection, score calculation
	macula_app_monitor_tests	6	Start/stop, limits, quarantine
	macula_cluster_controller_tests	10	Deploy, upgrade, policies
	macula_registry_system_tests	6	Supervisor, child processes
	macula_protocol_types_tests	4	Message IDs 0x80-0x89

Acceptance Criteria
	[x] Package signing with Ed25519
	[x] Package verification before deployment
	[x] Cluster Controller deploys from registry
	[x] Static analysis detects dangerous BIFs
	[x] Runtime monitor enforces limits
	[x] 60 tests passing (target was 50+)
	[x] Integrated into supervision tree

v0.17.0 - Protocol Gateway
Goal: HTTP/3 API for non-BEAM clients.
Deliverables
1. HTTP/3 Endpoints
	Method	Path	Purpose
	POST	/v1/session	Establish session
	POST	/v1/rpc/{realm}/{procedure}	Call RPC
	POST	/v1/publish/{realm}/{topic}	Publish event
	GET	/v1/subscribe/{realm}/{topic}	Subscribe (SSE)
	GET	/v1/discover/{realm}/{pattern}	Find services

2. Message Encoding
	Primary: MessagePack
	Fallback: JSON
	Content negotiation via Accept header

3. WebTransport Support
	Browser-to-mesh direct communication
	Bidirectional streams
	WebSocket fallback for older browsers

4. Protocol Documentation
	docs/PROTOCOL.md - Wire protocol spec
	docs/AUTH.md - Authentication flows
	docs/ERRORS.md - Error taxonomy
	docs/openapi.yaml - OpenAPI spec

Files to Create
apps/macula_protocol/
├── src/
│ ├── macula_protocol_http3.erl # HTTP/3 handler
│ ├── macula_protocol_codec.erl # MessagePack/JSON
│ └── macula_protocol_auth.erl # Session management
└── test/
Acceptance Criteria
	[] curl can call RPC endpoints
	[] SSE subscription works
	[] MessagePack encoding/decoding
	[] OpenAPI spec validates
	[] 30+ tests for protocol

v1.0.0 - Production Ready
Goal: Complete Cluster + Bridge + Registry for production use.
Checklist
	[] All v0.13-v0.16 items complete
	[] E2E test suite with multi-Cluster scenarios
	[] Production deployment guide
	[] Monitoring and alerting documentation
	[] Performance benchmarks (target: 10k msg/sec/Cluster)
	[] Security audit of registry and federation

Documentation
	docs/ARCHITECTURE.md - Updated conceptual model
	docs/GLOSSARY.md - Cluster, Seed, Bridge, SuperMesh
	docs/FEDERATION.md - How to federate Clusters
	docs/REGISTRY.md - Registry operation
	docs/DEPLOYMENT.md - Production guide

v1.1.0+ - Ecosystem Contributions
QUIC Distribution
	Integrate with Erlang distribution
	libcluster strategy
	Test with Horde, Mnesia, :pg
	Publish as separate hex package

macula_crdt Hex Package
	Extract CRDT module as standalone library
	Publish to hex.pm
	Community contribution

Design Decisions
1. No Raft Consensus
Rationale: Raft adds operational complexity for consistency guarantees Macula doesn't need.
Impact:
	No quorum management
	No leader election
	Nodes operate during partitions (AP in CAP)
	State converges eventually

2. CRDT Selection
	State Type	CRDT	Rationale
	Service Registry	OR-Set	Concurrent add/remove
	Peer Membership	OR-Set	Peers join/leave
	Node Metadata	LWW-Register	Last update wins
	Subscriptions	OR-Set per topic	Topic subscribers

3. Hierarchical DHT
	Local DHT per Cluster
	Bridge Nodes forward cross-Cluster queries
	No global DHT state
	Locality-first (most queries resolve locally)

4. Federated Registries
	Organizations control their own registry
	boot.macula.io is one option among many
	Trust is configurable per Cluster
	Capability-based security model

5. Protocol-First Multi-Language
	Define HTTP/3 protocol thoroughly
	Let community build SDKs
	BEAM-native remains first-class
	Non-BEAM via Protocol Gateway

Gap Analysis
Resolved
	Gap	Resolution
	Cluster membership	Config overrides discovery
	Bridge discovery	Layered (env → DNS → directory)
	Capability enforcement	Layered defense model

Deferred to v1.1+
	Gap	Notes
	CRDT garbage collection	Merkle tree + compaction
	Federation PKI	Manual key exchange for v1.0
	Cross-Cluster addressing format	TBD

Risk Analysis
	Risk	Likelihood	Impact	Mitigation
	CRDT divergence	Medium	High	Anti-entropy protocol
	Gossip storms	Low	High	Adaptive fanout
	Bridge bottleneck	Medium	Medium	Multiple Bridges per Cluster
	Security scan false negatives	High	High	Runtime defense layer
	Scope creep	High	High	Strict phase gating

Opportunity Analysis
	Opportunity	Potential	Notes
	Edge-first federation	High	Unique differentiator
	GitOps without K8s	High	Registry + Cluster Controller
	Nerves integration	High	Cluster on embedded
	Hosted registry (SaaS)	High	boot.macula.io revenue
	Enterprise Bridge	High	Managed federation

Archived Plans
Previous planning documents preserved in architecture/archive/:
	ROADMAP-pre-supermesh.md - Previous roadmap (pre-December 2025)
	reckon_db-integration.md - Superseded by CRDT approach

References
	Plan document: ~/.claude/plans/snuggly-finding-simon.md (session artifact)
	Source analysis: 102 .erl files, 52 test files
	Current tests: 200+ passing

Document Version: 3.1 (Cross-Gateway Validation)
Last Updated: 2025-12-25

macula

Macula - Main API for distributed workloads on Macula platform.
This is the ONLY module workload applications should import. It provides a stable, versioned API for all platform operations:
- Mesh networking (connect, publish, subscribe, RPC) - Platform Layer (leader election, CRDTs, workload registration) - Service discovery (DHT queries, node identity)
[bookmark: Quick_Start]Quick Start
Connect to local platform and publish events:
 {ok, Client} = macula:connect_local(#{realm => <<"my.app">>}),
 ok = macula:publish(Client, <<"my.events">>, #{type => <<"test">>}).
[bookmark: Architecture]Architecture
Workload applications run in the same BEAM VM as the Macula platform. Use connect_local/1` to connect via process-to-process communication: ``` Workload App → macula:connect_local/1 → macula_gateway → Mesh (QUIC/HTTP3)''
[bookmark: Platform_Layer_(v0.10.0+)]Platform Layer (v0.10.0+)
Register with platform for coordination features:
 {ok, #{leader_node := Leader}} = macula:register_workload(Client, #{
 workload_name => <<"my_app">>
 }).
[bookmark: DHT_Network_Bootstrap]DHT Network Bootstrap
The platform handles DHT bootstrapping via MACULA_BOOTSTRAP_PEERS`. Workloads dont need to manage peer discovery.

 Summary

 Types

 args/0

 Arguments for RPC calls.

 client/0

 Reference to a connected Macula mesh client.

 event_data/0

 Event payload data. Typically a map that will be JSON-encoded.

 options/0

 Connection or operation options.

 procedure/0

 RPC procedure name. Example: "my.app.get_user".

 subscription_ref/0

 Reference to an active subscription for unsubscribe operations.

 topic/0

 Topic name for pub/sub operations. Topics should describe event types, not entity IDs. Example: "my.app.user.registered" (good), not "my.app.user.123.registered" (bad - ID belongs in payload).

 Functions

 advertise(Client, Procedure, Handler)

 Advertise a service that this client provides.

 advertise(Client, Procedure, Handler, Opts)

 Advertise a service with options.

 call(Client, Procedure, Args)

 Make a synchronous RPC call.

 call(Client, Procedure, Args, Opts)

 Make an RPC call with options.

 call_to(Client, TargetNodeId, Procedure, Args)

 Make an RPC call to a specific target node.

 call_to(Client, TargetNodeId, Procedure, Args, Opts)

 Make an RPC call to a specific target node with options.

 connect(Url, Opts)

 Connect to a Macula mesh network.

 connect_local(Opts)

 Connect to the local Macula gateway (for in-VM workloads).

 disconnect(Client)

 Disconnect from the Macula mesh.

 discover_subscribers(Client, Topic)

 Discover subscribers to a topic via DHT query.

 ensure_distributed()

 Ensure this node is running in distributed mode.

 get_cookie()

 Get the Erlang cookie for the cluster.

 get_leader(Client)

 Get the current Platform Layer leader node.

 get_node_id(Client)

 Get the node ID of this client.

 monitor_nodes()

 Subscribe to node up/down events.

 propose_crdt_update(Client, Key, Value)

 Propose a CRDT update to Platform Layer shared state.

 propose_crdt_update(Client, Key, Value, Opts)

 Propose a CRDT update with specific CRDT type.

 publish(Client, Topic, Data)

 Publish an event to a topic.

 publish(Client, Topic, Data, Opts)

 Publish an event with options.

 read_crdt(Client, Key)

 Read the current value of a CRDT-managed shared state entry.

 register_workload(Client, Opts)

 Register this workload with the Platform Layer.

 set_cookie(Cookie)

 Set the Erlang cookie for this node and persist it.

 subscribe(Client, Topic, Callback)

 Subscribe to a topic.

 subscribe_leader_changes(Client, Callback)

 Subscribe to Platform Layer leader change notifications.

 unadvertise(Client, Procedure)

 Stop advertising a service.

 unmonitor_nodes()

 Unsubscribe from node up/down events.

 unsubscribe(Client, SubRef)

 Unsubscribe from a topic.

 Types

 args/0

 -type args() :: map() | list() | binary().

Arguments for RPC calls.

 client/0

 -type client() :: pid().

Reference to a connected Macula mesh client.

 event_data/0

 -type event_data() :: map() | binary().

Event payload data. Typically a map that will be JSON-encoded.

 options/0

 -type options() :: map().

Connection or operation options.

 procedure/0

 -type procedure() :: binary().

RPC procedure name. Example: "my.app.get_user".

 subscription_ref/0

 -type subscription_ref() :: reference().

Reference to an active subscription for unsubscribe operations.

 topic/0

 -type topic() :: binary().

Topic name for pub/sub operations. Topics should describe event types, not entity IDs. Example: "my.app.user.registered" (good), not "my.app.user.123.registered" (bad - ID belongs in payload).

 Functions

 advertise(Client, Procedure, Handler)

 -spec advertise(Client :: client(),
 Procedure :: procedure(),
 Handler :: macula_service_registry:handler_fn()) ->
 {ok, reference()} | {error, Reason :: term()}.

Advertise a service that this client provides.
Registers a handler function for the specified procedure and advertises it to the DHT so other clients can discover and call it.
The handler function receives a map of arguments and must return {ok, Result} or {error, Reason}.
[bookmark: Options]Options
	ttl - Advertisement TTL in seconds (default: 300)
	metadata - Custom metadata map (default: #{})

[bookmark: Examples]Examples
 %% Define a handler function
 Handler = fun(#{user_id := UserId}) ->
 {ok, #{user_id => UserId, name => <<"Alice">>}}
 end.

 %% Advertise the service
 {ok, Ref} = macula:advertise(
 Client,
 <<"my.app.get_user">>,
 Handler
).

 %% Other clients can now call:
 %% {ok, User} = macula:call(OtherClient, <<"my.app.get_user">>,
 %% #{user_id => <<"user-123">>}).

 advertise(Client, Procedure, Handler, Opts)

 -spec advertise(Client :: client(),
 Procedure :: procedure(),
 Handler :: macula_service_registry:handler_fn(),
 Opts :: options()) ->
 {ok, reference()} | {error, Reason :: term()}.

Advertise a service with options.

 call(Client, Procedure, Args)

 -spec call(Client :: client(), Procedure :: procedure(), Args :: args()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make a synchronous RPC call.
Calls a remote procedure and waits for the result.
[bookmark: Examples]Examples
 %% Simple RPC call
 {ok, User} = macula:call(Client, <<"my.app.get_user">>, #{
 user_id => <<"user-123">>
 }).

 %% With timeout
 {ok, Result} = macula:call(Client, <<"my.app.process">>,
 #{data => <<"large">>},
 #{timeout => 30000}).

 call(Client, Procedure, Args, Opts)

 -spec call(Client :: client(), Procedure :: procedure(), Args :: args(), Opts :: options()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make an RPC call with options.

 call_to(Client, TargetNodeId, Procedure, Args)

 -spec call_to(Client :: client(), TargetNodeId :: binary(), Procedure :: procedure(), Args :: args()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make an RPC call to a specific target node.
Unlike call/4 which discovers any provider via DHT, this function sends the RPC directly to the specified target node. Use this when you already know which node provides the service (e.g., from a previous DHT discovery, a specific publisher node, or direct node advertisement).
The message is still routed via DHT infrastructure (for NAT traversal, relay fallback, etc.), but it targets a specific node rather than discovering one.
[bookmark: Examples]Examples
 %% Call a specific node (e.g., publisher node for package pull)
 PublisherNodeId = <<...32 bytes...>>,
 {ok, Manifest} = macula:call_to(Client, PublisherNodeId,
 <<"packages.manifest.fetch">>,
 #{image_ref => <<"my.app:1.0.0">>}).

 %% With timeout
 {ok, Result} = macula:call_to(Client, TargetNodeId,
 <<"my.procedure">>, Args,
 #{timeout => 30000}).

 call_to(Client, TargetNodeId, Procedure, Args, Opts)

 -spec call_to(Client :: client(),
 TargetNodeId :: binary(),
 Procedure :: procedure(),
 Args :: args(),
 Opts :: options()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make an RPC call to a specific target node with options.

 connect(Url, Opts)

 -spec connect(Url :: binary(), Opts :: options()) -> {ok, client()} | {error, Reason :: term()}.

Connect to a Macula mesh network.
Creates a new HTTP/3 (QUIC) connection to the specified mesh endpoint.
[bookmark: Options]Options
	realm - Required. Binary realm identifier (e.g., <<"my.app.realm">>)
	auth - Optional. Authentication map with api_key or other auth methods
	timeout - Optional. Connection timeout in milliseconds (default: 5000)
	node_id - Optional. 32-byte node ID (generated if not provided)

[bookmark: Examples]Examples
 %% Basic connection
 {ok, Client} = macula:connect(<<"https://mesh.local:443">>, #{
 realm => <<"my.realm">>
 }).

 %% With API key authentication
 {ok, Client} = macula:connect(<<"https://mesh.local:443">>, #{
 realm => <<"my.realm">>,
 auth => #{api_key => <<"secret-key">>}
 }).

 connect_local(Opts)

 (since v0.8.9)

 -spec connect_local(Opts :: options()) -> {ok, client()} | {error, Reason :: term()}.

Connect to the local Macula gateway (for in-VM workloads).
This function is used by applications running in the same BEAM VM as the Macula platform. Instead of creating a QUIC connection to localhost, it connects directly to the local macula_gateway process via process-to-process communication.
[bookmark: Architecture]Architecture
 Phoenix/Elixir App → macula_local_client → macula_gateway
 ↓ (QUIC)
 Other Peers
[bookmark: When_to_Use]When to Use
	✅ Use connect_local/1 when your application runs in the same VM as Macula
	✅ Phoenix applications deployed with Macula in the same container
	❌ Do NOT use connect/2 with localhost URL - it creates unnecessary QUIC overhead

[bookmark: Options]Options
	realm - Required. Binary realm identifier (e.g., <<"my.app.realm">>)
	event_handler - Optional. PID to receive events (default: caller PID)

[bookmark: Examples]Examples
 %% Elixir Phoenix application
 {:ok, client} = :macula.connect_local(%{
 realm: "macula.arcade.dev"
 })

 %% Erlang application
 {ok, Client} = macula:connect_local(#{
 realm => <<"my.app.realm">>
 }).

 disconnect(Client)

 -spec disconnect(Client :: client()) -> ok | {error, Reason :: term()}.

Disconnect from the Macula mesh.
Cleanly closes the HTTP/3 connection and cleans up all subscriptions.

 discover_subscribers(Client, Topic)

 -spec discover_subscribers(Client :: client(), Topic :: topic()) ->
 {ok, [#{node_id := binary(), endpoint := binary()}]} |
 {error, Reason :: term()}.

Discover subscribers to a topic via DHT query.
Queries the DHT for all nodes subscribed to the given topic. Returns a list of subscriber nodes with their node IDs and endpoints.
This is used for P2P discovery before sending direct messages.

 ensure_distributed()

 (since v0.16.3)

 -spec ensure_distributed() -> ok | {error, term()}.

Ensure this node is running in distributed mode.
If the node is already distributed, returns ok immediately. Otherwise, starts distribution with a generated node name.
This function is used by bc_gitops to delegate cluster setup to the Macula platform when available.
Examples:
 ok = macula:ensure_distributed().

 get_cookie()

 (since v0.16.3)

 -spec get_cookie() -> atom().

Get the Erlang cookie for the cluster.
Resolves the cookie from various sources in priority order: 1. Application env: {macula, [{cookie, CookieValue}]} 2. Environment variable: MACULA_COOKIE or RELEASE_COOKIE 3. User's ~/.erlang.cookie file 4. Auto-generated (persisted to ~/.erlang.cookie)
Examples:
 Cookie = macula:get_cookie().

 get_leader(Client)

 (since v0.10.0)

 -spec get_leader(Client :: client()) -> {ok, binary()} | {error, no_leader | term()}.

Get the current Platform Layer leader node.
Queries the Platform Layer for the current leader node ID. The leader is elected via Raft consensus and handles coordination tasks.
Returns {error, no_leader} if leader election is in progress.
[bookmark: Examples]Examples
 case macula:get_leader(Client) of
 {ok, LeaderNodeId} ->
 %% Check if we're the leader
 {ok, OurNodeId} = macula:get_node_id(Client),
 case LeaderNodeId == OurNodeId of
 true -> coordinate_globally();
 false -> defer_to_leader()
 end;
 {error, no_leader} ->
 wait_for_leader_election()
 end.

 get_node_id(Client)

 -spec get_node_id(Client :: client()) -> {ok, binary()} | {error, Reason :: term()}.

Get the node ID of this client.
Returns the 32-byte node ID assigned to this client.

 monitor_nodes()

 (since v0.16.3)

 -spec monitor_nodes() -> ok.

Subscribe to node up/down events.
After calling this function, the calling process will receive {nodeup, Node} and {nodedown, Node} messages when nodes join or leave the cluster.
Examples:
 ok = macula:monitor_nodes().
 receive
 {nodeup, Node} -> handle_node_up(Node);
 {nodedown, Node} -> handle_node_down(Node)
 end.

 propose_crdt_update(Client, Key, Value)

 (since v0.10.0)

 -spec propose_crdt_update(Client :: client(), Key :: binary(), Value :: term()) ->
 ok | {error, Reason :: term()}.

Propose a CRDT update to Platform Layer shared state.
Updates platform-managed shared state using Conflict-Free Replicated Data Types (CRDTs) for automatic conflict resolution across nodes.
Default CRDT type is lww_register (Last-Write-Wins Register). See propose_crdt_update/4 for other CRDT types.
[bookmark: Examples]Examples
 %% Store simple value (LWW-Register)
 ok = macula:propose_crdt_update(
 Client,
 <<"my.app.config.max_users">>,
 1000
).

 %% Later read it back
 {ok, 1000} = macula:read_crdt(Client, <<"my.app.config.max_users">>).

 propose_crdt_update(Client, Key, Value, Opts)

 (since v0.10.0)

 -spec propose_crdt_update(Client :: client(), Key :: binary(), Value :: term(), Opts :: options()) ->
 ok | {error, Reason :: term()}.

Propose a CRDT update with specific CRDT type.
Updates platform-managed shared state using the specified CRDT type for automatic conflict resolution.
[bookmark: CRDT_Types]CRDT Types
	lww_register - Last-Write-Wins Register (default)	Use for: Configuration values, latest status
	Conflict resolution: Latest timestamp wins

	g_counter - Grow-Only Counter	Use for: Metrics, totals (never decrease)
	Operations: increment only

	pn_counter - Positive-Negative Counter	Use for: Bidirectional counters (can increase/decrease)
	Operations: increment, decrement

	g_set - Grow-Only Set	Use for: Accumulating collections (never remove)
	Operations: add elements only

	or_set - Observed-Remove Set	Use for: Sets with add/remove operations
	Operations: add, remove elements

[bookmark: Examples]Examples
 %% Increment a counter
 ok = macula:propose_crdt_update(
 Client,
 <<"my.app.active_games">>,
 {increment, 1},
 #{crdt_type => pn_counter}
).

 %% Add to a set
 ok = macula:propose_crdt_update(
 Client,
 <<"my.app.player_ids">>,
 {add, <<"player123">>},
 #{crdt_type => or_set}
).

 publish(Client, Topic, Data)

 -spec publish(Client :: client(), Topic :: topic(), Data :: event_data()) ->
 ok | {error, Reason :: term()}.

Publish an event to a topic.
Publishes data to the specified topic. All subscribers to this topic will receive the event.
[bookmark: Topic_Design]Topic Design
Topics should describe EVENT TYPES, not entity instances:
	Good: <<"my.app.user.registered">> (event type)
	Bad: <<"my.app.user.123.registered">> (entity ID in topic)

Entity IDs belong in the event payload, not the topic name.
[bookmark: Examples]Examples
 %% Publish with default options
 ok = macula:publish(Client, <<"my.app.events">>, #{
 type => <<"user.registered">>,
 user_id => <<"user-123">>,
 email => <<"user@example.com">>
 }).

 %% Publish with options
 ok = macula:publish(Client, <<"my.app.events">>, #{
 data => <<"important">>
 }, #{acknowledge => true}).

 publish(Client, Topic, Data, Opts)

 -spec publish(Client :: client(), Topic :: topic(), Data :: event_data(), Opts :: options()) ->
 ok | {error, Reason :: term()}.

Publish an event with options.
This is fire-and-forget - returns ok immediately without blocking. Uses gen_server:cast to avoid blocking the caller (prevents LiveView freezes). Both macula_local_client and macula_peer handle {publish_async, ...} casts.

 read_crdt(Client, Key)

 (since v0.10.0)

 -spec read_crdt(Client :: client(), Key :: binary()) -> {ok, term()} | {error, not_found | term()}.

Read the current value of a CRDT-managed shared state entry.
Reads from the local CRDT replica. The value reflects all converged updates from across the platform cluster.
Returns {error, not_found} if the key has never been written.
[bookmark: Examples]Examples
 %% Read LWW-Register value
 {ok, MaxUsers} = macula:read_crdt(Client, <<"my.app.config.max_users">>).

 %% Read counter value
 {ok, GameCount} = macula:read_crdt(Client, <<"my.app.active_games">>).

 %% Read set value
 {ok, PlayerSet} = macula:read_crdt(Client, <<"my.app.player_ids">>).

 register_workload(Client, Opts)

 (since v0.10.0)

 -spec register_workload(Client :: client(), Opts :: options()) ->
 {ok, map()} | {error, Reason :: term()}.

Register this workload with the Platform Layer.
Registers the workload application with Macula's Platform Layer and returns information about the current platform cluster state, including the current leader node.
[bookmark: Options]Options
	workload_name - Required. Binary name identifying this workload type (e.g., <<"macula_arcade">>, <<"my_app">>)
	capabilities - Optional. List of atoms describing workload capabilities (e.g., [coordinator, game_server])

[bookmark: Returns]Returns
	leader_node - Binary node ID of the current Platform Layer leader
	cluster_size - Integer count of nodes in the platform cluster
	platform_version - Binary version string (e.g., <<"0.10.0">>)

[bookmark: Examples]Examples
 {ok, Client} = macula:connect_local(#{realm => <<"my.app">>}),
 {ok, Info} = macula:register_workload(Client, #{
 workload_name => <<"my_app_coordinator">>,
 capabilities => [coordinator, matchmaking]
 }),
 #{leader_node := Leader, cluster_size := Size} = Info.

 set_cookie(Cookie)

 (since v0.16.3)

 -spec set_cookie(atom() | binary()) -> ok.

Set the Erlang cookie for this node and persist it.
Sets the cookie for the current node and attempts to persist it to ~/.erlang.cookie for future sessions.
Examples:
 ok = macula:set_cookie(my_secret_cookie).

 subscribe(Client, Topic, Callback)

 -spec subscribe(Client :: client(), Topic :: topic(), Callback :: fun((event_data()) -> ok)) ->
 {ok, subscription_ref()} | {error, Reason :: term()}.

Subscribe to a topic.
Subscribes to events on the specified topic. The callback function will be invoked for each event received.
[bookmark: Callback_Function]Callback Function
The callback receives the event data and should return ok.
[bookmark: Examples]Examples
 %% Simple subscription
 {ok, SubRef} = macula:subscribe(Client, <<"my.app.events">>,
 fun(EventData) ->
 io:format("Event: ~p~n", [EventData]),
 ok
 end).

 %% Unsubscribe later
 ok = macula:unsubscribe(Client, SubRef).

 subscribe_leader_changes(Client, Callback)

 (since v0.10.0)

 -spec subscribe_leader_changes(Client :: client(), Callback :: fun((map()) -> ok)) ->
 {ok, subscription_ref()} | {error, Reason :: term()}.

Subscribe to Platform Layer leader change notifications.
Registers a callback function to be invoked whenever the Platform Layer leader changes due to election or node failure.
The callback receives a map with:
	old_leader - Previous leader node ID (may be undefined)
	new_leader - New leader node ID
	term - Raft term number (monotonically increasing)

[bookmark: Examples]Examples
 {ok, SubRef} = macula:subscribe_leader_changes(Client,
 fun(#{old_leader := Old, new_leader := New}) ->
 io:format("Leader changed: ~p -> ~p~n", [Old, New]),
 handle_leadership_transition(New),
 ok
 end).

 unadvertise(Client, Procedure)

 -spec unadvertise(Client :: client(), Procedure :: procedure()) -> ok | {error, Reason :: term()}.

Stop advertising a service.
Removes the local handler and stops advertising to the DHT.
[bookmark: Examples]Examples
 ok = macula:unadvertise(Client, <<"my.app.get_user">>).

 unmonitor_nodes()

 (since v0.16.3)

 -spec unmonitor_nodes() -> ok.

Unsubscribe from node up/down events.
Stops the calling process from receiving nodeup/nodedown messages.
Examples:
 ok = macula:unmonitor_nodes().

 unsubscribe(Client, SubRef)

 -spec unsubscribe(Client :: client(), SubRef :: subscription_ref()) -> ok | {error, Reason :: term()}.

Unsubscribe from a topic.
Removes the subscription identified by the subscription reference.

macula_advertisement_manager

Advertisement manager GenServer - manages DHT service advertisements.
Responsibilities: - Advertise services in DHT with periodic re-advertisement - Unadvertise services and cancel timers - Register handlers with local gateway - Manage service advertisement lifecycle - Periodic cleanup of expired local services (every 60s, TTL 300s default)
Extracted from macula_connection.erl (Phase 6)

 Summary

 Functions

 advertise_service(Pid, Procedure, Handler, Opts)

 Advertise a service in DHT and local registry

 get_active_advertisements(Pid)

 Get list of actively advertised services

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle re-advertisement timer

 init(Opts)

 start_link(Opts)

 terminate(Reason, State)

 unadvertise_service(Pid, Procedure)

 Stop advertising a service

 Functions

 advertise_service(Pid, Procedure, Handler, Opts)

 -spec advertise_service(pid(), binary() | atom() | string(), fun((term()) -> term()), map()) ->
 {ok, reference()} | {error, term()}.

Advertise a service in DHT and local registry

 get_active_advertisements(Pid)

 -spec get_active_advertisements(pid()) -> {ok, [binary()]}.

Get list of actively advertised services

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle re-advertisement timer

 init(Opts)

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unadvertise_service(Pid, Procedure)

 -spec unadvertise_service(pid(), binary() | atom() | string()) -> ok | {error, term()}.

Stop advertising a service

macula_app

macula public API

 Summary

 Functions

 start(StartType, StartArgs)

 stop(State)

 Functions

 start(StartType, StartArgs)

 stop(State)

macula_app_monitor

Macula App Monitor
Runtime defense monitor for deployed applications: - Memory usage monitoring - Message queue monitoring - Crash rate detection - Throttle/Kill/Quarantine actions

 Summary

 Functions

 get_all_stats()

 Get stats for all monitored applications

 get_stats(PackageName)

 Get monitoring stats for an application

 is_quarantined(PackageName)

 Check if an application is quarantined

 kill_app(PackageName)

 Kill an application

 quarantine_app(PackageName)

 Quarantine an application (stop and prevent restart)

 restore_app(PackageName)

 Restore a quarantined application

 set_crash_threshold(PackageName, MaxCrashes, WindowSec)

 Set crash threshold for an application

 set_memory_limit(PackageName, LimitMB)

 Set memory limit for an application

 set_message_queue_limit(PackageName, Limit)

 Set message queue limit for an application

 start_link(Config)

 Start the app monitor

 start_monitoring(PackageName, Pid)

 Start monitoring an application

 stop_monitoring(PackageName)

 Stop monitoring an application

 throttle_app(PackageName)

 Throttle an application (reduce priority)

 Functions

 get_all_stats()

 -spec get_all_stats() -> #{binary() => map()}.

Get stats for all monitored applications

 get_stats(PackageName)

 -spec get_stats(PackageName :: binary()) ->
 {ok,
 #{memory_mb := non_neg_integer(),
 message_queue := non_neg_integer(),
 crash_count := non_neg_integer(),
 status := atom()}} |
 {error, not_found}.

Get monitoring stats for an application

 is_quarantined(PackageName)

 -spec is_quarantined(PackageName :: binary()) -> boolean().

Check if an application is quarantined

 kill_app(PackageName)

 -spec kill_app(PackageName :: binary()) -> ok | {error, term()}.

Kill an application

 quarantine_app(PackageName)

 -spec quarantine_app(PackageName :: binary()) -> ok | {error, term()}.

Quarantine an application (stop and prevent restart)

 restore_app(PackageName)

 -spec restore_app(PackageName :: binary()) -> ok | {error, term()}.

Restore a quarantined application

 set_crash_threshold(PackageName, MaxCrashes, WindowSec)

 -spec set_crash_threshold(PackageName :: binary(),
 MaxCrashes :: pos_integer(),
 WindowSec :: pos_integer()) ->
 ok | {error, not_found}.

Set crash threshold for an application

 set_memory_limit(PackageName, LimitMB)

 -spec set_memory_limit(PackageName :: binary(), LimitMB :: pos_integer()) -> ok | {error, not_found}.

Set memory limit for an application

 set_message_queue_limit(PackageName, Limit)

 -spec set_message_queue_limit(PackageName :: binary(), Limit :: pos_integer()) ->
 ok | {error, not_found}.

Set message queue limit for an application

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start the app monitor

 start_monitoring(PackageName, Pid)

 -spec start_monitoring(PackageName :: binary(), Pid :: pid()) -> ok.

Start monitoring an application

 stop_monitoring(PackageName)

 -spec stop_monitoring(PackageName :: binary()) -> ok.

Stop monitoring an application

 throttle_app(PackageName)

 -spec throttle_app(PackageName :: binary()) -> ok | {error, term()}.

Throttle an application (reduce priority)

macula_authorization

Mesh Authorization Module for UCAN/DID-based access control.
This module implements decentralized authorization for Macula mesh operations using UCAN (User Controlled Authorization Networks) and DID (Decentralized Identifiers). All DID parsing and UCAN validation is implemented inline with no external dependencies.
[bookmark: Namespace_Ownership_Model]Namespace Ownership Model
DIDs map to namespaces they own: - did:macula:io.macula.rgfaber owns io.macula.rgfaber.* - Parent DIDs can access child namespaces (hierarchical) - did:macula:io.macula can access everything in io.macula.*
[bookmark: Authorization_Flow]Authorization Flow
1. Extract caller DID from connection/message 2. Parse topic/procedure to extract namespace 3. Check if caller owns namespace → Allow 4. If not owner, check for valid UCAN grant → Allow/Deny
[bookmark: Public_Topics]Public Topics
Topics containing .public. segment are world-readable: - io.macula.rgfaber.public.announcements → Anyone can subscribe - Publishing still requires ownership or UCAN grant

 Summary

 Types

 auth_error/0

 auth_opts/0

 auth_result/0

 did/0

 namespace/0

 operation/0

 procedure/0

 topic/0

 ucan_token/0

 Functions

 check_announce(CallerDID, Procedure, Opts)

 Check if caller is authorized to announce/declare a procedure.

 check_capability_match(Capability, Resource, Operation)

 Check if a capability grants access to a resource for an operation.

 check_namespace_ownership(CallerDID, Namespace)

 Check if caller DID owns a namespace.

 check_publish(CallerDID, Topic, UcanToken, Opts)

 Check if caller is authorized to publish to a topic.

 check_rpc_call(CallerDID, Procedure, UcanToken, Opts)

 Check if caller is authorized to make an RPC call.

 check_subscribe(CallerDID, Topic, Opts)

 Check if caller is authorized to subscribe to a topic.

 check_subscribe(CallerDID, Topic, UcanToken, Opts)

 Check if caller is authorized to subscribe with UCAN support. Full version with UCAN token parameter.

 extract_identity_from_did(DID)

 Extract the identity portion from a DID.

 extract_namespace(TopicOrProcedure)

 Extract namespace from a topic or procedure.

 is_ancestor_namespace(Parent, Child)

 Check if one namespace is an ancestor of another.

 is_public_topic(Topic)

 Check if a topic is public (contains .public. segment).

 resolve_caller_did(CallerDID)

 Resolve and validate a caller DID.

 validate_ucan_for_operation(UcanToken, CallerDID, Resource, Operation)

 Validate a UCAN token for a specific operation.

 Types

 auth_error/0

 -type auth_error() ::
 unauthorized | invalid_ucan | expired_ucan | revoked_ucan | insufficient_capability |
 invalid_did | namespace_mismatch.

 auth_opts/0

 -type auth_opts() :: #{atom() => term()}.

 auth_result/0

 -type auth_result() :: {ok, authorized} | {error, auth_error()}.

 did/0

 -type did() :: binary().

 namespace/0

 -type namespace() :: binary().

 operation/0

 -type operation() :: binary().

 procedure/0

 -type procedure() :: binary().

 topic/0

 -type topic() :: binary().

 ucan_token/0

 -type ucan_token() :: binary() | undefined.

 Functions

 check_announce(CallerDID, Procedure, Opts)

 -spec check_announce(CallerDID :: did(), Procedure :: procedure(), Opts :: auth_opts()) -> auth_result().

Check if caller is authorized to announce/declare a procedure.
Announcing ALWAYS requires namespace ownership. UCAN grants cannot give announce rights (prevents namespace hijacking).

 check_capability_match(Capability, Resource, Operation)

 -spec check_capability_match(Capability :: map(), Resource :: binary(), Operation :: operation()) ->
 boolean().

Check if a capability grants access to a resource for an operation.
Capability format: #{<<"with">> => Resource, <<"can">> => Operation}
Wildcards supported: - io.macula.rgfaber.* matches any resource in namespace - mesh:* matches any mesh operation

 check_namespace_ownership(CallerDID, Namespace)

 -spec check_namespace_ownership(CallerDID :: did(), Namespace :: namespace()) ->
 {ok, owner | ancestor} | {error, not_owner}.

Check if caller DID owns a namespace.
Returns: - {ok, owner} if DID identity matches namespace exactly - {ok, ancestor} if DID identity is parent of namespace - {error, not_owner} otherwise

 check_publish(CallerDID, Topic, UcanToken, Opts)

 -spec check_publish(CallerDID :: did(),
 Topic :: topic(),
 UcanToken :: ucan_token(),
 Opts :: auth_opts()) ->
 auth_result().

Check if caller is authorized to publish to a topic.
Publishing requires ownership or UCAN grant. Public topics do NOT grant publish rights.

 check_rpc_call(CallerDID, Procedure, UcanToken, Opts)

 -spec check_rpc_call(CallerDID :: did(),
 Procedure :: procedure(),
 UcanToken :: ucan_token(),
 Opts :: auth_opts()) ->
 auth_result().

Check if caller is authorized to make an RPC call.
Authorization succeeds if: 1. Caller owns the procedure's namespace, OR 2. Caller is ancestor of the namespace (parent access), OR 3. Caller has a valid UCAN with mesh:call capability

 check_subscribe(CallerDID, Topic, Opts)

 -spec check_subscribe(CallerDID :: did(), Topic :: topic(), Opts :: auth_opts()) -> auth_result().

Check if caller is authorized to subscribe to a topic.
Authorization succeeds if: 1. Topic is public (contains .public.), OR 2. Caller owns the namespace, OR 3. Caller is ancestor, OR 4. Caller has UCAN with mesh:subscribe capability

 check_subscribe(CallerDID, Topic, UcanToken, Opts)

 -spec check_subscribe(CallerDID :: did(),
 Topic :: topic(),
 UcanToken :: ucan_token(),
 Opts :: auth_opts()) ->
 auth_result().

Check if caller is authorized to subscribe with UCAN support. Full version with UCAN token parameter.

 extract_identity_from_did(DID)

 -spec extract_identity_from_did(DID :: did()) -> {ok, Identity :: binary()} | {error, invalid_did}.

Extract the identity portion from a DID.
did:macula:io.macula.rgfaber → io.macula.rgfaber
Uses macula_did_cache for performance - repeated lookups for the same DID return cached results without re-parsing.

 extract_namespace(TopicOrProcedure)

 -spec extract_namespace(TopicOrProcedure :: binary()) -> namespace().

Extract namespace from a topic or procedure.
Namespace is the first 3 segments of a dotted path: - io.macula.rgfaber.place_order → io.macula.rgfaber - io.macula.public.events → io.macula.public - Short topics return the topic itself as namespace.

 is_ancestor_namespace(Parent, Child)

 -spec is_ancestor_namespace(Parent :: namespace(), Child :: namespace()) -> boolean().

Check if one namespace is an ancestor of another.
io.macula is ancestor of io.macula.rgfaberio.macula.rgfaber is ancestor of io.macula.rgfaber.services

 is_public_topic(Topic)

 -spec is_public_topic(Topic :: topic()) -> boolean().

Check if a topic is public (contains .public. segment).
Public topics allow subscription without ownership or UCAN.

 resolve_caller_did(CallerDID)

 -spec resolve_caller_did(CallerDID :: did()) -> {ok, Components :: map()} | {error, invalid_did}.

Resolve and validate a caller DID.
Parses the DID and returns the parsed components if valid. Uses macula_did_cache for performance.

 validate_ucan_for_operation(UcanToken, CallerDID, Resource, Operation)

 -spec validate_ucan_for_operation(UcanToken :: ucan_token(),
 CallerDID :: did(),
 Resource :: binary(),
 Operation :: operation()) ->
 auth_result().

Validate a UCAN token for a specific operation.
Checks: 1. Token is well-formed and not expired 2. Audience matches caller DID 3. Token has required capability for operation 4. Token is not revoked

macula_authorization_audit

Authorization Audit Logging Module.
Provides comprehensive audit logging for all authorization decisions in the Macula mesh. Uses telemetry for real-time metrics and optionally stores recent entries in ETS for debugging and analysis.
[bookmark: Telemetry_Events]Telemetry Events
- [macula, authorization, allowed] - Authorization succeeded - [macula, authorization, denied] - Authorization denied - [macula, authorization, error] - Authorization check error
[bookmark: Event_Metadata]Event Metadata
All events include: - operation - The operation type (call, publish, subscribe, announce) - caller - The caller's DID - resource - The topic or procedure - timestamp - Unix timestamp
Denied events also include: - reason - Why authorization failed
[bookmark: Usage]Usage
Log an authorized operation:
macula_authorization_audit:log_authorized(call, CallerDID, Procedure).
Log a denied operation:
macula_authorization_audit:log_denied(publish, CallerDID, Topic, unauthorized).
Query recent audit entries (for debugging):
Entries = macula_authorization_audit:get_recent(100).
[bookmark: Performance]Performance
Designed for sub-millisecond overhead: - Telemetry events are synchronous but fast - ETS writes are non-blocking - Periodic cleanup prevents unbounded growth

 Summary

 Types

 audit_entry/0

 did/0

 operation/0

 opts/0

 reason/0

 resource/0

 Functions

 clear()

 Clear all audit entries.

 clear(ServerRef)

 Clear all audit entries from specific server.

 disable()

 Disable audit logging (telemetry still emits, ETS storage disabled).

 disable(ServerRef)

 Disable audit logging for specific server.

 enable()

 Enable audit logging.

 enable(ServerRef)

 Enable audit logging for specific server.

 get_by_caller(CallerDID, Limit)

 Get audit entries for a specific caller.

 get_by_caller(ServerRef, CallerDID, Limit)

 Get audit entries for a specific caller from specific server.

 get_by_resource(Resource, Limit)

 Get audit entries for a specific resource.

 get_by_resource(ServerRef, Resource, Limit)

 Get audit entries for a specific resource from specific server.

 get_recent(Limit)

 Get recent audit entries (most recent first).

 get_recent(ServerRef, Limit)

 Get recent audit entries from specific server.

 get_stats()

 Get audit statistics.

 get_stats(ServerRef)

 Get audit statistics from specific server.

 is_enabled()

 Check if audit logging is enabled.

 is_enabled(ServerRef)

 Check if audit logging is enabled for specific server.

 log_authorized(Operation, CallerDID, Resource)

 Log an authorized operation.

 log_authorized(ServerRef, Operation, CallerDID, Resource)

 Log an authorized operation to specific server.

 log_denied(Operation, CallerDID, Resource, Reason)

 Log a denied operation.

 log_denied(ServerRef, Operation, CallerDID, Resource, Reason)

 Log a denied operation to specific server.

 log_error(Operation, CallerDID, Resource, Error)

 Log an error during authorization check.

 log_error(ServerRef, Operation, CallerDID, Resource, Error)

 Log an error to specific server.

 set_max_entries(MaxEntries)

 Set maximum number of entries.

 set_max_entries(ServerRef, MaxEntries)

 Set maximum entries for specific server.

 set_retention(Seconds)

 Set retention period in seconds.

 set_retention(ServerRef, Seconds)

 Set retention period for specific server.

 start_link()

 Start the audit server with default name.

 start_link(Opts)

 Start the audit server with options.

 stop()

 Stop the default audit server.

 stop(ServerRef)

 Stop a specific audit server.

 Types

 audit_entry/0

 -type audit_entry() ::
 #{id := binary(),
 timestamp := integer(),
 operation := operation(),
 caller := did(),
 resource := resource(),
 result := allowed | denied | error,
 reason => reason(),
 metadata => map()}.

 did/0

 -type did() :: binary().

 operation/0

 -type operation() :: call | publish | subscribe | announce | atom().

 opts/0

 -type opts() ::
 #{retention_seconds => pos_integer(),
 max_entries => pos_integer(),
 enabled => boolean(),
 cleanup_interval => pos_integer()}.

 reason/0

 -type reason() ::
 unauthorized | invalid_ucan | expired_ucan | revoked_ucan | insufficient_capability |
 invalid_did | namespace_mismatch |
 atom().

 resource/0

 -type resource() :: binary().

 Functions

 clear()

 -spec clear() -> ok.

Clear all audit entries.

 clear(ServerRef)

 -spec clear(pid() | atom()) -> ok.

Clear all audit entries from specific server.

 disable()

 -spec disable() -> ok.

Disable audit logging (telemetry still emits, ETS storage disabled).

 disable(ServerRef)

 -spec disable(pid() | atom()) -> ok.

Disable audit logging for specific server.

 enable()

 -spec enable() -> ok.

Enable audit logging.

 enable(ServerRef)

 -spec enable(pid() | atom()) -> ok.

Enable audit logging for specific server.

 get_by_caller(CallerDID, Limit)

 -spec get_by_caller(did(), pos_integer()) -> [audit_entry()].

Get audit entries for a specific caller.

 get_by_caller(ServerRef, CallerDID, Limit)

 -spec get_by_caller(pid() | atom(), did(), pos_integer()) -> [audit_entry()].

Get audit entries for a specific caller from specific server.

 get_by_resource(Resource, Limit)

 -spec get_by_resource(resource(), pos_integer()) -> [audit_entry()].

Get audit entries for a specific resource.

 get_by_resource(ServerRef, Resource, Limit)

 -spec get_by_resource(pid() | atom(), resource(), pos_integer()) -> [audit_entry()].

Get audit entries for a specific resource from specific server.

 get_recent(Limit)

 -spec get_recent(pos_integer()) -> [audit_entry()].

Get recent audit entries (most recent first).

 get_recent(ServerRef, Limit)

 -spec get_recent(pid() | atom(), pos_integer()) -> [audit_entry()].

Get recent audit entries from specific server.

 get_stats()

 -spec get_stats() -> map().

Get audit statistics.

 get_stats(ServerRef)

 -spec get_stats(pid() | atom()) -> map().

Get audit statistics from specific server.

 is_enabled()

 -spec is_enabled() -> boolean().

Check if audit logging is enabled.

 is_enabled(ServerRef)

 -spec is_enabled(pid() | atom()) -> boolean().

Check if audit logging is enabled for specific server.

 log_authorized(Operation, CallerDID, Resource)

 -spec log_authorized(operation(), did(), resource()) -> ok.

Log an authorized operation.

 log_authorized(ServerRef, Operation, CallerDID, Resource)

 -spec log_authorized(pid() | atom(), operation(), did(), resource()) -> ok.

Log an authorized operation to specific server.

 log_denied(Operation, CallerDID, Resource, Reason)

 -spec log_denied(operation(), did(), resource(), reason()) -> ok.

Log a denied operation.

 log_denied(ServerRef, Operation, CallerDID, Resource, Reason)

 -spec log_denied(pid() | atom(), operation(), did(), resource(), reason()) -> ok.

Log a denied operation to specific server.

 log_error(Operation, CallerDID, Resource, Error)

 -spec log_error(operation(), did(), resource(), term()) -> ok.

Log an error during authorization check.

 log_error(ServerRef, Operation, CallerDID, Resource, Error)

 -spec log_error(pid() | atom(), operation(), did(), resource(), term()) -> ok.

Log an error to specific server.

 set_max_entries(MaxEntries)

 -spec set_max_entries(pos_integer()) -> ok.

Set maximum number of entries.

 set_max_entries(ServerRef, MaxEntries)

 -spec set_max_entries(pid() | atom(), pos_integer()) -> ok.

Set maximum entries for specific server.

 set_retention(Seconds)

 -spec set_retention(pos_integer()) -> ok.

Set retention period in seconds.

 set_retention(ServerRef, Seconds)

 -spec set_retention(pid() | atom(), pos_integer()) -> ok.

Set retention period for specific server.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the audit server with default name.

 start_link(Opts)

 -spec start_link(opts()) -> {ok, pid()} | {error, term()}.

Start the audit server with options.

 stop()

 -spec stop() -> ok.

Stop the default audit server.

 stop(ServerRef)

 -spec stop(pid() | atom()) -> ok.

Stop a specific audit server.

macula_bootstrap_health

Bootstrap Health Monitor - Tracks system health metrics.
Monitors: - Service registry size - DHT query rate - System uptime - Memory usage

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 get_health()

 Get current health status

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 is_healthy()

 Check if system is healthy

 start_link(Config)

 terminate(Reason, State)

 Functions

 code_change(OldVsn, State, Extra)

 get_health()

 -spec get_health() -> {ok, map()}.

Get current health status

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 is_healthy()

 -spec is_healthy() -> boolean().

Check if system is healthy

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

macula_bootstrap_registry

Bootstrap Registry - Thin wrapper around macula_routing_server DHT.
Delegates all storage/lookup operations to the DHT routing server. Bootstrap nodes use the DHT's built-in key-value storage for: 1. RPC Services - Advertised RPC endpoints 2. Pub/Sub Topics - Topic subscriptions
The DHT routing_server handles storage, TTL, and cleanup internally.

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 delete(Key)

 Generic delete (delegates to DHT)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 lookup(Key)

 Generic lookup (delegates to DHT)

 lookup_service(Key)

 Lookup RPC service by key (delegates to DHT)

 lookup_topic(Topic)

 Lookup subscribers for a topic (delegates to DHT)

 start_link(Config)

 store(Key, Value)

 Generic store (delegates to DHT)

 store_service(Key, Value)

 Store RPC service registration (delegates to DHT)

 store_topic(Topic, Subscriber)

 Store pub/sub topic subscription (delegates to DHT)

 terminate(Reason, State)

 Functions

 code_change(OldVsn, State, Extra)

 delete(Key)

 -spec delete(Key :: binary()) -> ok | {error, not_found}.

Generic delete (delegates to DHT)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 lookup(Key)

 -spec lookup(Key :: binary()) -> {ok, term()} | {error, not_found}.

Generic lookup (delegates to DHT)

 lookup_service(Key)

 -spec lookup_service(Key :: binary()) -> {ok, term()} | {error, not_found}.

Lookup RPC service by key (delegates to DHT)

 lookup_topic(Topic)

 -spec lookup_topic(Topic :: binary()) -> {ok, [map()]} | {error, not_found}.

Lookup subscribers for a topic (delegates to DHT)

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 store(Key, Value)

 -spec store(Key :: binary(), Value :: term()) -> ok.

Generic store (delegates to DHT)

 store_service(Key, Value)

 -spec store_service(Key :: binary(), Value :: term()) -> ok.

Store RPC service registration (delegates to DHT)

 store_topic(Topic, Subscriber)

 -spec store_topic(Topic :: binary(), Subscriber :: map()) -> ok.

Store pub/sub topic subscription (delegates to DHT)

 terminate(Reason, State)

macula_bootstrap_server

Bootstrap Server - Main GenServer for bootstrap node operations.
Handles: - DHT queries (FIND_NODE, FIND_VALUE, STORE) - Peer registration and discovery - Statistics tracking

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 get_stats()

 Get bootstrap server statistics

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_dht_query(QueryType, QueryData)

 Handle DHT query from remote peer

 handle_info(Info, State)

 init(Config)

 start_link(Config)

 terminate(Reason, State)

 Functions

 code_change(OldVsn, State, Extra)

 get_stats()

 -spec get_stats() -> {ok, map()}.

Get bootstrap server statistics

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_dht_query(QueryType, QueryData)

 -spec handle_dht_query(QueryType :: atom(), QueryData :: term()) -> {ok, term()} | {error, term()}.

Handle DHT query from remote peer

 handle_info(Info, State)

 init(Config)

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

macula_bootstrap_system

Macula Bootstrap System - Supervision tree for bootstrap nodes.
Bootstrap nodes provide: - DHT bootstrap and peer discovery - Service registry (advertised RPC endpoints) - Health monitoring
Bootstrap nodes do NOT: - Relay messages (that's macula_relay_system) - Bridge realms (that's macula_bridge_system)

 Summary

 Functions

 get_server_pid()

 Get bootstrap server PID

 get_stats()

 Get bootstrap system statistics

 init(Config)

 start_link(Config)

 Start bootstrap system supervisor

 Functions

 get_server_pid()

 -spec get_server_pid() -> {ok, pid()} | {error, not_started}.

Get bootstrap server PID

 get_stats()

 -spec get_stats() -> {ok, map()} | {error, term()}.

Get bootstrap system statistics

 init(Config)

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start bootstrap system supervisor

macula_bridge_cache

Macula Bridge Cache - Caches results from parent DHT queries.
When a DHT query is escalated to a parent level and succeeds, the result is cached locally to avoid repeated parent queries.
Cache characteristics: - TTL-based expiration (configurable per mesh level) - LRU eviction when cache is full - Different TTLs for different mesh levels: - Cluster: 5 minutes (local, changes frequently) - Street: 10 minutes - Neighborhood: 15 minutes - City: 30 minutes - Country+: 60 minutes

 Summary

 Functions

 clear(Pid)

 Clear entire cache.

 delete(Pid, Key)

 Delete value from cache.

 get(Pid, Key)

 Get value from cache.

 get_stats(Pid)

 Get cache statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 put(Pid, Key, Value)

 Put value in cache with default TTL.

 put(Pid, Key, Value, TTL)

 Put value in cache with specific TTL (in seconds).

 size(Pid)

 Get current cache size.

 start_link(Config)

 Start bridge cache with registered name.

 terminate(Reason, State)

 Functions

 clear(Pid)

 -spec clear(pid()) -> ok.

Clear entire cache.

 delete(Pid, Key)

 -spec delete(pid(), binary()) -> ok.

Delete value from cache.

 get(Pid, Key)

 -spec get(pid(), binary()) -> {ok, term()} | not_found | expired.

Get value from cache.

 get_stats(Pid)

 -spec get_stats(pid()) -> {ok, map()}.

Get cache statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 put(Pid, Key, Value)

 -spec put(pid(), binary(), term()) -> ok.

Put value in cache with default TTL.

 put(Pid, Key, Value, TTL)

 -spec put(pid(), binary(), term(), pos_integer() | default) -> ok.

Put value in cache with specific TTL (in seconds).

 size(Pid)

 -spec size(pid()) -> non_neg_integer().

Get current cache size.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start bridge cache with registered name.

 terminate(Reason, State)

macula_bridge_mesh

Macula Bridge Mesh - Manages mesh formation with peer bridges.
Bridge Nodes at the same level form their own mesh with a shared DHT. This enables horizontal discovery at each mesh level.
The mesh provides: - Peer bridge discovery via mDNS or explicit configuration - Shared DHT at this level (queries can be answered by any bridge) - Load balancing for query handling - Redundancy if one bridge fails

 Summary

 Types

 peer_info/0

 Functions

 add_peer(Pid, PeerInfo)

 Add a peer bridge to the mesh.

 broadcast(Pid, Message)

 Broadcast message to all peer bridges.

 get_peers(Pid)

 Get list of connected peer bridges.

 get_stats(Pid)

 Get mesh statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 query_peer(Pid, PeerId, Query)

 Query a specific peer bridge.

 remove_peer(Pid, PeerId)

 Remove a peer bridge from the mesh.

 start_link(Config)

 Start bridge mesh with registered name.

 terminate(Reason, State)

 Types

 peer_info/0

 -type peer_info() ::
 #{endpoint => binary(),
 connected_at => integer(),
 last_seen => integer(),
 queries_handled => non_neg_integer()}.

 Functions

 add_peer(Pid, PeerInfo)

 -spec add_peer(pid(), map()) -> ok | {error, term()}.

Add a peer bridge to the mesh.

 broadcast(Pid, Message)

 -spec broadcast(pid(), term()) -> ok.

Broadcast message to all peer bridges.

 get_peers(Pid)

 -spec get_peers(pid()) -> [peer_info()].

Get list of connected peer bridges.

 get_stats(Pid)

 -spec get_stats(pid()) -> {ok, map()}.

Get mesh statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 query_peer(Pid, PeerId, Query)

 -spec query_peer(pid(), binary(), map()) -> {ok, term()} | {error, term()}.

Query a specific peer bridge.

 remove_peer(Pid, PeerId)

 -spec remove_peer(pid(), binary()) -> ok.

Remove a peer bridge from the mesh.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start bridge mesh with registered name.

 terminate(Reason, State)

macula_bridge_node

Macula Bridge Node - Manages connection to parent mesh level.
The Bridge Node is responsible for: - Connecting to parent mesh (street to neighborhood to city to etc.) - Escalating DHT queries when local DHT misses - Caching results from parent queries locally - Maintaining connection health to parent bridges

 Summary

 Functions

 escalate_query(Pid, Query)

 Escalate a DHT query to parent level. Called when local DHT lookup fails.

 escalate_query(Pid, Query, Timeout)

 get_parent_bridges(Pid)

 Get list of parent bridge endpoints.

 get_stats(Pid)

 Get bridge node statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 is_connected(Pid)

 Check if connected to parent bridge.

 set_parent_bridges(Pid, Bridges)

 Update parent bridge endpoints (for dynamic configuration).

 start_link(Config)

 Start bridge node with registered name.

 store_to_parent(Pid, StoreMsg)

 Store value to parent DHT (for advertisement propagation).

 terminate(Reason, State)

 Functions

 escalate_query(Pid, Query)

 -spec escalate_query(pid(), map()) -> {ok, term()} | {error, term()}.

Escalate a DHT query to parent level. Called when local DHT lookup fails.

 escalate_query(Pid, Query, Timeout)

 -spec escalate_query(pid(), map(), pos_integer()) -> {ok, term()} | {error, term()}.

 get_parent_bridges(Pid)

 -spec get_parent_bridges(pid()) -> [binary()].

Get list of parent bridge endpoints.

 get_stats(Pid)

 -spec get_stats(pid()) -> {ok, map()}.

Get bridge node statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Config)

 is_connected(Pid)

 -spec is_connected(pid()) -> boolean().

Check if connected to parent bridge.

 set_parent_bridges(Pid, Bridges)

 -spec set_parent_bridges(pid(), [binary()]) -> ok.

Update parent bridge endpoints (for dynamic configuration).

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start bridge node with registered name.

 store_to_parent(Pid, StoreMsg)

 -spec store_to_parent(pid(), map()) -> ok | {error, term()}.

Store value to parent DHT (for advertisement propagation).

 terminate(Reason, State)

macula_bridge_system

Macula Bridge System - Supervision tree for Bridge Nodes.
Bridge Nodes provide: - Connection to parent mesh level (street to neighborhood to city to etc.) - DHT query escalation when local DHT misses - Mesh formation with other Bridge Nodes at the same level - Result caching from parent queries

 Summary

 Functions

 get_bridge_pid()

 Get Bridge Node PID.

 get_mesh_pid()

 Get Bridge Mesh PID.

 get_stats()

 Get bridge system statistics.

 init(Config)

 is_bridge_enabled()

 Check if bridge functionality is enabled.

 start_link(Config)

 Start bridge system supervisor. Config should include: - parent_bridges: list of parent bridge endpoints (required for escalation) - mesh_level: atom indicating level (cluster, street, neighborhood, city, etc.) - bridge_enabled: boolean to enable/disable bridge functionality

 Functions

 get_bridge_pid()

 -spec get_bridge_pid() -> {ok, pid()} | {error, not_started}.

Get Bridge Node PID.

 get_mesh_pid()

 -spec get_mesh_pid() -> {ok, pid()} | {error, not_started}.

Get Bridge Mesh PID.

 get_stats()

 -spec get_stats() -> {ok, map()} | {error, term()}.

Get bridge system statistics.

 init(Config)

 is_bridge_enabled()

 -spec is_bridge_enabled() -> boolean().

Check if bridge functionality is enabled.

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start bridge system supervisor. Config should include: - parent_bridges: list of parent bridge endpoints (required for escalation) - mesh_level: atom indicating level (cluster, street, neighborhood, city, etc.) - bridge_enabled: boolean to enable/disable bridge functionality

macula_cache

Generic LRU cache implementation. Provides least-recently-used eviction with configurable max size.

 Summary

 Types

 cache/0

 entry/0

 key/0

 timestamp/0

 value/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Key)

 Get entry from cache. Returns {ok, Value, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 keys(_)

 Get all keys in cache (most recent first).

 max_size(_)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Key, Value)

 Put entry in cache with current timestamp.

 put(Cache, Key, Value, Timestamp)

 Put entry in cache with custom timestamp (for testing).

 remove(Cache, Key)

 Remove entry from cache.

 size(_)

 Get number of entries.

 Types

 cache/0

 -type cache() :: #{entries := [entry()], max_size := pos_integer()}.

 entry/0

 -type entry() :: #{key := key(), value := value(), timestamp := timestamp()}.

 key/0

 -type key() :: term().

 timestamp/0

 -type timestamp() :: integer().

 value/0

 -type value() :: term().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Key)

 -spec get(cache(), key()) -> {ok, value(), cache()} | not_found.

Get entry from cache. Returns {ok, Value, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 keys(_)

 -spec keys(cache()) -> [key()].

Get all keys in cache (most recent first).

 max_size(_)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Key, Value)

 -spec put(cache(), key(), value()) -> cache().

Put entry in cache with current timestamp.

 put(Cache, Key, Value, Timestamp)

 -spec put(cache(), key(), value(), timestamp()) -> cache().

Put entry in cache with custom timestamp (for testing).

 remove(Cache, Key)

 -spec remove(cache(), key()) -> cache().

Remove entry from cache.

 size(_)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_chatter

Macula Chatter - P2P PubSub Demo for NAT Traversal Testing
A pub/sub chat application that demonstrates broadcast messaging across NAT boundaries using Macula's pub/sub capabilities.
Each chatter node: - Subscribes to "chat.room.global" topic - Periodically broadcasts numbered messages to all peers - Tracks delivery metrics per peer (by NAT type) - Reports delivery rates at shutdown
PubSub Delivery Metrics: - Each broadcast includes a sequence number - Receivers track which sequence numbers they've seen per sender - Gaps in sequence numbers indicate missed messages - Delivery rate = received / expected (based on max seq seen)

 Summary

 Functions

 get_stats()

 Get statistics about messages sent/received

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 send_direct(PeerId, Message)

 Send a direct message to a specific peer via RPC

 send_message(Message)

 Send a message to all peers via pubsub

 start_link()

 Start the chatter with default settings

 start_link(Opts)

 Start the chatter with options Options: - interval: milliseconds between broadcasts (default: 5000) - node_id: custom node identifier (default: hostname)

 terminate(Reason, State)

 Functions

 get_stats()

 -spec get_stats() -> map().

Get statistics about messages sent/received

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 send_direct(PeerId, Message)

 -spec send_direct(binary(), binary()) -> ok | {error, term()}.

Send a direct message to a specific peer via RPC

 send_message(Message)

 -spec send_message(binary()) -> ok.

Send a message to all peers via pubsub

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the chatter with default settings

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the chatter with options Options: - interval: milliseconds between broadcasts (default: 5000) - node_id: custom node identifier (default: hostname)

 terminate(Reason, State)

macula_client_behaviour behaviour

Behaviour defining the client API contract for Macula connections
This behaviour defines the standard interface that all client implementations must provide, whether connecting via QUIC (macula_client) or local process communication (macula_local_client).
By defining this as a behaviour, we ensure compile-time verification that both implementations maintain API compatibility.

 Summary

 Callbacks

 advertise/3

 advertise/4

 call/3

 call/4

 connect/2

 connect_local/1

 disconnect/1

 discover_subscribers/2

 get_node_id/1

 publish/3

 publish/4

 subscribe/3

 unadvertise/2

 unsubscribe/2

 Callbacks

 advertise/3

 -callback advertise(Client :: pid(), Procedure :: binary(), Handler :: fun()) ->
 {ok, reference()} | {error, term()}.

 advertise/4

 -callback advertise(Client :: pid(), Procedure :: binary(), Handler :: fun(), Opts :: map()) ->
 {ok, reference()} | {error, term()}.

 call/3

 -callback call(Client :: pid(), Procedure :: binary(), Args :: list()) -> {ok, term()} | {error, term()}.

 call/4

 -callback call(Client :: pid(), Procedure :: binary(), Args :: list(), Opts :: map()) ->
 {ok, term()} | {error, term()}.

 connect/2

 -callback connect(Url :: binary() | string(), Opts :: map()) -> {ok, pid()} | {error, term()}.

 connect_local/1

 -callback connect_local(Opts :: map()) -> {ok, pid()} | {error, term()}.

 disconnect/1

 -callback disconnect(Client :: pid()) -> ok.

 discover_subscribers/2

 -callback discover_subscribers(Client :: pid(), Topic :: binary()) -> {ok, [binary()]} | {error, term()}.

 get_node_id/1

 -callback get_node_id(Client :: pid()) -> {ok, binary()} | {error, term()}.

 publish/3

 -callback publish(Client :: pid(), Topic :: binary(), Payload :: map()) -> ok | {error, term()}.

 publish/4

 -callback publish(Client :: pid(), Topic :: binary(), Payload :: map(), Opts :: map()) ->
 ok | {error, term()}.

 subscribe/3

 -callback subscribe(Client :: pid(), Topic :: binary(), Handler :: pid() | fun((map()) -> ok)) ->
 {ok, reference()} | {error, term()}.

 unadvertise/2

 -callback unadvertise(Client :: pid(), Procedure :: binary()) -> ok | {error, term()}.

 unsubscribe/2

 -callback unsubscribe(Client :: pid(), SubRef :: reference()) -> ok | {error, term()}.

macula_cluster

Cluster management utilities for Macula platform.
This module provides cluster infrastructure functions that other applications (like bc_gitops) can delegate to when running on the Macula platform.
[bookmark: Distribution]Distribution
The ensure_distributed/0 function ensures the node is running in distributed mode. If not already distributed, it starts distribution with a generated node name.
[bookmark: Cookie_Management]Cookie Management
Cookies are resolved in this priority order: 1. Application env: {macula, [{cookie, CookieValue}]} 2. Environment variable: MACULA_COOKIE or RELEASE_COOKIE 3. User's ~/.erlang.cookie file 4. Auto-generated (persisted to ~/.erlang.cookie)
[bookmark: Node_Monitoring]Node Monitoring
The monitor_nodes/0 and unmonitor_nodes/0 functions wrap net_kernel:monitor_nodes/1 for subscribing to nodeup/nodedown messages.
[bookmark: bc_gitops_Integration]bc_gitops Integration
When bc_gitops is running on the Macula platform, it detects these exports and delegates clustering operations here. This allows Macula to own cluster infrastructure while bc_gitops remains usable standalone.

 Summary

 Functions

 cookie_file_path()

 Get the path to the cookie file.

 ensure_distributed()

 Ensure this node is running in distributed mode.

 get_cookie()

 Get the Erlang cookie for the cluster.

 get_hostname()

 Get the short hostname of this machine.

 is_distributed()

 Check if this node is running in distributed mode.

 monitor_nodes()

 Subscribe to node up/down events.

 read_cookie_file()

 Read cookie from ~/.erlang.cookie file.

 resolve_cookie()

 Resolve the cookie from various sources.

 set_cookie(Cookie)

 Set the Erlang cookie for this node and persist it.

 unmonitor_nodes()

 Unsubscribe from node up/down events.

 Functions

 cookie_file_path()

 -spec cookie_file_path() -> file:filename().

Get the path to the cookie file.

 ensure_distributed()

 -spec ensure_distributed() -> ok | {error, term()}.

Ensure this node is running in distributed mode.
If the node is already distributed, returns ok immediately. Otherwise, starts distribution with a generated node name in the format macula_host@hostname.
Examples:
 ok = macula_cluster:ensure_distributed().

 get_cookie()

 -spec get_cookie() -> atom().

Get the Erlang cookie for the cluster.
Resolves the cookie from various sources in priority order. If no cookie is found, generates and persists a new one.
Resolution Order: 1. Application env: {macula, [{cookie, CookieValue}]} 2. Environment variable: MACULA_COOKIE or RELEASE_COOKIE 3. User's ~/.erlang.cookie file 4. Auto-generated (persisted to ~/.erlang.cookie)
Examples:
 Cookie = macula_cluster:get_cookie().

 get_hostname()

 -spec get_hostname() -> string().

Get the short hostname of this machine.
Examples:
 "myhost" = macula_cluster:get_hostname().

 is_distributed()

 -spec is_distributed() -> boolean().

Check if this node is running in distributed mode.

 monitor_nodes()

 -spec monitor_nodes() -> ok.

Subscribe to node up/down events.
After calling this function, the calling process will receive {nodeup, Node} and {nodedown, Node} messages when nodes join or leave the cluster.
Examples:
 ok = macula_cluster:monitor_nodes().
 receive
 {nodeup, Node} -> io:format("Node joined: ~p~n", [Node]);
 {nodedown, Node} -> io:format("Node left: ~p~n", [Node])
 end.

 read_cookie_file()

 -spec read_cookie_file() -> {ok, atom()} | {error, term()}.

Read cookie from ~/.erlang.cookie file.

 resolve_cookie()

 -spec resolve_cookie() -> {ok, atom()} | {error, not_found}.

Resolve the cookie from various sources.

 set_cookie(Cookie)

 -spec set_cookie(atom() | binary()) -> ok.

Set the Erlang cookie for this node and persist it.
Sets the cookie for the current node and attempts to persist it to ~/.erlang.cookie for future sessions.
Examples:
 ok = macula_cluster:set_cookie(my_secret_cookie).
 ok = macula_cluster:set_cookie(<<"my_secret_cookie">>).

 unmonitor_nodes()

 -spec unmonitor_nodes() -> ok.

Unsubscribe from node up/down events.
Stops the calling process from receiving nodeup/nodedown messages.

macula_cluster_controller

Macula Cluster Controller
Application lifecycle management: - Deploy applications from registry - Upgrade to newer versions - Stop running applications - Auto-update policy enforcement

 Summary

 Types

 auto_update_policy/0

 Functions

 deploy_app(PackageName)

 Deploy an application (latest version)

 deploy_app(PackageName, Version)

 Deploy a specific version of an application

 get_app_status(PackageName)

 Get status of a specific application

 get_auto_update_policy(PackageName)

 Get auto-update policy for an application

 list_deployed_apps()

 List all deployed applications

 remove_app(PackageName)

 Remove an application completely

 set_auto_update_policy(PackageName, Policy)

 Set auto-update policy for an application

 start_link(Config)

 Start the cluster controller

 stop_app(PackageName)

 Stop a running application

 upgrade_app(PackageName, NewVersion)

 Upgrade an application to a new version

 Types

 auto_update_policy/0

 -type auto_update_policy() :: always | major | minor | never.

 Functions

 deploy_app(PackageName)

 -spec deploy_app(PackageName :: binary()) -> {ok, pid()} | {error, term()}.

Deploy an application (latest version)

 deploy_app(PackageName, Version)

 -spec deploy_app(PackageName :: binary(), Version :: binary()) -> {ok, pid()} | {error, term()}.

Deploy a specific version of an application

 get_app_status(PackageName)

 -spec get_app_status(PackageName :: binary()) -> {ok, map()} | {error, not_found}.

Get status of a specific application

 get_auto_update_policy(PackageName)

 -spec get_auto_update_policy(PackageName :: binary()) -> auto_update_policy().

Get auto-update policy for an application

 list_deployed_apps()

 -spec list_deployed_apps() -> [map()].

List all deployed applications

 remove_app(PackageName)

 -spec remove_app(PackageName :: binary()) -> ok | {error, not_found}.

Remove an application completely

 set_auto_update_policy(PackageName, Policy)

 -spec set_auto_update_policy(PackageName :: binary(), Policy :: auto_update_policy()) -> ok.

Set auto-update policy for an application

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start the cluster controller

 stop_app(PackageName)

 -spec stop_app(PackageName :: binary()) -> ok | {error, not_running}.

Stop a running application

 upgrade_app(PackageName, NewVersion)

 -spec upgrade_app(PackageName :: binary(), NewVersion :: binary()) -> ok | {error, term()}.

Upgrade an application to a new version

macula_cluster_strategy

Macula Cluster Strategy for libcluster.
This module implements a cluster formation strategy using Macula's decentralized discovery (DHT/mDNS) instead of EPMD. It can be used with libcluster in Elixir or standalone in Erlang.
Integration: Works with libcluster (Elixir) or standalone (Erlang).
Discovery Modes: mdns - Local network discovery via mDNS (no bootstrap needed) dht - Internet-scale discovery via Macula DHT both - Try mDNS first, fall back to DHT
Configuration: topology, realm, discovery_type

 Summary

 Functions

 list_connected(NameOrPid)

 List currently connected nodes.

 start_link(Opts)

 Start the cluster strategy with options.

 start_link(Name, Opts)

 Start the cluster strategy with name and options.

 stop(NameOrPid)

 Stop the cluster strategy.

 Functions

 list_connected(NameOrPid)

 -spec list_connected(atom() | pid()) -> [atom()].

List currently connected nodes.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the cluster strategy with options.

 start_link(Name, Opts)

 -spec start_link(atom(), map()) -> {ok, pid()} | {error, term()}.

Start the cluster strategy with name and options.

 stop(NameOrPid)

 -spec stop(atom() | pid()) -> ok.

Stop the cluster strategy.

macula_connection

Macula Connection - QUIC Transport Layer (v0.7.0+).
This module manages the low-level QUIC connection lifecycle and message transport for mesh participants.
Responsibilities: - Establish and maintain QUIC connection - Send messages via QUIC stream - Receive and route incoming messages to handlers - Handle connection errors and reconnection - Message encoding/decoding and buffering
Renamed from macula_connection in v0.7.0 for clarity: - macula_connection = QUIC transport (this module - low-level) - macula_peer = mesh participant (high-level API)

 Summary

 Functions

 call(Pid, Procedure, Args, Opts)

 Make an RPC-style call over a connection. Sends a call message and waits for a reply. Uses the underlying send_message API with type 'bridge_rpc'.

 close(Pid)

 Close a connection gracefully. Stops the gen_server which triggers proper QUIC cleanup in terminate/2.

 connect(Host, Port, Opts)

 Connect to a remote endpoint. Creates a new QUIC connection to the specified host:port.

 decode_messages(Buffer, Acc)

 Decode all complete messages from buffer.

 default_config()

 get_status(Pid)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 Handle async send message - fire and forget. Sends if connected, logs warning and drops if not.

 handle_info(Info, State)

 init(_)

 send(Pid, Message)

 Send a message over a connection asynchronously. Fire-and-forget delivery - returns immediately.

 send_message(Pid, Type, Msg)

 send_message_async(Pid, Type, Msg)

 Send message asynchronously (fire-and-forget). Use for operations where blocking is unacceptable and failures can be tolerated. The message will be sent if connected, silently dropped if not.

 start_keepalive_timer(State)

 Start keep-alive timer if enabled in options.

 start_link(Url, Opts)

 terminate(Reason, State)

 Functions

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary(), map(), map()) -> {ok, term()} | {error, term()}.

Make an RPC-style call over a connection. Sends a call message and waits for a reply. Uses the underlying send_message API with type 'bridge_rpc'.

 close(Pid)

 -spec close(pid()) -> ok.

Close a connection gracefully. Stops the gen_server which triggers proper QUIC cleanup in terminate/2.

 connect(Host, Port, Opts)

 -spec connect(binary(), pos_integer(), map()) -> {ok, pid()} | {error, term()}.

Connect to a remote endpoint. Creates a new QUIC connection to the specified host:port.

 decode_messages(Buffer, Acc)

 -spec decode_messages(binary(), list()) -> {list(), binary()}.

Decode all complete messages from buffer.

 default_config()

 -spec default_config() -> map().

 get_status(Pid)

 -spec get_status(pid()) -> connecting | connected | disconnected | error.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

Handle async send message - fire and forget. Sends if connected, logs warning and drops if not.

 handle_info(Info, State)

 init(_)

 send(Pid, Message)

 -spec send(pid(), term()) -> ok | {error, term()}.

Send a message over a connection asynchronously. Fire-and-forget delivery - returns immediately.

 send_message(Pid, Type, Msg)

 -spec send_message(pid(), atom(), map()) -> ok | {error, term()}.

 send_message_async(Pid, Type, Msg)

 -spec send_message_async(pid(), atom(), map()) -> ok.

Send message asynchronously (fire-and-forget). Use for operations where blocking is unacceptable and failures can be tolerated. The message will be sent if connected, silently dropped if not.

 start_keepalive_timer(State)

 -spec start_keepalive_timer(#state{url :: binary(),
 opts :: map(),
 node_id :: binary(),
 realm :: binary(),
 peer_id :: integer(),
 connection :: pid() | undefined,
 stream :: pid() | undefined,
 status :: connecting | connected | disconnected | error,
 recv_buffer :: binary(),
 keepalive_timer :: reference() | undefined}) ->
 #state{url :: binary(),
 opts :: map(),
 node_id :: binary(),
 realm :: binary(),
 peer_id :: integer(),
 connection :: pid() | undefined,
 stream :: pid() | undefined,
 status :: connecting | connected | disconnected | error,
 recv_buffer :: binary(),
 keepalive_timer :: reference() | undefined}.

Start keep-alive timer if enabled in options.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

macula_connection_pool

Connection pool manager for endpoint connections.
Manages a pool of QUIC connections to remote endpoints, providing connection caching and reuse to avoid connection overhead for multi-endpoint RPC operations.
Connection pool structure: #{Endpoint => #{connection => Conn, stream => Stream, last_used => Timestamp}}

 Summary

 Functions

 close_all_connections(Pool)

 Close all connections in the pool.

 create_connection(Endpoint, NodeId, RealmId, Pool)

 Create a new connection to an endpoint.

 get_or_create_connection(Endpoint, NodeId, RealmId, Pool)

 Get or create a connection to an endpoint. Returns {ok, Conn, Stream, UpdatedPool} or {error, Reason, Pool}.

 Functions

 close_all_connections(Pool)

 -spec close_all_connections(map()) -> ok.

Close all connections in the pool.

 create_connection(Endpoint, NodeId, RealmId, Pool)

 -spec create_connection(binary(), binary(), binary(), map()) ->
 {ok, pid(), pid(), map()} | {error, term(), map()}.

Create a new connection to an endpoint.

 get_or_create_connection(Endpoint, NodeId, RealmId, Pool)

 -spec get_or_create_connection(binary(), binary(), binary(), map()) ->
 {ok, pid(), pid(), map()} | {error, term(), map()}.

Get or create a connection to an endpoint. Returns {ok, Conn, Stream, UpdatedPool} or {error, Reason, Pool}.

macula_connection_upgrade

Connection Upgrade Manager.
Handles upgrading connections from relay (indirect) to direct when hole punching succeeds. This is a key optimization for reducing latency and bootstrap load.
Upgrade Flow: 1. Connection established via relay (fallback) 2. Hole punch attempt happens in background 3. On success, upgrade_to_direct/2 is called 4. Messages are seamlessly transitioned to direct connection 5. Relay connection is gracefully closed
Key Features: - Message ordering preserved during upgrade - No message loss during transition - Automatic fallback if direct connection fails - Metrics tracking for upgrade success/failure

 Summary

 Functions

 get_upgrade_stats()

 Get upgrade statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 register_relay(PeerId, RelayConn, Endpoint)

 Register a relay connection for potential future upgrade. Called when connection is established via relay fallback.

 start_link()

 Start the connection upgrade manager.

 terminate(Reason, State)

 unregister_relay(PeerId)

 Unregister a relay connection (closed or upgraded).

 upgrade_to_direct(PeerId, RelayConn, DirectConn)

 Upgrade a relay connection to direct. PeerId - The remote peer's ID RelayConn - Current relay connection handle DirectConn - New direct connection handle from hole punch

 Functions

 get_upgrade_stats()

 -spec get_upgrade_stats() -> map().

Get upgrade statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 register_relay(PeerId, RelayConn, Endpoint)

 -spec register_relay(binary(), term(), {inet:ip_address(), inet:port_number()}) -> ok.

Register a relay connection for potential future upgrade. Called when connection is established via relay fallback.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the connection upgrade manager.

 terminate(Reason, State)

 unregister_relay(PeerId)

 -spec unregister_relay(binary()) -> ok.

Unregister a relay connection (closed or upgraded).

 upgrade_to_direct(PeerId, RelayConn, DirectConn)

 -spec upgrade_to_direct(binary(), term(), term()) -> ok | {error, no_relay | upgrade_failed}.

Upgrade a relay connection to direct. PeerId - The remote peer's ID RelayConn - Current relay connection handle DirectConn - New direct connection handle from hole punch

macula_console

Macula Console Formatter - Beautiful colored terminal output.
Provides ANSI-colored output for ping-pong demo and general logging. Makes demo output visually appealing and easy to read.
Example output:
 --> fc01 -> rc05 [full_cone -> restricted]
 <-- fc01 <- rc05 42ms [restricted]
 [!!] fc01 -> sy07 TIMEOUT [symmetric]

 Summary

 Functions

 banner(Config)

 Display a startup banner for the node

 error(Prefix, Msg)

 Output an error message: [!!] Error message

 info(Prefix, Msg)

 Output an info message: [i] Info message

 node_connected(NodeId, NatType)

 Output a node connected event: [*] Node fc01 connected (full_cone)

 node_disconnected(NodeId, Reason)

 Output a node disconnected event: [*] Node fc01 disconnected

 ping(FromNode, ToNode, FromNat, ToNat)

 Output a PING message showing source to target with NAT types

 pong(FromNode, ToNode, RTT, NatType)

 Output a PONG message with RTT

 pubsub_recv(ToNode, FromNode, SeqNum, SenderNat, DeliveryRate)

 Output a PubSub receive message with delivery rate

 pubsub_send(FromNode, SeqNum, NatType)

 Output a PubSub broadcast message with sequence number

 stats(NodeId, StatsMap)

 Output statistics for a node StatsMap should contain: pings_sent, pongs_received, timeouts, avg_rtt_ms

 success(Prefix, Msg)

 Output a success message: [ok] Success message

 timeout(FromNode, ToNode, NatInfo)

 Output a TIMEOUT message for a failed ping

 warning(Prefix, Msg)

 Output a warning message: [!] Warning message

 Functions

 banner(Config)

 -spec banner(map()) -> ok.

Display a startup banner for the node

 error(Prefix, Msg)

 -spec error(binary() | string(), binary() | string()) -> ok.

Output an error message: [!!] Error message

 info(Prefix, Msg)

 -spec info(binary() | string(), binary() | string()) -> ok.

Output an info message: [i] Info message

 node_connected(NodeId, NatType)

 -spec node_connected(binary() | string(), binary() | string() | atom()) -> ok.

Output a node connected event: [*] Node fc01 connected (full_cone)

 node_disconnected(NodeId, Reason)

 -spec node_disconnected(binary() | string(), binary() | string()) -> ok.

Output a node disconnected event: [*] Node fc01 disconnected

 ping(FromNode, ToNode, FromNat, ToNat)

 -spec ping(binary() | string(),
 binary() | string(),
 binary() | string() | atom(),
 binary() | string() | atom()) ->
 ok.

Output a PING message showing source to target with NAT types

 pong(FromNode, ToNode, RTT, NatType)

 -spec pong(binary() | string(), binary() | string(), integer(), binary() | string() | atom()) -> ok.

Output a PONG message with RTT

 pubsub_recv(ToNode, FromNode, SeqNum, SenderNat, DeliveryRate)

 -spec pubsub_recv(binary() | string(),
 binary() | string(),
 integer(),
 binary() | string() | atom(),
 float()) ->
 ok.

Output a PubSub receive message with delivery rate

 pubsub_send(FromNode, SeqNum, NatType)

 -spec pubsub_send(binary() | string(), integer(), binary() | string() | atom()) -> ok.

Output a PubSub broadcast message with sequence number

 stats(NodeId, StatsMap)

 -spec stats(binary() | string(), map()) -> ok.

Output statistics for a node StatsMap should contain: pings_sent, pongs_received, timeouts, avg_rtt_ms

 success(Prefix, Msg)

 -spec success(binary() | string(), binary() | string()) -> ok.

Output a success message: [ok] Success message

 timeout(FromNode, ToNode, NatInfo)

 -spec timeout(binary() | string(), binary() | string(), binary() | string() | atom()) -> ok.

Output a TIMEOUT message for a failed ping

 warning(Prefix, Msg)

 -spec warning(binary() | string(), binary() | string()) -> ok.

Output a warning message: [!] Warning message

macula_core_types

Core type definitions and encoding/decoding for Macula. Provides fundamental types like node IDs, realm IDs, and addresses.

 Summary

 Types

 address/0

 ip_address/0

 node_id/0

 32-byte unique node identifier

 port_number/0

 realm_id/0

 32-byte realm identifier

 Functions

 decode_address(_)

 Decode binary address format to {IP, Port} tuple.

 encode_address(_)

 Encode an IP address and port to binary format. Format: - 1 byte: IP version (4 or 6) - 4 or 16 bytes: IP address - 2 bytes: port (big-endian)

 node_id()

 Generate a unique node ID. Uses cryptographically strong random bytes for uniqueness.

 realm_id(RealmName)

 Generate a deterministic realm ID from a realm name. Same name always produces the same ID (uses SHA-256 hash).

 Types

 address/0

 -type address() :: {ip_address(), port_number()}.

 ip_address/0

 -type ip_address() :: inet:ip_address().

 node_id/0

 -type node_id() :: binary().

32-byte unique node identifier

 port_number/0

 -type port_number() :: inet:port_number().

 realm_id/0

 -type realm_id() :: binary().

32-byte realm identifier

 Functions

 decode_address(_)

 -spec decode_address(binary()) -> {ok, address()} | {error, invalid_address}.

Decode binary address format to {IP, Port} tuple.

 encode_address(_)

 -spec encode_address(address()) -> binary().

Encode an IP address and port to binary format. Format: - 1 byte: IP version (4 or 6) - 4 or 16 bytes: IP address - 2 bytes: port (big-endian)

 node_id()

 -spec node_id() -> node_id().

Generate a unique node ID. Uses cryptographically strong random bytes for uniqueness.

 realm_id(RealmName)

 -spec realm_id(binary()) -> realm_id().

Generate a deterministic realm ID from a realm name. Same name always produces the same ID (uses SHA-256 hash).

macula_crdt

Conflict-Free Replicated Data Types (CRDTs) for shared state.
Implements CRDTs for eventually-consistent distributed state management: - LWW-Register (Last-Write-Wins Register) - single value with timestamp - OR-Set (Observed-Remove Set) - set with add/remove semantics - G-Counter (Grow-only Counter) - monotonically increasing counter - PN-Counter (Positive-Negative Counter) - increment/decrement counter
These CRDTs replace Ra/Raft consensus for Macula's masterless architecture. State is synchronized via gossip protocol between nodes.

 Summary

 Types

 gcounter/0

 lww_register/0

 or_set/0

 pncounter/0

 timestamp/0

 unique_tag/0

 Functions

 gcounter_increment(Counter)

 Increment the G-Counter by 1 for current node

 gcounter_increment(Counter, N)

 Increment the G-Counter by N for current node

 gcounter_merge(C1, C2)

 Merge two G-Counters (take max of each node's count)

 gcounter_value(Counter)

 Get the total value of the G-Counter

 lww_get(_)

 Get the current value of the LWW-Register

 lww_merge(R1, R2)

 Merge two LWW-Registers Keeps the value with the highest timestamp Ties broken by node name (lexicographic order)

 lww_set(Register, Value, Timestamp)

 Set a value in the LWW-Register with timestamp

 lww_timestamp(_)

 Get the timestamp of the LWW-Register

 lww_value(Register)

 Get the value of the LWW-Register (alias for lww_get)

 new_gcounter()

 Create a new G-Counter

 new_lww_register()

 Create a new empty LWW-Register

 new_lww_register(Value)

 Create a new LWW-Register with initial value

 new_or_set()

 Create a new empty OR-Set

 new_pncounter()

 Create a new PN-Counter

 or_add(Set, Element)

 Add an element to the OR-Set (auto-generates unique tag)

 or_add(_, Element, Tag)

 Add an element to the OR-Set with a specific tag

 or_contains(_, Element)

 Check if element is in the OR-Set

 or_elements(_)

 Get all elements in the OR-Set

 or_merge(_, _)

 Merge two OR-Sets Union of elements, union of tombstones

 or_remove(Set, Element)

 Remove an element from the OR-Set Removes all current tags for that element (add-wins semantics)

 or_size(Set)

 Get the number of elements in the OR-Set

 pncounter_decrement(Counter)

 Decrement the PN-Counter by 1

 pncounter_decrement(_, Amount)

 Decrement the PN-Counter by N

 pncounter_increment(Counter)

 Increment the PN-Counter by 1

 pncounter_increment(_, Amount)

 Increment the PN-Counter by N

 pncounter_merge(_, _)

 Merge two PN-Counters

 pncounter_value(_)

 Get the value of the PN-Counter (positive - negative)

 Types

 gcounter/0

 -type gcounter() :: #{node() => non_neg_integer()}.

 lww_register/0

 -type lww_register() :: #{value => term(), timestamp => timestamp(), node => node()}.

 or_set/0

 -type or_set() ::
 #{elements => #{term() => sets:set(unique_tag())}, tombstones => sets:set(unique_tag())}.

 pncounter/0

 -type pncounter() :: #{p => gcounter(), n => gcounter()}.

 timestamp/0

 -type timestamp() :: non_neg_integer().

 unique_tag/0

 -type unique_tag() :: binary().

 Functions

 gcounter_increment(Counter)

 -spec gcounter_increment(gcounter()) -> gcounter().

Increment the G-Counter by 1 for current node

 gcounter_increment(Counter, N)

 -spec gcounter_increment(gcounter(), pos_integer()) -> gcounter().

Increment the G-Counter by N for current node

 gcounter_merge(C1, C2)

 -spec gcounter_merge(gcounter(), gcounter()) -> gcounter().

Merge two G-Counters (take max of each node's count)

 gcounter_value(Counter)

 -spec gcounter_value(gcounter()) -> non_neg_integer().

Get the total value of the G-Counter

 lww_get(_)

 -spec lww_get(lww_register()) -> term().

Get the current value of the LWW-Register

 lww_merge(R1, R2)

 -spec lww_merge(lww_register(), lww_register()) -> lww_register().

Merge two LWW-Registers Keeps the value with the highest timestamp Ties broken by node name (lexicographic order)

 lww_set(Register, Value, Timestamp)

 -spec lww_set(lww_register(), term(), timestamp()) -> lww_register().

Set a value in the LWW-Register with timestamp

 lww_timestamp(_)

 -spec lww_timestamp(lww_register()) -> timestamp().

Get the timestamp of the LWW-Register

 lww_value(Register)

 -spec lww_value(lww_register()) -> term().

Get the value of the LWW-Register (alias for lww_get)

 new_gcounter()

 -spec new_gcounter() -> gcounter().

Create a new G-Counter

 new_lww_register()

 -spec new_lww_register() -> lww_register().

Create a new empty LWW-Register

 new_lww_register(Value)

 -spec new_lww_register(term()) -> lww_register().

Create a new LWW-Register with initial value

 new_or_set()

 -spec new_or_set() -> or_set().

Create a new empty OR-Set

 new_pncounter()

 -spec new_pncounter() -> pncounter().

Create a new PN-Counter

 or_add(Set, Element)

 -spec or_add(or_set(), term()) -> or_set().

Add an element to the OR-Set (auto-generates unique tag)

 or_add(_, Element, Tag)

 -spec or_add(or_set(), term(), unique_tag()) -> or_set().

Add an element to the OR-Set with a specific tag

 or_contains(_, Element)

 -spec or_contains(or_set(), term()) -> boolean().

Check if element is in the OR-Set

 or_elements(_)

 -spec or_elements(or_set()) -> [term()].

Get all elements in the OR-Set

 or_merge(_, _)

 -spec or_merge(or_set(), or_set()) -> or_set().

Merge two OR-Sets Union of elements, union of tombstones

 or_remove(Set, Element)

 -spec or_remove(or_set(), term()) -> or_set().

Remove an element from the OR-Set Removes all current tags for that element (add-wins semantics)

 or_size(Set)

 -spec or_size(or_set()) -> non_neg_integer().

Get the number of elements in the OR-Set

 pncounter_decrement(Counter)

 -spec pncounter_decrement(pncounter()) -> pncounter().

Decrement the PN-Counter by 1

 pncounter_decrement(_, Amount)

 -spec pncounter_decrement(pncounter(), pos_integer()) -> pncounter().

Decrement the PN-Counter by N

 pncounter_increment(Counter)

 -spec pncounter_increment(pncounter()) -> pncounter().

Increment the PN-Counter by 1

 pncounter_increment(_, Amount)

 -spec pncounter_increment(pncounter(), pos_integer()) -> pncounter().

Increment the PN-Counter by N

 pncounter_merge(_, _)

 -spec pncounter_merge(pncounter(), pncounter()) -> pncounter().

Merge two PN-Counters

 pncounter_value(_)

 -spec pncounter_value(pncounter()) -> integer().

Get the value of the PN-Counter (positive - negative)

macula_did_cache

DID Parsing Cache Module.
Provides high-performance caching for parsed DID (Decentralized Identifier) results using persistent_term for fast reads. This avoids repeated parsing of DIDs during authorization checks.
[bookmark: Usage]Usage
Parse and cache a DID (or get from cache):
{ok, Parsed} = macula_did_cache:get_or_parse(DID).
Returns a map with method, identity, parts, and depth.
Invalidate a specific DID from cache:
ok = macula_did_cache:invalidate(DID).
Clear entire cache:
ok = macula_did_cache:clear().
[bookmark: Performance]Performance
persistent_term provides O(1) lookups with zero garbage collection impact, making it ideal for frequently-accessed, rarely-changed data like parsed DIDs.
Note: persistent_term:put/2 triggers a global GC, so this cache is optimized for read-heavy workloads where DIDs are parsed once and looked up many times.
[bookmark: Cache_Key_Format]Cache Key Format
Keys are stored as {macula_did_cache, DID} tuples to avoid namespace conflicts.

 Summary

 Types

 did/0

 parsed_did/0

 Functions

 cache_size()

 Get the current number of cached DIDs.

 clear()

 Clear all cached DIDs.

 get_or_parse(DID)

 Get parsed DID from cache, or parse and cache if not present.

 invalidate(DID)

 Invalidate (remove) a specific DID from the cache.

 Types

 did/0

 -type did() :: binary().

 parsed_did/0

 -type parsed_did() :: #{binary() => binary() | [binary()] | integer()}.

 Functions

 cache_size()

 -spec cache_size() -> non_neg_integer().

Get the current number of cached DIDs.
Useful for monitoring and debugging.

 clear()

 -spec clear() -> ok.

Clear all cached DIDs.
Warning: This triggers a global GC for each erased term. Use sparingly.

 get_or_parse(DID)

 -spec get_or_parse(DID :: did()) -> {ok, parsed_did()} | {error, invalid_did}.

Get parsed DID from cache, or parse and cache if not present.
This is the main entry point for cached DID parsing. If the DID has been parsed before, returns the cached result. Otherwise, parses the DID, caches the result, and returns it.
Returns {ok, ParsedDID} on success, {error, invalid_did} if parsing fails.

 invalidate(DID)

 -spec invalidate(DID :: did()) -> ok.

Invalidate (remove) a specific DID from the cache.
Use this when a DID's parsing result may have changed (rare in practice, as DIDs are typically immutable identifiers).

macula_direct_routing

Direct Routing Table - Bypass bootstrap for known subscriber endpoints.
Problem: Every publish goes through bootstrap even for known subscribers. Solution: Cache {NodeId, Endpoint} mappings and route directly via QUIC.
Design: - ETS table for O(1) lookup by NodeId - TTL-based expiration (default 5 minutes) - Automatic cleanup of stale entries - Thread-safe concurrent reads
Expected improvement: - 3-5x latency reduction for messages to known subscribers - Reduced load on bootstrap gateway
Configuration Options: - ttl_ms: Route entry TTL (default: 300000ms = 5 minutes) - cleanup_interval_ms: How often to clean stale entries (default: 60000ms)

 Summary

 Functions

 clear_all()

 Clear all routing entries.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 lookup(NodeId)

 Look up endpoint for a node ID. Returns {ok, Endpoint} on hit, or miss on cache miss/expired.

 remove(NodeId)

 Remove routing entry for a node ID.

 start_link()

 Start the direct routing table with default options.

 start_link(Opts)

 Start the direct routing table with options. Options: - ttl_ms: Route entry TTL in milliseconds (default: 300000) - cleanup_interval_ms: Cleanup interval (default: 60000)

 stats()

 Get routing table statistics.

 store(NodeId, Endpoint)

 Store endpoint for a node ID. Entry will expire after TTL.

 store_from_subscriber(_)

 Store routing info from a subscriber map (from DHT lookup). Extracts node_id and endpoint from subscriber info.

 terminate(Reason, State)

 Functions

 clear_all()

 -spec clear_all() -> ok.

Clear all routing entries.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 lookup(NodeId)

 -spec lookup(binary()) -> {ok, binary()} | miss.

Look up endpoint for a node ID. Returns {ok, Endpoint} on hit, or miss on cache miss/expired.

 remove(NodeId)

 -spec remove(binary()) -> ok.

Remove routing entry for a node ID.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the direct routing table with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the direct routing table with options. Options: - ttl_ms: Route entry TTL in milliseconds (default: 300000) - cleanup_interval_ms: Cleanup interval (default: 60000)

 stats()

 -spec stats() -> map().

Get routing table statistics.

 store(NodeId, Endpoint)

 -spec store(binary(), binary()) -> ok.

Store endpoint for a node ID. Entry will expire after TTL.

 store_from_subscriber(_)

 -spec store_from_subscriber(map()) -> ok.

Store routing info from a subscriber map (from DHT lookup). Extracts node_id and endpoint from subscriber info.

 terminate(Reason, State)

macula_discovery

Generic DHT-based service discovery. Provides cache-integrated lookup and announcement operations. Used by both pub/sub and RPC discovery layers.

 Summary

 Types

 key/0

 lookup_fun/0

 publish_fun/0

 unpublish_fun/0

 value/0

 Functions

 announce(Key, PublishFun)

 Announce value to DHT.

 filter_by_age(Items, TTL, TimestampField)

 Filter items by age based on last_seen timestamp and TTL. Items must have #{last_seen := integer()} in their structure.

 find(Key, LookupFun)

 Find values for a key via DHT lookup.

 find_with_cache(Key, Cache, LookupFun)

 Find values with cache (default TTL: 300 seconds).

 find_with_cache(Key, Cache, LookupFun, TTL)

 Find values with cache and custom TTL.

 unannounce(Key, UnpublishFun)

 Remove value from DHT.

 Types

 key/0

 -type key() :: binary().

 lookup_fun/0

 -type lookup_fun() :: fun((key()) -> {ok, [value()]} | {error, term()}).

 publish_fun/0

 -type publish_fun() :: fun((key()) -> ok | {error, term()}).

 unpublish_fun/0

 -type unpublish_fun() :: fun((key()) -> ok | {error, term()}).

 value/0

 -type value() :: term().

 Functions

 announce(Key, PublishFun)

 -spec announce(key(), publish_fun()) -> ok | {error, term()}.

Announce value to DHT.

 filter_by_age(Items, TTL, TimestampField)

 -spec filter_by_age([map()], pos_integer(), atom()) -> [map()].

Filter items by age based on last_seen timestamp and TTL. Items must have #{last_seen := integer()} in their structure.

 find(Key, LookupFun)

 -spec find(key(), lookup_fun()) -> {ok, [value()]} | {error, term()}.

Find values for a key via DHT lookup.

 find_with_cache(Key, Cache, LookupFun)

 -spec find_with_cache(key(), macula_cache:cache(), lookup_fun()) ->
 {ok, [value()], macula_cache:cache()} | {error, term(), macula_cache:cache()}.

Find values with cache (default TTL: 300 seconds).

 find_with_cache(Key, Cache, LookupFun, TTL)

 -spec find_with_cache(key(), macula_cache:cache(), lookup_fun(), pos_integer()) ->
 {ok, [value()], macula_cache:cache()} | {error, term(), macula_cache:cache()}.

Find values with cache and custom TTL.

 unannounce(Key, UnpublishFun)

 -spec unannounce(key(), unpublish_fun()) -> ok | {error, term()}.

Remove value from DHT.

macula_dist

QUIC Distribution Carrier for Erlang.
This module implements the Erlang distribution carrier interface using QUIC transport via quicer. It replaces inet_tcp_dist to enable distributed Erlang over QUIC with:
- Built-in TLS 1.3 encryption (mandatory) - NAT-friendly UDP-based transport - Connection migration support - Stream multiplexing for message priorities - Decentralized discovery (no EPMD required)
[bookmark: Usage]Usage
Start the VM with: erl -proto_dist macula -no_epmd -start_epmd false
Or in vm.args: -proto_dist macula -no_epmd -start_epmd false -macula_dist_port 4433
Architecture: net_kernel - macula_dist - quicer - UDP/QUIC - remote node
Node naming convention: port@ip (e.g., 4433@192.168.1.100)

 Summary

 Functions

 accept(ListenerHandle)

 Accept incoming connections. Called in a loop by net_kernel.

 accept_connection(AcceptPid, _, MyNode, Allowed, SetupTime)

 Accept a distribution connection. This is called when a connection is being accepted from a remote node.

 address()

 Return address information for this distribution.

 childspecs()

 Return child specifications for the distribution supervisor. Called by net_sup during startup.

 close(QuicConn)

 Close a distribution connection.

 is_node_name(Name)

 Check if a string is a valid node name.

 listen(NodeName)

 Listen for incoming distribution connections. Returns a "listen handle" used by accept/1.

 select(Node)

 Check if this module should handle distribution to the given node. Returns true if the node name is in port@host format.

 setup(Node, Type, MyNode, LongOrShortNames, SetupTime)

 Setup an outgoing distribution connection. Called when this node wants to connect to another node.

 splitname(NodeName)

 Split a node name into port and host. Node name format: port@host (e.g., 4433@192.168.1.100)

 Functions

 accept(ListenerHandle)

 -spec accept(term()) -> pid().

Accept incoming connections. Called in a loop by net_kernel.

 accept_connection(AcceptPid, _, MyNode, Allowed, SetupTime)

 -spec accept_connection(pid(), term(), node(), term(), term()) -> pid().

Accept a distribution connection. This is called when a connection is being accepted from a remote node.

 address()

 -spec address() -> #net_address{address :: term(), host :: term(), protocol :: term(), family :: term()}.

Return address information for this distribution.

 childspecs()

 -spec childspecs() -> [supervisor:child_spec()].

Return child specifications for the distribution supervisor. Called by net_sup during startup.

 close(QuicConn)

 -spec close(term()) -> ok.

Close a distribution connection.

 is_node_name(Name)

 -spec is_node_name(string()) -> boolean().

Check if a string is a valid node name.

 listen(NodeName)

 -spec listen(atom()) ->
 {ok,
 {term(),
 #net_address{address :: term(), host :: term(), protocol :: term(), family :: term()},
 1..3}} |
 {error, term()}.

Listen for incoming distribution connections. Returns a "listen handle" used by accept/1.

 select(Node)

 -spec select(atom()) -> boolean().

Check if this module should handle distribution to the given node. Returns true if the node name is in port@host format.

 setup(Node, Type, MyNode, LongOrShortNames, SetupTime)

 -spec setup(node(), term(), atom(), term(), term()) -> pid().

Setup an outgoing distribution connection. Called when this node wants to connect to another node.

 splitname(NodeName)

 -spec splitname(atom() | string()) -> {integer(), string()} | false.

Split a node name into port and host. Node name format: port@host (e.g., 4433@192.168.1.100)

macula_dist_discovery

EPMD Replacement using Macula DHT Discovery.
This module provides decentralized node discovery for Erlang distribution, replacing the centralized EPMD (Erlang Port Mapper Daemon).
[bookmark: How_it_Works]How it Works
Instead of registering with a local EPMD daemon on port 4369, nodes announce themselves via Macula's DHT (Distributed Hash Table):
1. On startup, nodes call register_node/2 to announce themselves 2. Other nodes find peers via lookup_node/1 which queries the DHT 3. Subscribers get notified of node join/leave events
[bookmark: Discovery_Mechanisms]Discovery Mechanisms
- **mDNS**: For local network discovery (no bootstrap required) - **DHT**: For internet-scale discovery (requires bootstrap nodes) - **Bootstrap**: Initial DHT seeds from known nodes
[bookmark: Usage]Usage
Register this node: ok = macula_dist_discovery:register_node('4433@192.168.1.100', 4433).
Look up a node: {ok, #{host := Host, port := Port}} = macula_dist_discovery:lookup_node('4433@192.168.1.100').
Subscribe to node events: ok = macula_dist_discovery:subscribe(self()). %% Receive: {node_discovered, Node, IP, Port} %% Receive: {node_lost, Node}

 Summary

 Functions

 list_nodes()

 List all known nodes.

 lookup_node(NodeName)

 Look up a node by name. This replaces EPMD lookup.

 lookup_node(NodeName, Timeout)

 Look up a node by name with timeout.

 register_node(NodeName, Port)

 Register this node in the distributed registry. This replaces EPMD registration.

 start_link()

 Start the discovery server with default options.

 start_link(Opts)

 Start the discovery server with options.

 subscribe(Pid)

 Subscribe to node discovery events. Subscriber will receive: {node_discovered, NodeName, IP, Port} {node_lost, NodeName}

 unregister_node(NodeName)

 Unregister this node from the distributed registry.

 unsubscribe(Pid)

 Unsubscribe from node discovery events.

 Functions

 list_nodes()

 -spec list_nodes() -> [atom()].

List all known nodes.

 lookup_node(NodeName)

 -spec lookup_node(atom()) -> {ok, map()} | {error, not_found}.

Look up a node by name. This replaces EPMD lookup.

 lookup_node(NodeName, Timeout)

 -spec lookup_node(atom(), timeout()) -> {ok, map()} | {error, not_found}.

Look up a node by name with timeout.

 register_node(NodeName, Port)

 -spec register_node(atom(), integer()) -> ok | {error, term()}.

Register this node in the distributed registry. This replaces EPMD registration.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the discovery server with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the discovery server with options.

 subscribe(Pid)

 -spec subscribe(pid()) -> ok.

Subscribe to node discovery events. Subscriber will receive: {node_discovered, NodeName, IP, Port} {node_lost, NodeName}

 unregister_node(NodeName)

 -spec unregister_node(atom()) -> ok.

Unregister this node from the distributed registry.

 unsubscribe(Pid)

 -spec unsubscribe(pid()) -> ok.

Unsubscribe from node discovery events.

macula_dist_mdns_advertiser

Macula Distribution mDNS Advertiser.
This module implements the mdns advertiser behaviour from the shortishly/mdns library. It advertises Macula distribution nodes via mDNS for automatic discovery on local networks.
Usage: %% Start advertising mdns_advertise_sup:start_child(macula_dist_mdns_advertiser).
%% Stop advertising mdns_advertise:stop(macula_dist_mdns_advertiser).

 Summary

 Functions

 instances()

 Return the list of service instances to advertise. Each instance is a map with: - instance: Full instance name - priority: SRV record priority (lower = preferred) - weight: SRV record weight for load balancing - port: The port the service is running on - hostname: The hostname without domain - properties: TXT record key-value pairs

 register(NodeName, Port)

 Register this node for mDNS advertisement.

 service()

 Return the mDNS service type. This follows the standard format: _service._protocol.local.

 unregister()

 Unregister this node from mDNS advertisement.

 Functions

 instances()

 -spec instances() -> [map()].

Return the list of service instances to advertise. Each instance is a map with: - instance: Full instance name - priority: SRV record priority (lower = preferred) - weight: SRV record weight for load balancing - port: The port the service is running on - hostname: The hostname without domain - properties: TXT record key-value pairs

 register(NodeName, Port)

 -spec register(atom() | string(), pos_integer()) -> ok.

Register this node for mDNS advertisement.

 service()

 -spec service() -> string().

Return the mDNS service type. This follows the standard format: _service._protocol.local.

 unregister()

 -spec unregister() -> ok.

Unregister this node from mDNS advertisement.

macula_dist_system

Macula Distribution System Supervisor.
This supervisor manages the distribution subsystem components:
- macula_dist_discovery - Decentralized node discovery (replaces EPMD) - macula_cluster_strategy - Automatic cluster formation
Startup: The distribution system starts automatically with macula application. Can also be started manually with macula_dist_system:start_link(Opts).
Configuration options (in sys.config): dist_port - QUIC port (default 4433) discovery_type - mdns, dht, or both auto_cluster - automatically form cluster

 Summary

 Functions

 start_link()

 Start the distribution system supervisor with default options.

 start_link(Opts)

 Start the distribution system supervisor with options.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the distribution system supervisor with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the distribution system supervisor with options.

macula_gateway

Macula Gateway - HTTP/3 Message Router & Orchestrator
Main API module and coordinator for the Macula Gateway. The gateway can be embedded in applications or run standalone as a relay node.
[bookmark: Quick_Start_(Embedded_Gateway)]Quick Start (Embedded Gateway)
 %% Start an embedded gateway
 {ok, Gateway} = macula_gateway:start_link([
 {port, 9443},
 {realm, <<"com.example.realm">>},
 {cert_file, "cert.pem"},
 {key_file, "key.pem"}
]).

 %% Register an RPC handler
 ok = macula_gateway:register_handler(Gateway, <<"calculator.add">>, fun(Args) ->
 A = maps:get(a, Args),
 B = maps:get(b, Args),
 #{result => A + B}
 end).
[bookmark: Quick_Start_(Standalone_Gateway)]Quick Start (Standalone Gateway)
Configure sys.config:
 [
 {macula, [
 {gateway_port, 9443},
 {gateway_realm, <<"com.example.realm">>},
 {cert_file, "/path/to/cert.pem"},
 {key_file, "/path/to/key.pem"}
]}
].
Start application:
 application:start(macula).
[bookmark: Architecture_(Modular_Design_-_Refactored_Jan_2025)]Architecture (Modular Design - Refactored Jan 2025)
Gateway (this module): - QUIC Listener Management - Message Decoding & Routing - Supervisor Coordination - API Facade
Child Modules (managed via macula_gateway_sup): - macula_gateway_client_manager: Client lifecycle management - macula_gateway_pubsub: Pub/Sub message routing with wildcards - macula_gateway_rpc: RPC handler registration & invocation - macula_gateway_mesh: Mesh connection pooling
Stateless Delegation Modules: - macula_gateway_dht: DHT query forwarding to routing server - macula_gateway_rpc_router: Multi-hop RPC routing via DHT
Single Responsibility Principle: Each module has one clear purpose and delegates to specialized child modules. Gateway acts as orchestrator, not implementer.

 Summary

 Functions

 get_stats(Gateway)

 Get gateway statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 Handle rpc_route message forwarded from connection

 handle_continue(_, State)

 Wire gateway to siblings after init completes. This avoids initialization deadlock from calling supervisor:which_children/1 during init/1 before supervisor has finished starting all children.

 handle_info(Info, State)

 init(Opts)

 register_handler(Procedure, Handler)

 Register a handler for a procedure.

 start_link()

 Start the gateway with default options.

 start_link(Opts)

 Start the gateway with custom options. Options: {port, Port} - Listen port (default: 9443) {realm, Realm} - Default realm (default: "macula.default")

 stop(Gateway)

 Stop the gateway.

 terminate(Reason, State)

 unregister_handler(Procedure)

 Unregister a handler for a procedure.

 Functions

 get_stats(Gateway)

 -spec get_stats(pid()) -> map().

Get gateway statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

Handle rpc_route message forwarded from connection

 handle_continue(_, State)

Wire gateway to siblings after init completes. This avoids initialization deadlock from calling supervisor:which_children/1 during init/1 before supervisor has finished starting all children.

 handle_info(Info, State)

 init(Opts)

 register_handler(Procedure, Handler)

 -spec register_handler(binary(), fun()) -> ok | {error, term()}.

Register a handler for a procedure.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the gateway with default options.

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the gateway with custom options. Options: {port, Port} - Listen port (default: 9443) {realm, Realm} - Default realm (default: "macula.default")

 stop(Gateway)

 -spec stop(pid()) -> ok.

Stop the gateway.

 terminate(Reason, State)

 unregister_handler(Procedure)

 -spec unregister_handler(binary()) -> ok.

Unregister a handler for a procedure.

macula_gateway_clients

Clients Worker GenServer - tracks connected clients.
Responsibilities: - Track connected clients with metadata (BOUNDED POOL) - Enforce max_clients limit with backpressure - Monitor client processes for automatic cleanup - Store bidirectional streams for client communication - Provide client query APIs
Pattern: Bounded client pool with backpressure - Tracks clients with max_clients limit (default: 10,000) - Rejects new clients when pool is full (backpressure) - Allows updates to existing clients even when pool is full
Configuration: - max_clients: Maximum concurrent clients (default: 10,000)
Extracted from macula_gateway.erl (Phase 2) Renamed from macula_gateway_client_manager (Phase 2 QUIC refactoring)

 Summary

 Types

 client_info/0

 Functions

 broadcast(Pid, EncodedMsg)

 Broadcast a message to all connected clients.

 client_connected(Pid, ClientPid, ClientInfo)

 Register a connected client with metadata. Monitors the client process for automatic cleanup on death.

 client_disconnected(Pid, ClientPid)

 Unregister a disconnected client.

 get_all_clients(Pid)

 Get all connected clients.

 get_all_node_ids(Pid)

 Get all node IDs with stored client streams (for debugging).

 get_client_info(Pid, ClientPid)

 Get information about a specific client.

 get_client_stream(Pid, NodeId)

 Get the stored stream for a client node.

 get_stream_by_endpoint(Pid, Endpoint)

 Get the stream PID for a given endpoint URL. Used for routing pub/sub messages to remote subscribers.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle client process death - automatic cleanup.

 init(Opts)

 is_client_alive(Pid, ClientPid)

 Check if a client is alive (process still running).

 remove_stale_stream(Pid, NodeId)

 Remove a stale stream for a node when send fails with 'closed'. This is called by the gateway when quicer:send returns {error, closed} to clean up the invalid stream reference from our maps. Uses async cast to avoid blocking the gateway during send operations.

 start_link(Opts)

 Start the client manager with options. Registers as 'macula_gateway_clients' for discovery by pubsub module.

 stop(Pid)

 Stop the client manager.

 store_client_stream(Pid, NodeId, StreamPid)

 Store a bidirectional stream for a client node (legacy 3-arg version).

 store_client_stream(Pid, NodeId, StreamPid, Endpoint)

 Store a bidirectional stream for a client node with endpoint tracking.

 terminate(Reason, State)

 Types

 client_info/0

 -type client_info() ::
 #{realm := binary(), node_id := binary(), endpoint => binary(), capabilities => [atom()]}.

 Functions

 broadcast(Pid, EncodedMsg)

 -spec broadcast(pid(), binary()) -> ok.

Broadcast a message to all connected clients.

 client_connected(Pid, ClientPid, ClientInfo)

 -spec client_connected(pid(), pid(), client_info()) -> ok.

Register a connected client with metadata. Monitors the client process for automatic cleanup on death.

 client_disconnected(Pid, ClientPid)

 -spec client_disconnected(pid(), pid()) -> ok.

Unregister a disconnected client.

 get_all_clients(Pid)

 -spec get_all_clients(pid()) -> {ok, [{pid(), client_info()}]}.

Get all connected clients.

 get_all_node_ids(Pid)

 -spec get_all_node_ids(pid()) -> [binary()].

Get all node IDs with stored client streams (for debugging).

 get_client_info(Pid, ClientPid)

 -spec get_client_info(pid(), pid()) -> {ok, client_info()} | not_found.

Get information about a specific client.

 get_client_stream(Pid, NodeId)

 -spec get_client_stream(pid(), binary()) -> {ok, pid()} | not_found.

Get the stored stream for a client node.

 get_stream_by_endpoint(Pid, Endpoint)

 -spec get_stream_by_endpoint(pid(), binary()) -> {ok, pid()} | {error, not_found}.

Get the stream PID for a given endpoint URL. Used for routing pub/sub messages to remote subscribers.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle client process death - automatic cleanup.

 init(Opts)

 is_client_alive(Pid, ClientPid)

 -spec is_client_alive(pid(), pid()) -> boolean().

Check if a client is alive (process still running).

 remove_stale_stream(Pid, NodeId)

 -spec remove_stale_stream(pid(), binary()) -> ok.

Remove a stale stream for a node when send fails with 'closed'. This is called by the gateway when quicer:send returns {error, closed} to clean up the invalid stream reference from our maps. Uses async cast to avoid blocking the gateway during send operations.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the client manager with options. Registers as 'macula_gateway_clients' for discovery by pubsub module.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the client manager.

 store_client_stream(Pid, NodeId, StreamPid)

 -spec store_client_stream(pid(), binary(), pid()) -> ok.

Store a bidirectional stream for a client node (legacy 3-arg version).

 store_client_stream(Pid, NodeId, StreamPid, Endpoint)

 -spec store_client_stream(pid(), binary(), pid(), binary()) -> ok.

Store a bidirectional stream for a client node with endpoint tracking.

 terminate(Reason, State)

macula_gateway_dht

DHT Query Handler Module - handles DHT message forwarding to routing server.
Responsibilities: - Forward DHT STORE messages to routing server - Forward DHT FIND_VALUE messages to routing server, send encoded replies - Forward DHT FIND_NODE messages to routing server, send encoded replies - Handle DHT queries from process messages - Encode replies using protocol encoder - Handle errors gracefully
Pattern: Stateless delegation module - No GenServer (no state to manage) - Pure functions forwarding to routing server - Consistent error handling ({ok, Result} | {error, Reason})
Extracted from macula_gateway.erl (Phase 10)

 Summary

 Functions

 forward_publish_to_bootstrap(PubMsg)

 deprecated

 Forward a PUBLISH message to the bootstrap gateway for distribution.

 handle_find_node(Stream, FindNodeMsg)

 Handle DHT FIND_NODE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_find_value(Stream, FindValueMsg)

 Handle DHT FIND_VALUE message. Extracts the key and performs local storage lookup, returning result over stream. The message format from protocol decoder contains a binary key field.

 handle_query(FromPid, QueryType, QueryData)

 Handle DHT query from process message. Decodes query, forwards to routing server, encodes reply, sends to requesting process. Crashes on decode or routing failures - exposes protocol/DHT bugs.

 handle_store(Stream, StoreMsg)

 Handle DHT STORE message. Forwards to routing server asynchronously (fire-and-forget, no reply needed). Uses async handler to prevent blocking the gateway on DHT operations.

 lookup_value(Key)

 Look up a value from the DHT by key. Synchronous lookup from local DHT storage. Subscriptions are replicated via DHT propagation to k closest nodes, so local lookup returns subscribers from the replicated DHT data. Returns list of subscribers for the given key.

 query_peer(NodeInfo, MessageType, Message)

 Query remote peer and wait for response. Used for FIND_NODE and FIND_VALUE operations. Currently uses fire-and-forget delivery. For request/response patterns, use macula_rpc_handler:request/4 which provides NATS-style async RPC with callbacks (available since v0.12.1).

 send_to_peer(NodeInfo, MessageType, Message)

 Send DHT message to remote peer (fire-and-forget). Used for STORE operations that don't need a response.

 Functions

 forward_publish_to_bootstrap(PubMsg)

 This function is deprecated. v0.14.0+ uses direct P2P routing via local DHT lookup. Bootstrap is NOT a broker - use route_via_local_dht in pubsub_router instead. This function remains for backwards compatibility but should not be used..

 -spec forward_publish_to_bootstrap(map()) -> ok | {error, term()}.

Forward a PUBLISH message to the bootstrap gateway for distribution.

 handle_find_node(Stream, FindNodeMsg)

 -spec handle_find_node(reference(), map()) -> ok.

Handle DHT FIND_NODE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_find_value(Stream, FindValueMsg)

 -spec handle_find_value(reference(), map()) -> ok.

Handle DHT FIND_VALUE message. Extracts the key and performs local storage lookup, returning result over stream. The message format from protocol decoder contains a binary key field.

 handle_query(FromPid, QueryType, QueryData)

 -spec handle_query(pid(), atom(), binary()) -> ok.

Handle DHT query from process message. Decodes query, forwards to routing server, encodes reply, sends to requesting process. Crashes on decode or routing failures - exposes protocol/DHT bugs.

 handle_store(Stream, StoreMsg)

 -spec handle_store(reference(), map()) -> ok.

Handle DHT STORE message. Forwards to routing server asynchronously (fire-and-forget, no reply needed). Uses async handler to prevent blocking the gateway on DHT operations.

 lookup_value(Key)

 -spec lookup_value(binary()) -> {ok, list()} | {error, not_found}.

Look up a value from the DHT by key. Synchronous lookup from local DHT storage. Subscriptions are replicated via DHT propagation to k closest nodes, so local lookup returns subscribers from the replicated DHT data. Returns list of subscribers for the given key.

 query_peer(NodeInfo, MessageType, Message)

 -spec query_peer(map(), atom(), map()) -> {ok, term()} | {error, term()}.

Query remote peer and wait for response. Used for FIND_NODE and FIND_VALUE operations. Currently uses fire-and-forget delivery. For request/response patterns, use macula_rpc_handler:request/4 which provides NATS-style async RPC with callbacks (available since v0.12.1).

 send_to_peer(NodeInfo, MessageType, Message)

 -spec send_to_peer(map(), atom(), map()) -> ok | {error, term()}.

Send DHT message to remote peer (fire-and-forget). Used for STORE operations that don't need a response.

macula_gateway_diagnostics

Macula Gateway Diagnostics Service
Provides simple diagnostic procedures that clients can call to verify connectivity and test the gateway's RPC functionality.
Available procedures: - com.macula.diagnostics.hello - Returns a friendly greeting with gateway info - com.macula.diagnostics.echo - Echoes back the arguments sent by client - com.macula.diagnostics.info - Returns detailed gateway information
Usage: The diagnostics service automatically registers when the gateway starts. Clients can call these procedures using the Macula SDK:
Elixir: {:ok, result} = MaculaSdk.Client.call(client, "com.macula.diagnostics.hello", %{})
Result: %{ "message" => "Hello from Macula Gateway!", "gateway" => "macula@127.0.0.1", "realm" => "com.example.realm", "uptime_seconds" => 42, "timestamp" => 1699612800 }

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 register_procedures(GatewayPid)

 Register diagnostic procedures with the gateway

 start_link(Opts)

 Start the diagnostics service

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 register_procedures(GatewayPid)

 -spec register_procedures(pid()) -> ok.

Register diagnostic procedures with the gateway

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the diagnostics service

 terminate(Reason, State)

macula_gateway_health

Macula Gateway Health Check Server
Provides HTTP health endpoints for Kubernetes liveness and readiness probes. Runs on a separate port (8080) from the main QUIC gateway (9443).
Endpoints: GET /health - Overall health status GET /ready - Readiness check (can accept traffic) GET /live - Liveness check (process is alive) GET /metrics - Basic metrics (optional)

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 is_healthy()

 Check if the gateway is healthy.

 set_ready(Ready)

 Set the readiness state.

 start_link(Opts)

 Start the health check server.

 stop()

 Stop the health check server.

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 is_healthy()

 -spec is_healthy() -> boolean().

Check if the gateway is healthy.

 set_ready(Ready)

 -spec set_ready(boolean()) -> ok.

Set the readiness state.

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the health check server.

 stop()

 -spec stop() -> ok.

Stop the health check server.

 terminate(Reason, State)

macula_gateway_mesh

Mesh Connection Manager GenServer - manages peer-to-peer QUIC connections.
Responsibilities: - Pool QUIC connections to remote peers by node_id (BOUNDED POOL) - Enforce max_connections limit with LRU eviction - Check connection liveness before reuse - Open new streams on pooled connections - Monitor connection processes for automatic cleanup - Cache connection metadata with timestamps
Pattern: Bounded connection pooling with LRU eviction - Cache connections by node_id (max: max_mesh_connections, default 1000) - Evict least recently used when pool is full - Verify liveness before reuse (open new stream) - Remove dead connections and recreate on demand
Configuration: - max_mesh_connections: Maximum pooled connections (default: 1000)
Extracted from macula_gateway.erl (Phase 9)

 Summary

 Types

 connection_info/0

 Functions

 get_connection_info(Pid, NodeId)

 Get connection metadata for a node.

 get_or_create_connection(Pid, NodeId, Address)

 Get existing connection or create new one. Returns opened stream ready for use.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 Handle async send request - spawns process for connection + send. Fire-and-forget pattern - does not block the gen_server.

 handle_info(Info, State)

 init(Opts)

 list_connections(Pid)

 List all cached connections.

 remove_connection(Pid, NodeId)

 Explicitly remove connection from cache.

 send_async(Pid, NodeId, Address, EncodedMessage)

 Send message asynchronously (fire-and-forget). Connection creation and sending happens in a spawned process. Does NOT block the caller - returns immediately with 'ok'. Use this for pubsub_route and other non-critical messages.

 start_link(Opts)

 Start the mesh connection manager with options. Options: - cert_file: Path to TLS certificate - key_file: Path to TLS private key Registers as 'macula_gateway_mesh' for discovery by pubsub module.

 stop(Pid)

 Stop the mesh connection manager.

 terminate(Reason, State)

 Types

 connection_info/0

 -type connection_info() ::
 #{connection => pid() | reference() | undefined,
 stream => pid() | reference() | undefined,
 address => {inet:ip_address(), inet:port_number()},
 last_used => integer()}.

 Functions

 get_connection_info(Pid, NodeId)

 -spec get_connection_info(pid(), binary()) -> {ok, connection_info()} | not_found.

Get connection metadata for a node.

 get_or_create_connection(Pid, NodeId, Address)

 -spec get_or_create_connection(pid(), binary(), {inet:ip_address(), inet:port_number()}) ->
 {ok, pid()} | {error, term()}.

Get existing connection or create new one. Returns opened stream ready for use.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

Handle async send request - spawns process for connection + send. Fire-and-forget pattern - does not block the gen_server.

 handle_info(Info, State)

 init(Opts)

 list_connections(Pid)

 -spec list_connections(pid()) -> {ok, [{binary(), connection_info()}]}.

List all cached connections.

 remove_connection(Pid, NodeId)

 -spec remove_connection(pid(), binary()) -> ok.

Explicitly remove connection from cache.

 send_async(Pid, NodeId, Address, EncodedMessage)

 -spec send_async(pid(), binary(), binary() | {inet:ip_address(), inet:port_number()}, binary()) -> ok.

Send message asynchronously (fire-and-forget). Connection creation and sending happens in a spawned process. Does NOT block the caller - returns immediately with 'ok'. Use this for pubsub_route and other non-critical messages.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the mesh connection manager with options. Options: - cert_file: Path to TLS certificate - key_file: Path to TLS private key Registers as 'macula_gateway_mesh' for discovery by pubsub module.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the mesh connection manager.

 terminate(Reason, State)

macula_gateway_pubsub

Pub/Sub Handler GenServer - manages topic subscriptions and message routing.
Responsibilities: - Subscribe/unsubscribe streams to topics - Route published messages to matching subscribers - Support wildcard topics (* single-level, ** multi-level) - Track bidirectional mapping (topic ↔ stream) - Monitor stream processes for automatic cleanup
Extracted from macula_gateway.erl (Phase 3)

 Summary

 Types

 stream_handle/0

 Functions

 deliver_local(Pid, Topic, Payload)

 Deliver a message to LOCAL subscribers only (no remote routing). Used by pubsub_route delivery to prevent message amplification. When a message arrives from another node via pubsub_route, it should only be delivered to local subscribers, NOT re-routed to remote subscribers.

 get_stream_topics(Pid, Stream)

 Get all topics a stream is subscribed to.

 get_subscribers(Pid, Topic)

 Get all subscribers for a topic (exact and wildcard matches).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle stream process death - automatic cleanup.

 init(Opts)

 publish(Pid, Topic, Payload)

 Publish a message to a topic (routes to matching subscribers).

 start_link(Opts)

 Start the pub/sub handler with options.

 stop(Pid)

 Stop the pub/sub handler.

 subscribe(Pid, Stream, Topic)

 Subscribe a stream to a topic (supports wildcards). Async (cast) to prevent blocking callers when PubSub is busy.

 terminate(Reason, State)

 unsubscribe(Pid, Stream, Topic)

 Unsubscribe a stream from a topic. Async (cast) to prevent blocking callers when PubSub is busy.

 Types

 stream_handle/0

 -type stream_handle() :: pid() | reference().

 Functions

 deliver_local(Pid, Topic, Payload)

 -spec deliver_local(pid(), binary(), map()) -> ok.

Deliver a message to LOCAL subscribers only (no remote routing). Used by pubsub_route delivery to prevent message amplification. When a message arrives from another node via pubsub_route, it should only be delivered to local subscribers, NOT re-routed to remote subscribers.

 get_stream_topics(Pid, Stream)

 -spec get_stream_topics(pid(), pid()) -> {ok, [binary()]}.

Get all topics a stream is subscribed to.

 get_subscribers(Pid, Topic)

 -spec get_subscribers(pid(), binary()) -> {ok, [pid()]}.

Get all subscribers for a topic (exact and wildcard matches).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle stream process death - automatic cleanup.

 init(Opts)

 publish(Pid, Topic, Payload)

 -spec publish(pid(), binary(), map()) -> ok.

Publish a message to a topic (routes to matching subscribers).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the pub/sub handler with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the pub/sub handler.

 subscribe(Pid, Stream, Topic)

 -spec subscribe(pid(), pid() | reference(), binary()) -> ok.

Subscribe a stream to a topic (supports wildcards). Async (cast) to prevent blocking callers when PubSub is busy.

 terminate(Reason, State)

 unsubscribe(Pid, Stream, Topic)

 -spec unsubscribe(pid(), pid() | reference(), binary()) -> ok.

Unsubscribe a stream from a topic. Async (cast) to prevent blocking callers when PubSub is busy.

macula_gateway_pubsub_router

Macula Gateway Pub/Sub Router - DHT-Routed Message Distribution
Handles distribution of pub/sub messages to both local and remote subscribers using multi-hop Kademlia DHT routing (v0.7.8+).
Responsibilities: - Deliver messages to local subscribers via QUIC streams - Query DHT for remote subscribers - Route messages via DHT multi-hop (pubsub_route protocol) - Wrap PUBLISH messages in pubsub_route envelopes
Extracted from macula_gateway.erl (v0.7.9) for better separation of concerns.

 Summary

 Functions

 distribute(LocalSubscribers, PubMsg, LocalNodeId, Mesh, Clients)

 Distribute pub/sub message to both local and remote subscribers. Uses DHT routing for remote subscribers (multi-hop Kademlia). For connected clients, uses existing bidirectional streams instead of mesh connections.

 Functions

 distribute(LocalSubscribers, PubMsg, LocalNodeId, Mesh, Clients)

 -spec distribute(LocalSubscribers :: [quicer:stream_handle()],
 PubMsg :: map(),
 LocalNodeId :: binary(),
 Mesh :: pid(),
 Clients :: pid()) ->
 ok.

Distribute pub/sub message to both local and remote subscribers. Uses DHT routing for remote subscribers (multi-hop Kademlia). For connected clients, uses existing bidirectional streams instead of mesh connections.

macula_gateway_quic_server

QUIC Transport Layer Gen_Server
Handles all QUIC transport operations for the gateway: - Owns QUIC listener - Receives {quic, ...} events - Decodes protocol messages - Routes messages to gateway for business logic
This separation follows proper OTP design: - One process, one responsibility (transport vs routing) - Clean fault isolation (QUIC crashes don't crash gateway) - Proper supervision (supervisor can restart independently) - Testability (can test transport in isolation)

 Summary

 Functions

 handle_call(Request, From, State)

 Handle synchronous calls. Set gateway PID for message routing

 handle_cast(Msg, State)

 Handle asynchronous casts.

 handle_info(Info, State)

 Handle QUIC event: new_stream (stream created by peer). Associates the stream with its parent connection to enable peer address lookup.

 init(Opts)

 Initialize the QUIC server and start QUIC listener.

 set_gateway(QuicServerPid, GatewayPid)

 Set the gateway PID for message routing. Called by supervisor after both quic_server and gateway have started.

 start_link(Opts)

 Start the QUIC server gen_server.

 terminate(Reason, State)

 Cleanup on termination.

 Functions

 handle_call(Request, From, State)

Handle synchronous calls. Set gateway PID for message routing

 handle_cast(Msg, State)

Handle asynchronous casts.

 handle_info(Info, State)

Handle QUIC event: new_stream (stream created by peer). Associates the stream with its parent connection to enable peer address lookup.

 init(Opts)

Initialize the QUIC server and start QUIC listener.

 set_gateway(QuicServerPid, GatewayPid)

 -spec set_gateway(pid(), pid()) -> ok.

Set the gateway PID for message routing. Called by supervisor after both quic_server and gateway have started.

 start_link(Opts)

 -spec start_link(Opts :: proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the QUIC server gen_server.

 terminate(Reason, State)

Cleanup on termination.

macula_gateway_rpc

RPC Handler GenServer - manages RPC handler registration and call routing.
Responsibilities: - Register/unregister RPC handlers for procedures - Route RPC calls to registered handlers - Handle call/response matching - Monitor handler processes for automatic cleanup
Extracted from macula_gateway.erl (Phase 4)

 Summary

 Functions

 call(Pid, Procedure, Args, Opts)

 Make an RPC call to a procedure.

 get_handler(Pid, Procedure)

 Get the handler for a procedure.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle handler process death - automatic cleanup.

 init(Opts)

 invoke_handler(Pid, Procedure, Args)

 Invoke a handler directly for local calls. If handler is a function, invokes it directly. If handler is a PID, sends rpc_call message and waits for response.

 list_handlers(Pid)

 List all registered handlers.

 register_handler(Pid, Procedure, Handler)

 Register a handler for an RPC procedure. Handler can be either a PID or a function.

 start_link(Opts)

 Start the RPC handler with options.

 stop(Pid)

 Stop the RPC handler.

 terminate(Reason, State)

 unregister_handler(Pid, Procedure)

 Unregister a handler for an RPC procedure.

 Functions

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary(), map(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call to a procedure.

 get_handler(Pid, Procedure)

 -spec get_handler(pid(), binary()) -> {ok, pid()} | not_found.

Get the handler for a procedure.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle handler process death - automatic cleanup.

 init(Opts)

 invoke_handler(Pid, Procedure, Args)

 -spec invoke_handler(pid(), binary(), map()) -> {ok, term()} | {error, term()}.

Invoke a handler directly for local calls. If handler is a function, invokes it directly. If handler is a PID, sends rpc_call message and waits for response.

 list_handlers(Pid)

 -spec list_handlers(pid()) -> {ok, [{binary(), pid()}]}.

List all registered handlers.

 register_handler(Pid, Procedure, Handler)

 -spec register_handler(pid(), binary(), pid() | fun()) -> ok.

Register a handler for an RPC procedure. Handler can be either a PID or a function.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the RPC handler with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the RPC handler.

 terminate(Reason, State)

 unregister_handler(Pid, Procedure)

 -spec unregister_handler(pid(), binary()) -> ok.

Unregister a handler for an RPC procedure.

macula_gateway_rpc_router

RPC Router Module - handles routed RPC messages (CALL/REPLY).
Responsibilities: - Process routed CALL messages delivered locally - Process routed REPLY messages delivered locally - Send REPLY back via routing path - Forward rpc_route messages to next hop - Coordinate between RPC handler, mesh, and routing modules
Pattern: Stateless delegation module - No GenServer (no state to manage) - Pure functions coordinating between modules - Consistent error handling ({ok, Result} | {error, Reason})
Extracted from macula_gateway.erl (Phase 11)

 Summary

 Functions

 forward_rpc_route(NextHopNodeInfo, RpcRouteMsg, MeshPid)

 Forward rpc_route message to next hop. Uses async (fire-and-forget) pattern to avoid blocking. Graceful error handling - logs errors but doesn't crash gateway.

 handle_routed_call(CallMsg, RpcRouteMsg, NodeId, RpcPid, MeshPid)

 Handle routed CALL message delivered locally. Looks up RPC handler, invokes it, sends reply via routing path. Authorization check added in v0.17.0.

 handle_routed_reply(ReplyMsg, RpcRouteMsg, NodeId, ClientStreams)

 Handle routed REPLY message delivered locally. Routes to connection via gproc (local node) or to client stream (remote client).

 send_reply_via_routing(ReplyMsg, DestNodeId, NodeId, MeshPid)

 Send REPLY back via routing path. Wraps reply in rpc_route envelope and routes to destination. Crashes on routing failures - exposes mesh/routing issues immediately.

 Functions

 forward_rpc_route(NextHopNodeInfo, RpcRouteMsg, MeshPid)

 -spec forward_rpc_route(map(), map(), pid()) -> ok.

Forward rpc_route message to next hop. Uses async (fire-and-forget) pattern to avoid blocking. Graceful error handling - logs errors but doesn't crash gateway.

 handle_routed_call(CallMsg, RpcRouteMsg, NodeId, RpcPid, MeshPid)

 -spec handle_routed_call(map(), map(), binary(), pid(), pid()) -> ok | {error, term()}.

Handle routed CALL message delivered locally. Looks up RPC handler, invokes it, sends reply via routing path. Authorization check added in v0.17.0.

 handle_routed_reply(ReplyMsg, RpcRouteMsg, NodeId, ClientStreams)

 -spec handle_routed_reply(map(), map(), binary(), map()) -> ok | {error, term()}.

Handle routed REPLY message delivered locally. Routes to connection via gproc (local node) or to client stream (remote client).

 send_reply_via_routing(ReplyMsg, DestNodeId, NodeId, MeshPid)

 -spec send_reply_via_routing(map(), binary(), binary(), pid()) -> ok.

Send REPLY back via routing path. Wraps reply in rpc_route envelope and routes to destination. Crashes on routing failures - exposes mesh/routing issues immediately.

macula_gateway_system

Gateway Root Supervisor - top-level supervisor for gateway subsystem.
Supervision Strategy: - rest_for_one: Dependency-based restart ordering - Child order reflects dependencies: 1. quic_server (owns QUIC listener, no dependencies) 2. gateway (depends on quic_server PID) 3. workers_sup (depends on gateway PID)
Fault Isolation: - quic_server crash → restart quic_server, gateway, workers_sup - gateway crash → restart gateway, workers_sup (quic_server continues) - workers_sup crash → restart workers_sup only (quic_server and gateway continue)
Architecture:
 macula_gateway_system (this module)
 ├── macula_gateway_health - Health check HTTP server
 ├── macula_gateway_diagnostics - Diagnostics service
 ├── macula_gateway_quic_server - QUIC transport layer
 ├── macula_gateway - Message routing coordinator
 └── macula_gateway_workers_sup - Business logic workers
 ├── macula_gateway_clients - Client tracking
 ├── macula_gateway_pubsub - Pub/Sub routing
 ├── macula_gateway_rpc - RPC handling
 └── macula_gateway_mesh - Mesh connections

Circular Dependency Resolution: - quic_server starts first (without gateway PID) - gateway starts second (receives quic_server PID) - Supervisor calls quic_server:set_gateway/1 to complete link - workers_sup starts last (receives gateway PID)
Created during Phase 2 QUIC refactoring to enable proper OTP supervision.

 Summary

 Functions

 init(Opts)

 start_link(Opts)

 Start the root gateway supervisor with configuration.

 Functions

 init(Opts)

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the root gateway supervisor with configuration.

macula_gateway_workers_sup

Gateway Workers Supervisor - supervises gateway worker processes.
Supervision Strategy: - rest_for_one: If child N crashes, restart N and all children after N - Rationale: Only clients is foundational; pubsub/rpc/mesh depend on it but are independent of each other. This strategy provides fault isolation while maintaining consistency when clients restarts.
Children (in dependency order): - macula_gateway_clients: Client tracking (foundational) - macula_gateway_pubsub: Pub/Sub message routing (depends on clients) - macula_gateway_rpc: RPC handler registration and routing (depends on clients) - macula_gateway_mesh: Mesh connection pooling and management (independent)
Fault Isolation Examples: - mesh crash → only mesh restarts (0 clients disconnected) - rpc crash → rpc + mesh restart (0 clients disconnected) - pubsub crash → pubsub + rpc + mesh restart (0 clients disconnected) - clients crash → all restart (unavoidable - foundational)
Extracted from macula_gateway.erl (Phase 6, 9) Renamed from macula_gateway_sup (Phase 2 QUIC refactoring)

 Summary

 Functions

 get_clients(SupPid)

 Get the clients worker child PID.

 get_mesh(SupPid)

 Get the mesh connection manager child PID.

 get_pubsub(SupPid)

 Get the pubsub handler child PID.

 get_rpc(SupPid)

 Get the RPC handler child PID.

 init(Config)

 start_link(Config)

 Start the gateway supervisor with configuration.

 Functions

 get_clients(SupPid)

 -spec get_clients(pid()) -> {ok, pid()} | {error, not_found}.

Get the clients worker child PID.

 get_mesh(SupPid)

 -spec get_mesh(pid()) -> {ok, pid()} | {error, not_found}.

Get the mesh connection manager child PID.

 get_pubsub(SupPid)

 -spec get_pubsub(pid()) -> {ok, pid()} | {error, not_found}.

Get the pubsub handler child PID.

 get_rpc(SupPid)

 -spec get_rpc(pid()) -> {ok, pid()} | {error, not_found}.

Get the RPC handler child PID.

 init(Config)

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the gateway supervisor with configuration.

macula_gossip

Gossip protocol for CRDT state replication.
Implements a gossip-based protocol for eventually-consistent state synchronization across nodes. Uses push-pull-push anti-entropy:
- Push: Periodically sends local state changes to random peers - Pull: Requests state from peers when needed - Anti-entropy: Full state synchronization to repair divergence
Configuration Parameters: - push_interval: 1000ms (how often to push to peers) - anti_entropy_interval: 30000ms (how often to run anti-entropy) - fanout: 3 (number of peers to contact per round)

 Summary

 Types

 gossip_state/0

 Functions

 add_peer(Pid, PeerNodeId)

 Add a peer to the gossip list.

 anti_entropy(Pid)

 Trigger anti-entropy synchronization.

 delete(Pid, Key)

 Delete a CRDT value.

 force_sync(Pid)

 Force synchronization with all peers.

 get(Pid, Key)

 Get a CRDT value.

 get_all(Pid)

 Get all stored CRDT states.

 get_peers(Pid)

 Get the list of known peers.

 get_stats(Pid)

 Get gossip statistics.

 handle_call(_, From, State)

 handle_cast(_, State)

 handle_gossip_pull(Pid, Msg)

 Handle incoming gossip_pull message.

 handle_gossip_pull_reply(Pid, Msg)

 Handle incoming gossip_pull_reply message.

 handle_gossip_push(Pid, Msg)

 Handle incoming gossip_push message.

 handle_gossip_sync(Pid, Msg)

 Handle incoming gossip_sync message.

 handle_gossip_sync_reply(Pid, Msg)

 Handle incoming gossip_sync_reply message.

 handle_info(Info, State)

 init(Config)

 pull_state(Pid, PeerNodeId)

 Pull state from a specific peer.

 push_state(Pid, PeerNodeId)

 Push local state to a specific peer.

 put(Pid, Key, Type, Value)

 Store a CRDT value. Type is the CRDT type: lww_register, or_set, gcounter, pncounter

 remove_peer(Pid, PeerNodeId)

 Remove a peer from the gossip list.

 start_link(Config)

 Start the gossip server.

 stop(Pid)

 Stop the gossip server.

 terminate(Reason, State)

 Types

 gossip_state/0

 -type gossip_state() ::
 #state{node_id :: binary(),
 realm :: binary(),
 states :: #{binary() => {atom(), term(), map()}},
 pending_pulls :: #{binary() => {pid(), reference()}},
 peers :: [binary()],
 send_fn :: fun((binary(), map()) -> ok | {error, term()}),
 push_interval :: pos_integer(),
 anti_entropy_interval :: pos_integer(),
 fanout :: pos_integer(),
 push_timer :: reference() | undefined,
 anti_entropy_timer :: reference() | undefined,
 push_count :: non_neg_integer(),
 pull_count :: non_neg_integer(),
 merge_count :: non_neg_integer(),
 conflict_count :: non_neg_integer()}.

 Functions

 add_peer(Pid, PeerNodeId)

 -spec add_peer(pid(), binary()) -> ok.

Add a peer to the gossip list.

 anti_entropy(Pid)

 -spec anti_entropy(pid()) -> ok.

Trigger anti-entropy synchronization.

 delete(Pid, Key)

 -spec delete(pid(), binary()) -> ok.

Delete a CRDT value.

 force_sync(Pid)

 -spec force_sync(pid()) -> ok.

Force synchronization with all peers.

 get(Pid, Key)

 -spec get(pid(), binary()) -> {ok, {atom(), term()}} | {error, not_found}.

Get a CRDT value.

 get_all(Pid)

 -spec get_all(pid()) -> #{binary() => {atom(), term()}}.

Get all stored CRDT states.

 get_peers(Pid)

 -spec get_peers(pid()) -> [binary()].

Get the list of known peers.

 get_stats(Pid)

 -spec get_stats(pid()) -> map().

Get gossip statistics.

 handle_call(_, From, State)

 handle_cast(_, State)

 handle_gossip_pull(Pid, Msg)

 -spec handle_gossip_pull(pid(), map()) -> ok.

Handle incoming gossip_pull message.

 handle_gossip_pull_reply(Pid, Msg)

 -spec handle_gossip_pull_reply(pid(), map()) -> ok.

Handle incoming gossip_pull_reply message.

 handle_gossip_push(Pid, Msg)

 -spec handle_gossip_push(pid(), map()) -> ok.

Handle incoming gossip_push message.

 handle_gossip_sync(Pid, Msg)

 -spec handle_gossip_sync(pid(), map()) -> ok.

Handle incoming gossip_sync message.

 handle_gossip_sync_reply(Pid, Msg)

 -spec handle_gossip_sync_reply(pid(), map()) -> ok.

Handle incoming gossip_sync_reply message.

 handle_info(Info, State)

 init(Config)

 pull_state(Pid, PeerNodeId)

 -spec pull_state(pid(), binary()) -> ok | {error, term()}.

Pull state from a specific peer.

 push_state(Pid, PeerNodeId)

 -spec push_state(pid(), binary()) -> ok | {error, term()}.

Push local state to a specific peer.

 put(Pid, Key, Type, Value)

 -spec put(pid(), binary(), atom(), term()) -> ok.

Store a CRDT value. Type is the CRDT type: lww_register, or_set, gcounter, pncounter

 remove_peer(Pid, PeerNodeId)

 -spec remove_peer(pid(), binary()) -> ok.

Remove a peer from the gossip list.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the gossip server.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the gossip server.

 terminate(Reason, State)

macula_hole_punch

QUIC Hole Punch Executor with Cancellation and Adaptive Timing.
Implements the simultaneous open (SYN-SYN) pattern for QUIC to establish direct connections through NAT devices.
Features: - Proper cancellation of in-progress punch attempts - Adaptive timing based on NAT type and previous attempts - Tracks active punches via gen_server state - Supports both sync and async execution
QUIC Hole Punching Approach: Unlike TCP's explicit SYN packets, QUIC uses encrypted handshakes. The hole punching strategy is:
1. Both peers start QUIC connect() at the same coordinated time 2. Initial packets "punch" holes in both NATs 3. One peer's connection will succeed (race condition) 4. The other peer retries connecting through the opened hole
NAT Behavior Considerations: - EI mapping: External address is consistent - easy hole punch - HD mapping: Must target specific host - coordinate addresses - PP allocation: Same port - single target port - PC allocation: Sequential ports - try predicted range - RD allocation: Random ports - harder to predict, try range
Adaptive Timing: - Symmetric NAT: Longer timeouts, more port attempts - Restricted NAT: Standard timeouts - Full Cone: Fast timeouts, single port

 Summary

 Types

 nat_type/0

 punch_opts/0

 punch_result/0

 Functions

 cancel(Ref)

 Cancel an ongoing hole punch attempt.

 execute(TargetNodeId, Opts, Timeout)

 Execute a hole punch attempt synchronously. Blocks until connection established or timeout.

 execute_async(TargetNodeId, Opts, ReplyTo)

 Execute hole punch asynchronously. Returns immediately, caller receives result via message.

 get_active_punches()

 Get list of active punch attempts (for debugging/monitoring).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link()

 Start the hole punch executor.

 terminate(Reason, State)

 Types

 nat_type/0

 -type nat_type() :: full_cone | restricted | port_restricted | symmetric | unknown.

 punch_opts/0

 -type punch_opts() ::
 #{target_host := binary() | string(),
 target_ports := [inet:port_number()],
 local_port => inet:port_number(),
 session_id := binary(),
 punch_time => integer(),
 role => initiator | target,
 local_nat_type => nat_type(),
 remote_nat_type => nat_type()}.

 punch_result/0

 -type punch_result() ::
 {ok, quicer:connection_handle()} |
 {error, timeout | unreachable | all_ports_failed | cancelled}.

 Functions

 cancel(Ref)

 -spec cancel(reference()) -> ok | {error, not_found}.

Cancel an ongoing hole punch attempt.

 execute(TargetNodeId, Opts, Timeout)

 -spec execute(binary(), punch_opts(), timeout()) -> punch_result().

Execute a hole punch attempt synchronously. Blocks until connection established or timeout.

 execute_async(TargetNodeId, Opts, ReplyTo)

 -spec execute_async(binary(), punch_opts(), pid()) -> reference().

Execute hole punch asynchronously. Returns immediately, caller receives result via message.

 get_active_punches()

 -spec get_active_punches() -> [{reference(), map()}].

Get list of active punch attempts (for debugging/monitoring).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the hole punch executor.

 terminate(Reason, State)

macula_id

ID generation utilities for Macula. Provides functions for generating various types of IDs.

 Summary

 Functions

 from_hex(Hex)

 Convert hex string to binary. Crashes on invalid hex - exposes bugs in validation logic.

 from_uuid(Uuid)

 Convert UUID string to 16-byte binary ID. Crashes on invalid UUID format - exposes bugs in validation logic.

 hash_id(Data)

 Generate deterministic 256-bit hash ID from data.

 message_id()

 Generate 128-bit (16-byte) random message ID.

 node_id()

 Generate 256-bit (32-byte) random node ID.

 session_id()

 Generate 128-bit (16-byte) random session ID.

 to_hex(Binary)

 Convert binary to lowercase hex string.

 to_uuid(_)

 Convert 16-byte or 32-byte binary ID to UUID string format. For 16-byte: 8-4-4-4-12 (e.g., "12345678-90ab-cdef-1234-567890abcdef") For 32-byte: Uses first 16 bytes

 Functions

 from_hex(Hex)

 -spec from_hex(binary()) -> binary().

Convert hex string to binary. Crashes on invalid hex - exposes bugs in validation logic.

 from_uuid(Uuid)

 -spec from_uuid(binary()) -> binary().

Convert UUID string to 16-byte binary ID. Crashes on invalid UUID format - exposes bugs in validation logic.

 hash_id(Data)

 -spec hash_id(binary()) -> binary().

Generate deterministic 256-bit hash ID from data.

 message_id()

 -spec message_id() -> binary().

Generate 128-bit (16-byte) random message ID.

 node_id()

 -spec node_id() -> binary().

Generate 256-bit (32-byte) random node ID.

 session_id()

 -spec session_id() -> binary().

Generate 128-bit (16-byte) random session ID.

 to_hex(Binary)

 -spec to_hex(binary()) -> binary().

Convert binary to lowercase hex string.

 to_uuid(_)

 -spec to_uuid(binary()) -> binary().

Convert 16-byte or 32-byte binary ID to UUID string format. For 16-byte: 8-4-4-4-12 (e.g., "12345678-90ab-cdef-1234-567890abcdef") For 32-byte: Uses first 16 bytes

macula_local_client

Local client for in-VM workloads to connect to macula_gateway
This module provides process-to-process communication between workloads running in the same BEAM VM as the Macula platform and the local gateway. Unlike macula_peer which creates QUIC connections, this connects directly to the local macula_gateway process.
Architecture: Phoenix/Elixir App → macula_local_client → macula_gateway ↓ (QUIC) Other Peers

 Summary

 Functions

 advertise(Pid, Procedure, Handler)

 Advertise an RPC service with default options

 advertise(Pid, Procedure, Handler, Opts)

 Advertise an RPC service with options

 call(Pid, Procedure, Args)

 Call an RPC procedure with default options

 call(Pid, Procedure, Args, Opts)

 Call an RPC procedure

 connect(Url, Opts)

 Connect to remote gateway (not supported for local client) For compatibility with macula_client_behaviour

 connect_local(Opts)

 Create a local client connection to the gateway

 disconnect(Pid)

 Disconnect the client

 discover_subscribers(Pid, Topic)

 Discover subscribers of a topic via DHT query

 get_leader(Pid)

 Get the current Platform Layer leader node ID

 get_node_id(Pid)

 Get the node ID of the local gateway

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle pubsub events from gateway Gateway sends messages in format: {publish, Topic, Payload}

 init(Opts)

 propose_crdt_update(Pid, Key, Value)

 Propose a CRDT update with default options (LWW-Register)

 propose_crdt_update(Pid, Key, Value, Opts)

 Propose a CRDT update with specific type

 publish(Pid, Topic, Payload)

 Publish an event to a topic

 publish(Pid, Topic, Payload, Opts)

 Publish an event to a topic with options

 read_crdt(Pid, Key)

 Read the current value of a CRDT-managed state entry

 register_procedure(Pid, Procedure, Handler)

 Register an RPC procedure (legacy API, use advertise/3 instead)

 register_workload(Pid, Opts)

 Register this workload with the Platform Layer

 start_link(Opts)

 Start a local client connection to the gateway (legacy API)

 stop(Pid)

 Stop the local client (legacy API)

 subscribe(Pid, Topic, HandlerPid)

 Subscribe to a topic

 subscribe_leader_changes(Pid, Callback)

 Subscribe to Platform Layer leader change notifications

 terminate(Reason, State)

 unadvertise(Pid, Procedure)

 Unadvertise an RPC service

 unregister_procedure(Pid, Procedure)

 Unregister an RPC procedure (legacy API, use unadvertise/2 instead)

 unsubscribe(Pid, SubRef)

 Unsubscribe from a topic

 Functions

 advertise(Pid, Procedure, Handler)

 -spec advertise(pid(), binary(), fun()) -> {ok, reference()} | {error, term()}.

Advertise an RPC service with default options

 advertise(Pid, Procedure, Handler, Opts)

 -spec advertise(pid(), binary(), fun(), map()) -> {ok, reference()} | {error, term()}.

Advertise an RPC service with options

 call(Pid, Procedure, Args)

 -spec call(pid(), binary(), list()) -> {ok, term()} | {error, term()}.

Call an RPC procedure with default options

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary(), list(), map()) -> {ok, term()} | {error, term()}.

Call an RPC procedure

 connect(Url, Opts)

 -spec connect(binary() | string(), map()) -> {error, not_supported}.

Connect to remote gateway (not supported for local client) For compatibility with macula_client_behaviour

 connect_local(Opts)

 -spec connect_local(map()) -> {ok, pid()} | {error, term()}.

Create a local client connection to the gateway

 disconnect(Pid)

 -spec disconnect(pid()) -> ok.

Disconnect the client

 discover_subscribers(Pid, Topic)

 -spec discover_subscribers(pid(), binary()) -> {ok, [binary()]} | {error, term()}.

Discover subscribers of a topic via DHT query

 get_leader(Pid)

 -spec get_leader(pid()) -> {ok, binary()} | {error, no_leader | term()}.

Get the current Platform Layer leader node ID

 get_node_id(Pid)

 -spec get_node_id(pid()) -> {ok, binary()} | {error, term()}.

Get the node ID of the local gateway

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle pubsub events from gateway Gateway sends messages in format: {publish, Topic, Payload}

 init(Opts)

 propose_crdt_update(Pid, Key, Value)

 -spec propose_crdt_update(pid(), binary(), term()) -> ok | {error, term()}.

Propose a CRDT update with default options (LWW-Register)

 propose_crdt_update(Pid, Key, Value, Opts)

 -spec propose_crdt_update(pid(), binary(), term(), map()) -> ok | {error, term()}.

Propose a CRDT update with specific type

 publish(Pid, Topic, Payload)

 -spec publish(pid(), binary(), map()) -> ok | {error, term()}.

Publish an event to a topic

 publish(Pid, Topic, Payload, Opts)

 -spec publish(pid(), binary(), map(), map()) -> ok | {error, term()}.

Publish an event to a topic with options

 read_crdt(Pid, Key)

 -spec read_crdt(pid(), binary()) -> {ok, term()} | {error, not_found | term()}.

Read the current value of a CRDT-managed state entry

 register_procedure(Pid, Procedure, Handler)

 -spec register_procedure(pid(), binary(), fun()) -> ok | {error, term()}.

Register an RPC procedure (legacy API, use advertise/3 instead)

 register_workload(Pid, Opts)

 -spec register_workload(pid(), map()) -> {ok, map()} | {error, term()}.

Register this workload with the Platform Layer

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start a local client connection to the gateway (legacy API)

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the local client (legacy API)

 subscribe(Pid, Topic, HandlerPid)

 -spec subscribe(pid(), binary(), pid()) -> {ok, reference()} | {error, term()}.

Subscribe to a topic

 subscribe_leader_changes(Pid, Callback)

 -spec subscribe_leader_changes(pid(), fun((map()) -> ok)) -> {ok, reference()} | {error, term()}.

Subscribe to Platform Layer leader change notifications

 terminate(Reason, State)

 unadvertise(Pid, Procedure)

 -spec unadvertise(pid(), binary()) -> ok | {error, term()}.

Unadvertise an RPC service

 unregister_procedure(Pid, Procedure)

 -spec unregister_procedure(pid(), binary()) -> ok | {error, term()}.

Unregister an RPC procedure (legacy API, use unadvertise/2 instead)

 unsubscribe(Pid, SubRef)

 -spec unsubscribe(pid(), reference()) -> ok | {error, term()}.

Unsubscribe from a topic

macula_membership_detector

SWIM failure detector (pure logic, no GenServer). Orchestrates member list, gossip, and protocol timing.

 Summary

 Types

 detector_state/0

 Functions

 add_member(State, Member)

 Add a member to the list.

 apply_gossip_updates(State, Updates)

 Apply received gossip updates.

 get_alive_members(_)

 Get all alive members.

 get_gossip_updates(_, MaxUpdates)

 Get gossip updates to piggyback on messages.

 get_member(_, NodeId)

 Get a member by node ID.

 local_node_id(_)

 Get local node ID.

 mark_dead(State, NodeId)

 Mark a member as dead.

 mark_suspect(State, NodeId)

 Mark a member as suspect.

 new(LocalMember, Config)

 Create a new detector state.

 protocol_period(_)

 Get protocol period.

 refute_suspicion(State)

 Refute suspicion (increment local incarnation).

 select_probe_target(State)

 Select a random member to probe (excluding self).

 Types

 detector_state/0

 -type detector_state() ::
 #{local_node_id := binary(),
 protocol_period := pos_integer(),
 indirect_count := pos_integer(),
 suspect_timeout := pos_integer(),
 member_list := macula_membership_list:member_list(),
 gossip := macula_membership_gossip:gossip_state()}.

 Functions

 add_member(State, Member)

 -spec add_member(detector_state(), macula_membership_member:member()) -> detector_state().

Add a member to the list.

 apply_gossip_updates(State, Updates)

 -spec apply_gossip_updates(detector_state(),
 [{binary(), macula_membership_member:status(), non_neg_integer()}]) ->
 detector_state().

Apply received gossip updates.

 get_alive_members(_)

 -spec get_alive_members(detector_state()) -> [macula_membership_member:member()].

Get all alive members.

 get_gossip_updates(_, MaxUpdates)

 -spec get_gossip_updates(detector_state(), pos_integer()) -> [macula_membership_gossip:update()].

Get gossip updates to piggyback on messages.

 get_member(_, NodeId)

 -spec get_member(detector_state(), binary()) -> {ok, macula_membership_member:member()} | not_found.

Get a member by node ID.

 local_node_id(_)

 -spec local_node_id(detector_state()) -> binary().

Get local node ID.

 mark_dead(State, NodeId)

 -spec mark_dead(detector_state(), binary()) -> detector_state().

Mark a member as dead.

 mark_suspect(State, NodeId)

 -spec mark_suspect(detector_state(), binary()) -> detector_state().

Mark a member as suspect.

 new(LocalMember, Config)

 -spec new(macula_membership_member:member(), map()) -> detector_state().

Create a new detector state.

 protocol_period(_)

 -spec protocol_period(detector_state()) -> pos_integer().

Get protocol period.

 refute_suspicion(State)

 -spec refute_suspicion(detector_state()) -> detector_state().

Refute suspicion (increment local incarnation).

 select_probe_target(State)

 -spec select_probe_target(detector_state()) ->
 {ok, macula_membership_member:member(), detector_state()} | none.

Select a random member to probe (excluding self).

macula_membership_gossip

Gossip dissemination for SWIM protocol. Tracks membership updates and provides them for piggybacking. Uses exponential decay: log(N) messages per update.

 Summary

 Types

 gossip_state/0

 update/0

 Functions

 add_update(State, NodeId, Status, Incarnation)

 Add a membership update to gossip. If a more recent update exists, it's replaced.

 get_updates(_, MaxUpdates)

 Get updates to piggyback on messages. Returns most recent updates first, limited by max_updates.

 mark_transmitted(State, NodeId)

 Mark an update as transmitted (increment transmit count).

 merge_updates(State, ReceivedUpdates)

 Merge received gossip updates into local state. Uses SWIM merge semantics (higher incarnation wins, etc.).

 new()

 Create a new gossip state.

 prune(State, TargetTransmitCount)

 Prune updates that have been transmitted enough times. Target is typically log(N) where N is cluster size.

 Types

 gossip_state/0

 -type gossip_state() ::
 #{updates =>
 #{binary() =>
 {macula_membership_member:status(),
 non_neg_integer(),
 non_neg_integer(),
 integer()}}}.

 update/0

 -type update() :: {binary(), macula_membership_member:status(), non_neg_integer(), non_neg_integer()}.

 Functions

 add_update(State, NodeId, Status, Incarnation)

 -spec add_update(gossip_state(), binary(), macula_membership_member:status(), non_neg_integer()) ->
 gossip_state().

Add a membership update to gossip. If a more recent update exists, it's replaced.

 get_updates(_, MaxUpdates)

 -spec get_updates(gossip_state(), pos_integer()) -> [update()].

Get updates to piggyback on messages. Returns most recent updates first, limited by max_updates.

 mark_transmitted(State, NodeId)

 -spec mark_transmitted(gossip_state(), binary()) -> gossip_state().

Mark an update as transmitted (increment transmit count).

 merge_updates(State, ReceivedUpdates)

 -spec merge_updates(gossip_state(), [{binary(), macula_membership_member:status(), non_neg_integer()}]) ->
 gossip_state().

Merge received gossip updates into local state. Uses SWIM merge semantics (higher incarnation wins, etc.).

 new()

 -spec new() -> gossip_state().

Create a new gossip state.

 prune(State, TargetTransmitCount)

 -spec prune(gossip_state(), non_neg_integer()) -> gossip_state().

Prune updates that have been transmitted enough times. Target is typically log(N) where N is cluster size.

macula_membership_list

Membership list for SWIM protocol. Maintains cluster membership view with fast concurrent access. Uses map-based storage (could be ETS in production).

 Summary

 Types

 member_list/0

 Functions

 add_member(List, Member)

 Add a new member to the list. If member already exists, this is a no-op (use update_member instead).

 get_alive_members(_)

 Get all alive members.

 get_all_members(_)

 Get all members.

 get_member(_, NodeId)

 Get a member by node ID.

 get_random_members(List, N)

 Get N random members from the list.

 get_random_members(_, N, ExcludeNodeId)

 Get N random members excluding specified node ID.

 get_suspect_members(_)

 Get all suspect members.

 new(LocalMember)

 Create a new membership list with the local node.

 remove_member(List, NodeId)

 Remove a member from the list.

 size(_)

 Get the number of members in the list.

 update_member(List, NewMember)

 Update an existing member (or add if not present). Uses merge semantics to resolve conflicts.

 Types

 member_list/0

 -type member_list() :: #{members := #{binary() => macula_membership_member:member()}}.

 Functions

 add_member(List, Member)

 -spec add_member(member_list(), macula_membership_member:member()) -> member_list().

Add a new member to the list. If member already exists, this is a no-op (use update_member instead).

 get_alive_members(_)

 -spec get_alive_members(member_list()) -> [macula_membership_member:member()].

Get all alive members.

 get_all_members(_)

 -spec get_all_members(member_list()) -> [macula_membership_member:member()].

Get all members.

 get_member(_, NodeId)

 -spec get_member(member_list(), binary()) -> {ok, macula_membership_member:member()} | not_found.

Get a member by node ID.

 get_random_members(List, N)

 -spec get_random_members(member_list(), pos_integer()) -> [macula_membership_member:member()].

Get N random members from the list.

 get_random_members(_, N, ExcludeNodeId)

 -spec get_random_members(member_list(), pos_integer(), binary() | undefined) ->
 [macula_membership_member:member()].

Get N random members excluding specified node ID.

 get_suspect_members(_)

 -spec get_suspect_members(member_list()) -> [macula_membership_member:member()].

Get all suspect members.

 new(LocalMember)

 -spec new(macula_membership_member:member()) -> member_list().

Create a new membership list with the local node.

 remove_member(List, NodeId)

 -spec remove_member(member_list(), binary()) -> member_list().

Remove a member from the list.

 size(_)

 -spec size(member_list()) -> non_neg_integer().

Get the number of members in the list.

 update_member(List, NewMember)

 -spec update_member(member_list(), macula_membership_member:member()) -> member_list().

Update an existing member (or add if not present). Uses merge semantics to resolve conflicts.

macula_membership_member

Member record and state transitions for SWIM protocol. Represents a single node in the membership list.

 Summary

 Types

 member/0

 status/0

 Functions

 address(_)

 Get address.

 compare(_, _)

 Compare two members to determine which is more recent. Returns: gt (M1 is newer), lt (M1 is older), eq (same)

 incarnation(_)

 Get incarnation number.

 mark_alive(Member, NewIncarnation)

 Mark member as alive with new incarnation (refutation). Dead members cannot be revived.

 mark_dead(Member)

 Mark member as dead (confirmed failure).

 mark_suspect(Member)

 Mark member as suspect (failed to respond to ping).

 merge(M1, M2)

 Merge two member states, keeping the most recent information. Rules: 1. Dead always wins 2. Higher incarnation wins 3. Same incarnation: suspect > alive

 metadata(_)

 Get metadata.

 new(NodeId, Address)

 Create a new member with alive status and incarnation 0.

 new(NodeId, Address, Metadata)

 Create a new member with custom metadata.

 node_id(_)

 Get node ID.

 status(_)

 Get status.

 Types

 member/0

 -type member() ::
 #{node_id := binary(),
 address := {inet:ip_address(), inet:port_number()},
 status := status(),
 incarnation := non_neg_integer(),
 metadata := map()}.

 status/0

 -type status() :: alive | suspect | dead.

 Functions

 address(_)

 -spec address(member()) -> {inet:ip_address(), inet:port_number()}.

Get address.

 compare(_, _)

 -spec compare(member(), member()) -> gt | lt | eq.

Compare two members to determine which is more recent. Returns: gt (M1 is newer), lt (M1 is older), eq (same)

 incarnation(_)

 -spec incarnation(member()) -> non_neg_integer().

Get incarnation number.

 mark_alive(Member, NewIncarnation)

 -spec mark_alive(member(), non_neg_integer()) -> member().

Mark member as alive with new incarnation (refutation). Dead members cannot be revived.

 mark_dead(Member)

 -spec mark_dead(member()) -> member().

Mark member as dead (confirmed failure).

 mark_suspect(Member)

 -spec mark_suspect(member()) -> member().

Mark member as suspect (failed to respond to ping).

 merge(M1, M2)

 -spec merge(member(), member()) -> member().

Merge two member states, keeping the most recent information. Rules: 1. Dead always wins 2. Higher incarnation wins 3. Same incarnation: suspect > alive

 metadata(_)

 -spec metadata(member()) -> map().

Get metadata.

 new(NodeId, Address)

 -spec new(binary(), {inet:ip_address(), inet:port_number()}) -> member().

Create a new member with alive status and incarnation 0.

 new(NodeId, Address, Metadata)

 -spec new(binary(), {inet:ip_address(), inet:port_number()}, map()) -> member().

Create a new member with custom metadata.

 node_id(_)

 -spec node_id(member()) -> binary().

Get node ID.

 status(_)

 -spec status(member()) -> status().

Get status.

macula_names

Shared naming utilities for hierarchical dot-separated names. Used by both pub/sub topics and RPC procedure names. Supports DNS-style reverse notation: org.domain.service.method

 Summary

 Types

 name/0

 options/0

 Functions

 local_node_id()

 Get the local node ID. Returns the node ID stored in persistent_term, or generates one if not set. This is used for NAT detection to identify the local node.

 namespace(Name)

 Extract namespace (first segment).

 normalize(Name)

 Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 Count number of segments in name.

 validate(Name)

 Validate name syntax with default options (no wildcards).

 validate(Name, Opts)

 Validate name syntax with options. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - Optionally allow wildcards (* and #) for patterns - No leading or trailing dots - No double dots

 Types

 name/0

 -type name() :: binary().

 options/0

 -type options() :: #{allow_wildcards => boolean()}.

 Functions

 local_node_id()

 -spec local_node_id() -> binary().

Get the local node ID. Returns the node ID stored in persistent_term, or generates one if not set. This is used for NAT detection to identify the local node.

 namespace(Name)

 -spec namespace(name()) -> binary().

Extract namespace (first segment).

 normalize(Name)

 -spec normalize(name()) -> name().

Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 -spec segment_count(name()) -> non_neg_integer().

Count number of segments in name.

 validate(Name)

 -spec validate(name()) -> ok | {error, invalid_name}.

Validate name syntax with default options (no wildcards).

 validate(Name, Opts)

 -spec validate(name(), options()) -> ok | {error, invalid_name}.

Validate name syntax with options. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - Optionally allow wildcards (* and #) for patterns - No leading or trailing dots - No double dots

macula_nat_cache

NAT Profile Cache with TTL and Stale-While-Revalidate.
Caches NAT profiles for peers to avoid repeated detection overhead. Implements stale-while-revalidate pattern: - Fresh (0-TTL): Use immediately - Stale (TTL to TTL+60s): Use but trigger background refresh - Expired (>TTL+60s): Must re-detect
Based on NATCracker methodology, NAT profiles include: - Mapping policy: EI (Endpoint-Independent), HD (Host-Dependent), PD (Port-Dependent) - Filtering policy: EI, HD, PD - Allocation policy: PP (Port-Preservation), PC (Port-Contiguity), RD (Random)
Uses ETS for O(1) lookups with bounded memory via LRU eviction.

 Summary

 Types

 allocation_policy/0

 filtering_policy/0

 mapping_policy/0

 nat_profile/0

 Functions

 clear()

 Clear all cached NAT profiles.

 get(NodeId)

 Get NAT profile for a node ID from local cache. Returns {ok, Profile, Status} where Status is fresh | stale Returns not_found if not in cache or expired.

 get_from_dht(NodeId)

 Get NAT profile from DHT (remote lookup). First checks local cache, then falls back to DHT query. Caches result locally if found in DHT. Returns {ok, Profile} | not_found | {error, Reason}.

 get_local()

 Get NAT profile for the local node. Uses macula_names:local_node_id/0 to get the local node ID. Returns {ok, Profile} or not_found.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(NodeId)

 Invalidate NAT profile for a node ID.

 put(NodeId, Profile)

 Store NAT profile with default TTL.

 put(NodeId, Profile, TTL)

 Store NAT profile with custom TTL.

 start_link(Opts)

 Start the NAT cache server.

 stats()

 Get cache statistics.

 terminate(Reason, State)

 Types

 allocation_policy/0

 -type allocation_policy() :: pp | pc | rd.

 filtering_policy/0

 -type filtering_policy() :: ei | hd | pd.

 mapping_policy/0

 -type mapping_policy() :: ei | hd | pd.

 nat_profile/0

 -type nat_profile() ::
 #{node_id := binary(),
 mapping_policy := mapping_policy(),
 filtering_policy := filtering_policy(),
 allocation_policy := allocation_policy(),
 reflexive_address => {inet:ip_address(), inet:port_number()},
 port_delta => integer(),
 can_receive_unsolicited := boolean(),
 requires_relay := boolean(),
 relay_capable := boolean(),
 detected_at := integer(),
 ttl_seconds := pos_integer(),
 latitude => float(),
 longitude => float(),
 location_label => binary()}.

 Functions

 clear()

 -spec clear() -> ok.

Clear all cached NAT profiles.

 get(NodeId)

 -spec get(binary()) -> {ok, nat_profile(), fresh | stale} | not_found.

Get NAT profile for a node ID from local cache. Returns {ok, Profile, Status} where Status is fresh | stale Returns not_found if not in cache or expired.

 get_from_dht(NodeId)

 -spec get_from_dht(binary()) -> {ok, nat_profile()} | not_found | {error, term()}.

Get NAT profile from DHT (remote lookup). First checks local cache, then falls back to DHT query. Caches result locally if found in DHT. Returns {ok, Profile} | not_found | {error, Reason}.

 get_local()

 -spec get_local() -> {ok, nat_profile()} | not_found.

Get NAT profile for the local node. Uses macula_names:local_node_id/0 to get the local node ID. Returns {ok, Profile} or not_found.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(NodeId)

 -spec invalidate(binary()) -> ok.

Invalidate NAT profile for a node ID.

 put(NodeId, Profile)

 -spec put(binary(), nat_profile()) -> ok.

Store NAT profile with default TTL.

 put(NodeId, Profile, TTL)

 -spec put(binary(), nat_profile(), pos_integer()) -> ok.

Store NAT profile with custom TTL.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the NAT cache server.

 stats()

 -spec stats() ->
 #{size := non_neg_integer(),
 max_entries := pos_integer(),
 hits := non_neg_integer(),
 misses := non_neg_integer(),
 evictions := non_neg_integer(),
 hit_rate := float()}.

Get cache statistics.

 terminate(Reason, State)

macula_nat_connector

NAT-aware Peer Connector.
Provides intelligent connection establishment using the optimal strategy based on NAT profiles. Integrates: - NAT coordinator for strategy determination - Hole punch executor for direct connections - Relay fallback when direct fails
Connection Strategy Order: 1. Direct - If target can receive unsolicited (Full Cone NAT) 2. Hole Punch - If NAT profiles indicate feasibility 3. Relay - Fallback via gateway
Usage: connect(TargetNodeId, Opts) to establish connection.

 Summary

 Types

 connect_opts/0

 connect_result/0

 Functions

 connect(LocalNodeId, TargetNodeId)

 Connect to a peer using optimal strategy. Automatically determines best approach based on NAT profiles.

 connect(LocalNodeId, TargetNodeId, Opts)

 Connect with options.

 disconnect(Conn)

 Disconnect from a peer.

 Types

 connect_opts/0

 -type connect_opts() ::
 #{timeout => timeout(), skip_hole_punch => boolean(), relay_endpoint => binary()}.

 connect_result/0

 -type connect_result() ::
 {ok, quicer:connection_handle(), direct | hole_punch | relay} | {error, term()}.

 Functions

 connect(LocalNodeId, TargetNodeId)

 -spec connect(binary(), binary()) -> connect_result().

Connect to a peer using optimal strategy. Automatically determines best approach based on NAT profiles.

 connect(LocalNodeId, TargetNodeId, Opts)

 -spec connect(binary(), binary(), connect_opts()) -> connect_result().

Connect with options.

 disconnect(Conn)

 -spec disconnect(quicer:connection_handle()) -> ok.

Disconnect from a peer.

macula_nat_coordinator

NAT Hole Punch Coordinator.
Coordinates hole punching between two NATted peers using NATCracker-informed strategies. Determines the optimal connection approach based on both peers' NAT profiles:
Connection Strategy Decision Tree: 1. Direct Connection - Possible when: - Either peer has public IP (no NAT) - Target has EI mapping + EI filtering (Full Cone)
2. Hole Punching - Possible when: - Both peers have EI or HD mapping (predictable external address) - At least one has PP or PC allocation (predictable ports) - Neither has PD mapping + PD filtering + RD allocation
3. Relay Required - When: - Either peer has symmetric NAT (PD+PD+RD) - Hole punching attempts fail
Hole Punch Coordination Protocol: 1. Initiator sends PUNCH_REQUEST to coordinator (any public-IP peer) 2. Coordinator fetches both peers' NAT profiles from DHT 3. Coordinator sends PUNCH_COORDINATE to both peers with timing info 4. Both peers send PUNCH_EXECUTE at coordinated time 5. Coordinator receives PUNCH_RESULT from both peers 6. If failed, falls back to relay

 Summary

 Types

 connection_strategy/0

 punch_session/0

 Functions

 coordinate_punch(InitiatorId, TargetId, Opts)

 Coordinate a hole punch between two peers. Called by a public-IP peer acting as coordinator.

 get_pending()

 Get all pending punch sessions (for debugging).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 report_result(SessionId, ReporterId, Result)

 Report result of a hole punch attempt.

 request_connection(InitiatorId, TargetId)

 Request a connection to a target peer. Returns the recommended strategy and session ID for tracking.

 request_connection(InitiatorId, TargetId, Opts)

 Request connection with options.

 start_link(Opts)

 Start the NAT coordinator server.

 terminate(Reason, State)

 Types

 connection_strategy/0

 -type connection_strategy() :: direct | hole_punch | relay.

 punch_session/0

 -type punch_session() ::
 #{session_id := binary(),
 initiator_id := binary(),
 target_id := binary(),
 initiator_profile := macula_nat_cache:nat_profile() | undefined,
 target_profile := macula_nat_cache:nat_profile() | undefined,
 strategy := connection_strategy(),
 state := pending | coordinating | executing | completed | failed,
 attempts := non_neg_integer(),
 created_at := integer(),
 result => success | timeout | unreachable}.

 Functions

 coordinate_punch(InitiatorId, TargetId, Opts)

 -spec coordinate_punch(binary(), binary(), map()) -> ok | {error, term()}.

Coordinate a hole punch between two peers. Called by a public-IP peer acting as coordinator.

 get_pending()

 -spec get_pending() -> [punch_session()].

Get all pending punch sessions (for debugging).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 report_result(SessionId, ReporterId, Result)

 -spec report_result(binary(), binary(), success | failure) -> ok.

Report result of a hole punch attempt.

 request_connection(InitiatorId, TargetId)

 -spec request_connection(binary(), binary()) -> {ok, connection_strategy(), binary()} | {error, term()}.

Request a connection to a target peer. Returns the recommended strategy and session ID for tracking.

 request_connection(InitiatorId, TargetId, Opts)

 -spec request_connection(binary(), binary(), map()) ->
 {ok, connection_strategy(), binary()} | {error, term()}.

Request connection with options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the NAT coordinator server.

 terminate(Reason, State)

macula_nat_detector

NAT Type Detector using NATCracker Methodology.
Detects the local peer's NAT characteristics by probing external observers (gateways/peers with public IPs) and analyzing reflexive addresses. Classification follows NATCracker's 27 NAT type model.
NAT Policy Detection: 1. Mapping Policy (m): How NAT maps internal to external addresses - EI (Endpoint-Independent): Same external addr for all destinations - HD (Host-Dependent): Different external addr per destination host - PD (Port-Dependent): Different external addr per destination host:port
2. Filtering Policy (f): What incoming packets NAT accepts - EI: Accepts from any source - HD: Accepts from hosts we've contacted - PD: Accepts from host:port we've contacted
3. Allocation Policy (a): How NAT chooses external ports - PP (Port-Preservation): external_port = local_port - PC (Port-Contiguity): external_port = last_port + delta - RD (Random): No predictable pattern
Detection Algorithm (Fast - 200-400ms): 1. Send NAT_PROBE to primary observer (100ms RTT) 2. Send NAT_PROBE to secondary observer (parallel, 100ms RTT) 3. Compare reflexive addresses to classify NAT type
Most Common NAT Types (per NATCracker): - (EI, PD, PP): 37% of consumer NATs - (EI, EI, PP): 15% (Full Cone) - (PD, PD, RD): 12% (Symmetric)

 Summary

 Types

 observation/0

 pending_probe/0

 Functions

 add_observation(ObserverId, ReflexiveAddress)

 Add an observation from an external observer. Called when we receive a NAT_PROBE_REPLY with our reflexive address.

 detect()

 Detect local NAT type (async, returns immediately). Results are cached and available via get_local_profile/0.

 detect(ObserverEndpoint)

 Detect NAT type using specific observer endpoint.

 get_local_profile()

 Get the cached local NAT profile.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 handle_probe_reply(ReplyMsg)

 Handle NAT_PROBE_REPLY message from an observer. Called when we receive a reply containing our reflexive address.

 init(Opts)

 refresh()

 Trigger NAT type refresh (re-detection).

 start_link(Opts)

 Start the NAT detector server.

 terminate(Reason, State)

 Types

 observation/0

 -type observation() ::
 #{observer_id := binary(),
 reflexive_address := {inet:ip_address(), inet:port_number()},
 local_address := {inet:ip_address(), inet:port_number()},
 observed_at := integer()}.

 pending_probe/0

 -type pending_probe() ::
 #{observer_endpoint := binary(), sent_at := integer(), local_port := inet:port_number()}.

 Functions

 add_observation(ObserverId, ReflexiveAddress)

 -spec add_observation(binary(), {inet:ip_address(), inet:port_number()}) -> ok.

Add an observation from an external observer. Called when we receive a NAT_PROBE_REPLY with our reflexive address.

 detect()

 -spec detect() -> ok.

Detect local NAT type (async, returns immediately). Results are cached and available via get_local_profile/0.

 detect(ObserverEndpoint)

 -spec detect(binary()) -> ok.

Detect NAT type using specific observer endpoint.

 get_local_profile()

 -spec get_local_profile() -> {ok, macula_nat_cache:nat_profile()} | not_detected.

Get the cached local NAT profile.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 handle_probe_reply(ReplyMsg)

 -spec handle_probe_reply(map()) -> ok.

Handle NAT_PROBE_REPLY message from an observer. Called when we receive a reply containing our reflexive address.

 init(Opts)

 refresh()

 -spec refresh() -> ok.

Trigger NAT type refresh (re-detection).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the NAT detector server.

 terminate(Reason, State)

macula_nat_system

NAT Traversal System Supervisor.
Supervises the NAT traversal subsystem which provides: - NAT type detection using NATCracker methodology - NAT information caching with stale-while-revalidate - (Future phases) Hole punching coordination, port prediction, distributed relay, and connection quality monitoring
Architecture:
 macula_nat_system (this supervisor)
 +-- macula_nat_cache - NAT profile caching with TTL
 +-- macula_nat_detector - Fast NAT type detection
 +-- macula_nat_coordinator - Hole punch coordination (Phase 2)

Supervision Strategy: - one_for_one: Each child is independent, failures don't cascade - NAT cache failure doesn't require detector restart (and vice versa)
Phase 1 Implementation (v0.12.0): - NAT type detection (mapping, filtering, allocation policies) - NAT profile caching with 5-minute TTL - DHT integration for NAT profile advertisement
Future Phases: - Phase 2: Hole punching (macula_hole_punch, macula_nat_coordinator) - COMPLETED - Phase 3: Port prediction (macula_port_predictor) - COMPLETED - Phase 4: Distributed relay (macula_relay_registry, macula_relay_node) - COMPLETED

 Summary

 Functions

 init(Opts)

 Initialize the supervisor with child specifications.

 start_link()

 Start the NAT system supervisor with default options.

 start_link(Opts)

 Start the NAT system supervisor with given options. Options: cache_max_entries - Max NAT profiles in cache (default: 10000) cache_ttl_seconds - NAT profile TTL in seconds (default: 300) detection_timeout_ms - NAT detection timeout in ms (default: 2000)

 Functions

 init(Opts)

 -spec init(map()) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

Initialize the supervisor with child specifications.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the NAT system supervisor with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the NAT system supervisor with given options. Options: cache_max_entries - Max NAT profiles in cache (default: 10000) cache_ttl_seconds - NAT profile TTL in seconds (default: 300) detection_timeout_ms - NAT detection timeout in ms (default: 2000)

macula_node

Node identity and metadata management. Represents a single node in the Macula mesh.

 Summary

 Types

 address/0

 macula_node/0

 metadata/0

 node_id/0

 32-byte unique identifier

 realm/0

 Functions

 equals(Node1, Node2)

 Check if two nodes are equal (by ID).

 from_binary(Binary)

 Decode node from binary. Crashes on invalid binary or structure - exposes bugs in encoding/decoding logic.

 get_address(Node)

 Get address.

 get_id(_)

 Get node ID.

 get_metadata(Node)

 Get metadata.

 get_realm(_)

 Get realm.

 new(Realm)

 Create new node with random ID.

 new(Realm, Metadata)

 Create new node with random ID and metadata.

 set_address(Node, Address)

 Set address.

 set_metadata(Node, Metadata)

 Set metadata (replaces existing).

 to_binary(Node)

 Encode node to binary.

 update_metadata(Node, NewMetadata)

 Update metadata (merges with existing).

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 macula_node/0

 -type macula_node() ::
 #{node_id := node_id(), realm := realm(), metadata => metadata(), address => address()}.

 metadata/0

 -type metadata() :: map().

 node_id/0

 -type node_id() :: binary().

32-byte unique identifier

 realm/0

 -type realm() :: binary().

 Functions

 equals(Node1, Node2)

 -spec equals(macula_node(), macula_node()) -> boolean().

Check if two nodes are equal (by ID).

 from_binary(Binary)

 -spec from_binary(binary()) -> macula_node().

Decode node from binary. Crashes on invalid binary or structure - exposes bugs in encoding/decoding logic.

 get_address(Node)

 -spec get_address(macula_node()) -> address() | undefined.

Get address.

 get_id(_)

 -spec get_id(macula_node()) -> node_id().

Get node ID.

 get_metadata(Node)

 -spec get_metadata(macula_node()) -> metadata().

Get metadata.

 get_realm(_)

 -spec get_realm(macula_node()) -> realm().

Get realm.

 new(Realm)

 -spec new(realm()) -> macula_node().

Create new node with random ID.

 new(Realm, Metadata)

 -spec new(realm(), metadata()) -> macula_node().

Create new node with random ID and metadata.

 set_address(Node, Address)

 -spec set_address(macula_node(), address()) -> macula_node().

Set address.

 set_metadata(Node, Metadata)

 -spec set_metadata(macula_node(), metadata()) -> macula_node().

Set metadata (replaces existing).

 to_binary(Node)

 -spec to_binary(macula_node()) -> binary().

Encode node to binary.

 update_metadata(Node, NewMetadata)

 -spec update_metadata(macula_node(), metadata()) -> macula_node().

Update metadata (merges with existing).

macula_peer

Macula Peer - Mesh Participant API (v0.7.0+).
This module provides the high-level API for mesh participants. Use this module to connect to a Macula mesh and communicate via pub/sub or RPC.
[bookmark: Quick_Start]Quick Start
 %% 1. Connect to a gateway
 {ok, Peer} = macula_peer:start_link(<<"https://gateway.example.com:9443">>, #{
 realm => <<"com.example.app">>
 }).

 %% 2. Subscribe to events
 ok = macula_peer:subscribe(Peer, <<"sensor.temperature">>, self()).

 %% 3. Publish an event
 ok = macula_peer:publish(Peer, <<"sensor.temperature">>, #{
 device_id => <<"sensor-001">>,
 celsius => 21.5
 }).

 %% 4. Call a remote service
 {ok, Result} = macula_peer:call(Peer, <<"calculator.add">>, #{a => 5, b => 3}).

 %% 5. Advertise a service
 ok = macula_peer:advertise(Peer, <<"calculator.add">>, fun(#{a := A, b := B}) ->
 #{result => A + B}
 end, #{ttl => 300}).
[bookmark: Architecture]Architecture
The peer acts as a facade/coordinator, delegating to specialized child processes: - macula_connection: QUIC transport layer (send/receive, encoding/decoding) - macula_pubsub_handler: Pub/sub message routing - macula_rpc_handler: RPC call/response handling - macula_advertisement_manager: DHT service advertisements
Renamed from macula_connection in v0.7.0 for clarity: - macula_peer = mesh participant (this module) - macula_connection = QUIC transport (low-level)
[bookmark: Multi-Tenancy_via_Realms]Multi-Tenancy via Realms
Realms provide logical isolation for different applications:
 %% App 1
 {ok, Peer1} = macula_peer:start_link(GatewayUrl, #{realm => <<"com.app1">>}).

 %% App 2 (completely isolated from App 1)
 {ok, Peer2} = macula_peer:start_link(GatewayUrl, #{realm => <<"com.app2">>}).

 Summary

 Functions

 advertise(Client, Procedure, Handler, Opts)

 Advertise a service handler for a procedure.

 call(Client, Procedure, Args)

 Make an RPC call through this client (default timeout).

 call(Client, Procedure, Args, Opts)

 Make an RPC call through this client with options.

 call_to(Client, TargetNodeId, Procedure, Args, Opts)

 Make an RPC call to a specific target node.

 discover_subscribers(Client, Topic)

 Discover subscribers to a topic via DHT query.

 get_node_id(Client)

 Get the node ID of this peer.

 publish(Client, Topic, Data)

 Publish an event through this client (no options).

 publish(Client, Topic, Data, Opts)

 Publish an event through this client with options. This is fire-and-forget - returns ok immediately without blocking. Use QoS 1 in Opts if you need delivery confirmation.

 start_link(Url, Opts)

 Start a client connection to a Macula mesh.

 stop(Client)

 Stop the client connection.

 subscribe(Client, Topic, Callback)

 Subscribe to a topic through this client.

 unadvertise(Client, Procedure)

 Stop advertising a service.

 unsubscribe(Client, SubRef)

 Unsubscribe from a topic.

 Functions

 advertise(Client, Procedure, Handler, Opts)

 -spec advertise(pid(), binary(), fun((map()) -> {ok, term()} | {error, term()}), map()) ->
 ok | {error, term()}.

Advertise a service handler for a procedure.
This makes the local handler available to other mesh nodes via DHT. The handler will be periodically re-advertised based on TTL.

 call(Client, Procedure, Args)

 -spec call(pid(), binary(), map() | list()) -> {ok, term()} | {error, term()}.

Make an RPC call through this client (default timeout).

 call(Client, Procedure, Args, Opts)

 -spec call(pid(), binary(), map() | list(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call through this client with options.

 call_to(Client, TargetNodeId, Procedure, Args, Opts)

 -spec call_to(pid(), binary(), binary(), map() | list(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call to a specific target node.
Unlike call/4 which discovers any provider via DHT, this function sends the RPC directly to the specified target node.

 discover_subscribers(Client, Topic)

 -spec discover_subscribers(pid(), binary()) ->
 {ok, [#{node_id := binary(), endpoint := binary()}]} | {error, term()}.

Discover subscribers to a topic via DHT query.

 get_node_id(Client)

 -spec get_node_id(pid()) -> {ok, binary()} | {error, term()}.

Get the node ID of this peer.

 publish(Client, Topic, Data)

 -spec publish(pid(), binary(), map() | binary()) -> ok | {error, term()}.

Publish an event through this client (no options).

 publish(Client, Topic, Data, Opts)

 -spec publish(pid(), binary(), map() | binary(), map()) -> ok.

Publish an event through this client with options. This is fire-and-forget - returns ok immediately without blocking. Use QoS 1 in Opts if you need delivery confirmation.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start a client connection to a Macula mesh.

 stop(Client)

 -spec stop(pid()) -> ok.

Stop the client connection.

 subscribe(Client, Topic, Callback)

 -spec subscribe(pid(), binary(), fun((map()) -> ok)) -> {ok, reference()} | {error, term()}.

Subscribe to a topic through this client.

 unadvertise(Client, Procedure)

 -spec unadvertise(pid(), binary()) -> ok | {error, term()}.

Stop advertising a service.
Removes the local handler and stops advertising to the DHT.

 unsubscribe(Client, SubRef)

 -spec unsubscribe(pid(), reference()) -> ok | {error, term()}.

Unsubscribe from a topic.

macula_peer_connection_pool

Peer Connection Pool - Manages pooled QUIC connections to remote peers.
Problem: Creating a new QUIC connection per message adds ~50-200ms latency. Solution: Pool connections and reuse them for subsequent messages.
Design: - ETS-based connection pool for O(1) lookups - LRU eviction when pool is full - Automatic connection health monitoring - Configurable pool size and idle timeout
Expected improvement: 1.5-2x latency reduction for repeated messaging.

 Summary

 Functions

 get_connected_peers()

 Get list of peer IDs with active connections. Returns list of peer IDs that have pooled connections.

 get_connection(Endpoint)

 Get a connection to an endpoint (from pool or create new). Returns {ok, Connection, Stream} or {error, Reason}.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(Endpoint)

 Invalidate (remove) a connection from the pool. Called when a connection fails or is no longer valid.

 put(PeerId, Connection)

 Put a connection directly into the pool (NAT system API). Used by connection upgrade to store successfully upgraded direct connections.

 return_connection(Endpoint, _)

 Return a connection to the pool for reuse.

 start_link()

 Start the connection pool with default options.

 start_link(Opts)

 Start the connection pool with options. Options: - max_connections: Maximum pooled connections (default: 100) - idle_timeout_ms: Idle connection timeout (default: 60000)

 stats()

 Get pool statistics.

 terminate(Reason, State)

 Functions

 get_connected_peers()

 -spec get_connected_peers() -> [binary()].

Get list of peer IDs with active connections. Returns list of peer IDs that have pooled connections.

 get_connection(Endpoint)

 -spec get_connection(binary()) -> {ok, term(), term()} | {error, term()}.

Get a connection to an endpoint (from pool or create new). Returns {ok, Connection, Stream} or {error, Reason}.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(Endpoint)

 -spec invalidate(binary()) -> ok.

Invalidate (remove) a connection from the pool. Called when a connection fails or is no longer valid.

 put(PeerId, Connection)

 -spec put(binary(), term()) -> ok.

Put a connection directly into the pool (NAT system API). Used by connection upgrade to store successfully upgraded direct connections.

 return_connection(Endpoint, _)

 -spec return_connection(binary(), {term(), term()}) -> ok.

Return a connection to the pool for reuse.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the connection pool with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the connection pool with options. Options: - max_connections: Maximum pooled connections (default: 100) - idle_timeout_ms: Idle connection timeout (default: 60000)

 stats()

 -spec stats() -> map().

Get pool statistics.

 terminate(Reason, State)

macula_peer_connector

Peer Connector - Establishes direct QUIC connections to remote peers (v0.8.0+).
This module enables peer-to-peer communication by establishing outbound QUIC connections to arbitrary peers. Used by DHT for STORE/FIND_VALUE message propagation and by RPC/PubSub for direct delivery.
[bookmark: Overview]Overview
Pattern: Connection-pooled utility module with NAT-aware fallback - Uses macula_peer_connection_pool for connection reuse - Falls back to NAT-aware routing (hole punch, relay) on failure - Fire-and-forget message sending
[bookmark: Connection_Strategy_(v0.12.0+)]Connection Strategy (v0.12.0+)
1. Try pooled connection (fastest, cached) 2. Try direct QUIC connection (new connection) 3. Fall back to NAT-aware routing via macula_nat_connector: a. Direct connection (if NAT allows) b. Hole punch (coordinated NAT traversal) c. Relay via gateway (guaranteed fallback)
[bookmark: Usage]Usage
Used internally by: - macula_pubsub_dht: Direct pub/sub delivery to discovered subscribers - macula_service_registry: DHT STORE propagation to k=20 nodes - Future: Multi-hop RPC routing
 %% Send a DHT STORE message to a peer
 Endpoint = <<"192.168.1.100:9443">>,
 Message = #{
 key => <<"service.calculator.add">>,
 value => <<"192.168.1.50:9443">>,
 ttl => 300
 },
 ok = macula_peer_connector:send_message(Endpoint, dht_store, Message).
[bookmark: Performance_Characteristics]Performance Characteristics
v0.8.0: Fire-and-forget pattern (now legacy fallback) - Creates new connection per message - Simple but inefficient for high-frequency messaging
v0.10.0: Connection pooling (current) - Reuses existing connections via macula_peer_connection_pool - 1.5-2x latency improvement for repeated messaging
v0.12.0: NAT-aware routing (current) - Automatic fallback to hole punch and relay - Works across all NAT types

 Summary

 Functions

 send_message(Endpoint, MessageType, Message)

 Send a message to a remote peer (fire-and-forget). Uses connection pool for efficiency, falls back to direct connection.

 send_message(Endpoint, MessageType, Message, Timeout)

 Send a message to a remote peer with custom timeout.

 send_message_and_wait(Endpoint, MessageType, Message, Timeout)

 Send a message and wait for a reply (request-response pattern). This is used for messages like NAT_PROBE that expect a reply. Returns {ok, ReplyMessage} on success, {error, timeout} if no reply received.

 send_message_nat_aware(LocalNodeId, TargetNodeId, MessageType, Message)

 Send a message using NAT-aware routing (hole punch, relay fallback). Use this when sending to peers that may be behind NAT. LocalNodeId is required for hole punch coordination.

 send_message_nat_aware(LocalNodeId, TargetNodeId, MessageType, Message, Opts)

 Send a message using NAT-aware routing with options. Options: - endpoint: Target endpoint (if known, skips DHT lookup) - relay_endpoint: Specific relay to use - skip_hole_punch: true to skip hole punch attempts

 Functions

 send_message(Endpoint, MessageType, Message)

 -spec send_message(binary(), atom(), map()) -> ok | {error, term()}.

Send a message to a remote peer (fire-and-forget). Uses connection pool for efficiency, falls back to direct connection.

 send_message(Endpoint, MessageType, Message, Timeout)

 -spec send_message(binary(), atom(), map(), timeout()) -> ok | {error, term()}.

Send a message to a remote peer with custom timeout.

 send_message_and_wait(Endpoint, MessageType, Message, Timeout)

 -spec send_message_and_wait(binary(), atom(), map(), timeout()) ->
 {ok, {atom(), map()}} | {error, term()}.

Send a message and wait for a reply (request-response pattern). This is used for messages like NAT_PROBE that expect a reply. Returns {ok, ReplyMessage} on success, {error, timeout} if no reply received.

 send_message_nat_aware(LocalNodeId, TargetNodeId, MessageType, Message)

 -spec send_message_nat_aware(binary(), binary(), atom(), map()) -> ok | {error, term()}.

Send a message using NAT-aware routing (hole punch, relay fallback). Use this when sending to peers that may be behind NAT. LocalNodeId is required for hole punch coordination.

 send_message_nat_aware(LocalNodeId, TargetNodeId, MessageType, Message, Opts)

 -spec send_message_nat_aware(binary(), binary(), atom(), map(), map()) -> ok | {error, term()}.

Send a message using NAT-aware routing with options. Options: - endpoint: Target endpoint (if known, skips DHT lookup) - relay_endpoint: Specific relay to use - skip_hole_punch: true to skip hole punch attempts

macula_peer_discovery

Peer Discovery - DHT-based gateway discovery and P2P mesh formation.
This module implements automatic peer discovery to enable true P2P mesh: 1. Gateways register themselves in the bootstrap DHT 2. Peers periodically query DHT to discover other gateways 3. Peers establish direct QUIC connections to discovered gateways 4. Cross-peer relay works automatically via these mesh connections
Architecture: Peer1 Gateway - Peer2 Gateway - Peer3 Gateway | | | Local Clients Local Clients Local Clients
DHT Storage: Key pattern: "peer.gateway." + NodeID Value: map with node_id, host, port, realm fields

 Summary

 Functions

 discover_peers()

 Discover other peer gateways from DHT

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_gateway()

 Register this gateway in the bootstrap DHT

 start_link(Config)

 Start the peer discovery process

 terminate(Reason, State)

 Functions

 discover_peers()

 -spec discover_peers() -> {ok, [map()]} | {error, term()}.

Discover other peer gateways from DHT

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_gateway()

 -spec register_gateway() -> ok | {error, term()}.

Register this gateway in the bootstrap DHT

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the peer discovery process

 terminate(Reason, State)

macula_peer_system

Peer System Supervisor - supervises the peer subsystem.
Supervision Strategy: - rest_for_one: If child N crashes, restart N and all children after N - Rationale: connection_manager is foundational; handlers depend on it but are independent of each other. This provides fault isolation while maintaining consistency when connection_manager restarts.
Architecture:
 macula_peer_system (this module)
 ├── macula_connection - QUIC connection lifecycle (transport layer)
 ├── macula_pubsub_handler - Pub/sub operations
 ├── macula_rpc_handler - RPC operations
 └── macula_advertisement_manager - DHT service advertisements

Children (in dependency order): - macula_connection: QUIC connection lifecycle (foundational) - macula_pubsub_handler: Pub/sub operations (depends on connection) - macula_rpc_handler: RPC operations (depends on connection) - macula_advertisement_manager: DHT advertisements (depends on connection)
Fault Isolation: - advertisement_manager crash → only advertisement restarts - rpc_handler crash → rpc + advertisement restart - pubsub_handler crash → pubsub + rpc + advertisement restart - connection crash → all restart (unavoidable - foundational)
Renamed from macula_connection_sup (v0.7.10) to align with macula_peer nomenclature and macula_gateway_system naming convention.

 Summary

 Functions

 init(_)

 Initialize the supervisor with child specifications.

 start_link(Url, Opts)

 Start the peer system supervisor with given URL and options.

 stop(Sup)

 Stop the peer system supervisor and all children.

 Functions

 init(_)

 -spec init({binary(), map()}) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

Initialize the supervisor with child specifications.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start the peer system supervisor with given URL and options.

 stop(Sup)

 -spec stop(pid()) -> ok.

Stop the peer system supervisor and all children.

macula_peers_sup

Macula Peers Supervisor.
This supervisor manages dynamic peer connections using a simple_one_for_one strategy. Each peer connection gets its own macula_peer_system supervisor with dedicated handlers.
Architecture (v0.8.5): - One macula_peers_sup instance per Macula node - Dynamically adds/removes macula_peer_system children - Each child = one peer connection - simple_one_for_one strategy for efficient scaling
Usage:
 %% Start new peer connection
 {ok, PeerPid} = macula_peers_sup:start_peer(Url, Opts).

 %% List all active peers
 Peers = macula_peers_sup:list_peers().

 %% Count active peers
 Count = macula_peers_sup:count_peers().

 %% Stop peer connection
 ok = macula_peers_sup:stop_peer(PeerPid).

 Summary

 Functions

 count_peers()

 Count active peer connections.

 init(_)

 Initialize the peers supervisor.

 list_peers()

 List all active peer connections.

 start_link()

 Start the peers supervisor.

 start_peer(Url, Opts)

 Start a new peer connection.

 stop_peer(PeerPid)

 Stop a peer connection.

 Functions

 count_peers()

 -spec count_peers() -> non_neg_integer().

Count active peer connections.
Returns the number of currently running macula_peer_system supervisors.

 init(_)

Initialize the peers supervisor.
Sets up a simple_one_for_one supervisor for macula_peer_system children. Each child will be started with dynamic arguments (Url, Opts).
Strategy: simple_one_for_one - Efficient for managing many similar children - Children started/stopped dynamically - All children use same child spec template
Restart Strategy: temporary - Peer connections don't auto-restart on crash - Application decides when to reconnect - Prevents reconnection storms

 list_peers()

 -spec list_peers() -> [pid()].

List all active peer connections.
Returns a list of PIDs for all currently running macula_peer_system supervisors.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the peers supervisor.
Called by macula_root during application startup. Registers the supervisor with the local name macula_peers_sup.

 start_peer(Url, Opts)

 -spec start_peer(Url :: binary(), Opts :: map()) -> {ok, pid()} | {error, term()}.

Start a new peer connection.
Creates a new macula_peer_system supervisor for the peer at the given URL. The peer system will manage the connection lifecycle and all peer-specific handlers (pubsub, rpc, advertisements).

 stop_peer(PeerPid)

 -spec stop_peer(PeerPid :: pid()) -> ok | {error, term()}.

Stop a peer connection.
Gracefully terminates the macula_peer_system supervisor for the given peer. This will clean up all peer handlers and close the connection.

macula_ping_pong

Macula Ping/Pong - Direct P2P Async RPC Demo
A peer-to-peer communication module that demonstrates bidirectional messaging across NAT boundaries using Macula's async RPC with direct P2P delivery (NATS-style request/reply).
Each node: - Registers local "ping.handler" RPC handler - Periodically sends PING RPCs to random peers (direct P2P) - Receives PONGs via callback - Measures Round-Trip Time (RTT) for each exchange - Tracks statistics per peer and per NAT type
Architecture: - Bootstrap: DHT only (no pub/sub routing) - Communication: Direct P2P via QUIC - Discovery: DHT for service registration
Flow: 1. fc01 registers local "ping.handler" (handles incoming PINGs) 2. fc01 calls macula_rpc_handler:request_to/5 to ping rc05 directly 3. Request goes directly to rc05 via QUIC (NAT-aware, no DHT lookup) 4. rc05's "ping.handler" executes, returns PONG 5. fc01 receives PONG via callback, measures RTT

 Summary

 Functions

 get_peer_stats(PeerId)

 Get statistics for a specific peer

 get_stats()

 Get all statistics

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 ping(PeerId)

 Send a PING to a specific peer

 reset_stats()

 Reset all statistics

 start_link()

 Start with default settings

 start_link(Opts)

 Start with options Options: - interval: milliseconds between PINGs (default: 5000) - timeout: milliseconds to wait for PONG (default: 3000) - node_id: custom node identifier (default: NODE_ID env var)

 terminate(Reason, State)

 Functions

 get_peer_stats(PeerId)

 -spec get_peer_stats(binary()) -> map() | not_found.

Get statistics for a specific peer

 get_stats()

 -spec get_stats() -> map().

Get all statistics

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 ping(PeerId)

 -spec ping(binary()) -> {ok, integer()} | {error, term()}.

Send a PING to a specific peer

 reset_stats()

 -spec reset_stats() -> ok.

Reset all statistics

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start with default settings

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start with options Options: - interval: milliseconds between PINGs (default: 5000) - timeout: milliseconds to wait for PONG (default: 3000) - node_id: custom node identifier (default: NODE_ID env var)

 terminate(Reason, State)

macula_platform_system

Macula Platform System Supervisor.
This supervisor manages the platform layer services that provide distributed coordination primitives for workloads.
Platform Services (v0.15.0+): - CRDT-based shared state (LWW-Register, OR-Set, G-Counter, PN-Counter) - Gossip-based state synchronization (macula_gossip) - Coordination Primitives (locks, barriers, etc. - future)
Architecture: macula_root ├── [infrastructure: routing, bootstrap, gateway, peers] └── macula_platform_system (this module) └── macula_gossip (CRDT state synchronization)
Configuration: - gossip_enabled: Enable gossip protocol (default: true) - gossip_push_interval: Push interval in ms (default: 1000) - gossip_anti_entropy_interval: Anti-entropy interval in ms (default: 30000) - gossip_fanout: Number of peers per gossip round (default: 3)
Note: Ra/Raft was removed in v0.14.0. Macula uses CRDTs for eventually-consistent state management without leader election. See architecture/ROADMAP.md for details.

 Summary

 Functions

 get_gossip_pid()

 Get the PID of the gossip server.

 init(Config)

 Initialize the platform system supervisor. Starts the gossip server if enabled (default: true).

 is_gossip_enabled()

 Check if gossip is enabled.

 start_link(Config)

 Start the platform system supervisor.

 Functions

 get_gossip_pid()

 -spec get_gossip_pid() -> {ok, pid()} | {error, not_started}.

Get the PID of the gossip server.

 init(Config)

Initialize the platform system supervisor. Starts the gossip server if enabled (default: true).

 is_gossip_enabled()

 -spec is_gossip_enabled() -> boolean().

Check if gossip is enabled.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the platform system supervisor.

macula_port_predictor

Port Prediction for NAT Traversal.
Provides intelligent port prediction based on NAT allocation policies and historical port allocation data. Improves hole punch success rates by predicting the external ports a peer will use.
Prediction Strategies by Allocation Policy:
- PP (Port Preservation): External port = internal port Prediction: Use last known port (high confidence)
- PC (Port Contiguity): Sequential port allocation Prediction: Calculate delta from history, predict next ports Delta tracking with exponential moving average
- RD (Random): Random port allocation Prediction: Use historical range + common NAT port ranges Statistical approach with lower confidence
Port History Storage: - Tracks last N port allocations per peer (default: 10) - Calculates port deltas for PC allocation - Maintains statistics for RD allocation (mean, stddev, range)

 Summary

 Types

 allocation_policy/0

 port_history/0

 port_prediction/0

 port_stats/0

 Functions

 clear(NodeId)

 Clear port history for a peer.

 get_history(NodeId)

 Get port history for a peer.

 get_stats(NodeId)

 Get port statistics for a peer.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 predict(NodeId, AllocationPolicy)

 Predict external ports for a peer. Uses NAT profile if available, otherwise uses historical data.

 predict(NodeId, AllocationPolicy, Opts)

 Predict external ports with options. Options: base_port - Known/expected base port for prediction count - Number of ports to predict (default: 5)

 record_port(NodeId, Port, AllocationPolicy)

 Record an observed external port for a peer. Used to build history for better predictions.

 start_link(Opts)

 Start the port predictor server.

 terminate(Reason, State)

 Types

 allocation_policy/0

 -type allocation_policy() :: pp | pc | rd | unknown.

 port_history/0

 -type port_history() ::
 #{node_id := binary(),
 ports := [inet:port_number()],
 deltas := [integer()],
 updated_at := integer()}.

 port_prediction/0

 -type port_prediction() ::
 #{ports := [inet:port_number()],
 confidence := float(),
 strategy := pp | pc | rd | fallback,
 delta => integer(),
 stats => port_stats()}.

 port_stats/0

 -type port_stats() ::
 #{mean := float(),
 stddev := float(),
 min := inet:port_number(),
 max := inet:port_number(),
 count := non_neg_integer()}.

 Functions

 clear(NodeId)

 -spec clear(binary()) -> ok.

Clear port history for a peer.

 get_history(NodeId)

 -spec get_history(binary()) -> {ok, port_history()} | not_found.

Get port history for a peer.

 get_stats(NodeId)

 -spec get_stats(binary()) -> {ok, port_stats()} | not_found.

Get port statistics for a peer.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 predict(NodeId, AllocationPolicy)

 -spec predict(binary(), allocation_policy()) -> port_prediction().

Predict external ports for a peer. Uses NAT profile if available, otherwise uses historical data.

 predict(NodeId, AllocationPolicy, Opts)

 -spec predict(binary(), allocation_policy(), map()) -> port_prediction().

Predict external ports with options. Options: base_port - Known/expected base port for prediction count - Number of ports to predict (default: 5)

 record_port(NodeId, Port, AllocationPolicy)

 -spec record_port(binary(), inet:port_number(), allocation_policy()) -> ok.

Record an observed external port for a peer. Used to build history for better predictions.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the port predictor server.

 terminate(Reason, State)

macula_protocol_decoder

Protocol message decoder for Macula mesh. Decodes binary wire format to message maps.

 Summary

 Functions

 decode(Binary)

 Decode a binary message to {Type, Msg} tuple. Returns {ok, {Type, Msg}} on success or {error, Reason} on failure.

 Functions

 decode(Binary)

 -spec decode(binary()) -> {ok, {atom(), map()}} | {error, term()}.

Decode a binary message to {Type, Msg} tuple. Returns {ok, {Type, Msg}} on success or {error, Reason} on failure.

macula_protocol_encoder

Protocol message encoder for Macula mesh. Encodes message maps to binary wire format.
Frame Format (8-byte header + payload): - Version (1 byte): Protocol version (currently 0x01) - Type (1 byte): Message type ID - Flags (1 byte): Reserved for future use (0x00) - Reserved (1 byte): Must be 0x00 - Payload Length (4 bytes): Big-endian uint32 - Payload (N bytes): MessagePack-encoded message data

 Summary

 Functions

 encode(Type, Msg)

 Encode a message to binary format. Returns a binary with 8-byte header + MessagePack payload.

 Functions

 encode(Type, Msg)

 -spec encode(macula_protocol_types:message_type(), map()) -> binary().

Encode a message to binary format. Returns a binary with 8-byte header + MessagePack payload.

macula_protocol_types

Protocol message type definitions and constants for Macula mesh. Defines all message types that can be sent over QUIC streams.

 Summary

 Types

 bridge_data_msg/0

 bridge_rpc_msg/0

 call_msg/0

 cast_msg/0

 connect_msg/0

 disconnect_msg/0

 gossip_pull_msg/0

 gossip_pull_reply_msg/0

 gossip_push_msg/0

 gossip_sync_msg/0

 gossip_sync_reply_msg/0

 message/0

 message_type/0

 ping_msg/0

 pong_msg/0

 publish_msg/0

 pubsub_route_msg/0

 registry_fetch_msg/0

 registry_fetch_reply_msg/0

 registry_publish_ack_msg/0

 registry_publish_msg/0

 registry_query_msg/0

 registry_query_reply_msg/0

 registry_sync_msg/0

 registry_sync_reply_msg/0

 registry_verify_msg/0

 registry_verify_reply_msg/0

 reply_msg/0

 rpc_route_msg/0

 subscribe_msg/0

 unsubscribe_msg/0

 Functions

 message_type_id(_)

 Get numeric ID for a message type.

 message_type_name(_)

 Get message type name from numeric ID.

 Types

 bridge_data_msg/0

 -type bridge_data_msg() :: #{payload := term(), source_node_id => binary(), metadata => map()}.

 bridge_rpc_msg/0

 -type bridge_rpc_msg() ::
 #{procedure := binary(),
 args := map(),
 call_id := binary(),
 source_level := atom(),
 timeout => integer()}.

 call_msg/0

 -type call_msg() ::
 #{procedure := binary(),
 args := binary(),
 call_id := binary(),
 timeout => integer(),
 caller_did => binary(),
 ucan_token => binary()}.

 cast_msg/0

 -type cast_msg() ::
 #{procedure := binary(), args := binary(), caller_did => binary(), ucan_token => binary()}.

 connect_msg/0

 -type connect_msg() ::
 #{version := binary(),
 node_id := binary(),
 realm_id := binary(),
 capabilities := [atom()],
 endpoint => binary(),
 default_ucan => binary()}.

 disconnect_msg/0

 -type disconnect_msg() :: #{reason := atom(), message := binary()}.

 gossip_pull_msg/0

 -type gossip_pull_msg() :: #{node_id := binary(), state_keys := [binary()]}.

 gossip_pull_reply_msg/0

 -type gossip_pull_reply_msg() ::
 #{node_id := binary(),
 states := [#{key := binary(), type := atom(), state := term(), vector_clock := map()}]}.

 gossip_push_msg/0

 -type gossip_push_msg() ::
 #{node_id := binary(),
 state_type := atom(),
 state_key := binary(),
 state := term(),
 vector_clock := map()}.

 gossip_sync_msg/0

 -type gossip_sync_msg() :: #{node_id := binary(), digest := map()}.

 gossip_sync_reply_msg/0

 -type gossip_sync_reply_msg() ::
 #{node_id := binary(),
 states := [#{key := binary(), type := atom(), state := term(), vector_clock := map()}],
 missing := [binary()]}.

 message/0

 -type message() ::
 {connect, connect_msg()} |
 {disconnect, disconnect_msg()} |
 {ping, ping_msg()} |
 {pong, pong_msg()} |
 {publish, publish_msg()} |
 {subscribe, subscribe_msg()} |
 {unsubscribe, unsubscribe_msg()} |
 {pubsub_route, pubsub_route_msg()} |
 {call, call_msg()} |
 {reply, reply_msg()} |
 {cast, cast_msg()} |
 {rpc_route, rpc_route_msg()}.

 message_type/0

 -type message_type() ::
 connect | disconnect | ping | pong | publish | subscribe | unsubscribe | pubsub_route | call |
 reply | cast | rpc_route | rpc_request | rpc_reply | swim_ping | swim_ack | swim_ping_req |
 find_node | find_node_reply | store | find_value | find_value_reply | nat_probe |
 nat_probe_reply | punch_request | punch_coordinate | punch_execute | punch_result |
 relay_request | relay_data | bridge_rpc | bridge_data | gossip_push | gossip_pull |
 gossip_pull_reply | gossip_sync | gossip_sync_reply | registry_publish |
 registry_publish_ack | registry_fetch | registry_fetch_reply | registry_query |
 registry_query_reply | registry_verify | registry_verify_reply | registry_sync |
 registry_sync_reply.

 ping_msg/0

 -type ping_msg() :: #{timestamp := integer()}.

 pong_msg/0

 -type pong_msg() :: #{timestamp := integer(), server_time := integer()}.

 publish_msg/0

 -type publish_msg() ::
 #{topic := binary(),
 payload := binary(),
 qos := 0 | 1 | 2,
 retain := boolean(),
 message_id := binary(),
 publisher_did => binary(),
 ucan_token => binary()}.

 pubsub_route_msg/0

 -type pubsub_route_msg() :: #{binary() => term()}.

 registry_fetch_msg/0

 -type registry_fetch_msg() ::
 #{package_name := binary(), version => binary(), include_deps => boolean()}.

 registry_fetch_reply_msg/0

 -type registry_fetch_reply_msg() ::
 #{package_name := binary(),
 version := binary(),
 manifest := map(),
 beam_archive := binary(),
 signature := binary(),
 public_key := binary(),
 dependencies => [map()]}.

 registry_publish_ack_msg/0

 -type registry_publish_ack_msg() ::
 #{package_name := binary(),
 version := binary(),
 checksum := binary(),
 published_at := integer()}.

 registry_publish_msg/0

 -type registry_publish_msg() ::
 #{package_name := binary(),
 version := binary(),
 manifest := map(),
 beam_archive := binary(),
 signature := binary(),
 public_key := binary()}.

 registry_query_msg/0

 -type registry_query_msg() :: #{package_name := binary(), pattern => binary()}.

 registry_query_reply_msg/0

 -type registry_query_reply_msg() ::
 #{packages :=
 [#{name := binary(),
 versions := [binary()],
 latest := binary(),
 description => binary()}]}.

 registry_sync_msg/0

 -type registry_sync_msg() ::
 #{node_id := binary(),
 package_index := [#{name := binary(), version := binary(), checksum := binary()}]}.

 registry_sync_reply_msg/0

 -type registry_sync_reply_msg() ::
 #{node_id := binary(),
 missing := [#{name := binary(), version := binary()}],
 updates := [#{name := binary(), version := binary()}]}.

 registry_verify_msg/0

 -type registry_verify_msg() :: #{package_name := binary(), version := binary(), checksum := binary()}.

 registry_verify_reply_msg/0

 -type registry_verify_reply_msg() ::
 #{package_name := binary(), version := binary(), valid := boolean(), reason => binary()}.

 reply_msg/0

 -type reply_msg() ::
 #{call_id := binary(), result => binary(), error => #{code := binary(), message := binary()}}.

 rpc_route_msg/0

 -type rpc_route_msg() :: #{binary() => term()}.

 subscribe_msg/0

 -type subscribe_msg() ::
 #{topics := [binary()], qos := 0 | 1 | 2, subscriber_did => binary(), ucan_token => binary()}.

 unsubscribe_msg/0

 -type unsubscribe_msg() :: #{topics := [binary()]}.

 Functions

 message_type_id(_)

 -spec message_type_id(message_type()) -> byte().

Get numeric ID for a message type.

 message_type_name(_)

 -spec message_type_name(byte()) -> {ok, message_type()} | {error, unknown_type}.

Get message type name from numeric ID.

macula_provider_selector

Provider selection strategies for multi-provider RPC load balancing.
Supports multiple strategies for choosing which provider to use when multiple providers advertise the same service.
Strategies: - round_robin: Distribute calls evenly across providers - random: Random provider selection - first: Always use first provider (default/simple)

 Summary

 Types

 provider_info/0

 Provider information returned from DHT.

 selection_state/0

 strategy/0

 Selection strategy for choosing a provider from multiple options.

 Functions

 select_provider(Providers, State)

 Select a provider from a list using the default strategy (random).

 select_provider(Providers, Strategy, State)

 Select a provider from a list using a specific strategy.

 Types

 provider_info/0

 -type provider_info() ::
 #{node_id := binary(),
 endpoint := binary(),
 metadata := map(),
 advertised_at => integer(),
 ttl => pos_integer()}.

Provider information returned from DHT.

 selection_state/0

 -type selection_state() :: #{strategy => strategy(), counters => #{binary() => non_neg_integer()}}.

 strategy/0

 -type strategy() :: round_robin | random | first.

Selection strategy for choosing a provider from multiple options.

 Functions

 select_provider(Providers, State)

 -spec select_provider([provider_info()], selection_state()) ->
 {ok, provider_info(), selection_state()} | {error, no_providers}.

Select a provider from a list using the default strategy (random).
Returns the selected provider or error if list is empty.

 select_provider(Providers, Strategy, State)

 -spec select_provider([provider_info()], strategy(), selection_state()) ->
 {ok, provider_info(), selection_state()} | {error, no_providers}.

Select a provider from a list using a specific strategy.
Strategies: - first: Always select the first provider (simple, no state) - random: Randomly select a provider - round_robin: Distribute calls evenly using a counter
Examples:
 %% Random selection
 State = new_state(random),
 {ok, Provider, State2} = select_provider(Providers, random, State).

 %% Round-robin selection
 State = new_state(round_robin),
 {ok, P1, State2} = select_provider(Providers, round_robin, State),
 {ok, P2, State3} = select_provider(Providers, round_robin, State2),
 %% P1 and P2 will be different providers (if multiple available)

macula_pubsub_cache

LRU cache for remote subscriber lists. Caches DHT query results to avoid repeated lookups. Wraps macula_cache with subscriber-specific logic.

 Summary

 Types

 cache/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Pattern)

 Get entry from cache. Returns {ok, Subscribers, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 invalidate(Cache, Pattern)

 Invalidate (remove) entry.

 is_expired(Cache, Pattern, TTL)

 Check if entry is expired based on TTL. This checks if entry exists and its age exceeds TTL.

 max_size(Cache)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Pattern, Subscribers)

 Put entry in cache.

 put_with_timestamp(Cache, Pattern, Subscribers, Timestamp)

 Put entry with custom timestamp (for testing).

 size(Cache)

 Get number of entries.

 Types

 cache/0

 -type cache() :: macula_cache:cache().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Pattern)

 -spec get(cache(), binary()) -> {ok, [map()], cache()} | not_found.

Get entry from cache. Returns {ok, Subscribers, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 invalidate(Cache, Pattern)

 -spec invalidate(cache(), binary()) -> cache().

Invalidate (remove) entry.

 is_expired(Cache, Pattern, TTL)

 -spec is_expired(cache(), binary(), pos_integer()) -> boolean().

Check if entry is expired based on TTL. This checks if entry exists and its age exceeds TTL.

 max_size(Cache)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Pattern, Subscribers)

 -spec put(cache(), binary(), [map()]) -> cache().

Put entry in cache.

 put_with_timestamp(Cache, Pattern, Subscribers, Timestamp)

 -spec put_with_timestamp(cache(), binary(), [map()], integer()) -> cache().

Put entry with custom timestamp (for testing).

 size(Cache)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_pubsub_delivery

Message routing and delivery to local and remote subscribers. Combines local registry and remote discovery for full fan-out.

 Summary

 Types

 delivery_result/0

 discovery_fun/0

 message/0

 send_fun/0

 Functions

 deliver_local(Message, Registry)

 Deliver message to all matching local subscribers. Crashes if subscriber callback fails - indicates dead subscriber process.

 deliver_remote(Message, RemoteSubscribers, SendFun)

 Deliver message to remote subscribers via QUIC.

 get_matching_patterns(Topic, Registry)

 Get all unique patterns that match the topic. Used for remote subscriber discovery.

 publish(Message, Registry, DiscoveryFun, SendFun)

 Publish message to both local and remote subscribers. Returns {LocalResults, RemoteResults}.

 Types

 delivery_result/0

 -type delivery_result() :: ok | {ok, term()} | {error, term()}.

 discovery_fun/0

 -type discovery_fun() :: fun((binary()) -> {ok, [map()]} | {error, term()}).

 message/0

 -type message() :: #{topic := binary(), payload := term(), timestamp := integer()}.

 send_fun/0

 -type send_fun() :: fun((message(), macula_pubsub_discovery:address()) -> ok | {error, term()}).

 Functions

 deliver_local(Message, Registry)

 -spec deliver_local(message(), macula_pubsub_registry:registry()) -> [delivery_result()].

Deliver message to all matching local subscribers. Crashes if subscriber callback fails - indicates dead subscriber process.

 deliver_remote(Message, RemoteSubscribers, SendFun)

 -spec deliver_remote(message(), [macula_pubsub_discovery:subscriber()], send_fun()) ->
 [delivery_result()].

Deliver message to remote subscribers via QUIC.

 get_matching_patterns(Topic, Registry)

 -spec get_matching_patterns(binary(), macula_pubsub_registry:registry()) -> [binary()].

Get all unique patterns that match the topic. Used for remote subscriber discovery.

 publish(Message, Registry, DiscoveryFun, SendFun)

 -spec publish(message(), macula_pubsub_registry:registry(), discovery_fun(), send_fun()) ->
 {[delivery_result()], [delivery_result()]}.

Publish message to both local and remote subscribers. Returns {LocalResults, RemoteResults}.

macula_pubsub_dht

DHT operations for pub/sub - handles subscription advertisement and discovery.
Responsibilities: - Advertise subscriptions in DHT with TTL - Schedule re-advertisement timers - Discover remote subscribers via DHT queries - Route messages to remote subscribers - Track pending DHT queries
Extracted from macula_pubsub_handler.erl (Phase 3)

 Summary

 Types

 advertised_subscriptions/0

 connection_manager_pid/0

 node_id/0

 payload/0

 pending_queries/0

 qos/0

 subscription_ref/0

 topic/0

 url/0

 Functions

 advertise_subscription(Topic, SubRef, NodeId, Url, ConnMgrPid)

 Advertise a subscription in the DHT. Sends STORE message to DHT and schedules re-advertisement. Returns {ok, SubInfo}.

 cancel_advertisement(Topic, AdvertisedSubscriptions)

 Cancel advertisement for a topic. Cancels the re-advertisement timer. Returns updated advertised_subscriptions map.

 discover_subscribers(Topic, Payload, Qos, ConnMgrPid, ServiceRegistry, MsgIdCounter)

 Discover remote subscribers for a topic. Checks cache first, queries DHT on cache miss. Returns {cached, Subscribers, Registry} | {query_sent, Pending, MsgId, Registry}.

 handle_discovery_response(MsgId, Subscribers, PendingQueries)

 Handle DHT discovery response. Routes messages to discovered subscribers. Returns updated pending queries map.

 route_to_subscribers(Topic, Payload, Qos, Subscribers, NodeId)

 Route message to remote subscribers via direct P2P connections (v0.8.0+). Wraps publish in pubsub_route envelope and sends directly to each subscriber. Uses macula_peer_connector for direct QUIC connections to subscriber endpoints.

 Types

 advertised_subscriptions/0

 -type advertised_subscriptions() ::
 #{topic() => #{sub_ref := reference(), ttl := pos_integer(), timer_ref := reference()}}.

 connection_manager_pid/0

 -type connection_manager_pid() :: pid().

 node_id/0

 -type node_id() :: binary().

 payload/0

 -type payload() :: binary().

 pending_queries/0

 -type pending_queries() :: #{binary() => {topic(), payload(), qos(), map()}}.

 qos/0

 -type qos() :: 0 | 1.

 subscription_ref/0

 -type subscription_ref() :: reference().

 topic/0

 -type topic() :: binary().

 url/0

 -type url() :: binary().

 Functions

 advertise_subscription(Topic, SubRef, NodeId, Url, ConnMgrPid)

 -spec advertise_subscription(topic(), subscription_ref(), node_id(), url(), connection_manager_pid()) ->
 {ok,
 #{sub_ref := reference(),
 ttl := pos_integer(),
 timer_ref := reference()}} |
 {error, term()}.

Advertise a subscription in the DHT. Sends STORE message to DHT and schedules re-advertisement. Returns {ok, SubInfo}.

 cancel_advertisement(Topic, AdvertisedSubscriptions)

 -spec cancel_advertisement(topic(), advertised_subscriptions()) -> advertised_subscriptions().

Cancel advertisement for a topic. Cancels the re-advertisement timer. Returns updated advertised_subscriptions map.

 discover_subscribers(Topic, Payload, Qos, ConnMgrPid, ServiceRegistry, MsgIdCounter)

 -spec discover_subscribers(topic(),
 payload(),
 qos(),
 connection_manager_pid(),
 term(),
 non_neg_integer()) ->
 {cached, list(), term()} |
 {query_sent, pending_queries(), binary(), term()}.

Discover remote subscribers for a topic. Checks cache first, queries DHT on cache miss. Returns {cached, Subscribers, Registry} | {query_sent, Pending, MsgId, Registry}.

 handle_discovery_response(MsgId, Subscribers, PendingQueries)

 -spec handle_discovery_response(binary(), list(), pending_queries()) ->
 {ok, pending_queries()} | {not_found, pending_queries()}.

Handle DHT discovery response. Routes messages to discovered subscribers. Returns updated pending queries map.

 route_to_subscribers(Topic, Payload, Qos, Subscribers, NodeId)

 -spec route_to_subscribers(topic(), payload(), qos(), list(), node_id()) -> ok.

Route message to remote subscribers via direct P2P connections (v0.8.0+). Wraps publish in pubsub_route envelope and sends directly to each subscriber. Uses macula_peer_connector for direct QUIC connections to subscriber endpoints.

macula_pubsub_discovery

DHT integration for finding remote subscribers. Uses Kademlia DHT to publish and discover subscriptions. Wraps macula_discovery with pub/sub-specific types.

 Summary

 Types

 address/0

 dht_lookup_fun/0

 dht_publish_fun/0

 dht_unpublish_fun/0

 node_id/0

 pattern/0

 subscriber/0

 Functions

 announce(Pattern, LocalNodeId, LocalAddress, DhtPublishFun)

 Announce local subscription to DHT.

 find_subscribers(Pattern, DhtLookupFun)

 Find remote subscribers for a pattern via DHT.

 find_with_cache(Pattern, Cache, DhtLookupFun)

 Find subscribers with cache (default TTL: 300 seconds).

 find_with_cache(Pattern, Cache, DhtLookupFun, TTL)

 Find subscribers with cache and custom TTL.

 unannounce(Pattern, LocalNodeId, DhtUnpublishFun)

 Remove local subscription from DHT.

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 dht_lookup_fun/0

 -type dht_lookup_fun() :: fun((pattern()) -> {ok, [subscriber()]} | {error, term()}).

 dht_publish_fun/0

 -type dht_publish_fun() :: fun((pattern(), node_id(), address()) -> ok | {error, term()}).

 dht_unpublish_fun/0

 -type dht_unpublish_fun() :: fun((pattern(), node_id()) -> ok | {error, term()}).

 node_id/0

 -type node_id() :: binary().

 pattern/0

 -type pattern() :: binary().

 subscriber/0

 -type subscriber() :: #{node_id := node_id(), address := address()}.

 Functions

 announce(Pattern, LocalNodeId, LocalAddress, DhtPublishFun)

 -spec announce(pattern(), node_id(), address(), dht_publish_fun()) -> ok | {error, term()}.

Announce local subscription to DHT.

 find_subscribers(Pattern, DhtLookupFun)

 -spec find_subscribers(pattern(), dht_lookup_fun()) -> {ok, [subscriber()]} | {error, term()}.

Find remote subscribers for a pattern via DHT.

 find_with_cache(Pattern, Cache, DhtLookupFun)

 -spec find_with_cache(pattern(), macula_cache:cache(), dht_lookup_fun()) ->
 {ok, [subscriber()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find subscribers with cache (default TTL: 300 seconds).

 find_with_cache(Pattern, Cache, DhtLookupFun, TTL)

 -spec find_with_cache(pattern(), macula_cache:cache(), dht_lookup_fun(), pos_integer()) ->
 {ok, [subscriber()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find subscribers with cache and custom TTL.

 unannounce(Pattern, LocalNodeId, DhtUnpublishFun)

 -spec unannounce(pattern(), node_id(), dht_unpublish_fun()) -> ok | {error, term()}.

Remove local subscription from DHT.

macula_pubsub_handler

PubSub handler GenServer - facade that orchestrates pub/sub operations.
This module acts as a facade/coordinator, delegating business logic to: - macula_pubsub_subscription: Subscription storage, pattern matching, callbacks - macula_pubsub_dht: DHT advertisement, discovery, routing - macula_pubsub_qos: QoS 1 tracking and retry logic
Responsibilities: - API facade for subscribe/unsubscribe/publish operations - Message routing coordination between specialized modules - GenServer lifecycle management - State management (delegates actual operations to modules)
Extracted from macula_connection.erl (Phase 4) Refactored using TDD to extract god module (Phase 5)

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_publish(Pid, Msg)

 handle_info(Info, State)

 init(Opts)

 publish(Pid, Topic, Data, Opts)

 start_link(Opts)

 subscribe(Pid, Topic, Callback)

 terminate(Reason, State)

 unsubscribe(Pid, SubRef)

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_publish(Pid, Msg)

 -spec handle_incoming_publish(pid(), map()) -> ok.

 handle_info(Info, State)

 init(Opts)

 publish(Pid, Topic, Data, Opts)

 -spec publish(pid(), binary() | list() | atom(), term(), map()) -> ok | {error, term()}.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 subscribe(Pid, Topic, Callback)

 -spec subscribe(pid(), binary() | list() | atom(), fun((map()) -> ok)) ->
 {ok, reference()} | {error, term()}.

 terminate(Reason, State)

 unsubscribe(Pid, SubRef)

 -spec unsubscribe(pid(), reference()) -> ok | {error, term()}.

macula_pubsub_qos

QoS (Quality of Service) manager for pub/sub.
Handles QoS 1 (at-least-once delivery) logic: - Message tracking with timeout timers - Automatic retry on timeout (up to max retries) - Acknowledgment handling
Extracted from macula_pubsub_handler.erl (Phase 2)

 Summary

 Types

 connection_manager_pid/0

 message_id/0

 payload/0

 pending_pubacks/0

 qos/0

 retry_count/0

 timer_ref/0

 topic/0

 Functions

 get_pending(PendingPubacks)

 Get list of pending message IDs (for testing/debugging).

 handle_ack(MsgId, PendingPubacks)

 Handle acknowledgment for a message. Cancels timer and removes message from pending map. Returns updated pending_pubacks map.

 handle_timeout(MsgId, ConnMgrPid, PendingPubacks)

 Handle timeout for a pending message. Retries sending if under max retries, otherwise gives up. Returns {retry, UpdatedPending, PublishMsg} | {give_up, UpdatedPending}.

 track_message(MsgId, Topic, Payload, Qos, PendingPubacks)

 Track a message for QoS 1 acknowledgment. Starts a timeout timer and stores message in pending map. Returns updated pending_pubacks map.

 Types

 connection_manager_pid/0

 -type connection_manager_pid() :: pid().

 message_id/0

 -type message_id() :: binary().

 payload/0

 -type payload() :: binary().

 pending_pubacks/0

 -type pending_pubacks() :: #{message_id() => {topic(), payload(), qos(), retry_count(), timer_ref()}}.

 qos/0

 -type qos() :: 0 | 1.

 retry_count/0

 -type retry_count() :: non_neg_integer().

 timer_ref/0

 -type timer_ref() :: reference().

 topic/0

 -type topic() :: binary().

 Functions

 get_pending(PendingPubacks)

 -spec get_pending(pending_pubacks()) -> [message_id()].

Get list of pending message IDs (for testing/debugging).

 handle_ack(MsgId, PendingPubacks)

 -spec handle_ack(message_id(), pending_pubacks()) -> pending_pubacks().

Handle acknowledgment for a message. Cancels timer and removes message from pending map. Returns updated pending_pubacks map.

 handle_timeout(MsgId, ConnMgrPid, PendingPubacks)

 -spec handle_timeout(message_id(), connection_manager_pid(), pending_pubacks()) ->
 {retry, pending_pubacks(), map()} |
 {give_up, pending_pubacks()} |
 {not_found, pending_pubacks()}.

Handle timeout for a pending message. Retries sending if under max retries, otherwise gives up. Returns {retry, UpdatedPending, PublishMsg} | {give_up, UpdatedPending}.

 track_message(MsgId, Topic, Payload, Qos, PendingPubacks)

 -spec track_message(message_id(), topic(), payload(), qos(), pending_pubacks()) ->
 {ok, pending_pubacks()} | {error, term()}.

Track a message for QoS 1 acknowledgment. Starts a timeout timer and stores message in pending map. Returns updated pending_pubacks map.

macula_pubsub_registry

Local subscription registry for pub/sub. Maps topic patterns to local subscribers (callback PIDs).

 Summary

 Types

 registry/0

 subscription/0

 Functions

 get_subscription(_, SubscriberId, Pattern)

 Get specific subscription.

 list_patterns(_)

 List all unique patterns.

 match(_, Topic)

 Find subscriptions matching a topic.

 new()

 Create new empty registry.

 size(_)

 Get number of subscriptions.

 subscribe(Registry, SubscriberId, Pattern, Callback)

 Subscribe to a pattern. If subscription already exists (same subscriber_id + pattern), updates callback.

 unsubscribe(Registry, SubscriberId, Pattern)

 Unsubscribe from a pattern.

 Types

 registry/0

 -type registry() ::
 #{subscriptions := [subscription()], pattern_index := #{binary() => [subscription()]}}.

 subscription/0

 -type subscription() :: #{subscriber_id := binary(), pattern := binary(), callback := pid()}.

 Functions

 get_subscription(_, SubscriberId, Pattern)

 -spec get_subscription(registry(), binary(), binary()) -> {ok, subscription()} | not_found.

Get specific subscription.

 list_patterns(_)

 -spec list_patterns(registry()) -> [binary()].

List all unique patterns.

 match(_, Topic)

 -spec match(registry(), binary()) -> [subscription()].

Find subscriptions matching a topic.

 new()

 -spec new() -> registry().

Create new empty registry.

 size(_)

 -spec size(registry()) -> non_neg_integer().

Get number of subscriptions.

 subscribe(Registry, SubscriberId, Pattern, Callback)

 -spec subscribe(registry(), binary(), binary(), pid()) -> registry().

Subscribe to a pattern. If subscription already exists (same subscriber_id + pattern), updates callback.

 unsubscribe(Registry, SubscriberId, Pattern)

 -spec unsubscribe(registry(), binary(), binary()) -> registry().

Unsubscribe from a pattern.

macula_pubsub_routing

Pub/Sub routing for multi-hop DHT-routed pub/sub. Handles wrapping, unwrapping, and routing of PUBLISH messages through the Kademlia DHT mesh.
Pattern: Clone of macula_rpc_routing for pub/sub messages

 Summary

 Functions

 route_or_deliver(LocalNodeId, PubSubRouteMsg, RoutingServerPid)

 Route a pubsub_route message: either deliver locally or forward to next hop. Returns one of: {deliver, Topic, PublishMsg} - Message is for this node {forward, NextHopNodeInfo, UpdatedPubSubRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, PubSubRouteMsg)

 Determine if this node should deliver the message locally or forward it.

 wrap_publish(SourceNodeId, DestinationNodeId, PublishMsg, MaxHops)

 Wrap a PUBLISH message in pubsub_route envelope for DHT routing.

 Functions

 route_or_deliver(LocalNodeId, PubSubRouteMsg, RoutingServerPid)

 -spec route_or_deliver(binary(), macula_protocol_types:pubsub_route_msg(), pid()) ->
 {deliver, binary(), map()} |
 {forward,
 macula_routing_bucket:node_info(),
 macula_protocol_types:pubsub_route_msg()} |
 {error, term()}.

Route a pubsub_route message: either deliver locally or forward to next hop. Returns one of: {deliver, Topic, PublishMsg} - Message is for this node {forward, NextHopNodeInfo, UpdatedPubSubRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, PubSubRouteMsg)

 -spec should_deliver_locally(binary(), macula_protocol_types:pubsub_route_msg()) -> boolean().

Determine if this node should deliver the message locally or forward it.

 wrap_publish(SourceNodeId, DestinationNodeId, PublishMsg, MaxHops)

 -spec wrap_publish(binary(), binary(), macula_protocol_types:publish_msg(), pos_integer()) ->
 macula_protocol_types:pubsub_route_msg().

Wrap a PUBLISH message in pubsub_route envelope for DHT routing.

macula_pubsub_server

Pub/Sub GenServer - manages subscriptions and message delivery. Ties together registry, cache, discovery, and delivery layers.

 Summary

 Types

 options/0

 Functions

 cache_stats(Pid)

 Get cache statistics.

 list_patterns(Pid)

 List all unique patterns.

 list_subscriptions(Pid)

 List all subscriptions.

 publish(Pid, Message)

 Publish message to all matching subscribers.

 start_link()

 Start server with default options.

 start_link(Options)

 Start server with options.

 stop(Pid)

 Stop server.

 subscribe(Pid, SubscriberId, Pattern, Callback)

 Subscribe to a pattern.

 subscription_count(Pid)

 Get subscription count.

 unsubscribe(Pid, SubscriberId, Pattern)

 Unsubscribe from a pattern.

 Types

 options/0

 -type options() ::
 #{cache_size => pos_integer(),
 cache_ttl => pos_integer(),
 discovery_fun => macula_pubsub_discovery:dht_lookup_fun(),
 send_fun => macula_pubsub_delivery:send_fun()}.

 Functions

 cache_stats(Pid)

 -spec cache_stats(pid()) -> #{size := non_neg_integer(), max_size := pos_integer()}.

Get cache statistics.

 list_patterns(Pid)

 -spec list_patterns(pid()) -> [binary()].

List all unique patterns.

 list_subscriptions(Pid)

 -spec list_subscriptions(pid()) -> [macula_pubsub_registry:subscription()].

List all subscriptions.

 publish(Pid, Message)

 -spec publish(pid(), macula_pubsub_delivery:message()) -> ok.

Publish message to all matching subscribers.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start server with default options.

 start_link(Options)

 -spec start_link(options()) -> {ok, pid()} | {error, term()}.

Start server with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop server.

 subscribe(Pid, SubscriberId, Pattern, Callback)

 -spec subscribe(pid(), binary(), binary(), pid()) -> ok.

Subscribe to a pattern.

 subscription_count(Pid)

 -spec subscription_count(pid()) -> non_neg_integer().

Get subscription count.

 unsubscribe(Pid, SubscriberId, Pattern)

 -spec unsubscribe(pid(), binary(), binary()) -> ok.

Unsubscribe from a pattern.

macula_pubsub_subscription

Subscription management for pub/sub.
Responsibilities: - Store and retrieve subscriptions - Pattern matching with wildcards (*, **) - Find matching subscriptions for a topic - Invoke subscriber callbacks
Extracted from macula_pubsub_handler.erl (Phase 4)

 Summary

 Types

 callback/0

 node_id/0

 payload/0

 subscription_ref/0

 subscriptions/0

 topic/0

 Functions

 add_subscription(Topic, Callback, Subscriptions, SubRef)

 Add a subscription. Returns {ok, UpdatedSubscriptions, SubRef}.

 find_matches(Topic, Subscriptions, Config)

 Find matching subscriptions for a topic. Returns list of {SubRef, {Pattern, Callback}} tuples.

 invoke_callbacks(Matches, Topic, Payload, NodeId)

 Invoke callbacks for matching subscriptions. Spawns async tasks to invoke each callback.

 remove_subscription(SubRef, Subscriptions)

 Remove a subscription. Returns {ok, UpdatedSubscriptions, Topic} | {error, not_found}.

 Types

 callback/0

 -type callback() :: fun((map()) -> ok).

 node_id/0

 -type node_id() :: binary().

 payload/0

 -type payload() :: binary().

 subscription_ref/0

 -type subscription_ref() :: reference().

 subscriptions/0

 -type subscriptions() :: #{subscription_ref() => {topic(), callback()}}.

 topic/0

 -type topic() :: binary().

 Functions

 add_subscription(Topic, Callback, Subscriptions, SubRef)

 -spec add_subscription(topic(), callback(), subscriptions(), subscription_ref()) ->
 {ok, subscriptions(), subscription_ref()}.

Add a subscription. Returns {ok, UpdatedSubscriptions, SubRef}.

 find_matches(Topic, Subscriptions, Config)

 -spec find_matches(topic(), subscriptions(), #{atom() => binary()}) ->
 [{subscription_ref(), {topic(), callback()}}].

Find matching subscriptions for a topic. Returns list of {SubRef, {Pattern, Callback}} tuples.

 invoke_callbacks(Matches, Topic, Payload, NodeId)

 -spec invoke_callbacks([{subscription_ref(), {topic(), callback()}}], topic(), payload(), node_id()) ->
 ok.

Invoke callbacks for matching subscriptions. Spawns async tasks to invoke each callback.

 remove_subscription(SubRef, Subscriptions)

 -spec remove_subscription(subscription_ref(), subscriptions()) ->
 {ok, subscriptions(), topic()} | {error, not_found}.

Remove a subscription. Returns {ok, UpdatedSubscriptions, Topic} | {error, not_found}.

macula_pubsub_topic

Topic utilities for pub/sub system. Handles topic validation, pattern matching, and normalization. Supports MQTT-style wildcards: * (single-level) and # (multi-level).

 Summary

 Types

 pattern/0

 topic/0

 Functions

 matches(Topic, Pattern)

 Check if topic matches pattern. Patterns can contain: - * matches exactly one segment - # matches zero or more segments

 namespace(Topic)

 Extract namespace (first segment).

 normalize(Topic)

 Normalize topic (lowercase, trim, remove double dots).

 segment_count(Topic)

 Count number of segments in topic.

 validate(Topic)

 Validate topic syntax. Valid topics: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen, wildcards - No leading or trailing dots

 Types

 pattern/0

 -type pattern() :: binary().

 topic/0

 -type topic() :: binary().

 Functions

 matches(Topic, Pattern)

 -spec matches(topic(), pattern()) -> boolean().

Check if topic matches pattern. Patterns can contain: - * matches exactly one segment - # matches zero or more segments

 namespace(Topic)

 -spec namespace(topic()) -> binary().

Extract namespace (first segment).

 normalize(Topic)

 -spec normalize(topic()) -> topic().

Normalize topic (lowercase, trim, remove double dots).

 segment_count(Topic)

 -spec segment_count(topic()) -> non_neg_integer().

Count number of segments in topic.

 validate(Topic)

 -spec validate(topic()) -> ok | {error, invalid_topic}.

Validate topic syntax. Valid topics: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen, wildcards - No leading or trailing dots

macula_quic

Main API module for Macula QUIC transport. Provides a simplified wrapper around the quicer library.

 Summary

 Functions

 accept(ListenerPid, Timeout)

 Accept an incoming connection on a listener. After accepting, the connection needs handshake to complete.

 accept_stream(ConnPid, Timeout)

 Accept an incoming stream on a connection.

 async_send(StreamPid, Data)

 Send data on a stream asynchronously (non-blocking). This returns immediately without waiting for QUIC flow control.

 close(Pid)

 Close a listener, connection, or stream.

 connect(Host, Port, Opts, Timeout)

 Connect to a QUIC server. Options: {alpn, [Protocol]} - List of ALPN protocols {verify, none | verify_peer} - Certificate verification mode {cacertfile, Path} - CA certificate bundle for verification (v0.16.3+) {depth, N} - Max certificate chain depth (v0.16.3+) {server_name_indication, Host} - SNI hostname (v0.16.3+) {idle_timeout_ms, N} - Connection idle timeout in milliseconds {keep_alive_interval_ms, N} - Keep-alive PING interval in milliseconds

 listen(Port, Opts)

 Start a QUIC listener on the specified port. Options: {cert, CertFile} - Path to PEM certificate file {key, KeyFile} - Path to PEM private key file {alpn, [Protocol]} - List of ALPN protocols (e.g., ["macula"]) {peer_unidi_stream_count, N} - Max unidirectional streams {peer_bidi_stream_count, N} - Max bidirectional streams {idle_timeout_ms, N} - Connection idle timeout in milliseconds {keep_alive_interval_ms, N} - Keep-alive PING interval in milliseconds

 open_stream(ConnPid)

 Open a new bidirectional stream on a connection.

 peername(Handle)

 Get the peer's address from a stream or connection handle. Returns {ok, {IP, Port}} on success or {error, Reason} on failure. Works with both stream and connection handles.

 recv(StreamPid, Timeout)

 Receive data from a stream (blocking).

 send(StreamPid, Data)

 Send data on a stream (blocking).

 Functions

 accept(ListenerPid, Timeout)

 -spec accept(reference(), timeout()) -> {ok, reference()} | {error, term()}.

Accept an incoming connection on a listener. After accepting, the connection needs handshake to complete.

 accept_stream(ConnPid, Timeout)

 -spec accept_stream(reference(), timeout()) -> {ok, reference()} | {error, term()}.

Accept an incoming stream on a connection.

 async_send(StreamPid, Data)

 -spec async_send(reference(), iodata()) -> ok | {error, term()}.

Send data on a stream asynchronously (non-blocking). This returns immediately without waiting for QUIC flow control.

 close(Pid)

 -spec close(reference()) -> ok.

Close a listener, connection, or stream.

 connect(Host, Port, Opts, Timeout)

 -spec connect(string() | inet:ip_address(), inet:port_number(), list(), timeout()) ->
 {ok, reference()} | {error, term()}.

Connect to a QUIC server. Options: {alpn, [Protocol]} - List of ALPN protocols {verify, none | verify_peer} - Certificate verification mode {cacertfile, Path} - CA certificate bundle for verification (v0.16.3+) {depth, N} - Max certificate chain depth (v0.16.3+) {server_name_indication, Host} - SNI hostname (v0.16.3+) {idle_timeout_ms, N} - Connection idle timeout in milliseconds {keep_alive_interval_ms, N} - Keep-alive PING interval in milliseconds

 listen(Port, Opts)

 -spec listen(inet:port_number(), list()) -> {ok, reference()} | {error, term()}.

Start a QUIC listener on the specified port. Options: {cert, CertFile} - Path to PEM certificate file {key, KeyFile} - Path to PEM private key file {alpn, [Protocol]} - List of ALPN protocols (e.g., ["macula"]) {peer_unidi_stream_count, N} - Max unidirectional streams {peer_bidi_stream_count, N} - Max bidirectional streams {idle_timeout_ms, N} - Connection idle timeout in milliseconds {keep_alive_interval_ms, N} - Keep-alive PING interval in milliseconds

 open_stream(ConnPid)

 -spec open_stream(reference()) -> {ok, reference()} | {error, term()}.

Open a new bidirectional stream on a connection.

 peername(Handle)

 -spec peername(term()) -> {ok, {inet:ip_address(), inet:port_number()}} | {error, term()}.

Get the peer's address from a stream or connection handle. Returns {ok, {IP, Port}} on success or {error, Reason} on failure. Works with both stream and connection handles.

 recv(StreamPid, Timeout)

 -spec recv(reference(), timeout()) -> {ok, binary()} | {error, term()}.

Receive data from a stream (blocking).

 send(StreamPid, Data)

 -spec send(reference(), iodata()) -> ok | {error, term()}.

Send data on a stream (blocking).

macula_quic_cert

Macula QUIC certificate utilities. Provides functions for generating and validating self-signed certificates for QUIC connections via OpenSSL command-line tool.

 Summary

 Functions

 generate_self_signed()

 Generate a self-signed certificate and key in a temporary directory. Returns {ok, CertFile, KeyFile} with paths to generated files. The files are created in /tmp/macula_certs_PID for test isolation.

 generate_self_signed(Dir)

 Generate a self-signed certificate and key in the given directory. Returns {ok, {CertFile, KeyFile}} with paths to generated files.

 generate_self_signed(Dir, Opts)

 Generate a self-signed certificate with custom options. Options: subject - Certificate subject (default: "/CN=macula.local") validity_days - Validity period in days (default: 365)

 validate_files(CertFile, KeyFile)

 Validate that both certificate and key files exist and are readable.

 Functions

 generate_self_signed()

 -spec generate_self_signed() -> {ok, file:filename(), file:filename()} | {error, term()}.

Generate a self-signed certificate and key in a temporary directory. Returns {ok, CertFile, KeyFile} with paths to generated files. The files are created in /tmp/macula_certs_PID for test isolation.

 generate_self_signed(Dir)

 -spec generate_self_signed(file:filename()) ->
 {ok, {file:filename(), file:filename()}} | {error, term()}.

Generate a self-signed certificate and key in the given directory. Returns {ok, {CertFile, KeyFile}} with paths to generated files.

 generate_self_signed(Dir, Opts)

 -spec generate_self_signed(file:filename(), map()) ->
 {ok, {file:filename(), file:filename()}} | {error, term()}.

Generate a self-signed certificate with custom options. Options: subject - Certificate subject (default: "/CN=macula.local") validity_days - Validity period in days (default: 365)

 validate_files(CertFile, KeyFile)

 -spec validate_files(file:filename(), file:filename()) -> ok | {error, term()}.

Validate that both certificate and key files exist and are readable.

macula_quic_conn_callback

QUIC connection callback module for Macula. Implements quicer_connection behavior to handle connection lifecycle.

 Summary

 Functions

 closed(Conn, Flags, State)

 Handle connection closed

 connected(Conn, Flags, State)

 Handle connection established

 handle_info(Info, State)

 Handle other messages

 init(ConnOpts)

 Initialize connection callback state

 local_address_changed(Conn, NewAddr, State)

 Handle local address changed

 new_conn(Conn, ConnProps, State)

 Handle new connection With quicer_server, streams are delivered automatically via new_stream/3

 new_stream(Stream, Props, State)

 Handle new stream With quicer_server, ALL streams are delivered here (not just orphans) Forward them to the gateway for processing

 nst_received(Conn, Data, State)

 Handle NST received (not used for server)

 peer_address_changed(Conn, NewAddr, State)

 Handle peer address changed (NAT rebinding) This callback is triggered when the peer's observed address changes, typically due to NAT rebinding. We need to: 1. Log the address change 2. Invalidate cached NAT profile for the peer 3. Update connection tracking

 peer_needs_streams(Conn, Undefined, State)

 Handle peer needs streams

 resumed(Conn, Data, State)

 Handle connection resumed

 shutdown(Conn, Reason, State)

 Handle connection shutdown

 streams_available(Conn, _, State)

 Handle streams available

 transport_shutdown(Conn, _, State)

 Handle transport shutdown

 Functions

 closed(Conn, Flags, State)

Handle connection closed

 connected(Conn, Flags, State)

Handle connection established

 handle_info(Info, State)

Handle other messages

 init(ConnOpts)

Initialize connection callback state

 local_address_changed(Conn, NewAddr, State)

Handle local address changed

 new_conn(Conn, ConnProps, State)

Handle new connection With quicer_server, streams are delivered automatically via new_stream/3

 new_stream(Stream, Props, State)

Handle new stream With quicer_server, ALL streams are delivered here (not just orphans) Forward them to the gateway for processing

 nst_received(Conn, Data, State)

Handle NST received (not used for server)

 peer_address_changed(Conn, NewAddr, State)

Handle peer address changed (NAT rebinding) This callback is triggered when the peer's observed address changes, typically due to NAT rebinding. We need to: 1. Log the address change 2. Invalidate cached NAT profile for the peer 3. Update connection tracking

 peer_needs_streams(Conn, Undefined, State)

Handle peer needs streams

 resumed(Conn, Data, State)

Handle connection resumed

 shutdown(Conn, Reason, State)

Handle connection shutdown

 streams_available(Conn, _, State)

Handle streams available

 transport_shutdown(Conn, _, State)

Handle transport shutdown

macula_quic_stream_acceptor

QUIC stream acceptor process. Dedicated process that waits for incoming streams on a connection and forwards them to the gateway for processing.

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle new stream from peer - THIS IS THE KEY MESSAGE!

 init(_)

 start_link(GatewayPid, Conn)

 Start stream acceptor process

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle new stream from peer - THIS IS THE KEY MESSAGE!

 init(_)

 start_link(GatewayPid, Conn)

 -spec start_link(pid(), term()) -> {ok, pid()} | {error, term()}.

Start stream acceptor process

 terminate(Reason, State)

macula_realm

Realm management and validation. Realms provide logical isolation boundaries in the mesh. Realm names follow reverse DNS notation (e.g., "org.example.mesh").

 Summary

 Types

 realm_id/0

 32-byte SHA-256 hash

 realm_name/0

 Functions

 equals(Realm1, Realm2)

 Check if two realm names are equal.

 from_binary(_)

 Decode realm name from binary.

 id(RealmName)

 Generate deterministic realm ID from name. Uses SHA-256 hash for 256-bit realm IDs.

 namespace(RealmName)

 Extract namespace (top-level domain) from realm name. Example: "org.example.mesh" -> "org"

 normalize(RealmName)

 Normalize realm name (lowercase, trim).

 to_binary(RealmName)

 Encode realm name to binary.

 validate(RealmName)

 Validate realm name format. Rules: - Reverse DNS notation (org.example.mesh) - Lowercase alphanumeric, dots, hyphens, underscores - No leading/trailing dots - No consecutive dots

 Types

 realm_id/0

 -type realm_id() :: binary().

32-byte SHA-256 hash

 realm_name/0

 -type realm_name() :: binary().

 Functions

 equals(Realm1, Realm2)

 -spec equals(realm_name(), realm_name()) -> boolean().

Check if two realm names are equal.

 from_binary(_)

 -spec from_binary(binary()) -> {ok, realm_name()} | {error, term()}.

Decode realm name from binary.

 id(RealmName)

 -spec id(realm_name()) -> realm_id().

Generate deterministic realm ID from name. Uses SHA-256 hash for 256-bit realm IDs.

 namespace(RealmName)

 -spec namespace(realm_name()) -> binary().

Extract namespace (top-level domain) from realm name. Example: "org.example.mesh" -> "org"

 normalize(RealmName)

 -spec normalize(realm_name()) -> realm_name().

Normalize realm name (lowercase, trim).

 to_binary(RealmName)

 -spec to_binary(realm_name()) -> binary().

Encode realm name to binary.

 validate(RealmName)

 -spec validate(realm_name()) -> ok | {error, term()}.

Validate realm name format. Rules: - Reverse DNS notation (org.example.mesh) - Lowercase alphanumeric, dots, hyphens, underscores - No leading/trailing dots - No consecutive dots

macula_realm_trust

Realm Trust Management for Hybrid Trust Model
Implements the Hybrid Trust Model (ADR-001) with three trust levels: - Level 1: Realm Authentication (API key/token validation) - Level 2: Certificate Trust (TOFU within authenticated realm) - Level 3: Optional CA-signed certificates for seed nodes
This module manages: - Realm authentication via API keys - Certificate fingerprint registration and verification - Trust On First Use (TOFU) pattern - Fingerprint change detection - Trust revocation

 Summary

 Types

 fingerprint/0

 node_id/0

 realm/0

 session/0

 Functions

 authenticate(Realm, ApiKey)

 Authenticate to a realm using API key Returns a session map on success, error tuple on failure Implements rate limiting per realm

 extract_fingerprint(CertPEM)

 Extract SHA-256 fingerprint from certificate PEM

 get_auth_attempt_count(Realm)

 Get the current auth attempt count for a realm

 get_fingerprint_info(Realm, NodeId)

 Get fingerprint info for a node in a realm

 get_trusted_peers(Realm)

 Get all trusted peers in a realm

 init_rate_limiter()

 Initialize the rate limiter ETS table

 register_fingerprint(Realm, NodeId, Fingerprint)

 Register a certificate fingerprint for a node in a realm

 reset_rate_limit(Realm)

 Reset the rate limit for a realm

 revoke_trust(Realm, NodeId)

 Revoke trust for a node in a realm

 verify_fingerprint(Realm, NodeId, Fingerprint)

 Verify a certificate fingerprint for a node in a realm Implements Trust On First Use (TOFU) - first connection is automatically trusted

 Types

 fingerprint/0

 -type fingerprint() :: binary().

 node_id/0

 -type node_id() :: binary().

 realm/0

 -type realm() :: binary().

 session/0

 -type session() :: #{realm := realm(), session_token := binary(), authenticated_at := integer()}.

 Functions

 authenticate(Realm, ApiKey)

 -spec authenticate(realm(), binary()) -> {ok, session()} | {error, term()}.

Authenticate to a realm using API key Returns a session map on success, error tuple on failure Implements rate limiting per realm

 extract_fingerprint(CertPEM)

 -spec extract_fingerprint(binary()) -> {ok, fingerprint()} | {error, term()}.

Extract SHA-256 fingerprint from certificate PEM

 get_auth_attempt_count(Realm)

 -spec get_auth_attempt_count(realm()) -> {ok, non_neg_integer()}.

Get the current auth attempt count for a realm

 get_fingerprint_info(Realm, NodeId)

 -spec get_fingerprint_info(realm(), node_id()) -> {ok, map()} | {error, not_found}.

Get fingerprint info for a node in a realm

 get_trusted_peers(Realm)

 -spec get_trusted_peers(realm()) -> {ok, [map()]}.

Get all trusted peers in a realm

 init_rate_limiter()

 -spec init_rate_limiter() -> ok.

Initialize the rate limiter ETS table

 register_fingerprint(Realm, NodeId, Fingerprint)

 -spec register_fingerprint(realm(), node_id(), fingerprint()) -> {ok, registered}.

Register a certificate fingerprint for a node in a realm

 reset_rate_limit(Realm)

 -spec reset_rate_limit(realm()) -> ok.

Reset the rate limit for a realm

 revoke_trust(Realm, NodeId)

 -spec revoke_trust(realm(), node_id()) -> {ok, revoked | not_found}.

Revoke trust for a node in a realm

 verify_fingerprint(Realm, NodeId, Fingerprint)

 -spec verify_fingerprint(realm(), node_id(), fingerprint()) ->
 {ok, trusted | trusted_first_use} |
 {error,
 {fingerprint_mismatch,
 #{expected := fingerprint(), received := fingerprint()}}}.

Verify a certificate fingerprint for a node in a realm Implements Trust On First Use (TOFU) - first connection is automatically trusted

macula_registry_manifest

Macula Registry Package Manifest
Handles parsing and validation of package manifests: - Manifest structure validation - Capability specification parsing - SemVer version validation - Dependency resolution
All functions are stateless.

 Summary

 Types

 capability/0

 dependency/0

 manifest/0

 Functions

 capability_matches(_, _)

 Check if a capability pattern matches a specific capability Pattern can include wildcards: * matches any single segment, ** matches any segments

 compare_versions(V1, V2)

 Compare two SemVer versions Returns: lt (less than), eq (equal), gt (greater than)

 from_binary(Binary)

 Deserialize manifest from binary (MessagePack)

 get_capabilities(_)

 Get capabilities from manifest

 get_dependencies(_)

 Get dependencies from manifest

 get_name(_)

 Get package name from manifest

 get_version(_)

 Get package version from manifest

 parse(Map)

 Parse a manifest from a map (with atom or binary keys)

 to_binary(Manifest)

 Serialize manifest to binary (MessagePack)

 validate(Manifest)

 Validate a parsed manifest

 validate_version(Version)

 Validate SemVer version string

 Types

 capability/0

 -type capability() ::
 {network, [{connect, binary()}]} |
 {pubsub, [{publish | subscribe, binary()}]} |
 {rpc, [{register | call, binary()}]} |
 {nifs, [binary()]} |
 {file_access, [{read | write, binary()}]}.

 dependency/0

 -type dependency() :: #{name := binary(), version := binary(), registry => binary()}.

 manifest/0

 -type manifest() ::
 #{name := binary(),
 version := binary(),
 otp_release => binary(),
 macula_version => binary(),
 capabilities := [capability()],
 dependencies := [dependency()],
 entry_module := atom(),
 supervisor := atom(),
 description => binary(),
 license => binary(),
 authors => [binary()]}.

 Functions

 capability_matches(_, _)

 -spec capability_matches(capability(), capability()) -> boolean().

Check if a capability pattern matches a specific capability Pattern can include wildcards: * matches any single segment, ** matches any segments

 compare_versions(V1, V2)

 -spec compare_versions(binary(), binary()) -> lt | eq | gt | {error, term()}.

Compare two SemVer versions Returns: lt (less than), eq (equal), gt (greater than)

 from_binary(Binary)

 -spec from_binary(binary()) -> {ok, manifest()} | {error, term()}.

Deserialize manifest from binary (MessagePack)

 get_capabilities(_)

 -spec get_capabilities(manifest()) -> [capability()].

Get capabilities from manifest

 get_dependencies(_)

 -spec get_dependencies(manifest()) -> [dependency()].

Get dependencies from manifest

 get_name(_)

 -spec get_name(manifest()) -> binary().

Get package name from manifest

 get_version(_)

 -spec get_version(manifest()) -> binary().

Get package version from manifest

 parse(Map)

 -spec parse(map()) -> {ok, manifest()} | {error, term()}.

Parse a manifest from a map (with atom or binary keys)

 to_binary(Manifest)

 -spec to_binary(manifest()) -> binary().

Serialize manifest to binary (MessagePack)

 validate(Manifest)

 -spec validate(manifest()) -> ok | {error, term()}.

Validate a parsed manifest

 validate_version(Version)

 -spec validate_version(binary()) -> ok | {error, invalid_version}.

Validate SemVer version string

macula_registry_server

Macula Registry Server
Main API server for package registry operations: - Package publishing with signature verification - Package fetching with integrity checks - Package queries and search - DHT integration for distributed discovery

 Summary

 Functions

 fetch_package(Name)

 Fetch the latest version of a package

 fetch_package(Name, Version)

 Fetch a specific version of a package

 get_package_info(Name)

 Get detailed info about a package

 list_packages()

 List all packages in the registry

 publish_package(Name, Version, Manifest, BeamArchive, PrivateKey)

 Publish a package to the registry

 publish_package(Name, Version, Manifest, BeamArchive, Signature, PublicKey)

 Publish a package with pre-computed signature

 search_packages(Pattern)

 Search packages by pattern

 start_link(Config)

 Start the registry server

 verify_package(ManifestBin, BeamArchive, Signature, PublicKey)

 Verify package signature

 Functions

 fetch_package(Name)

 -spec fetch_package(Name :: binary()) -> {ok, map()} | {error, not_found}.

Fetch the latest version of a package

 fetch_package(Name, Version)

 -spec fetch_package(Name :: binary(), Version :: binary()) -> {ok, map()} | {error, not_found}.

Fetch a specific version of a package

 get_package_info(Name)

 -spec get_package_info(Name :: binary()) ->
 {ok, #{versions := [binary()], latest := binary()}} | {error, not_found}.

Get detailed info about a package

 list_packages()

 -spec list_packages() -> [map()].

List all packages in the registry

 publish_package(Name, Version, Manifest, BeamArchive, PrivateKey)

 -spec publish_package(Name :: binary(),
 Version :: binary(),
 Manifest :: map(),
 BeamArchive :: binary(),
 PrivateKey :: binary()) ->
 {ok, #{package_name := binary(), version := binary(), checksum := binary()}} |
 {error, term()}.

Publish a package to the registry

 publish_package(Name, Version, Manifest, BeamArchive, Signature, PublicKey)

 -spec publish_package(Name :: binary(),
 Version :: binary(),
 Manifest :: map(),
 BeamArchive :: binary(),
 Signature :: binary(),
 PublicKey :: binary()) ->
 {ok, #{package_name := binary(), version := binary(), checksum := binary()}} |
 {error, term()}.

Publish a package with pre-computed signature

 search_packages(Pattern)

 -spec search_packages(Pattern :: binary()) -> [map()].

Search packages by pattern

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start the registry server

 verify_package(ManifestBin, BeamArchive, Signature, PublicKey)

 -spec verify_package(ManifestBin :: binary(),
 BeamArchive :: binary(),
 Signature :: binary(),
 PublicKey :: binary()) ->
 ok | {error, term()}.

Verify package signature

macula_registry_store

Macula Registry Store
Handles local package storage with ETS index and disk persistence: - Package metadata stored in ETS for fast lookups - BEAM archives stored on disk - TTL-based cleanup for stale entries - DHT integration for distributed discovery

 Summary

 Functions

 delete_package(Pid, PackageName, Version)

 Delete a package version

 get_latest_version(Pid, PackageName)

 Get the latest version of a package

 get_package(Pid, PackageName)

 Get a package by name (latest version)

 get_package(Pid, PackageName, Version)

 Get a package by name and version

 get_versions(Pid, PackageName)

 Get all versions of a package

 list_packages(Pid)

 List all packages

 package_exists(Pid, PackageName, Version)

 Check if a package version exists

 prune_expired(Pid)

 Remove expired packages

 search_packages(Pid, Pattern)

 Search packages by pattern

 start_link(Config)

 Start the registry store

 store_package(Pid, PackageData)

 Store a package in the registry

 Functions

 delete_package(Pid, PackageName, Version)

 -spec delete_package(pid(), binary(), binary()) -> ok | {error, not_found}.

Delete a package version

 get_latest_version(Pid, PackageName)

 -spec get_latest_version(pid(), binary()) -> {ok, binary()} | {error, not_found}.

Get the latest version of a package

 get_package(Pid, PackageName)

 -spec get_package(pid(), binary()) -> {ok, map()} | {error, not_found}.

Get a package by name (latest version)

 get_package(Pid, PackageName, Version)

 -spec get_package(pid(), binary(), binary()) -> {ok, map()} | {error, not_found}.

Get a package by name and version

 get_versions(Pid, PackageName)

 -spec get_versions(pid(), binary()) -> [binary()].

Get all versions of a package

 list_packages(Pid)

 -spec list_packages(pid()) -> [map()].

List all packages

 package_exists(Pid, PackageName, Version)

 -spec package_exists(pid(), binary(), binary()) -> boolean().

Check if a package version exists

 prune_expired(Pid)

 -spec prune_expired(pid()) -> {ok, non_neg_integer()}.

Remove expired packages

 search_packages(Pid, Pattern)

 -spec search_packages(pid(), binary()) -> [map()].

Search packages by pattern

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start the registry store

 store_package(Pid, PackageData)

 -spec store_package(pid(), map()) -> {ok, binary()} | {error, term()}.

Store a package in the registry

macula_registry_system

Macula Registry System Supervisor
Top-level supervisor for the registry subsystem. Manages: - Registry store (local package storage) - Registry server (publish/fetch API) - Cluster controller (app lifecycle management) - App monitor (runtime defense)
This module is a supervisor ONLY - no business logic.

 Summary

 Functions

 get_controller_pid()

 Get the cluster controller PID

 get_monitor_pid()

 Get the app monitor PID

 get_server_pid()

 Get the registry server PID

 get_store_pid()

 Get the registry store PID

 is_enabled()

 Check if registry system is enabled

 start_link(Config)

 Start the registry system supervisor

 Functions

 get_controller_pid()

 -spec get_controller_pid() -> {ok, pid()} | {error, not_found}.

Get the cluster controller PID

 get_monitor_pid()

 -spec get_monitor_pid() -> {ok, pid()} | {error, not_found}.

Get the app monitor PID

 get_server_pid()

 -spec get_server_pid() -> {ok, pid()} | {error, not_found}.

Get the registry server PID

 get_store_pid()

 -spec get_store_pid() -> {ok, pid()} | {error, not_found}.

Get the registry store PID

 is_enabled()

 -spec is_enabled() -> boolean().

Check if registry system is enabled

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

Start the registry system supervisor

macula_registry_verify

Macula Registry Signature Verification
Provides Ed25519 digital signature operations for package verification: - Keypair generation - Package signing - Signature verification - Public key validation
All functions are stateless and can be called directly.

 Summary

 Functions

 compute_checksum(Data)

 Compute SHA-256 checksum of data

 decode_public_key(HexKey)

 Decode hex-encoded public key back to binary

 encode_public_key(PublicKey)

 Encode public key as hex string for display/storage

 generate_keypair()

 Generate a new Ed25519 keypair Returns {PublicKey, PrivateKey} as raw binaries

 sign_data(Data, PrivateKey)

 Sign arbitrary data with Ed25519 private key

 sign_package(ManifestBin, BeamArchive, PrivateKey)

 Sign package data (manifest + archive) The signature covers the SHA-256 hash of (manifest_binary ++ beam_archive)

 validate_private_key(PrivateKey)

 Validate that a binary is a valid Ed25519 private key

 validate_public_key(PublicKey)

 Validate that a binary is a valid Ed25519 public key

 verify_package(ManifestBin, BeamArchive, Signature, PublicKey)

 Verify package signature Reconstructs the signed data from manifest and archive, then verifies

 verify_signature(Data, Signature, PublicKey)

 Verify a signature against data and public key

 Functions

 compute_checksum(Data)

 -spec compute_checksum(Data :: binary()) -> binary().

Compute SHA-256 checksum of data

 decode_public_key(HexKey)

 -spec decode_public_key(HexKey :: binary()) -> {ok, binary()} | {error, invalid_format}.

Decode hex-encoded public key back to binary

 encode_public_key(PublicKey)

 -spec encode_public_key(PublicKey :: binary()) -> binary().

Encode public key as hex string for display/storage

 generate_keypair()

 -spec generate_keypair() -> {PublicKey :: binary(), PrivateKey :: binary()}.

Generate a new Ed25519 keypair Returns {PublicKey, PrivateKey} as raw binaries

 sign_data(Data, PrivateKey)

 -spec sign_data(Data :: binary(), PrivateKey :: binary()) -> Signature :: binary().

Sign arbitrary data with Ed25519 private key

 sign_package(ManifestBin, BeamArchive, PrivateKey)

 -spec sign_package(ManifestBin :: binary(), BeamArchive :: binary(), PrivateKey :: binary()) ->
 {ok, Signature :: binary()} | {error, term()}.

Sign package data (manifest + archive) The signature covers the SHA-256 hash of (manifest_binary ++ beam_archive)

 validate_private_key(PrivateKey)

 -spec validate_private_key(PrivateKey :: binary()) -> ok | {error, invalid_key}.

Validate that a binary is a valid Ed25519 private key

 validate_public_key(PublicKey)

 -spec validate_public_key(PublicKey :: binary()) -> ok | {error, invalid_key}.

Validate that a binary is a valid Ed25519 public key

 verify_package(ManifestBin, BeamArchive, Signature, PublicKey)

 -spec verify_package(ManifestBin :: binary(),
 BeamArchive :: binary(),
 Signature :: binary(),
 PublicKey :: binary()) ->
 ok | {error, term()}.

Verify package signature Reconstructs the signed data from manifest and archive, then verifies

 verify_signature(Data, Signature, PublicKey)

 -spec verify_signature(Data :: binary(), Signature :: binary(), PublicKey :: binary()) ->
 ok | {error, invalid_signature}.

Verify a signature against data and public key

macula_relay_node

Peer Relay Node.
Provides relay functionality for peers that cannot establish direct connections due to NAT restrictions. A relay node:
- Accepts connections from peers behind restrictive NATs - Forwards traffic between connected peers - Manages relay sessions with bandwidth limits - Auto-registers with relay registry when capable
Relay Protocol: 1. Peer A connects to relay with RELAY_REQUEST(target_id) 2. Relay checks if target is reachable and accepts 3. Relay establishes/reuses connection to target 4. Relay forwards bidirectional traffic 5. Either peer can close the relay session
Resource Limits: - Max concurrent relay sessions (default: 100) - Per-session bandwidth limit (default: 1 MB/s) - Session timeout (default: 30 minutes)

 Summary

 Types

 relay_session/0

 relay_stats/0

 Functions

 close_relay(SessionId)

 Close a relay session.

 disable()

 Disable relay functionality.

 enable()

 Enable relay functionality on this node.

 enable(Opts)

 Enable relay with options. Options: node_id - This node's ID endpoint - This node's endpoint for relay registry capacity - Max concurrent sessions

 get_sessions()

 Get active relay sessions.

 get_stats()

 Get relay statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_enabled()

 Check if relay is enabled.

 request_relay(InitiatorId, TargetId)

 Request a relay session to target. Returns session ID on success.

 start_link(Opts)

 Start the relay node server.

 terminate(Reason, State)

 Types

 relay_session/0

 -type relay_session() ::
 #{session_id := binary(),
 initiator_id := binary(),
 target_id := binary(),
 initiator_conn => term(),
 target_conn => term(),
 started_at := integer(),
 bytes_relayed := non_neg_integer(),
 last_activity := integer()}.

 relay_stats/0

 -type relay_stats() ::
 #{enabled := boolean(),
 max_sessions := pos_integer(),
 active_sessions := non_neg_integer(),
 total_bytes_relayed := non_neg_integer(),
 total_sessions_created := non_neg_integer()}.

 Functions

 close_relay(SessionId)

 -spec close_relay(binary()) -> ok.

Close a relay session.

 disable()

 -spec disable() -> ok.

Disable relay functionality.

 enable()

 -spec enable() -> ok | {error, term()}.

Enable relay functionality on this node.

 enable(Opts)

 -spec enable(map()) -> ok | {error, term()}.

Enable relay with options. Options: node_id - This node's ID endpoint - This node's endpoint for relay registry capacity - Max concurrent sessions

 get_sessions()

 -spec get_sessions() -> [relay_session()].

Get active relay sessions.

 get_stats()

 -spec get_stats() -> relay_stats().

Get relay statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_enabled()

 -spec is_enabled() -> boolean().

Check if relay is enabled.

 request_relay(InitiatorId, TargetId)

 -spec request_relay(binary(), binary()) -> {ok, binary()} | {error, term()}.

Request a relay session to target. Returns session ID on success.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the relay node server.

 terminate(Reason, State)

macula_relay_registry

Distributed Relay Registry.
Tracks peers that can serve as relay nodes for NAT traversal. Peers with public IPs or NATs that allow incoming connections can register as relay-capable.
Relay Selection Criteria: - Peer must have public IP or full-cone NAT - Lower latency to requesting peer preferred - Load balancing across available relays - Geographic proximity (via RTT estimation)
Registry Storage: - Local ETS for fast lookup - DHT for distributed discovery - TTL-based cleanup for stale entries
Usage: register(NodeId, Endpoint) to register as relay-capable, find_relay(TargetNodeId) to find best relay for a target.

 Summary

 Types

 find_opts/0

 relay_info/0

 Functions

 find_relay(TargetNodeId)

 Find best relay for connecting to a target.

 find_relay(TargetNodeId, Opts)

 Find relay with options.

 get_relay_count()

 Get count of available relays.

 get_relays()

 Get all registered relays.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_relay(NodeId)

 Check if a node is registered as relay.

 register(NodeId, Endpoint)

 Register current node as relay-capable.

 register(NodeId, Endpoint, Opts)

 Register as relay with options. Options: capacity - Maximum concurrent relay connections (default: 100)

 start_link(Opts)

 Start the relay registry server.

 terminate(Reason, State)

 unregister(NodeId)

 Unregister as relay.

 Types

 find_opts/0

 -type find_opts() ::
 #{max_results => pos_integer(), exclude => [binary()], max_latency_ms => non_neg_integer()}.

 relay_info/0

 -type relay_info() ::
 #{node_id := binary(),
 endpoint := {binary() | string(), inet:port_number()},
 capacity := non_neg_integer(),
 current_load := non_neg_integer(),
 latency_ms => non_neg_integer(),
 registered_at := integer(),
 expires_at := integer()}.

 Functions

 find_relay(TargetNodeId)

 -spec find_relay(binary()) -> {ok, relay_info()} | {error, no_relays_available}.

Find best relay for connecting to a target.

 find_relay(TargetNodeId, Opts)

 -spec find_relay(binary(), find_opts()) -> {ok, relay_info()} | {error, no_relays_available}.

Find relay with options.

 get_relay_count()

 -spec get_relay_count() -> non_neg_integer().

Get count of available relays.

 get_relays()

 -spec get_relays() -> [relay_info()].

Get all registered relays.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_relay(NodeId)

 -spec is_relay(binary()) -> boolean().

Check if a node is registered as relay.

 register(NodeId, Endpoint)

 -spec register(binary(), {binary() | string(), inet:port_number()}) -> ok | {error, term()}.

Register current node as relay-capable.

 register(NodeId, Endpoint, Opts)

 -spec register(binary(), {binary() | string(), inet:port_number()}, map()) -> ok | {error, term()}.

Register as relay with options. Options: capacity - Maximum concurrent relay connections (default: 100)

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the relay registry server.

 terminate(Reason, State)

 unregister(NodeId)

 -spec unregister(binary()) -> ok.

Unregister as relay.

macula_root

Macula Application Root Supervisor.
This is the top-level supervisor for the Macula application. It manages all Macula subsystems in an always-on architecture.
Supervision Hierarchy (v0.16.0+):
 macula_root (this module - application root)
 ├── macula_routing_server (core DHT infrastructure - always on)
 ├── macula_nat_system (NAT traversal - always on)
 │ ├── macula_nat_detector
 │ ├── macula_hole_punch
 │ ├── macula_relay_registry
 │ └── macula_connection_upgrade
 ├── macula_bootstrap_system (bootstrap services - always on)
 │ ├── macula_bootstrap_server
 │ ├── macula_bootstrap_registry
 │ └── macula_bootstrap_health
 ├── macula_gateway_system (gateway services - always on)
 │ ├── macula_gateway_health
 │ ├── macula_gateway_diagnostics
 │ ├── macula_gateway_quic_server
 │ ├── macula_gateway
 │ └── macula_gateway_workers_sup
 ├── macula_bridge_system (hierarchical mesh bridging - optional)
 │ ├── macula_bridge_node (parent mesh connection)
 │ ├── macula_bridge_mesh (peer bridge mesh)
 │ └── macula_bridge_cache (parent query results cache)
 ├── macula_peers_sup (dynamic peer connections - always on)
 ├── macula_peer_discovery (DHT-based P2P mesh - always on)
 ├── macula_platform_system (distributed coordination - always on)
 │ └── macula_crdt (LWW-Register, OR-Set, G-Counter, PN-Counter)
 └── macula_registry_system (package distribution - always on)
 ├── macula_registry_store (ETS + disk storage)
 ├── macula_registry_server (publish/fetch API)
 ├── macula_cluster_controller (app lifecycle)
 └── macula_app_monitor (runtime defense)

Architecture Philosophy (v0.8.5): - All nodes have ALL capabilities (no mode selection) - Zero configuration required (TLS auto-generated) - Simplified deployment (every node is bootstrap + gateway + peer) - True P2P mesh (nodes connect on-demand based on capability discovery)
Naming Convention (v0.7.10+): - _root: Application root supervisor (one per application) - _system: Subsystem root supervisors (gateway, peer, bootstrap, etc.) - _sup: Worker supervisors (workers_sup, peers_sup)

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

macula_routing_bucket

K-bucket for Kademlia routing table. Stores up to k nodes with LRU eviction policy.

 Summary

 Types

 bucket/0

 node_info/0

 Functions

 add_node(Bucket, NodeInfo)

 Add a node to the bucket. If node exists, move to tail (most recent). If bucket full, return {error, bucket_full}.

 capacity(_)

 Get bucket capacity.

 find_closest(_, Target, N)

 Find n closest nodes to target (sorted by XOR distance).

 find_node(_, NodeId)

 Find a node by ID.

 get_nodes(_)

 Get all nodes in the bucket (ordered: oldest first).

 has_node(_, NodeId)

 Check if bucket contains node.

 new(Capacity)

 Create a new bucket with capacity k.

 remove_node(Bucket, NodeId)

 Remove a node from the bucket.

 size(_)

 Get number of nodes in bucket.

 update_timestamp(Bucket, NodeId)

 Update node's last_seen timestamp (moves to tail).

 Types

 bucket/0

 -type bucket() :: #{capacity := pos_integer(), nodes := [node_info()]}.

 node_info/0

 -type node_info() ::
 #{node_id := binary(),
 address := {inet:ip_address(), inet:port_number()},
 last_seen => integer()}.

 Functions

 add_node(Bucket, NodeInfo)

 -spec add_node(bucket(), node_info()) -> bucket() | {error, bucket_full}.

Add a node to the bucket. If node exists, move to tail (most recent). If bucket full, return {error, bucket_full}.

 capacity(_)

 -spec capacity(bucket()) -> pos_integer().

Get bucket capacity.

 find_closest(_, Target, N)

 -spec find_closest(bucket(), binary(), pos_integer()) -> [node_info()].

Find n closest nodes to target (sorted by XOR distance).

 find_node(_, NodeId)

 -spec find_node(bucket(), binary()) -> {ok, node_info()} | not_found.

Find a node by ID.

 get_nodes(_)

 -spec get_nodes(bucket()) -> [node_info()].

Get all nodes in the bucket (ordered: oldest first).

 has_node(_, NodeId)

 -spec has_node(bucket(), binary()) -> boolean().

Check if bucket contains node.

 new(Capacity)

 -spec new(pos_integer()) -> bucket().

Create a new bucket with capacity k.

 remove_node(Bucket, NodeId)

 -spec remove_node(bucket(), binary()) -> bucket().

Remove a node from the bucket.

 size(_)

 -spec size(bucket()) -> non_neg_integer().

Get number of nodes in bucket.

 update_timestamp(Bucket, NodeId)

 -spec update_timestamp(bucket(), binary()) -> bucket().

Update node's last_seen timestamp (moves to tail).

macula_routing_dht

Core DHT algorithms for Kademlia routing. Implements iterative lookup, store, and find operations. Pure functions - no GenServer, designed to be called by macula_routing_server.

 Summary

 Types

 query_fn/0

 store_fn/0

 Functions

 delete(Key)

 Delete a key from the DHT. Delegates to macula_routing_server if running.

 find(Key)

 Find a value in the DHT. Delegates to macula_routing_server if running.

 find_value(RoutingTable, Key, K, QueryFn)

 Find value in DHT. Returns {ok, Value} if found, {nodes, [NodeInfo]} if not found.

 iterative_find_node(RoutingTable, Target, K, QueryFn)

 Iterative lookup to find k closest nodes to target. Uses alpha concurrent queries (default: 3).

 notify_delete(Key)

 Notify subscribers about a DHT delete event. Called by macula_routing_server when a key is deleted.

 notify_store(Key, Value)

 Notify subscribers about a DHT store event. Called by macula_routing_server when a key is stored.

 select_alpha(Closest, Queried, Alpha)

 Select up to alpha unqueried nodes from closest set.

 store(Key, Value)

 Store a key-value pair in the DHT. Delegates to macula_routing_server if running.

 store_value(RoutingTable, Key, Value, K, QueryFn, StoreFn)

 Store value at k closest nodes to key.

 subscribe(Prefix, Pid)

 Subscribe to DHT events matching a key prefix. Subscribes the given Pid to receive events when keys with the given prefix are stored or deleted. Uses gproc property-based subscriptions.

 update_closest(CurrentClosest, NewNodes, Target, K)

 Update closest set with new nodes, maintaining k closest and removing duplicates.

 Types

 query_fn/0

 -type query_fn() ::
 fun((macula_routing_bucket:node_info(), binary()) ->
 {ok, [macula_routing_bucket:node_info()]} |
 {value, term()} |
 {nodes, [macula_routing_bucket:node_info()]} |
 {error, term()}).

 store_fn/0

 -type store_fn() :: fun((macula_routing_bucket:node_info(), binary(), term()) -> ok | {error, term()}).

 Functions

 delete(Key)

 -spec delete(binary()) -> ok | {error, term()}.

Delete a key from the DHT. Delegates to macula_routing_server if running.

 find(Key)

 -spec find(binary()) -> {ok, binary()} | {error, not_found | term()}.

Find a value in the DHT. Delegates to macula_routing_server if running.

 find_value(RoutingTable, Key, K, QueryFn)

 -spec find_value(macula_routing_table:routing_table(), binary(), pos_integer(), query_fn()) ->
 {ok, term()} | {nodes, [macula_routing_bucket:node_info()]}.

Find value in DHT. Returns {ok, Value} if found, {nodes, [NodeInfo]} if not found.

 iterative_find_node(RoutingTable, Target, K, QueryFn)

 -spec iterative_find_node(macula_routing_table:routing_table(), binary(), pos_integer(), query_fn()) ->
 {ok, [macula_routing_bucket:node_info()]}.

Iterative lookup to find k closest nodes to target. Uses alpha concurrent queries (default: 3).

 notify_delete(Key)

 -spec notify_delete(binary()) -> ok.

Notify subscribers about a DHT delete event. Called by macula_routing_server when a key is deleted.

 notify_store(Key, Value)

 -spec notify_store(binary(), term()) -> ok.

Notify subscribers about a DHT store event. Called by macula_routing_server when a key is stored.

 select_alpha(Closest, Queried, Alpha)

 -spec select_alpha([macula_routing_bucket:node_info()], [binary()], pos_integer()) ->
 [macula_routing_bucket:node_info()].

Select up to alpha unqueried nodes from closest set.

 store(Key, Value)

 -spec store(binary(), binary()) -> ok | {error, term()}.

Store a key-value pair in the DHT. Delegates to macula_routing_server if running.

 store_value(RoutingTable, Key, Value, K, QueryFn, StoreFn)

 -spec store_value(macula_routing_table:routing_table(),
 binary(),
 term(),
 pos_integer(),
 query_fn(),
 store_fn()) ->
 ok.

Store value at k closest nodes to key.

 subscribe(Prefix, Pid)

 -spec subscribe(binary(), pid()) -> ok.

Subscribe to DHT events matching a key prefix. Subscribes the given Pid to receive events when keys with the given prefix are stored or deleted. Uses gproc property-based subscriptions.
Events sent to the subscriber: {dht_stored, Key, Value} - When a key is stored {dht_deleted, Key} - When a key is deleted
To unsubscribe, the subscriber process should call: gproc:unreg({p, l, {dht_prefix_subscription, Prefix}})

 update_closest(CurrentClosest, NewNodes, Target, K)

 -spec update_closest([macula_routing_bucket:node_info()],
 [macula_routing_bucket:node_info()],
 binary(),
 pos_integer()) ->
 [macula_routing_bucket:node_info()].

Update closest set with new nodes, maintaining k closest and removing duplicates.

macula_routing_nodeid

Node ID utilities for Kademlia DHT. 256-bit node identifiers with XOR distance metric.

 Summary

 Types

 node_id/0

 32 bytes (256 bits)

 Functions

 bucket_index(LocalNodeId, TargetNodeId)

 Calculate bucket index for a node relative to local node. Returns leading zero count of XOR distance (0..255). Special case: distance 0 (same node) returns 256. Normalizes inputs to 32 bytes if needed.

 closer_to(Target, NodeA, NodeB)

 Check if NodeA is closer to Target than NodeB. Normalizes inputs to 32 bytes if needed.

 compare(Target, NodeA, NodeB)

 Compare distances of NodeA and NodeB to Target. Returns: less (A closer), equal (same distance), greater (B closer). Normalizes inputs to 32 bytes if needed.

 distance(NodeId1, NodeId2)

 Calculate XOR distance between two node IDs. Normalizes inputs to 32 bytes if needed.

 from_binary(Binary)

 Create node ID from binary (validates size).

 from_hex(HexString)

 Parse node ID from hex string. Crashes on invalid hex or wrong length - exposes bugs in validation logic.

 generate()

 Generate a random 256-bit node ID.

 leading_zeros(Binary)

 Count leading zero bits in binary.

 normalize(Binary)

 Normalize any binary to a 32-byte node ID. If already 32 bytes, returns as-is. Otherwise, hashes with SHA-256.

 to_hex(NodeId)

 Convert node ID to hex string.

 Types

 node_id/0

 -type node_id() :: binary().

32 bytes (256 bits)

 Functions

 bucket_index(LocalNodeId, TargetNodeId)

 -spec bucket_index(binary(), binary()) -> 0..256.

Calculate bucket index for a node relative to local node. Returns leading zero count of XOR distance (0..255). Special case: distance 0 (same node) returns 256. Normalizes inputs to 32 bytes if needed.

 closer_to(Target, NodeA, NodeB)

 -spec closer_to(binary(), binary(), binary()) -> boolean().

Check if NodeA is closer to Target than NodeB. Normalizes inputs to 32 bytes if needed.

 compare(Target, NodeA, NodeB)

 -spec compare(binary(), binary(), binary()) -> less | equal | greater.

Compare distances of NodeA and NodeB to Target. Returns: less (A closer), equal (same distance), greater (B closer). Normalizes inputs to 32 bytes if needed.

 distance(NodeId1, NodeId2)

 -spec distance(binary(), binary()) -> binary().

Calculate XOR distance between two node IDs. Normalizes inputs to 32 bytes if needed.

 from_binary(Binary)

 -spec from_binary(binary()) -> {ok, node_id()} | {error, invalid_size}.

Create node ID from binary (validates size).

 from_hex(HexString)

 -spec from_hex(string()) -> node_id().

Parse node ID from hex string. Crashes on invalid hex or wrong length - exposes bugs in validation logic.

 generate()

 -spec generate() -> node_id().

Generate a random 256-bit node ID.

 leading_zeros(Binary)

 -spec leading_zeros(binary()) -> 0..256.

Count leading zero bits in binary.

 normalize(Binary)

 -spec normalize(binary()) -> node_id().

Normalize any binary to a 32-byte node ID. If already 32 bytes, returns as-is. Otherwise, hashes with SHA-256.

 to_hex(NodeId)

 -spec to_hex(node_id()) -> string().

Convert node ID to hex string.

macula_routing_protocol

DHT protocol message encoding/decoding. Maps DHT operations to/from message format.

 Summary

 Types

 message/0

 Functions

 decode_find_node(_)

 Decode FIND_NODE request.

 decode_find_node_reply(_)

 Decode FIND_NODE reply.

 decode_find_value(_)

 Decode FIND_VALUE request.

 decode_find_value_reply(_)

 Decode FIND_VALUE reply.

 decode_node_info(_)

 Decode node info.

 decode_store(_)

 Decode STORE request.

 encode_find_node(Target)

 Encode FIND_NODE request.

 encode_find_node_reply(Nodes)

 Encode FIND_NODE reply.

 encode_find_value(Key)

 Encode FIND_VALUE request.

 encode_find_value_reply(_)

 Encode FIND_VALUE reply.

 encode_node_info(NodeInfo)

 Encode node info (for transmission).

 encode_store(Key, Value)

 Encode STORE request.

 is_find_node(_)

 Check if message is FIND_NODE.

 is_find_value(_)

 Check if message is FIND_VALUE.

 is_store(_)

 Check if message is STORE.

 Types

 message/0

 -type message() :: map().

 Functions

 decode_find_node(_)

 -spec decode_find_node(message()) -> {ok, binary()} | {error, invalid_message}.

Decode FIND_NODE request.

 decode_find_node_reply(_)

 -spec decode_find_node_reply(message()) ->
 {ok, [macula_routing_bucket:node_info()]} | {error, invalid_message}.

Decode FIND_NODE reply.

 decode_find_value(_)

 -spec decode_find_value(message()) -> {ok, binary()} | {error, invalid_message}.

Decode FIND_VALUE request.

 decode_find_value_reply(_)

 -spec decode_find_value_reply(message()) ->
 {ok, {value, term()} | {nodes, [macula_routing_bucket:node_info()]}} |
 {error, invalid_message}.

Decode FIND_VALUE reply.

 decode_node_info(_)

 -spec decode_node_info(map()) -> {ok, macula_routing_bucket:node_info()} | {error, invalid_node_info}.

Decode node info.

 decode_store(_)

 -spec decode_store(message()) -> {ok, binary(), term()} | {error, invalid_message}.

Decode STORE request.

 encode_find_node(Target)

 -spec encode_find_node(binary()) -> message().

Encode FIND_NODE request.

 encode_find_node_reply(Nodes)

 -spec encode_find_node_reply([macula_routing_bucket:node_info()]) -> message().

Encode FIND_NODE reply.

 encode_find_value(Key)

 -spec encode_find_value(binary()) -> message().

Encode FIND_VALUE request.

 encode_find_value_reply(_)

 -spec encode_find_value_reply({value, term()} | {nodes, [macula_routing_bucket:node_info()]}) ->
 message().

Encode FIND_VALUE reply.

 encode_node_info(NodeInfo)

 -spec encode_node_info(macula_routing_bucket:node_info()) -> map().

Encode node info (for transmission).

 encode_store(Key, Value)

 -spec encode_store(binary(), term()) -> message().

Encode STORE request.

 is_find_node(_)

 -spec is_find_node(message()) -> boolean().

Check if message is FIND_NODE.

 is_find_value(_)

 -spec is_find_value(message()) -> boolean().

Check if message is FIND_VALUE.

 is_store(_)

 -spec is_store(message()) -> boolean().

Check if message is STORE.

macula_routing_server

GenServer managing Kademlia DHT routing table and operations. Integrates all routing components: table, DHT algorithms, protocol.

 Summary

 Functions

 add_node(Pid, NodeInfo)

 Add node to routing table (async - does not block caller).

 delete_local(Pid, Key, NodeId)

 Delete value from local storage.

 find_closest(Pid, Target, K)

 Find k closest nodes to target.

 find_value(Pid, Key, K)

 Find value in DHT using iterative lookup. Returns {ok, Value} if found, {nodes, Nodes} if not found.

 get_all_keys(Pid)

 Get all keys from local storage.

 get_local(Pid, Key)

 Get value from local storage.

 get_routing_table(Pid)

 Get routing table snapshot.

 handle_message(Pid, Message)

 Handle incoming DHT message and return reply.

 handle_message_async(Pid, Message)

 Handle incoming DHT message asynchronously (fire-and-forget). Use for STORE messages where no reply is needed.

 size(Pid)

 Get number of nodes in routing table.

 start_link(LocalNodeId, Config)

 Start routing server with registered name macula_routing_server.

 store(Pid, Key, Value)

 Store value in DHT by propagating to k closest nodes. Stores locally first, then sends STORE messages to k closest peers.

 store_local(Pid, Key, Value)

 Store value locally.

 Functions

 add_node(Pid, NodeInfo)

 -spec add_node(pid(), macula_routing_bucket:node_info()) -> ok.

Add node to routing table (async - does not block caller).

 delete_local(Pid, Key, NodeId)

 -spec delete_local(pid(), binary(), binary()) -> ok.

Delete value from local storage.

 find_closest(Pid, Target, K)

 -spec find_closest(pid(), binary(), pos_integer()) -> [macula_routing_bucket:node_info()].

Find k closest nodes to target.

 find_value(Pid, Key, K)

 -spec find_value(pid(), binary(), pos_integer()) ->
 {ok, term()} | {nodes, [macula_routing_bucket:node_info()]} | {error, term()}.

Find value in DHT using iterative lookup. Returns {ok, Value} if found, {nodes, Nodes} if not found.

 get_all_keys(Pid)

 -spec get_all_keys(pid()) -> {ok, [binary()]} | {error, term()}.

Get all keys from local storage.

 get_local(Pid, Key)

 -spec get_local(pid(), binary()) -> {ok, term()} | not_found.

Get value from local storage.

 get_routing_table(Pid)

 -spec get_routing_table(pid()) -> macula_routing_table:routing_table().

Get routing table snapshot.

 handle_message(Pid, Message)

 -spec handle_message(pid(), map()) -> map().

Handle incoming DHT message and return reply.

 handle_message_async(Pid, Message)

 -spec handle_message_async(pid(), map()) -> ok.

Handle incoming DHT message asynchronously (fire-and-forget). Use for STORE messages where no reply is needed.

 size(Pid)

 -spec size(pid()) -> non_neg_integer().

Get number of nodes in routing table.

 start_link(LocalNodeId, Config)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start routing server with registered name macula_routing_server.

 store(Pid, Key, Value)

 -spec store(pid(), binary(), term()) -> ok.

Store value in DHT by propagating to k closest nodes. Stores locally first, then sends STORE messages to k closest peers.

 store_local(Pid, Key, Value)

 -spec store_local(pid(), binary(), term()) -> ok.

Store value locally.

macula_routing_table

Routing table for Kademlia DHT. Manages 256 k-buckets organized by XOR distance.

 Summary

 Types

 routing_table/0

 Functions

 add_node(Table, NodeInfo)

 Add a node to the routing table. Calculates bucket index and adds to appropriate bucket.

 bucket_size(Table, BucketIndex)

 Get size of a specific bucket.

 find_closest(_, Target, K)

 Find k closest nodes to target.

 get_all_nodes(_)

 Get all nodes from all buckets.

 get_bucket(_, BucketIndex)

 Get bucket by index.

 k(_)

 Get k (bucket capacity).

 local_node_id(_)

 Get local node ID.

 new(LocalNodeId, K)

 Create a new routing table.

 remove_node(Table, NodeId)

 Remove a node from the routing table.

 size(_)

 Get total number of nodes in routing table.

 update_timestamp(Table, NodeId)

 Update timestamp for a node (moves to tail in its bucket).

 Types

 routing_table/0

 -type routing_table() ::
 #{local_node_id := binary(),
 k := pos_integer(),
 buckets := #{0..255 => macula_routing_bucket:bucket()}}.

 Functions

 add_node(Table, NodeInfo)

 -spec add_node(routing_table(), macula_routing_bucket:node_info()) -> routing_table().

Add a node to the routing table. Calculates bucket index and adds to appropriate bucket.

 bucket_size(Table, BucketIndex)

 -spec bucket_size(routing_table(), 0..255) -> non_neg_integer().

Get size of a specific bucket.

 find_closest(_, Target, K)

 -spec find_closest(routing_table(), binary(), pos_integer()) -> [macula_routing_bucket:node_info()].

Find k closest nodes to target.

 get_all_nodes(_)

 -spec get_all_nodes(routing_table()) -> [macula_routing_bucket:node_info()].

Get all nodes from all buckets.

 get_bucket(_, BucketIndex)

 -spec get_bucket(routing_table(), 0..255) -> macula_routing_bucket:bucket().

Get bucket by index.

 k(_)

 -spec k(routing_table()) -> pos_integer().

Get k (bucket capacity).

 local_node_id(_)

 -spec local_node_id(routing_table()) -> binary().

Get local node ID.

 new(LocalNodeId, K)

 -spec new(binary(), pos_integer()) -> routing_table().

Create a new routing table.

 remove_node(Table, NodeId)

 -spec remove_node(routing_table(), binary()) -> routing_table().

Remove a node from the routing table.

 size(_)

 -spec size(routing_table()) -> non_neg_integer().

Get total number of nodes in routing table.

 update_timestamp(Table, NodeId)

 -spec update_timestamp(routing_table(), binary()) -> routing_table().

Update timestamp for a node (moves to tail in its bucket).

macula_rpc_async

Async RPC Module (NATS-style Request/Reply)
Handles asynchronous RPC operations with callback-based responses: - Callback management (fun callbacks and pid callbacks) - Request ID generation and tracking - Request message building for P2P delivery - Reply processing and callback invocation - Timeout handling for async requests
This module provides stateless helper functions used by macula_rpc_handler. The actual state (pending_requests map) remains in the handler.
Extracted from macula_rpc_handler.erl (Dec 2025) to improve testability and separation of concerns.

 Summary

 Types

 callback/0

 Functions

 build_request_message(RequestId, Procedure, EncodedArgs, FromNodeId, Realm)

 Build an RPC_REQUEST message for NATS-style async RPC. Includes from_endpoint so receiver can route reply back directly.

 calculate_rtt(SentAt)

 Calculate RTT from sent_at timestamp.

 extract_result(Msg)

 Extract result from RPC reply message. Returns {ok, DecodedValue} or {error, ErrorReason}.

 get_callback(Opts, CallerPid)

 Extract callback from options, defaulting to pid callback. If opts contains a callback function, use it. Otherwise send to caller pid.

 get_local_endpoint()

 Get local endpoint from environment variables. Used to include sender's endpoint in RPC requests so receivers can route replies back. Format: "hostname:port" (e.g., "fc01:4433" in Docker)

 invoke_callback(_, RequestId, Result)

 Invoke async callback with result. For function callbacks, spawns a process to avoid blocking. For pid callbacks, sends a message.

 Types

 callback/0

 -type callback() :: {fun_cb, fun((term()) -> any())} | {pid_cb, pid()}.

 Functions

 build_request_message(RequestId, Procedure, EncodedArgs, FromNodeId, Realm)

 -spec build_request_message(binary(), binary(), binary(), binary(), binary()) -> map().

Build an RPC_REQUEST message for NATS-style async RPC. Includes from_endpoint so receiver can route reply back directly.

 calculate_rtt(SentAt)

 -spec calculate_rtt(integer()) -> non_neg_integer().

Calculate RTT from sent_at timestamp.

 extract_result(Msg)

 -spec extract_result(map()) -> {ok, term()} | {error, term()}.

Extract result from RPC reply message. Returns {ok, DecodedValue} or {error, ErrorReason}.

 get_callback(Opts, CallerPid)

 -spec get_callback(map(), pid()) -> callback().

Extract callback from options, defaulting to pid callback. If opts contains a callback function, use it. Otherwise send to caller pid.

 get_local_endpoint()

 -spec get_local_endpoint() -> binary().

Get local endpoint from environment variables. Used to include sender's endpoint in RPC requests so receivers can route replies back. Format: "hostname:port" (e.g., "fc01:4433" in Docker)

 invoke_callback(_, RequestId, Result)

 -spec invoke_callback(callback(), binary(), term()) -> ok.

Invoke async callback with result. For function callbacks, spawns a process to avoid blocking. For pid callbacks, sends a message.

macula_rpc_cache

LRU cache for RPC procedure results. Caches results of idempotent procedures to avoid repeated execution. Wraps macula_cache with RPC-specific logic and TTL handling.

 Summary

 Types

 cache/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Uri, Args)

 Get entry from cache. Returns {ok, Result, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU). Automatically removes expired entries.

 invalidate(Cache, Uri, Args)

 Invalidate (remove) entry.

 is_expired(Cache, Uri, Args)

 Check if entry is expired.

 make_key(Uri, Args)

 Make cache key from URI and args. Uses hash of URI and args for consistent key generation.

 max_size(Cache)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Uri, Args, Result, TTL)

 Put entry in cache.

 put_with_timestamp(Cache, Uri, Args, Result, TTL, Timestamp)

 Put entry with custom timestamp (for testing).

 size(Cache)

 Get number of entries.

 Types

 cache/0

 -type cache() :: macula_cache:cache().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Uri, Args)

 -spec get(cache(), binary(), map()) -> {ok, term(), cache()} | not_found.

Get entry from cache. Returns {ok, Result, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU). Automatically removes expired entries.

 invalidate(Cache, Uri, Args)

 -spec invalidate(cache(), binary(), map()) -> cache().

Invalidate (remove) entry.

 is_expired(Cache, Uri, Args)

 -spec is_expired(cache(), binary(), map()) -> boolean().

Check if entry is expired.

 make_key(Uri, Args)

 -spec make_key(binary(), map()) -> binary().

Make cache key from URI and args. Uses hash of URI and args for consistent key generation.

 max_size(Cache)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Uri, Args, Result, TTL)

 -spec put(cache(), binary(), map(), term(), pos_integer()) -> cache().

Put entry in cache.

 put_with_timestamp(Cache, Uri, Args, Result, TTL, Timestamp)

 -spec put_with_timestamp(cache(), binary(), map(), term(), pos_integer(), integer()) -> cache().

Put entry with custom timestamp (for testing).

 size(Cache)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_rpc_dht

DHT integration for finding RPC service providers. Uses Kademlia DHT to publish and discover RPC registrations. Wraps macula_discovery with RPC-specific types.

 Summary

 Types

 address/0

 dht_lookup_fun/0

 dht_publish_fun/0

 dht_unpublish_fun/0

 node_id/0

 provider_info/0

 uri/0

 Functions

 announce(Uri, LocalNodeId, LocalAddress, Metadata, DhtPublishFun)

 Announce local registration to DHT.

 filter_available(Providers, TTL)

 Filter providers to only available ones (based on last_seen TTL).

 find_providers(Uri, DhtLookupFun)

 Find service providers for a URI via DHT.

 find_with_cache(Uri, Cache, DhtLookupFun)

 Find providers with cache (default TTL: 300 seconds).

 find_with_cache(Uri, Cache, DhtLookupFun, TTL)

 Find providers with cache and custom TTL.

 unannounce(Uri, LocalNodeId, DhtUnpublishFun)

 Remove local registration from DHT.

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 dht_lookup_fun/0

 -type dht_lookup_fun() :: fun((uri()) -> {ok, [provider_info()]} | {error, term()}).

 dht_publish_fun/0

 -type dht_publish_fun() :: fun((uri(), node_id(), address(), map()) -> ok | {error, term()}).

 dht_unpublish_fun/0

 -type dht_unpublish_fun() :: fun((uri(), node_id()) -> ok | {error, term()}).

 node_id/0

 -type node_id() :: binary().

 provider_info/0

 -type provider_info() ::
 #{node_id := node_id(), address := address(), metadata := map(), last_seen := integer()}.

 uri/0

 -type uri() :: binary().

 Functions

 announce(Uri, LocalNodeId, LocalAddress, Metadata, DhtPublishFun)

 -spec announce(uri(), node_id(), address(), map(), dht_publish_fun()) -> ok | {error, term()}.

Announce local registration to DHT.

 filter_available(Providers, TTL)

 -spec filter_available([provider_info()], pos_integer()) -> [provider_info()].

Filter providers to only available ones (based on last_seen TTL).

 find_providers(Uri, DhtLookupFun)

 -spec find_providers(uri(), dht_lookup_fun()) -> {ok, [provider_info()]} | {error, term()}.

Find service providers for a URI via DHT.

 find_with_cache(Uri, Cache, DhtLookupFun)

 -spec find_with_cache(uri(), macula_cache:cache(), dht_lookup_fun()) ->
 {ok, [provider_info()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find providers with cache (default TTL: 300 seconds).

 find_with_cache(Uri, Cache, DhtLookupFun, TTL)

 -spec find_with_cache(uri(), macula_cache:cache(), dht_lookup_fun(), pos_integer()) ->
 {ok, [provider_info()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find providers with cache and custom TTL.

 unannounce(Uri, LocalNodeId, DhtUnpublishFun)

 -spec unannounce(uri(), node_id(), dht_unpublish_fun()) -> ok | {error, term()}.

Remove local registration from DHT.

macula_rpc_executor

RPC call execution with timeout handling. Executes local handlers and remote calls via QUIC.

 Summary

 Types

 address/0

 handler_fn/0

 provider_info/0

 send_fun/0

 Functions

 execute_local(Handler, Args, Timeout)

 Execute local handler with timeout.

 execute_remote(Uri, Args, Provider, SendFun, Timeout)

 Execute remote call via QUIC with timeout.

 generate_call_id()

 Generate unique call ID (16-byte UUID).

 Types

 address/0

 -type address() :: macula_rpc_dht:address().

 handler_fn/0

 -type handler_fn() :: macula_rpc_registry:handler_fn().

 provider_info/0

 -type provider_info() :: macula_rpc_dht:provider_info().

 send_fun/0

 -type send_fun() :: fun((binary(), map(), address(), pos_integer()) -> {ok, term()} | {error, term()}).

 Functions

 execute_local(Handler, Args, Timeout)

 -spec execute_local(handler_fn(), map(), pos_integer()) -> {ok, term()} | {error, term()}.

Execute local handler with timeout.

 execute_remote(Uri, Args, Provider, SendFun, Timeout)

 -spec execute_remote(binary(), map(), provider_info(), send_fun(), pos_integer()) ->
 {ok, term()} | {error, term()}.

Execute remote call via QUIC with timeout.

 generate_call_id()

 -spec generate_call_id() -> binary().

Generate unique call ID (16-byte UUID).

macula_rpc_failover

RPC Failover Strategy Module
Encapsulates failover logic for RPC calls: - Determines if a call should be retried after failure - Manages provider exclusion list (failed providers) - Tracks attempt counts against max attempts - Provides retry decisions based on failure type
Extracted from macula_rpc_handler.erl (Dec 2025) to improve testability and separation of concerns.

 Summary

 Types

 failover_context/0

 failure_reason/0

 Functions

 can_retry(Context)

 Check if the call can be retried based on current context. Returns true if there are available providers and max attempts not exceeded.

 get_attempt_count(_)

 Get current attempt count.

 get_available_providers(_)

 Get list of providers that haven't been excluded. Filters out all previously failed providers.

 increment_attempt(Context)

 Increment the attempt counter. Call this before each retry attempt.

 mark_provider_failed(NodeId, Context)

 Mark a provider as failed and add to exclusion list. Returns updated context with provider added to excluded list.

 new_context(Procedure, Args, Opts, Providers)

 Create a new failover context for an RPC call. Used when initiating a call that might need failover. max_attempts is capped at provider count (can't try more providers than exist).

 should_failover(_, Context)

 Determine if failover should be attempted for a given failure reason. Some failures are not retryable (e.g., invalid procedure).

 Types

 failover_context/0

 -type failover_context() ::
 #{procedure := binary(),
 args := term(),
 opts := map(),
 providers := [map()],
 excluded := [binary()],
 attempt := pos_integer(),
 max_attempts := pos_integer(),
 tried_node_id => binary() | undefined}.

 failure_reason/0

 -type failure_reason() :: timeout | connection_error | provider_error | gateway_timeout.

 Functions

 can_retry(Context)

 -spec can_retry(failover_context()) -> boolean().

Check if the call can be retried based on current context. Returns true if there are available providers and max attempts not exceeded.

 get_attempt_count(_)

 -spec get_attempt_count(failover_context()) -> pos_integer().

Get current attempt count.

 get_available_providers(_)

 -spec get_available_providers(failover_context()) -> [map()].

Get list of providers that haven't been excluded. Filters out all previously failed providers.

 increment_attempt(Context)

 -spec increment_attempt(failover_context()) -> failover_context().

Increment the attempt counter. Call this before each retry attempt.

 mark_provider_failed(NodeId, Context)

 -spec mark_provider_failed(binary() | undefined, failover_context()) -> failover_context().

Mark a provider as failed and add to exclusion list. Returns updated context with provider added to excluded list.

 new_context(Procedure, Args, Opts, Providers)

 -spec new_context(binary(), term(), map(), [map()]) -> failover_context().

Create a new failover context for an RPC call. Used when initiating a call that might need failover. max_attempts is capped at provider count (can't try more providers than exist).

 should_failover(_, Context)

 -spec should_failover(failure_reason(), failover_context()) -> boolean().

Determine if failover should be attempted for a given failure reason. Some failures are not retryable (e.g., invalid procedure).

macula_rpc_handler

RPC handler GenServer - manages RPC calls, replies, and failover.
Responsibilities: - Execute RPC calls (local check first, then DHT discovery) - Handle incoming RPC replies from network - Manage call timeouts with automatic failover - Track pending calls with call IDs - Monitor caller processes for automatic cleanup - Provider selection strategies (random, round-robin, etc.)
Memory Safety: - Monitors caller processes to prevent memory leaks - Cleans up immediately when caller dies (no waiting for timeout) - Cancels timers and removes pending entries on cleanup
Extracted from macula_connection.erl (Phase 5)

 Summary

 Functions

 call(Pid, Procedure, Args)

 Make an RPC call with default options.

 call(Pid, Procedure, Args, Opts)

 Make an RPC call with options.

 call_to(Pid, TargetNodeId, Procedure, Args, Opts)

 Make a synchronous RPC call to a specific target node.

 get_service_interests(Pid)

 Get the list of configured service interests.

 get_service_registry(Pid)

 Get service registry (for local handler lookup by gateway).

 handle_async_reply(Pid, Msg)

 Handle incoming async RPC reply (called by message router).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_find_value_reply(Pid, Msg)

 Handle FIND_VALUE_REPLY from DHT query

 handle_incoming_reply(Pid, Msg)

 handle_info(Info, State)

 init(Opts)

 prefetch_services(Pid, Services)

 Dynamically prefetch services for pull-based discovery. This allows adding service interests at runtime (after init). Services are looked up via DHT and cached for faster first requests.

 register_handler(Service, Handler)

 register_local_procedure(Pid, Procedure, Handler)

 Register a local procedure handler (no DHT advertisement).

 request(Pid, Procedure, Args, Opts)

 Send async RPC request with callback (NATS-style).

 request_to(Pid, TargetNodeId, Procedure, Args, Opts)

 Send async RPC request to specific node (skip DHT lookup).

 start_link(Opts)

 terminate(Reason, State)

 unregister_handler(Service)

 Functions

 call(Pid, Procedure, Args)

 -spec call(pid(), binary() | list() | atom(), term()) -> {ok, term()} | {error, term()}.

Make an RPC call with default options.

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary() | list() | atom(), term(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call with options.

 call_to(Pid, TargetNodeId, Procedure, Args, Opts)

 -spec call_to(pid(), binary(), binary() | list() | atom(), term(), map()) ->
 {ok, term()} | {error, term()}.

Make a synchronous RPC call to a specific target node.
Unlike call/4 which discovers providers via DHT, this function sends the RPC directly to the specified target node. The message is still routed via DHT infrastructure (for NAT traversal and relay), but targets a specific node rather than discovering one.
Use this when you already know the target node's ID (e.g., from a previous DHT discovery, artifact publisher node, or direct advertisement).

 get_service_interests(Pid)

 -spec get_service_interests(pid()) -> [binary()].

Get the list of configured service interests.

 get_service_registry(Pid)

 -spec get_service_registry(pid()) -> macula_service_registry:registry().

Get service registry (for local handler lookup by gateway).

 handle_async_reply(Pid, Msg)

 -spec handle_async_reply(pid(), map()) -> ok.

Handle incoming async RPC reply (called by message router).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_find_value_reply(Pid, Msg)

 -spec handle_find_value_reply(pid(), map()) -> ok.

Handle FIND_VALUE_REPLY from DHT query

 handle_incoming_reply(Pid, Msg)

 -spec handle_incoming_reply(pid(), map()) -> ok.

 handle_info(Info, State)

 init(Opts)

 prefetch_services(Pid, Services)

 -spec prefetch_services(pid(), [binary() | atom() | string()]) -> ok.

Dynamically prefetch services for pull-based discovery. This allows adding service interests at runtime (after init). Services are looked up via DHT and cached for faster first requests.

 register_handler(Service, Handler)

 -spec register_handler(binary() | list() | atom(), fun((term()) -> {ok, term()} | {error, term()})) ->
 {ok, reference()} | {error, term()}.

 register_local_procedure(Pid, Procedure, Handler)

 -spec register_local_procedure(pid(), binary(), fun((term()) -> {ok, term()} | {error, term()})) -> ok.

Register a local procedure handler (no DHT advertisement).
This registers the handler function in the service registry so this RPC handler can execute it locally when called. Unlike register_handler/2, this does NOT advertise to the DHT - it's for purely local services.

 request(Pid, Procedure, Args, Opts)

 -spec request(pid(), binary(), term(), map()) -> {ok, binary()} | {error, term()}.

Send async RPC request with callback (NATS-style).
This is the primary API for async RPC. The caller does not block. Response is delivered via callback function or process message.
Opts: - callback => fun((Result) -> any()) - Called with {ok, Result} | {error, Reason} - timeout => integer() - Milliseconds before timeout (default: 5000)
Returns {ok, RequestId} immediately, or {error, Reason} on send failure.

 request_to(Pid, TargetNodeId, Procedure, Args, Opts)

 -spec request_to(pid(), binary(), binary(), term(), map()) -> {ok, binary()} | {error, term()}.

Send async RPC request to specific node (skip DHT lookup).
Use this when you already know the target node's ID (e.g., from a previous DHT discovery or direct node advertisement).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unregister_handler(Service)

 -spec unregister_handler(binary() | list() | atom()) -> ok | {error, term()}.

macula_rpc_names

Name validation and utilities for RPC procedures. Uses reverse DNS notation: org.domain.service.procedure

 Summary

 Types

 name/0

 Functions

 matches(Name, Pattern)

 Check if name matches pattern. For now, only exact matching (no wildcards). Future: Could add wildcard patterns if needed.

 namespace(Name)

 Extract namespace (first segment).

 normalize(Name)

 Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 Count number of segments in name.

 validate(Name)

 Validate RPC procedure name syntax. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - No leading or trailing dots - No double dots - No wildcards allowed (unlike topics)

 Types

 name/0

 -type name() :: binary().

 Functions

 matches(Name, Pattern)

 -spec matches(name(), name()) -> boolean().

Check if name matches pattern. For now, only exact matching (no wildcards). Future: Could add wildcard patterns if needed.

 namespace(Name)

 -spec namespace(name()) -> binary().

Extract namespace (first segment).

 normalize(Name)

 -spec normalize(name()) -> name().

Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 -spec segment_count(name()) -> non_neg_integer().

Count number of segments in name.

 validate(Name)

 -spec validate(name()) -> ok | {error, invalid_name}.

Validate RPC procedure name syntax. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - No leading or trailing dots - No double dots - No wildcards allowed (unlike topics)

macula_rpc_registry

Local RPC procedure registration registry. Maps URIs to handler functions. Supports multiple handlers per URI (for load balancing).

 Summary

 Types

 handler_fn/0

 invocation_strategy/0

 registration/0

 registry/0

 Functions

 find(_, Uri)

 Find all registrations for a URI.

 find_handlers(_, Uri)

 Find all handlers for a URI.

 list_registrations(_)

 List all registrations.

 list_uris(_)

 List all unique URIs in registry.

 new()

 Create new empty registry with default strategy (round_robin).

 new(Strategy)

 Create new empty registry with custom strategy.

 register(Registry, Uri, Handler, Metadata)

 Register a procedure handler. Allows multiple handlers for the same URI (for load balancing).

 size(_)

 Get total number of registrations.

 unregister(Registry, Uri, Handler)

 Unregister a specific procedure handler. Only removes the exact handler function.

 Types

 handler_fn/0

 -type handler_fn() :: fun((map()) -> {ok, term()} | {error, term()}).

 invocation_strategy/0

 -type invocation_strategy() :: round_robin | random | local_first.

 registration/0

 -type registration() :: #{uri := binary(), handler := handler_fn(), metadata := map()}.

 registry/0

 -type registry() :: #{registrations := [registration()], strategy := invocation_strategy()}.

 Functions

 find(_, Uri)

 -spec find(registry(), binary()) -> [registration()].

Find all registrations for a URI.

 find_handlers(_, Uri)

 -spec find_handlers(registry(), binary()) -> {ok, [registration()]} | not_found.

Find all handlers for a URI.

 list_registrations(_)

 -spec list_registrations(registry()) -> [registration()].

List all registrations.

 list_uris(_)

 -spec list_uris(registry()) -> [binary()].

List all unique URIs in registry.

 new()

 -spec new() -> registry().

Create new empty registry with default strategy (round_robin).

 new(Strategy)

 -spec new(invocation_strategy()) -> registry().

Create new empty registry with custom strategy.

 register(Registry, Uri, Handler, Metadata)

 -spec register(registry(), binary(), handler_fn(), map()) -> registry().

Register a procedure handler. Allows multiple handlers for the same URI (for load balancing).

 size(_)

 -spec size(registry()) -> non_neg_integer().

Get total number of registrations.

 unregister(Registry, Uri, Handler)

 -spec unregister(registry(), binary(), handler_fn()) -> registry().

Unregister a specific procedure handler. Only removes the exact handler function.

macula_rpc_router

RPC call routing strategies. Selects which provider to use for a call (local or remote).

 Summary

 Types

 provider_info/0

 registration/0

 router_state/0

 strategy/0

 Functions

 new_state(Strategy)

 Create new router state.

 select_local(Rest)

 Select local handler (returns first one).

 select_provider(_, LocalHandlers, RemoteProviders)

 Select provider using stateless strategy. For local_first, random, and closest strategies.

 select_provider_closest(LocalNodeId, LocalHandlers, RemoteProviders)

 Select provider using closest strategy (requires local node ID).

 select_provider_stateful(State, LocalHandlers, RemoteProviders)

 Select provider using stateful strategy (for round_robin).

 select_remote_random(Providers)

 Select random remote provider.

 Types

 provider_info/0

 -type provider_info() :: macula_rpc_dht:provider_info().

 registration/0

 -type registration() :: macula_rpc_registry:registration().

 router_state/0

 -type router_state() :: #{strategy := strategy(), round_robin_index := non_neg_integer()}.

 strategy/0

 -type strategy() :: local_first | round_robin | random | closest.

 Functions

 new_state(Strategy)

 -spec new_state(strategy()) -> router_state().

Create new router state.

 select_local(Rest)

 -spec select_local([registration()]) -> {ok, registration()} | not_found.

Select local handler (returns first one).

 select_provider(_, LocalHandlers, RemoteProviders)

 -spec select_provider(strategy(), [registration()], [provider_info()]) ->
 {local, registration()} | {remote, provider_info()} | {error, no_provider}.

Select provider using stateless strategy. For local_first, random, and closest strategies.

 select_provider_closest(LocalNodeId, LocalHandlers, RemoteProviders)

 -spec select_provider_closest(binary(), [registration()], [provider_info()]) ->
 {local, registration()} |
 {remote, provider_info()} |
 {error, no_provider}.

Select provider using closest strategy (requires local node ID).

 select_provider_stateful(State, LocalHandlers, RemoteProviders)

 -spec select_provider_stateful(router_state(), [registration()], [provider_info()]) ->
 {{local, registration()} |
 {remote, provider_info()} |
 {error, no_provider},
 router_state()}.

Select provider using stateful strategy (for round_robin).

 select_remote_random(Providers)

 -spec select_remote_random([provider_info()]) -> {ok, provider_info()} | not_found.

Select random remote provider.

macula_rpc_routing

RPC routing for multi-hop DHT-routed RPC. Handles wrapping, unwrapping, and routing of RPC messages through the Kademlia DHT mesh.

 Summary

 Functions

 route_or_deliver(LocalNodeId, RpcRouteMsg, RoutingServerPid)

 Route an rpc_route message: either deliver locally or forward to next hop. Returns one of: {deliver, PayloadType, Payload} - Message is for this node {forward, NextHopNodeInfo, UpdatedRpcRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, RpcRouteMsg)

 Determine if this node should deliver the message locally or forward it.

 wrap_call(SourceNodeId, DestinationNodeId, CallMsg, MaxHops)

 Wrap a CALL message in rpc_route envelope for DHT routing.

 wrap_reply(SourceNodeId, DestinationNodeId, ReplyMsg, MaxHops)

 Wrap a REPLY message in rpc_route envelope for DHT routing back to caller.

 Functions

 route_or_deliver(LocalNodeId, RpcRouteMsg, RoutingServerPid)

 -spec route_or_deliver(binary(), macula_protocol_types:rpc_route_msg(), pid()) ->
 {deliver, call | reply, map()} |
 {forward,
 macula_routing_bucket:node_info(),
 macula_protocol_types:rpc_route_msg()} |
 {error, term()}.

Route an rpc_route message: either deliver locally or forward to next hop. Returns one of: {deliver, PayloadType, Payload} - Message is for this node {forward, NextHopNodeInfo, UpdatedRpcRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, RpcRouteMsg)

 -spec should_deliver_locally(binary(), macula_protocol_types:rpc_route_msg()) -> boolean().

Determine if this node should deliver the message locally or forward it.

 wrap_call(SourceNodeId, DestinationNodeId, CallMsg, MaxHops)

 -spec wrap_call(binary(), binary(), macula_protocol_types:call_msg(), pos_integer()) ->
 macula_protocol_types:rpc_route_msg().

Wrap a CALL message in rpc_route envelope for DHT routing.

 wrap_reply(SourceNodeId, DestinationNodeId, ReplyMsg, MaxHops)

 -spec wrap_reply(binary(), binary(), macula_protocol_types:reply_msg(), pos_integer()) ->
 macula_protocol_types:rpc_route_msg().

Wrap a REPLY message in rpc_route envelope for DHT routing back to caller.

macula_rpc_server

RPC server managing registrations and calls. GenServer that integrates registry, cache, discovery, router, and executor.

 Summary

 Types

 config/0

 state/0

 Functions

 call(Pid, Uri, Args, Timeout)

 Synchronous call to procedure.

 handle_call(_, From, State)

 Handle synchronous calls.

 handle_cast(Msg, State)

 Handle asynchronous casts (none implemented).

 handle_info(Info, State)

 Handle info messages (none expected).

 init(_)

 Initialize server state.

 list_registrations(Pid)

 List local registrations.

 register(Pid, Uri, Handler, Metadata)

 Register procedure.

 start_link(LocalNodeId, Config)

 Start RPC server.

 stop(Pid)

 Stop RPC server.

 terminate(Reason, State)

 Cleanup on termination.

 unregister(Pid, Uri, Handler)

 Unregister procedure.

 Types

 config/0

 -type config() ::
 #{routing_strategy => macula_rpc_router:strategy(),
 cache_enabled => boolean(),
 dht_lookup_fun => macula_rpc_dht:dht_lookup_fun(),
 send_fun => macula_rpc_executor:send_fun()}.

 state/0

 -type state() ::
 #{local_node_id := binary(),
 registry := macula_rpc_registry:registry(),
 cache := macula_rpc_cache:cache(),
 router_state := macula_rpc_router:router_state(),
 config := config()}.

 Functions

 call(Pid, Uri, Args, Timeout)

 -spec call(pid(), binary(), map(), pos_integer()) -> {ok, term()} | {error, term()}.

Synchronous call to procedure.

 handle_call(_, From, State)

Handle synchronous calls.

 handle_cast(Msg, State)

Handle asynchronous casts (none implemented).

 handle_info(Info, State)

Handle info messages (none expected).

 init(_)

Initialize server state.

 list_registrations(Pid)

 -spec list_registrations(pid()) -> [macula_rpc_registry:registration()].

List local registrations.

 register(Pid, Uri, Handler, Metadata)

 -spec register(pid(), binary(), macula_rpc_registry:handler_fn(), map()) -> ok.

Register procedure.

 start_link(LocalNodeId, Config)

 -spec start_link(binary(), config()) -> {ok, pid()} | {error, term()}.

Start RPC server.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop RPC server.

 terminate(Reason, State)

Cleanup on termination.

 unregister(Pid, Uri, Handler)

 -spec unregister(pid(), binary(), macula_rpc_registry:handler_fn()) -> ok.

Unregister procedure.

macula_rpc_service_interests

RPC Service Interests Module (Pull-based Discovery)
Handles pull-based service discovery configuration: - Normalizes service interest lists (atoms, binaries, strings) - Validates service interest inputs - Prepares DHT lookup messages for prefetching
Extracted from macula_rpc_handler.erl (Dec 2025) to improve testability and separation of concerns.

 Summary

 Functions

 create_find_value_message(ServiceName)

 Create a FIND_VALUE message for a service. Returns the service key and encoded message ready to send.

 log_interests(Interests)

 Log configured service interests during init.

 merge_interests(Existing, New)

 Merge new interests with existing ones (removes duplicates).

 normalize(Interests)

 Normalize service interests to list of binaries. Accepts various input formats: list of binaries/atoms/strings, or single value.

 normalize_single(Interest)

 Normalize a single service interest to binary. Returns {true, Binary} for valid inputs, false for invalid.

 Functions

 create_find_value_message(ServiceName)

 -spec create_find_value_message(binary()) -> {binary(), map()}.

Create a FIND_VALUE message for a service. Returns the service key and encoded message ready to send.

 log_interests(Interests)

 -spec log_interests([binary()]) -> ok.

Log configured service interests during init.

 merge_interests(Existing, New)

 -spec merge_interests([binary()], [binary()]) -> [binary()].

Merge new interests with existing ones (removes duplicates).

 normalize(Interests)

 -spec normalize(term()) -> [binary()].

Normalize service interests to list of binaries. Accepts various input formats: list of binaries/atoms/strings, or single value.

 normalize_single(Interest)

 -spec normalize_single(term()) -> {true, binary()} | false.

Normalize a single service interest to binary. Returns {true, Binary} for valid inputs, false for invalid.

macula_security_scanner

Macula Security Scanner
Static analysis engine for scanning BEAM files: - Detects dangerous BIF usage (os:cmd, open_port, etc.) - Identifies undeclared capabilities - Detects NIF loading attempts - Calculates security score
All functions are stateless.

 Summary

 Types

 scan_result/0

 warning/0

 Functions

 calculate_score(Result)

 Calculate security score based on scan results

 get_dangerous_bifs()

 Get list of dangerous BIFs

 scan_beam_archive(Archive)

 Scan a gzipped BEAM archive

 scan_beam_files(BeamFiles)

 Scan a list of {ModuleName, BeamBinary} tuples

 scan_manifest(Manifest)

 Scan a manifest for security issues

 Types

 scan_result/0

 -type scan_result() ::
 #{dangerous_bifs :=
 [#{module := atom(),
 function := atom(),
 arity := non_neg_integer(),
 locations := [term()]}],
 undeclared_capabilities := [term()],
 nif_usage := [#{module := atom(), nif_lib := binary()}],
 warnings := [warning()],
 score := 0..100}.

 warning/0

 -type warning() ::
 #{severity := low | medium | high | critical,
 type := atom(),
 message := binary(),
 location => term()}.

 Functions

 calculate_score(Result)

 -spec calculate_score(scan_result()) -> 0..100.

Calculate security score based on scan results

 get_dangerous_bifs()

 -spec get_dangerous_bifs() -> [{atom(), atom(), non_neg_integer()}].

Get list of dangerous BIFs

 scan_beam_archive(Archive)

 -spec scan_beam_archive(Archive :: binary()) -> {ok, scan_result()} | {error, term()}.

Scan a gzipped BEAM archive

 scan_beam_files(BeamFiles)

 -spec scan_beam_files([{atom(), binary()}]) -> {ok, scan_result()} | {error, term()}.

Scan a list of {ModuleName, BeamBinary} tuples

 scan_manifest(Manifest)

 -spec scan_manifest(Manifest :: map()) -> {ok, [warning()]} | {error, term()}.

Scan a manifest for security issues

macula_service_registry

Decentralized service advertisement registry using DHT.
Provides service discovery via Kademlia DHT instead of centralized registration. Services advertise their capabilities to the DHT, and clients discover providers by querying the DHT.
[bookmark: Architecture]Architecture
- Services advertise: "I provide procedure X" → DHT stores node_id at key=hash(procedure) - Clients discover: "Who provides procedure X?" → DHT returns list of node_ids - Local cache: Recent discoveries cached with TTL for low-latency lookups - Re-advertisement: Periodic republish to DHT for TTL renewal (default: every 5 min)
[bookmark: Features]Features
- Fully decentralized (no central authority) - Multiple providers supported (DHT returns list) - Load balancing (client picks from list) - Fault tolerant (try another provider if one fails) - Low latency after first lookup (local cache)

 Summary

 Types

 cache_entry/0

 handler_fn/0

 Handler function for local service implementations.

 local_service/0

 node_id/0

 32-byte node identifier.

 provider_info/0

 registry/0

 service_id/0

 Service identifier (procedure URI). Example: <<"energy.home.get">>.

 Functions

 advertise_local(Registry, ServiceId, Handler, Metadata)

 Advertise a service locally (stores handler for incoming calls).

 cache_service(Registry, ServiceId, Providers, TTL)

 Cache discovered service providers.

 cache_subscribers(Registry, Topic, Subscribers, TTL)

 Cache discovered subscribers for a topic.

 clear_cache(Registry)

 Clear the entire discovery cache.

 clear_subscriber_cache(Registry)

 Clear the entire subscriber cache.

 discover_service(Registry, ServiceId)

 Discover service providers (checks cache first, returns cached if available).

 discover_service(Registry, ServiceId, Opts)

 Discover service providers with options.

 discover_subscribers(Registry, Topic)

 Discover subscribers for a topic (checks cache first).

 get_local_handler(_, ServiceId)

 Get handler function for a locally advertised service.

 list_local_services(_)

 List all locally advertised services.

 new()

 Create new empty service registry with default settings.

 new(Opts)

 Create new service registry with custom options.

 prune_expired(Registry)

 Remove expired entries from discovery cache.

 prune_expired_local_services(Registry)

 Remove expired local services.

 prune_expired_subscribers(Registry)

 Remove expired subscriber cache entries.

 publish_to_dht(DhtPid, ServiceId, ProviderInfo, TTL, K)

 Publish a service advertisement to the DHT.

 query_dht_for_service(DhtPid, ServiceId, K)

 Query the DHT for service providers.

 remove_from_dht(DhtPid, ServiceId, NodeId)

 Remove a service advertisement from the DHT.

 unadvertise_local(Registry, ServiceId)

 Remove a local service advertisement.

 Types

 cache_entry/0

 -type cache_entry() ::
 #{service_id := service_id(),
 providers := [provider_info()],
 cached_at := integer(),
 ttl := pos_integer()}.

 handler_fn/0

 -type handler_fn() :: fun((map()) -> {ok, term()} | {error, term()}).

Handler function for local service implementations.

 local_service/0

 -type local_service() ::
 #{service_id := service_id(),
 handler := handler_fn(),
 metadata := map(),
 advertised_at := integer()}.

 node_id/0

 -type node_id() :: binary().

32-byte node identifier.

 provider_info/0

 -type provider_info() ::
 #{node_id := node_id(), endpoint := binary(), metadata := map(), advertised_at := integer()}.

 registry/0

 -type registry() ::
 #{local_services := #{service_id() => local_service()},
 cache := #{service_id() => cache_entry()},
 subscriber_cache := #{binary() => cache_entry()},
 default_ttl := pos_integer(),
 cache_ttl := pos_integer(),
 service_ttl := pos_integer()}.

 service_id/0

 -type service_id() :: binary().

Service identifier (procedure URI). Example: <<"energy.home.get">>.

 Functions

 advertise_local(Registry, ServiceId, Handler, Metadata)

 -spec advertise_local(registry(), service_id(), handler_fn(), map()) -> registry().

Advertise a service locally (stores handler for incoming calls).
This registers the service handler locally so this node can respond to incoming RPC calls. The actual DHT advertisement must be done separately (see publish_to_dht/4).

 cache_service(Registry, ServiceId, Providers, TTL)

 -spec cache_service(registry(), service_id(), [provider_info()], pos_integer()) -> registry().

Cache discovered service providers.
Stores providers in local cache with TTL. Subsequent discover_service calls will return cached results until TTL expires.

 cache_subscribers(Registry, Topic, Subscribers, TTL)

 -spec cache_subscribers(registry(), binary(), [provider_info()], pos_integer()) -> registry().

Cache discovered subscribers for a topic.
Stores subscribers in local cache with TTL. Subsequent discover_subscribers/2 calls will return cached results until TTL expires.

 clear_cache(Registry)

 -spec clear_cache(registry()) -> registry().

Clear the entire discovery cache.

 clear_subscriber_cache(Registry)

 -spec clear_subscriber_cache(registry()) -> registry().

Clear the entire subscriber cache.

 discover_service(Registry, ServiceId)

 -spec discover_service(registry(), service_id()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover service providers (checks cache first, returns cached if available).

 discover_service(Registry, ServiceId, Opts)

 -spec discover_service(registry(), service_id(), map()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover service providers with options.
Checks local cache first. If found and not expired, returns cached providers. If cache miss or expired, returns {cache_miss, Registry} so caller can query DHT.
Options: - force_refresh - Skip cache, force DHT lookup (default: false)

 discover_subscribers(Registry, Topic)

 -spec discover_subscribers(registry(), binary()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover subscribers for a topic (checks cache first).
Similar to discover_service/2 but for pub/sub subscribers. Returns cached subscribers if found and not expired, otherwise cache_miss.

 get_local_handler(_, ServiceId)

 -spec get_local_handler(registry(), service_id()) -> {ok, handler_fn()} | not_found.

Get handler function for a locally advertised service.

 list_local_services(_)

 -spec list_local_services(registry()) -> [service_id()].

List all locally advertised services.

 new()

 -spec new() -> registry().

Create new empty service registry with default settings.

 new(Opts)

 -spec new(map()) -> registry().

Create new service registry with custom options.
Options: - default_ttl - Default TTL for DHT advertisements (default: 300s) - cache_ttl - How long to cache discovered services (default: 60s) - service_ttl - TTL for local services before cleanup (default: 300s, 5 minutes)

 prune_expired(Registry)

 -spec prune_expired(registry()) -> {registry(), non_neg_integer()}.

Remove expired entries from discovery cache.
Should be called periodically to prevent memory leaks. Returns updated registry and count of removed entries.

 prune_expired_local_services(Registry)

 -spec prune_expired_local_services(registry()) -> {registry(), non_neg_integer()}.

Remove expired local services.
Should be called periodically to prevent memory leaks from stale service registrations. Returns updated registry and count of removed services.

 prune_expired_subscribers(Registry)

 -spec prune_expired_subscribers(registry()) -> {registry(), non_neg_integer()}.

Remove expired subscriber cache entries.
Should be called periodically to prevent memory leaks. Returns updated registry and count of removed entries.

 publish_to_dht(DhtPid, ServiceId, ProviderInfo, TTL, K)

 -spec publish_to_dht(pid() | atom(), service_id(), provider_info(), pos_integer(), pos_integer()) ->
 ok | {error, term()}.

Publish a service advertisement to the DHT.
This function publishes a service's provider information to the DHT so other nodes can discover it. The service_id is hashed to create a DHT key, and the provider information is stored at that key.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier (procedure URI) - ProviderInfo: Information about this provider (node_id, endpoint, metadata) - TTL: Time-to-live in seconds for this advertisement - K: Number of nodes to store at (typically 20 for Kademlia)
Returns: - ok if successful - {error, Reason} if publication failed
Example:
 ProviderInfo = #{
 node_id => <<"my-node-123">>,
 endpoint => <<"https://localhost:9443">>,
 metadata => #{version => <<"1.0">>}
 },
 ok = publish_to_dht(DhtPid, <<"energy.home.get">>, ProviderInfo, 300, 20).

 query_dht_for_service(DhtPid, ServiceId, K)

 -spec query_dht_for_service(pid() | atom(), service_id(), pos_integer()) ->
 {ok, [provider_info()]} | {error, term()}.

Query the DHT for service providers.
This function queries the DHT to find nodes that provide a given service. It returns a list of provider_info() maps, each containing node_id, endpoint, and metadata for a provider.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier to query for - K: Number of closest nodes to query (typically 20 for Kademlia)
Returns: - {ok, [ProviderInfo]} if providers found - {ok, []} if no providers found - {error, Reason} if query failed
Example:
 {ok, Providers} = query_dht_for_service(DhtPid, <<"energy.home.get">>, 20),
 %% Returns: [{ok, [#{node_id => ..., endpoint => ..., metadata => ...}]}]

 remove_from_dht(DhtPid, ServiceId, NodeId)

 -spec remove_from_dht(pid() | atom(), service_id(), node_id()) -> ok | {error, term()}.

Remove a service advertisement from the DHT.
This function removes a service advertisement when unadvertising. Note: In practice, DHT entries expire naturally via TTL, so this is optional and mainly useful for immediate cleanup.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier to remove - NodeId: This node's identifier (to remove only this provider)
Returns: - ok if successful or entry not found - {error, Reason} if removal failed

 unadvertise_local(Registry, ServiceId)

 -spec unadvertise_local(registry(), service_id()) -> registry().

Remove a local service advertisement.

macula_stream_acceptor

Dedicated process for accepting QUIC streams on a connection.
This process runs a blocking loop calling quicer:accept_stream/3, ensuring we're ready to accept streams before the client creates them.

 Summary

 Functions

 init(Conn, Gateway)

 Initialize the stream acceptor loop.

 start_link(Conn, Gateway)

 Start a stream acceptor for a connection. Gateway is the process that should receive stream data events.

 Functions

 init(Conn, Gateway)

Initialize the stream acceptor loop.

 start_link(Conn, Gateway)

Start a stream acceptor for a connection. Gateway is the process that should receive stream data events.

macula_subscriber_cache

DHT Subscriber Cache - Caches topic→subscribers mappings for fast pub/sub.
Problem: DHT lookups on every PUBLISH cause 50-200ms latency per message. Solution: Cache topic→subscribers mappings with TTL-based expiration.
Design: - ETS table for O(1) lookup - TTL-based expiration (default 5 seconds) - Automatic cache invalidation on subscribe/unsubscribe - Thread-safe concurrent reads - Adaptive rate-limiting to prevent discovery storms (default 2 seconds)
Rate-Limiting: When cache expires and many publishes occur, rate-limiting prevents flooding the DHT with lookup queries. Only one DHT query per topic is allowed within the min_discovery_interval_ms window.
Expected improvement: - 5-10x latency reduction for high-frequency topics (caching) - 2-3x improvement during high-frequency publishing (rate-limiting)
Configuration Options: - ttl_ms: Cache entry TTL (default: 5000ms) - min_discovery_interval_ms: Minimum time between DHT queries per topic (default: 2000ms)

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(Topic)

 Invalidate cache entry for a topic. Should be called when subscription changes occur.

 invalidate_all()

 Invalidate all cache entries. Useful for testing or when major topology changes occur.

 lookup(Topic)

 Look up subscribers for a topic from cache. Returns {ok, Subscribers} on cache hit, or {miss, TopicKey} on cache miss. TopicKey is the SHA256 hash of the topic binary.

 record_dht_query(Topic)

 Record that we just performed a DHT query for a topic. Call this after a successful DHT lookup to reset the rate-limit timer.

 should_query_dht(Topic)

 Check if we should query DHT for a topic (rate-limiting check). Returns true if enough time has passed since last DHT query. Returns false if we recently queried DHT (rate-limited).

 start_link()

 Start the subscriber cache with default options.

 start_link(Opts)

 Start the subscriber cache with options. Options: - ttl_ms: Cache entry TTL in milliseconds (default: 5000)

 stats()

 Get cache statistics.

 store(Topic, Subscribers)

 Store subscribers for a topic in cache. Subscribers will expire after TTL.

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 invalidate(Topic)

 -spec invalidate(binary()) -> ok.

Invalidate cache entry for a topic. Should be called when subscription changes occur.

 invalidate_all()

 -spec invalidate_all() -> ok.

Invalidate all cache entries. Useful for testing or when major topology changes occur.

 lookup(Topic)

 -spec lookup(binary()) -> {ok, list()} | {miss, binary()}.

Look up subscribers for a topic from cache. Returns {ok, Subscribers} on cache hit, or {miss, TopicKey} on cache miss. TopicKey is the SHA256 hash of the topic binary.

 record_dht_query(Topic)

 -spec record_dht_query(binary()) -> ok.

Record that we just performed a DHT query for a topic. Call this after a successful DHT lookup to reset the rate-limit timer.

 should_query_dht(Topic)

 -spec should_query_dht(binary()) -> boolean().

Check if we should query DHT for a topic (rate-limiting check). Returns true if enough time has passed since last DHT query. Returns false if we recently queried DHT (rate-limited).

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the subscriber cache with default options.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the subscriber cache with options. Options: - ttl_ms: Cache entry TTL in milliseconds (default: 5000)

 stats()

 -spec stats() -> map().

Get cache statistics.

 store(Topic, Subscribers)

 -spec store(binary(), list()) -> ok.

Store subscribers for a topic in cache. Subscribers will expire after TTL.

 terminate(Reason, State)

macula_time

Time utilities for Macula. Provides functions for timestamps, durations, and timeouts.

 Summary

 Functions

 duration_ms(StartTimestamp, EndTimestamp)

 Calculate duration in milliseconds between two timestamps.

 format_duration_ms(Ms)

 Format duration in milliseconds to human-readable string.

 format_timestamp(TimestampMs)

 Format timestamp to ISO 8601 string.

 is_expired(StartTimestamp, TimeoutMs)

 Check if timeout has expired.

 minutes_to_ms(Minutes)

 Convert minutes to milliseconds.

 ms_to_seconds(Ms)

 Convert milliseconds to seconds (truncates).

 seconds_to_ms(Seconds)

 Convert seconds to milliseconds.

 time_remaining(StartTimestamp, TimeoutMs)

 Calculate remaining time before timeout (in milliseconds). Returns 0 if already expired.

 timestamp()

 Get current timestamp in milliseconds since epoch.

 timestamp_microseconds()

 Get current timestamp in microseconds since epoch.

 Functions

 duration_ms(StartTimestamp, EndTimestamp)

 -spec duration_ms(integer(), integer()) -> non_neg_integer().

Calculate duration in milliseconds between two timestamps.

 format_duration_ms(Ms)

 -spec format_duration_ms(non_neg_integer()) -> binary().

Format duration in milliseconds to human-readable string.

 format_timestamp(TimestampMs)

 -spec format_timestamp(integer()) -> binary().

Format timestamp to ISO 8601 string.

 is_expired(StartTimestamp, TimeoutMs)

 -spec is_expired(integer(), pos_integer()) -> boolean().

Check if timeout has expired.

 minutes_to_ms(Minutes)

 -spec minutes_to_ms(non_neg_integer()) -> non_neg_integer().

Convert minutes to milliseconds.

 ms_to_seconds(Ms)

 -spec ms_to_seconds(non_neg_integer()) -> non_neg_integer().

Convert milliseconds to seconds (truncates).

 seconds_to_ms(Seconds)

 -spec seconds_to_ms(non_neg_integer()) -> non_neg_integer().

Convert seconds to milliseconds.

 time_remaining(StartTimestamp, TimeoutMs)

 -spec time_remaining(integer(), pos_integer()) -> non_neg_integer().

Calculate remaining time before timeout (in milliseconds). Returns 0 if already expired.

 timestamp()

 -spec timestamp() -> integer().

Get current timestamp in milliseconds since epoch.

 timestamp_microseconds()

 -spec timestamp_microseconds() -> integer().

Get current timestamp in microseconds since epoch.

macula_tls

TLS Certificate Management and Verification Module (v0.11.0+)
This module provides TLS certificate management for Macula nodes with two operating modes:
- **Production Mode**: Strict certificate verification with CA bundle - **Development Mode**: Self-signed certificates (auto-generated)
[bookmark: Configuration_(sys.config)]Configuration (sys.config)
{macula, [%% TLS mode: production (strict) or development (permissive) {tls_mode, development}, % or production
%% CA certificate bundle (production mode) {tls_cacertfile, "/path/to/ca-bundle.crt"},
%% Server/client certificate and key {tls_certfile, "/path/to/server.crt"}, {tls_keyfile, "/path/to/server.key"},
%% Hostname verification (production mode, default: true) {tls_verify_hostname, true}]}
[bookmark: Environment_Variables]Environment Variables
- MACULA_TLS_MODE: production | development - MACULA_TLS_CACERTFILE: Path to CA bundle - MACULA_TLS_CERTFILE: Path to certificate - MACULA_TLS_KEYFILE: Path to private key
[bookmark: Security_Note]Security Note
In production mode, TLS connections will: - Verify the server certificate chain against the CA bundle - Reject expired or invalid certificates - Optionally verify hostname matches certificate CN/SAN

 Summary

 Functions

 derive_node_id(CertPEM)

 Derive Node ID from certificate public key.

 ensure_cert_exists(CertPath, KeyPath)

 Ensure TLS certificate exists, generate if missing.

 generate_self_signed_cert(Opts)

 Generate self-signed TLS certificate using OpenSSL.

 get_cert_paths()

 Get default certificate paths from application environment.

 get_tls_mode()

 Get the current TLS mode (production or development).

 hostname_verify_fun(Cert, Event, State)

 TLS verify_fun callback for hostname verification.

 is_production_mode()

 Check if running in production TLS mode.

 quic_client_opts()

 Get QUIC client TLS options based on current TLS mode.

 quic_client_opts(Overrides)

 Get QUIC client TLS options with overrides.

 quic_client_opts_with_hostname(Hostname)

 Get QUIC client TLS options with hostname verification.

 quic_server_opts()

 Get QUIC server TLS options based on current TLS mode.

 quic_server_opts(Overrides)

 Get QUIC server TLS options with overrides.

 Functions

 derive_node_id(CertPEM)

 -spec derive_node_id(CertPEM :: binary()) -> NodeID :: binary().

Derive Node ID from certificate public key.
Extracts the public key from the PEM-encoded certificate and computes SHA-256 hash to create a stable, cryptographically-derived Node ID.

 ensure_cert_exists(CertPath, KeyPath)

 -spec ensure_cert_exists(CertPath :: file:filename(), KeyPath :: file:filename()) ->
 {ok, file:filename(), file:filename(), binary()} | {error, term()}.

Ensure TLS certificate exists, generate if missing.
Checks if certificate and key files exist at the specified paths. If they don't exist, generates new self-signed certificate and saves to disk. Returns the paths and derived Node ID.

 generate_self_signed_cert(Opts)

 -spec generate_self_signed_cert(Opts :: map()) ->
 {ok, CertPEM :: binary(), KeyPEM :: binary()} | {error, term()}.

Generate self-signed TLS certificate using OpenSSL.
Creates a new RSA key pair and self-signed X.509 certificate with: - RSA 2048-bit key - 10-year validity period - Subject: CN=macula-node - Self-signed (issuer = subject)

 get_cert_paths()

 -spec get_cert_paths() -> {file:filename(), file:filename()}.

Get default certificate paths from application environment.

 get_tls_mode()

 -spec get_tls_mode() -> production | development.

Get the current TLS mode (production or development).
Checks in order: 1. MACULA_TLS_MODE environment variable 2. tls_mode application environment setting 3. Defaults to 'development'

 hostname_verify_fun(Cert, Event, State)

 -spec hostname_verify_fun(Cert :: term(),
 Event :: {bad_cert, term()} | {extension, term()} | valid | valid_peer,
 State :: map()) ->
 {valid, map()} | {fail, term()} | {unknown, map()}.

TLS verify_fun callback for hostname verification.
This function is called during TLS handshake to verify the peer certificate. When used with hostname verification, it checks that the server's certificate contains the expected hostname in either the Subject CN or Subject Alt Names.
Usage:
{verify_fun, {fun macula_tls:hostname_verify_fun/3, #{hostname => "example.com"}}}

 is_production_mode()

 -spec is_production_mode() -> boolean().

Check if running in production TLS mode.

 quic_client_opts()

 -spec quic_client_opts() -> list().

Get QUIC client TLS options based on current TLS mode.
In production mode: Returns options with certificate verification enabled. In development mode: Returns options with verification disabled.

 quic_client_opts(Overrides)

 -spec quic_client_opts(Overrides :: map()) -> list().

Get QUIC client TLS options with overrides.

 quic_client_opts_with_hostname(Hostname)

 -spec quic_client_opts_with_hostname(Hostname :: string() | binary()) -> list().

Get QUIC client TLS options with hostname verification.
In production mode, adds SNI and hostname verification if enabled. In development mode, hostname verification is skipped.

 quic_server_opts()

 -spec quic_server_opts() -> list().

Get QUIC server TLS options based on current TLS mode.
Server always needs a certificate and key. In production mode: Also verifies client certificates if presented. In development mode: Auto-generates self-signed certificate if needed.

 quic_server_opts(Overrides)

 -spec quic_server_opts(Overrides :: map()) -> list().

Get QUIC server TLS options with overrides.

macula_ucan_revocation

UCAN Revocation Module.
Manages revocation of UCAN tokens via mesh PubSub gossip. Revocations are stored in an ETS cache and checked during authorization.
[bookmark: Revocation_Flow]Revocation Flow
1. Issuer calls revoke/2` with their DID and the UCAN CID 2. Module broadcasts revocation to `io.macula.system.ucan_revoked` topic 3. All mesh nodes receive via PubSub subscription 4. Each node validates signature (issuer must be UCAN creator) 5. Valid revocations stored in local ETS cache with TTL 6. Authorization checks consult cache via `is_revoked/2` == System Topic == All revocations are published to: `io.macula.system.ucan_revoked
[bookmark: Rate_Limiting]Rate Limiting
Maximum 10 revocations per issuer per minute to prevent abuse.
[bookmark: Cache_Auto-Expiry]Cache Auto-Expiry
Revocation entries expire based on original UCAN expiry time. A cleanup process runs periodically to purge expired entries.

 Summary

 Types

 did/0

 revocation_msg/0

 timestamp/0

 ucan_cid/0

 ucan_token/0

 Functions

 clear_cache()

 Clear all revocation cache entries (uses default server).

 clear_cache(ServerRef)

 Clear all revocation cache entries via specific server.

 get_stats()

 Get revocation statistics (uses default server).

 get_stats(ServerRef)

 Get revocation statistics via specific server.

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 handle_revocation_message(Msg)

 Handle incoming revocation message from PubSub.

 handle_revocation_message(ServerRef, Msg)

 Handle incoming revocation message via specific server.

 init(Opts)

 is_revoked(IssuerDID, UcanCID)

 Check if a UCAN is revoked (uses default server).

 is_revoked(ServerRef, IssuerDID, UcanCID)

 Check if a UCAN is revoked via specific server.

 revoke(IssuerDID, UcanToken, ExpiresAt)

 Revoke a UCAN token (uses default server).

 revoke(ServerRef, IssuerDID, UcanToken, ExpiresAt)

 Revoke a UCAN token via specific server.

 start_link()

 Start the revocation server with default name.

 start_link(Opts)

 Start the revocation server with options.

 stop()

 Stop the revocation server (default name).

 stop(ServerRef)

 Stop a specific revocation server.

 terminate(Reason, State)

 Types

 did/0

 -type did() :: binary().

 revocation_msg/0

 -type revocation_msg() :: #{binary() => binary() | timestamp()}.

 timestamp/0

 -type timestamp() :: non_neg_integer().

 ucan_cid/0

 -type ucan_cid() :: binary().

 ucan_token/0

 -type ucan_token() :: binary().

 Functions

 clear_cache()

 -spec clear_cache() -> ok.

Clear all revocation cache entries (uses default server).

 clear_cache(ServerRef)

 -spec clear_cache(ServerRef :: atom() | pid()) -> ok.

Clear all revocation cache entries via specific server.

 get_stats()

 -spec get_stats() -> #{atom() => term()}.

Get revocation statistics (uses default server).

 get_stats(ServerRef)

 -spec get_stats(ServerRef :: atom() | pid()) -> #{atom() => term()}.

Get revocation statistics via specific server.

 handle_call(_, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 handle_revocation_message(Msg)

 -spec handle_revocation_message(Msg :: revocation_msg()) -> ok | {error, term()}.

Handle incoming revocation message from PubSub.

 handle_revocation_message(ServerRef, Msg)

 -spec handle_revocation_message(ServerRef :: atom() | pid(), Msg :: revocation_msg()) ->
 ok | {error, term()}.

Handle incoming revocation message via specific server.

 init(Opts)

 is_revoked(IssuerDID, UcanCID)

 -spec is_revoked(IssuerDID :: did(), UcanCID :: ucan_cid()) -> boolean().

Check if a UCAN is revoked (uses default server).

 is_revoked(ServerRef, IssuerDID, UcanCID)

 -spec is_revoked(ServerRef :: atom() | pid(), IssuerDID :: did(), UcanCID :: ucan_cid()) -> boolean().

Check if a UCAN is revoked via specific server.

 revoke(IssuerDID, UcanToken, ExpiresAt)

 -spec revoke(IssuerDID :: did(), UcanToken :: ucan_token(), ExpiresAt :: timestamp()) ->
 {ok, ucan_cid()} | {error, term()}.

Revoke a UCAN token (uses default server).
The issuer must sign the revocation message. The revocation is broadcast to all mesh nodes via PubSub.
UcanToken is the full UCAN JWT token being revoked. ExpiresAt is the original expiry time of the UCAN. PrivateKey is used to sign the revocation (Ed25519).

 revoke(ServerRef, IssuerDID, UcanToken, ExpiresAt)

 -spec revoke(ServerRef :: atom() | pid(),
 IssuerDID :: did(),
 UcanToken :: ucan_token(),
 ExpiresAt :: timestamp()) ->
 {ok, ucan_cid()} | {error, term()}.

Revoke a UCAN token via specific server.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the revocation server with default name.

 start_link(Opts)

 -spec start_link(Opts :: map()) -> {ok, pid()} | {error, term()}.

Start the revocation server with options.

 stop()

 -spec stop() -> ok.

Stop the revocation server (default name).

 stop(ServerRef)

 -spec stop(ServerRef :: atom() | pid()) -> ok.

Stop a specific revocation server.

 terminate(Reason, State)

macula_uri

Macula URI parsing and construction. Format: macula://realm/node_id Example: macula://org.example.mesh/0123456789abcdef...

 Summary

 Types

 node_id/0

 realm/0

 uri/0

 Functions

 equals(Uri1, Uri2)

 Check if two URIs are equal.

 get_node_id(Uri)

 Extract node ID from URI.

 get_realm(Uri)

 Extract realm from URI.

 is_valid(Uri)

 Check if URI is valid.

 new(Realm, NodeId)

 Construct Macula URI from realm and node ID.

 parse(Uri)

 Parse Macula URI to extract realm and node ID.

 Types

 node_id/0

 -type node_id() :: binary().

 realm/0

 -type realm() :: binary().

 uri/0

 -type uri() :: binary().

 Functions

 equals(Uri1, Uri2)

 -spec equals(uri(), uri()) -> boolean().

Check if two URIs are equal.

 get_node_id(Uri)

 -spec get_node_id(uri()) -> {ok, node_id()} | {error, invalid_uri}.

Extract node ID from URI.

 get_realm(Uri)

 -spec get_realm(uri()) -> {ok, realm()} | {error, invalid_uri}.

Extract realm from URI.

 is_valid(Uri)

 -spec is_valid(uri()) -> boolean().

Check if URI is valid.

 new(Realm, NodeId)

 -spec new(realm(), node_id()) -> uri().

Construct Macula URI from realm and node ID.

 parse(Uri)

 -spec parse(uri()) -> {ok, realm(), node_id()} | {error, invalid_uri}.

Parse Macula URI to extract realm and node ID.

macula_utils

Common utility functions for Macula.
This module contains pure utility functions used across the Macula codebase to improve testability and eliminate duplication.
All functions in this module are pure (no side effects) and can be tested independently.

 Summary

 Functions

 decode_json(Binary)

 Decode JSON binary to map/list.

 encode_json(Data)

 Encode map/list to JSON binary.

 ensure_binary(B)

 Ensure value is binary.

 generate_node_id()

 Generate a random node ID.

 next_message_id(Counter)

 Get next message ID from counter. Returns {MessageId, NewCounter}.

 normalize_provider(Provider)

 Normalize provider map from binary keys to atom keys.

 parse_host_port(HostPort, DefaultPort)

 Parse host:port string with default port.

 parse_url(Url)

 Parse URL to extract host and port.

 topic_matches(Pattern, Topic, Separator, WildcardSingle, WildcardMulti)

 Check if a published topic matches a subscription topic pattern. Supports configurable wildcards (defaults: dot-separated with * and **): - WildcardSingle (e.g., '*') matches a single segment - WildcardMulti (e.g., '**') matches multiple segments - Separator (e.g., '.') splits topic into segments - exact match otherwise

 Functions

 decode_json(Binary)

 -spec decode_json(binary()) -> map() | list().

Decode JSON binary to map/list.

 encode_json(Data)

 -spec encode_json(map() | list()) -> binary().

Encode map/list to JSON binary.

 ensure_binary(B)

 -spec ensure_binary(binary() | list() | atom()) -> binary().

Ensure value is binary.

 generate_node_id()

 -spec generate_node_id() -> binary().

Generate a random node ID.

 next_message_id(Counter)

 -spec next_message_id(non_neg_integer()) -> {binary(), non_neg_integer()}.

Get next message ID from counter. Returns {MessageId, NewCounter}.

 normalize_provider(Provider)

 -spec normalize_provider(map()) -> map().

Normalize provider map from binary keys to atom keys.

 parse_host_port(HostPort, DefaultPort)

 -spec parse_host_port(string(), inet:port_number()) -> {string(), inet:port_number()}.

Parse host:port string with default port.

 parse_url(Url)

 -spec parse_url(binary()) -> {string(), inet:port_number()}.

Parse URL to extract host and port.

 topic_matches(Pattern, Topic, Separator, WildcardSingle, WildcardMulti)

 -spec topic_matches(binary() | list(), binary() | list(), binary(), binary(), binary()) -> boolean().

Check if a published topic matches a subscription topic pattern. Supports configurable wildcards (defaults: dot-separated with * and **): - WildcardSingle (e.g., '*') matches a single segment - WildcardMulti (e.g., '**') matches multiple segments - Separator (e.g., '.') splits topic into segments - exact match otherwise

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

