

 macula

 v0.7.29

 [image: Logo]

 Table of contents

 	Overview

 	Hello World Tutorial

 	Changelog

 	License

 	Executive Summary

 	Comparisons

 	Use Cases

 	Development Guide

 	Documentation Index

 	Kademlia DHT Architecture

 	Peer-Connection Refactoring

 	v0.6.0 Release Summary

 	Project Structure

 	Architecture

 	Quick Start

 	Hello World

 	Roadmap

 	Documentation Status

 	Contributing

 	Memory Management

 	
 Modules

 	macula_advertisement_manager

 	macula_app

 	macula_cache

 	macula_client

 	macula_connection

 	macula_connection_pool

 	macula_core_types

 	macula_dht_rpc

 	macula_discovery

 	macula_gateway

 	macula_gateway_clients

 	macula_gateway_dht

 	macula_gateway_diagnostics

 	macula_gateway_health

 	macula_gateway_mesh

 	macula_gateway_pubsub

 	macula_gateway_pubsub_router

 	macula_gateway_quic_server

 	macula_gateway_rpc

 	macula_gateway_rpc_router

 	macula_gateway_system

 	macula_gateway_workers_sup

 	macula_id

 	macula_membership_detector

 	macula_membership_gossip

 	macula_membership_list

 	macula_membership_member

 	macula_names

 	macula_node

 	macula_peer

 	macula_peer_system

 	macula_protocol_decoder

 	macula_protocol_encoder

 	macula_protocol_types

 	macula_provider_selector

 	macula_pubsub_cache

 	macula_pubsub_delivery

 	macula_pubsub_dht

 	macula_pubsub_discovery

 	macula_pubsub_handler

 	macula_pubsub_qos

 	macula_pubsub_registry

 	macula_pubsub_routing

 	macula_pubsub_server

 	macula_pubsub_subscription

 	macula_pubsub_topic

 	macula_quic

 	macula_quic_cert

 	macula_quic_conn_callback

 	macula_quic_stream_acceptor

 	macula_realm

 	macula_root

 	macula_routing_bucket

 	macula_routing_dht

 	macula_routing_nodeid

 	macula_routing_protocol

 	macula_routing_server

 	macula_routing_table

 	macula_rpc_cache

 	macula_rpc_discovery

 	macula_rpc_executor

 	macula_rpc_handler

 	macula_rpc_names

 	macula_rpc_registry

 	macula_rpc_router

 	macula_rpc_routing

 	macula_rpc_server

 	macula_service_registry

 	macula_stream_acceptor

 	macula_time

 	macula_uri

 	macula_utils

 Overview

 [image: Macula Logo]

 Macula HTTP/3 Mesh

 A distributed platform for decentralized applications

 [image: License]
 [image: Erlang/OTP]

Table of Contents
📖 Executive Summary - What Macula is and why it matters
🚀 Quick Start - Get running in 15 minutes
💡 Hello World Tutorial - Build a distributed chat app in 30 minutes
📚 Technical Documentation - Complete architecture and implementation guides
🔧 Development Guide - Setup, testing, and contributing
🏗️ Comparisons - How Macula compares to similar systems
📊 Use Cases - Real-world applications and examples
📝 Project Structure - Module organization and dependencies
🗺️ Roadmap - 20-week implementation plan
📄 Changelog - Version history and migration guides

What is Macula?
Macula is infrastructure for building decentralized applications and services that operate autonomously at the edge, without dependency on centralized cloud infrastructure.
Key Features:
✅ BEAM-native (Erlang/Elixir OTP supervision and fault tolerance)
✅ HTTP/3 (QUIC) transport (modern, encrypted, NAT-friendly)
✅ Edge-first design (works through firewalls and NAT)
✅ Built-in pub/sub & RPC (no external message broker needed)
✅ Multi-tenancy (realm isolation for SaaS and shared infrastructure)
✅ Self-organizing mesh (DHT-based service discovery, O(log N) routing)
✅ Production-ready patterns (OTP behaviors, comprehensive testing, memory management)

Installation
Elixir (mix.exs):
def deps do
 [
 {:macula, "~> 0.6"}
]
end
Erlang (rebar.config):
{deps, [
 {macula, "0.6.6"}
]}.

Development Setup
Clone the repository
git clone https://github.com/macula-io/macula.git
cd macula

Fetch dependencies
rebar3 get-deps

Compile
rebar3 compile

Run tests
rebar3 eunit

Start a shell with Macula loaded
rebar3 shell

Contributing
We welcome contributions! See Development Guide for setup instructions and Contributing Guide for guidelines.

License
Macula is licensed under the Apache License 2.0. See LICENSE for details.

Community & Support
	Issues: GitHub Issues
	Documentation: Architecture Docs
	Examples: Examples Directory

Built with ❤️ for the BEAM community

 Macula Hello World Tutorial

Build a distributed chat application in 30 minutes!
This repository contains a complete, step-by-step tutorial for building your first Macula application - a fully distributed multi-user chat system using pub/sub and RPC.
What You'll Build
	Distributed chat where messages route peer-to-peer through the mesh
	Presence tracking to see who's online
	Room switching to join different conversations
	Fault-tolerant - nodes can leave and rejoin seamlessly

Full Tutorial
👉 Complete Hello World Tutorial 👈
The tutorial includes:
	✅ Complete Elixir and Erlang implementations
	✅ Step-by-step instructions (9 steps)
	✅ Working code examples you can copy/paste
	✅ Architecture explanations with diagrams
	✅ Enhancement ideas (DMs, file sharing, typing indicators)
	✅ Fault tolerance testing

Quick Preview
Add Macula to your project:
mix.exs
def deps do
 [
 {:macula, "~> 0.6"}
]
end
Send a message across the mesh:
Publish to all subscribers
Macula.PubSub.subscribe("chat.room.general", self())
Macula.PubSub.publish("chat.room.general", %{
 username: "Alice",
 message: "Hello, Macula!"
})
Register an RPC endpoint:
Any node can call this
Macula.RPC.register("chat.users", fn _args ->
 {:ok, ["Alice", "Bob", "Charlie"]}
end)

Call from any node in the mesh
{:ok, users} = Macula.RPC.call("chat.users", %{})
No central server needed - everything routes peer-to-peer!
Prerequisites
	Erlang/OTP 26+
	Elixir 1.15+ (if using Mix)
	Basic BEAM knowledge

Time Commitment
30 minutes from zero to working distributed chat.

Ready to get started? 👉 Open the full tutorial

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.7.9] - 2025-11-16
Added
	Gateway Supervision Refactoring: Implemented proper OTP supervision tree	New 3-tier architecture: macula_gateway_sup (root) supervises macula_gateway_quic_server, macula_gateway, macula_gateway_workers_sup
	Added macula_gateway_quic_server.erl - Dedicated QUIC transport layer (248 LOC, 17 tests)
	Added macula_gateway_workers_sup.erl - Supervises business logic workers (152 LOC, 24 tests)
	Added macula_gateway_clients.erl - Renamed from macula_gateway_client_manager (clearer naming)
	Circular dependency resolution via set_gateway/2 callback pattern
	rest_for_one supervision strategy for controlled fault isolation

Changed
	Gateway Architecture: Refactored from manual process management to supervised architecture	Gateway now finds siblings via supervisor instead of starting them manually
	Simplified macula_gateway init/1 - uses find_parent_supervisor/0 and find_sibling/2
	Removed manual lifecycle management - supervisor handles cleanup
	Updated macula_gateway_sup.erl to be root supervisor (was workers supervisor)
	All gateway tests updated for new supervision tree (106 tests, 0 failures)

Fixed
	CRITICAL: Gateway now actually USES DHT-routed pub/sub (v0.7.8 had the code but wasn't calling it!)	Bug: Gateway's handle_publish was still using v0.7.7 endpoint-based routing
	Impact: v0.7.8 protocol infrastructure existed but gateway bypassed it entirely
	Root cause: handle_publish (macula_gateway.erl:885-943) never called macula_pubsub_routing
	Solution: Rewrote handle_publish to use macula_pubsub_routing:wrap_publish and send via pubsub_route messages
	Flow: Gateway now queries DHT for node_id (not endpoint), wraps PUBLISH in pubsub_route, sends via mesh connection manager
	Result: Messages now actually route via multi-hop Kademlia DHT to remote subscribers

	Fixed test failures in macula_connection_tests - replaced invalid connected message type with subscribe
	Fixed edoc warning in macula_gateway_sup.erl - replaced markdown code fence with HTML pre tags for proper documentation generation

Improved
	Fault Tolerance: Automatic recovery from gateway/QUIC/worker crashes
	Production Stability: Proper OTP supervision with configurable restart strategies
	Code Organization: Clean separation between transport (QUIC), coordination (gateway), and business logic (workers)
	Testability: Each module tested independently with comprehensive coverage

Technical Details
	v0.7.8 added pubsub_route protocol + routing modules but gateway never used them
	v0.7.9 integrates the v0.7.8 infrastructure into gateway's publish flow
	This completes the DHT-routed pub/sub implementation started in v0.7.8
	Supervision refactoring provides +2/10 scalability improvement (foundational infrastructure)
	Enables future optimizations: process pools, connection pooling, horizontal scaling

[0.7.8] - 2025-11-16
Fixed
	CRITICAL: Implemented multi-hop DHT routing for pub/sub to fix matchmaking	Bug: v0.7.7 gateway queried DHT but routed to endpoints, which failed for NAT peers
	Impact: Matchmaking still broken - messages couldn't reach subscribers behind NAT
	Root cause: Split-brain architecture - subscribers register locally but routing via gateway
	Solution: Multi-hop Kademlia DHT routing (same pattern as RPC routing)

Added
	Protocol Layer: New pubsub_route message type (0x13)
	Wraps PUBLISH messages for multi-hop routing through mesh
	Fields: destination_node_id, source_node_id, hop_count, max_hops, topic, payload
	Protocol encoder/decoder support with validation
	8 encoder tests + 3 decoder tests added

	Routing Module: macula_pubsub_routing.erl (NEW - 115 LOC)
	Stateless routing logic for pub/sub messages
	wrap_publish/4 - Wraps PUBLISH in routing envelope
	route_or_deliver/3 - Routes to next hop or delivers locally
	should_deliver_locally/2 - Checks if destination matches
	TTL protection via max_hops (default: 10)
	14 comprehensive tests (all passing)

	Gateway Integration: Enhanced macula_gateway.erl
	Added handle_decoded_message clause for pubsub_route messages
	Routes via XOR distance to next hop OR delivers locally
	handle_pubsub_route_deliver/2 - Unwraps and delivers to local subscribers
	forward_pubsub_route/3 - Forwards to next hop through mesh

	Pub/Sub Handler: Updated macula_pubsub_dht.erl
	route_to_subscribers/5 now uses actual DHT routing (was TODO stub)
	Extracts subscriber node_id (not endpoint) from DHT results
	Wraps PUBLISH in pubsub_route envelope
	Sends via connection manager which routes through gateway

Technical Details
v0.7.7 Architecture (BROKEN):
	❌ Publisher queries DHT for subscriber endpoints
	❌ Tries to route directly to endpoints
	❌ Fails for NAT peers (can't accept connections)
	❌ Matchmaking stuck on "Looking for opponent..."

v0.7.8 Architecture (FIXED):
	✅ Publisher queries DHT for subscriber node IDs
	✅ Wraps PUBLISH in pubsub_route envelope
	✅ Routes via multi-hop Kademlia (same as RPC)
	✅ Works with relay OR direct connections
	✅ Matchmaking succeeds across NAT peers

Message Flow:
Publisher Gateway Node A Subscriber
--pubsub_route---------->		
dest: Subscriber	--pubsub_route----->	
topic: "matchmaking"	(forward closer)	--pubsub_route------->
payload: {msg}		
Tests
	Protocol encoder: 49 tests (8 new for pubsub_route)
	Protocol decoder: 35 tests (3 new for pubsub_route)
	Pub/sub routing: 14 tests (all passing)	wrap_publish envelope creation
	should_deliver_locally checks
	route_or_deliver decision logic
	TTL exhaustion handling
	No-route error handling

Architecture Documentation
	Added architecture/dht_routed_pubsub.md with complete design
	Future refactoring note: Consider unifying RPC and pub/sub routing modules (nearly identical logic)

This completes the DHT-routed pub/sub implementation and should enable working matchmaking.

[0.7.7] - 2025-11-15
Fixed
	CRITICAL: Gateway pub/sub now queries DHT for remote subscribers	Bug: Gateway only checked local subscriptions, never queried DHT for remote subscribers
	Impact: Distributed pub/sub and matchmaking completely broken - remote peers couldn't receive messages
	Root cause: handle_publish only called macula_gateway_pubsub:get_subscribers (local streams only)
	Fix Phase 1: Added endpoint → stream PID tracking in macula_gateway_client_manager	New state field: endpoint_to_stream :: #{binary() => pid()}
	New API: get_stream_by_endpoint/2
	Updated store_client_stream/4 to track endpoints
	Updated remove_client/2 to clean up endpoint mappings

	Fix Phase 2: Modified handle_publish to query DHT	Queries local subscribers (existing behavior)
	Queries DHT for remote subscribers via crypto:hash(sha256, Topic)
	Converts remote endpoints to stream PIDs using client_manager
	Combines local + remote and delivers to all

	Fix Phase 3: Added macula_gateway_dht:lookup_value/1	Synchronous lookup from local DHT storage
	Calls macula_routing_server:find_value/3 with K=20
	Returns {ok, [Subscriber]} or {error, not_found}

	Tests: 90 tests passing (39 client_manager + 49 gateway + 7 endpoint + 5 pub/sub DHT)

This completes the distributed pub/sub fix and enables working matchmaking across multiple peer containers.
Technical Details
Before v0.7.7:
	❌ Gateway only queried macula_gateway_pubsub (local subscriptions)
	❌ Remote subscribers stored in DHT but never looked up
	❌ Pub/sub messages only delivered to local streams
	❌ Multi-peer matchmaking broken

After v0.7.7:
	✅ Gateway queries both local + DHT for subscribers
	✅ Remote endpoints resolved to stream PIDs via endpoint tracking
	✅ Messages delivered to all subscribers (local + remote)
	✅ Multi-peer matchmaking works correctly

The architecture remains hub-and-spoke (v0.7.x):
	All peers connect to gateway
	Gateway routes all pub/sub messages
	Subscriptions stored in DHT for discovery
	Gateway has stream PIDs for all connected peers

[0.8.0] - TBD (Q2 2025)
Planned - True Mesh Architecture
	BREAKING: Opportunistic NAT hole punching for direct peer-to-peer connections	80% direct P2P connections (cone NAT, no firewall)
	20% gateway relay fallback (symmetric NAT, strict firewalls)
	True mesh topology (no single point of failure)
	New modules: macula_nat_discovery, macula_hole_punch, macula_connection_upgrade
	Backward compatible with v0.7.x gateway relay architecture

This will transform Macula from hub-and-spoke (star topology) to true decentralized mesh.
See architecture/NAT_TRAVERSAL_ROADMAP.md for complete design.

[0.7.6] - 2025-11-15
Fixed
	CRITICAL: Disabled QUIC transport-layer idle timeout causing connection closures	Root cause: MsQuic default idle timeout of 30 seconds (2x = 60s to closure)
	v0.7.4-0.7.5 application-level PING/PONG worked but didn't reset QUIC transport timer
	Added idle_timeout_ms => 0 to both client connection and gateway listener options
	Setting to 0 disables QUIC idle timeout entirely
	Connections now stay alive indefinitely (application PING/PONG provides health checks)
	Modified: macula_quic:connect/4 and macula_quic:listen/2

This completes the connection stability fix started in v0.7.4-0.7.5.
Tests
	Added test/macula_quic_idle_timeout_tests.erl with 7 tests	Client connection idle timeout configuration
	Gateway listener idle timeout configuration
	Option structure and value validation
	Defense-in-depth architecture documentation

Technical Details
Defense in Depth approach:
	Transport Layer (v0.7.6): QUIC idle timeout disabled (idle_timeout_ms => 0)
	Application Layer (v0.7.4-0.7.5): PING/PONG keep-alive every 30 seconds
	Result: Connections stay alive + health monitoring

Previous versions had application keep-alive but QUIC transport still enforced 30s idle timeout independently.

[0.7.5] - 2025-11-15
Fixed
	CRITICAL: Gateway PING message handler missing, preventing keep-alive from working	v0.7.4 implemented keep-alive on edge peer side only
	Gateway had no handler for incoming PING messages
	Result: PINGs sent but never acknowledged, connections still timed out after 2 minutes
	Added handle_decoded_message({ok, {ping, PingMsg}}, ...) to gateway
	Gateway now responds with PONG to all incoming PING messages
	Keep-alive now works bidirectionally (edge peer ↔ gateway)
	Also added PONG message handler to gateway for completeness

This completes the keep-alive implementation started in v0.7.4.
Technical Details
The keep-alive flow now works correctly:
	Edge peer timer fires every 30 seconds (configurable)
	Edge peer sends PING to gateway
	Gateway receives PING and responds with PONG (new in v0.7.5)
	Edge peer receives PONG confirmation
	QUIC connection stays alive (no idle timeout)

Without this fix, PINGs were sent but ignored, causing connections to timeout despite v0.7.4's implementation.

[0.7.4] - 2025-11-15
Fixed
	CRITICAL: Configurable keep-alive mechanism to prevent QUIC connection timeouts	PING/PONG message support in macula_connection
	Default keep-alive interval: 30 seconds (configurable)
	Keep-alive enabled by default (can be disabled via options)
	Automatic PONG response to incoming PING messages
	Configuration via macula_connection:default_config/0
	Prevents 2-minute connection timeout that broke distributed matchmaking
	Added 6 tests for keep-alive functionality (all passing)

This is a critical fix for production deployments where QUIC connections timeout after ~2 minutes of inactivity, breaking pub/sub and matchmaking.
Configuration
Enable/disable keep-alive:
%% Enable with custom interval (milliseconds)
Opts = #{
 keepalive_enabled => true,
 keepalive_interval => 30000 %% 30 seconds
}.

%% Disable keep-alive
Opts = #{
 keepalive_enabled => false
}.

%% Use defaults (enabled, 30 second interval)
DefaultConfig = macula_connection:default_config().
Architecture Note
v0.7.4 maintains hub-and-spoke (star) topology:
	Edge peers connect to gateway (not each other)
	Gateway routes all messages (relay architecture)
	Gateway is single point of failure (by design for now)
	DHT routing table exists but routing happens at gateway
	True peer-to-peer mesh deferred to v0.8.0 (NAT traversal required)

[0.7.3] - 2025-11-15
Fixed
	CRITICAL: Fixed DHT routing table address serialization crash in macula_gateway_dht	Bug: Gateway stored parsed address tuples {{127,0,0,1}, 9443} in DHT instead of binary strings
	Impact: When FIND_VALUE replies tried to serialize node addresses, msgpack returned error {:error, {:badarg, {{127,0,0,1}, 9443}}}
	Root cause: macula_gateway.erl:522 used Address (tuple from parse_endpoint/1) instead of Endpoint (binary string)
	Error chain: DHT stored tuples → encode_node_info extracted tuples → msgpack:pack failed → byte_size crashed
	Symptoms: Gateway crashed with "ArgumentError: 1st argument not a bitstring" when peers queried DHT
	Fix: Store original Endpoint binary string in DHT routing table instead of parsed tuple
	Added test: dht_address_serialization_test documents bug and validates fix

This is a critical fix for distributed matchmaking and service discovery. Without it, DHT queries crash the gateway.
[0.7.2] - 2025-11-15
Fixed
	CRITICAL: Fixed gateway crash in parse_endpoint/1 when DNS resolution fails	Bug: inet:getaddr/2 error tuple was not handled, causing ArgumentError when passed to byte_size/1
	Impact: Gateway crashed repeatedly, closing all client connections and preventing pub/sub communication
	Symptoms: "Failed to publish to topic: :closed", "Failed to send STORE for subscription: :closed"
	Fix: Added proper error handling with localhost fallback when DNS resolution fails
	Now returns {{127,0,0,1}, Port} fallback instead of crashing

This is a critical fix for production deployments where endpoint DNS resolution may fail.
[0.7.1] - 2025-11-15
Fixed
	CRITICAL: Fixed ArithmeticError in macula_pubsub_handler message ID handling	Bug: Was assigning binary MsgId to counter instead of integer NewCounter
	Impact: Caused pub/sub to crash on second publish attempt with "bad argument in arithmetic expression"
	Fix: Corrected destructuring in line 300 to use {_MsgId, NewCounter} instead of {MsgIdCounter, _}
	Now properly increments integer counter instead of trying to do arithmetic on binary

This is a critical fix for anyone using pub/sub functionality in v0.7.0.
0.7.0 - 2025-11-15
Changed
	BREAKING: Major nomenclature refactoring for clarity and industry alignment	Renamed macula_connection → macula_peer (mesh participant facade - high-level API)
	Renamed macula_connection_manager → macula_connection (QUIC transport layer - low-level)
	Follows industry standards used by libp2p, IPFS, and BitTorrent
	Clear separation: macula_peer = mesh participant, macula_connection = transport

Added
	Comprehensive transport layer test coverage (36 tests total)	11 new tests for message decoding, buffering, URL parsing, and realm normalization
	All tests passing with zero regressions

	Complete v0.7.0 documentation in CLAUDE.md	Migration guide with specific API examples
	Architecture rationale and benefits
	Status tracking for implementation phases

Migration Guide (0.6.x → 0.7.0)
API Changes:
All high-level mesh operations now use macula_peer instead of macula_connection:
%% Before (0.6.x)
{ok, Client} = macula_connection:start_link(Url, Opts).
ok = macula_connection:publish(Client, Topic, Data).
{ok, SubRef} = macula_connection:subscribe(Client, Topic, Callback).
{ok, Result} = macula_connection:call(Client, Procedure, Args).

%% After (0.7.0)
{ok, Client} = macula_peer:start_link(Url, Opts).
ok = macula_peer:publish(Client, Topic, Data).
{ok, SubRef} = macula_peer:subscribe(Client, Topic, Callback).
{ok, Result} = macula_peer:call(Client, Procedure, Args).
Why This Change?
The original naming was confusing:
	❌ macula_connection served both facade AND transport roles
	❌ Mixed high-level mesh operations with low-level QUIC handling
	❌ Not aligned with P2P industry standards

After v0.7.0:
	✅ macula_peer = mesh participant (clear high-level API for pub/sub, RPC, DHT)
	✅ macula_connection = QUIC transport (clear low-level transport layer)
	✅ Follows libp2p/IPFS/BitTorrent naming conventions

Note: The macula_client wrapper module has been updated to use macula_peer internally, so if you're using macula_client, no changes are required.
0.6.7 - 2025-11-15
Fixed
	CRITICAL: Fixed all installation examples to use Hex package references instead of git dependencies	README.md: Changed from git-based to {:macula, "~> 0.6"} (Elixir) and {macula, "0.6.7"} (Erlang)
	HELLO_WORLD.md: Updated to use proper Hex package format
	architecture/macula_http3_mesh_hello_world.md: Fixed tutorial installation examples
	architecture/macula_http3_mesh_rpc_guide.md: Fixed migration guide examples
	All code examples now show proper Hex.pm installation for published package

[0.6.6] - 2025-11-15
Fixed
	Fixed navigation links in documentation guides to use ex_doc HTML filenames	Changed GitHub-style relative paths (../README.md) to ex_doc HTML references (readme.html)
	Fixed all navigation links in EXECUTIVE_SUMMARY.md, COMPARISONS.md, USE_CASES.md, and DEVELOPMENT.md
	Links now work correctly in published Hexdocs without "page not found" errors

[0.6.5] - 2025-11-15
Changed
	Updated to modern alternative logo (macula-alt-logo.svg) in both README.md and ex_doc
	Changed tutorial greeting to brand-specific "Hello, Macula!" instead of generic greeting

Fixed
	Replaced old color logo with cleaner, more modern alternative logo for better visual appeal

[0.6.4] - 2025-11-15
Changed
	Documentation restructuring - Split README.md into focused landing page with table of contents	Created docs/EXECUTIVE_SUMMARY.md - Why Macula and the case for decentralization
	Created docs/COMPARISONS.md - How Macula compares to libp2p, Distributed Erlang, Akka, etc.
	Created docs/USE_CASES.md - Real-world applications across business, IoT, and AI domains
	Created docs/DEVELOPMENT.md - Complete development guide and coding standards
	README.md now serves as concise landing page (119 lines vs 372 lines)
	All detailed content accessible via clear table of contents
	Removed Mermaid diagram from README.md (ex_doc doesn't support Mermaid - works on GitHub)

Fixed
	ex_doc landing page uses HELLO_WORLD.md (tutorial-first approach, no multi-page split)
	Documentation properly links to all new guide documents
	Better first impression for Hex.pm users (logo, quick navigation)

[0.6.3] - 2025-11-15
Fixed
	Removed README.md from ex_doc extras to prevent multi-page split and broken landing page
	Documentation now correctly redirects to API reference page

[0.6.2] - 2025-11-15
Fixed
	ex_doc landing page configuration ({main, "api-reference"}) - resolved "readme.html not found" error

[0.6.1] - 2025-11-15
Added
	Professional documentation structure for Hex publication	Architecture diagram in README.md (Mermaid format) showing mesh topology
	Organized documentation: moved 50+ files from root to docs/archive/, docs/development/, docs/planning/
	Created docs/README.md navigation index
	Logo and assets configuration for ex_doc
	Comprehensive Hex package file list (artwork/, docs/, architecture/)

Fixed
	README.md badge rendering (moved badges outside <div> tag for proper GitHub display)
	ex_doc assets configuration (deprecated warning resolved)
	ex_doc landing page configuration (changed {main, "readme"} to {main, "api-reference"} to fix "readme.html not found" error)
	Hex package configuration to include all necessary assets and documentation
	Documentation organization for professional first impression

0.6.0 - 2025-11-15
Changed
	BREAKING: Renamed environment variable from GATEWAY_REALM to MACULA_REALM for better API consistency	All MACULA_* environment variables now follow consistent naming
	Applies to both gateway mode and edge peer mode
	Update your deployment configurations to use MACULA_REALM instead of GATEWAY_REALM

Added
	Comprehensive Kademlia DHT architecture documentation (docs/KADEMLIA_DHT_ARCHITECTURE.md)	XOR distance metric explanation
	K-bucket routing table details
	DHT operations (PING, STORE, FIND_NODE, FIND_VALUE)
	Iterative lookup algorithm
	Macula-specific adaptations (realm-scoped DHT, HTTP/3 transport)
	Performance characteristics and comparisons

Fixed
	Updated documentation to reflect MACULA_REALM environment variable usage
	Updated entrypoint.sh, Dockerfile.gateway, and config/sys.config to use MACULA_REALM

Upcoming in v0.7.0
	Architecture improvement: Separation of macula_connection into macula_peer (high-level mesh API) and macula_connection (low-level QUIC transport)
	See docs/NOMENCLATURE_PROPOSAL_CONNECTION_TO_PEER.md and docs/PEER_CONNECTION_SEPARATION_PLAN.md for details
	Expected timeline: 4-5 weeks after v0.6.0 release

Migration Guide (0.5.0 → 0.6.0)
If you're using Macula in gateway mode or configuring realm multi-tenancy:
Before (0.5.0):
export GATEWAY_REALM=my-app

After (0.6.0):
export MACULA_REALM=my-app

Elixir/Phoenix runtime.exs:
Before (0.5.0)
System.put_env("GATEWAY_REALM", realm)

After (0.6.0)
System.put_env("MACULA_REALM", realm)
0.5.0 - 2025-11-14
Added
	Initial public release
	HTTP/3 (QUIC) mesh networking platform
	Gateway mode for accepting incoming connections
	Edge peer mode for mesh participation
	Multi-tenancy via realm isolation
	Pub/Sub messaging with wildcard support
	RPC (request/response) patterns
	Service discovery and advertisement
	mDNS local discovery support
	Process registry via gproc
	Comprehensive documentation

Known Issues
	Gateway mode requires proper TLS certificate configuration
	Certificates must have Subject Alternative Name (SAN) extension
	Docker deployments require proper file ownership (--chown=app:app)

 License

MIT License

Copyright (c) 2025 macula.io

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Executive Summary

Macula is infrastructure for building decentralized applications and services that operate autonomously at the edge, without dependency on centralized cloud infrastructure. It enables organizations to build systems where business logic, data, and intelligence live close to where they're needed—whether that's in factories, homes, vehicles, or partner networks.
Key Use Cases
	Business Applications: Partner networks, supply chains, and collaborative platforms where organizations need to share capabilities without centralizing control
	IoT & Edge Computing: Smart homes, industrial automation, and distributed sensor networks that continue operating even when disconnected from the cloud
	Adaptive & Collaborative AI: Systems powered by TWEANN (Topology and Weight Evolving Artificial Neural Networks) and other evolutionary algorithms that learn and adapt locally, then share insights across the mesh

Unlike traditional architectures where applications call centralized APIs, Macula enables peer-to-peer mesh networks where nodes discover each other, share services, and collaborate directly. Data stays where it's created, intelligence adapts locally, and the network self-organizes without central coordination.
Built on HTTP/3 (QUIC) transport, Macula works through NAT and firewalls, making it practical for real-world deployments across diverse network environments.

Why Macula? The Case for Decentralization
The Centralized Cloud Problem
Today's applications typically rely on centralized cloud platforms controlled by Big Tech companies (AWS, Azure, Google Cloud). While this model offers convenience, it creates fundamental issues:
	Vendor Lock-in: Your business becomes dependent on proprietary APIs, pricing, and policies you don't control
	Data Sovereignty: Sensitive data must leave your premises and live in someone else's infrastructure
	Single Points of Failure: When the cloud goes down, your entire operation stops
	Latency & Bandwidth: Every interaction requires round-trips to distant datacenters, wasting time and bandwidth
	Privacy & Compliance: Regulations like GDPR become harder to satisfy when data flows through third-party infrastructure
	Cost: Bandwidth, storage, and compute costs scale unpredictably as your system grows

The Macula Alternative
Macula offers a different approach that complements or replaces centralized cloud:
	True Ownership: Run on your own hardware (edge devices, on-premise servers, or hybrid setups) with no dependency on proprietary platforms
	Local-First Architecture: Data and intelligence stay where they're created, shared only when needed
	Autonomous Operation: Systems continue working during network outages or when disconnected from the cloud
	Natural Scalability: Peer-to-peer mesh architecture scales organically as you add nodes, without central bottlenecks
	Standards-Based: Built on HTTP/3, not proprietary protocols, ensuring long-term viability and interoperability
	Cost Control: Predictable infrastructure costs using commodity hardware and open-source software

Macula isn't anti-cloud—it's about choice. Use the cloud where it makes sense, but don't let it be your only option. Build applications that work in hybrid environments, can migrate between deployment models, and give you control over your technology destiny.
For organizations that value autonomy, data sovereignty, and resilience, Macula provides the infrastructure to build truly decentralized systems.

← Back to README | Quick Start →

 How Macula Compares to Similar Systems

Distributed networking is not new, and several excellent projects tackle similar problems. Here's how Macula differs:
vs. libp2p (IPFS Networking Stack)
libp2p is the modular networking stack behind IPFS and Filecoin.
	What it is: A comprehensive peer-to-peer networking library with many transport options, NAT traversal, and discovery mechanisms
	Maintained by: Protocol Labs
	Key difference: libp2p is a library you integrate into your application. Macula is a platform providing complete pub/sub and RPC primitives built specifically for the BEAM (Erlang/Elixir) ecosystem
	When to use libp2p: Building file-sharing applications or integrating with the IPFS ecosystem
	When to use Macula: Building business applications, IoT systems, or collaborative AI on Erlang/Elixir with built-in service discovery, multi-tenancy, and OTP supervision

vs. Distributed Erlang
Distributed Erlang is Erlang's built-in clustering.
	What it is: Native clustering for Erlang nodes with transparent process messaging
	Maintained by: Ericsson (part of Erlang/OTP)
	Key difference: Distributed Erlang requires full mesh connectivity (every node connects to every other node) and doesn't work through NAT/firewalls. Macula uses HTTP/3 (QUIC) for NAT-friendly transport and Kademlia DHT routing for O(log N) scalability without full mesh connectivity
	When to use Distributed Erlang: Datacenter deployments with full network control and trusted environments
	When to use Macula: Edge deployments, IoT networks, or any scenario involving NAT, firewalls, or untrusted networks

vs. Akka Cluster (JVM)
Akka Cluster provides distributed actor systems for the JVM.
	What it is: Clustering and distributed messaging for Scala/Java applications using the Actor model
	Maintained by: Lightbend
	Key difference: Akka runs on the JVM and uses TCP with gossip protocols. Macula runs on BEAM (Erlang VM) and uses HTTP/3 (QUIC) for modern, efficient transport with built-in encryption and NAT traversal
	When to use Akka: JVM-based applications requiring distributed actors
	When to use Macula: Erlang/Elixir applications requiring edge-friendly networking and standards-based transport

vs. Kubernetes (Orchestration)
Kubernetes orchestrates containerized applications at scale.
	What it is: Container orchestration platform for deploying and managing microservices
	Maintained by: Cloud Native Computing Foundation (CNCF)
	Key difference: Kubernetes orchestrates centralized infrastructure (datacenters). Macula enables peer-to-peer decentralized networks at the edge. They solve different problems
	When to use Kubernetes: Deploying microservices in datacenters or cloud environments
	When to use Macula: Building peer-to-peer applications where nodes discover and communicate directly, without central orchestration

vs. WebRTC (Browser P2P)
WebRTC enables peer-to-peer communication in web browsers.
	What it is: Browser APIs for real-time video, audio, and data channels between peers
	Maintained by: W3C and browser vendors
	Key difference: WebRTC targets browser-to-browser communication for media streaming. Macula targets server-to-server and device-to-device communication for business applications, IoT, and AI systems
	When to use WebRTC: Real-time video/audio in web browsers
	When to use Macula: Backend services, IoT devices, and edge computing platforms

Macula's Unique Position
Macula combines ideas from these systems but targets a specific niche:
✅ BEAM-native (Erlang/Elixir OTP supervision and fault tolerance)
✅ HTTP/3 (QUIC) transport (modern, encrypted, NAT-friendly)
✅ Edge-first design (works through firewalls and NAT)
✅ Built-in pub/sub & RPC (no external message broker needed)
✅ Multi-tenancy (realm isolation for SaaS and shared infrastructure)
✅ Self-organizing mesh (DHT-based service discovery, O(log N) routing)
✅ Production-ready patterns (OTP behaviors, comprehensive testing, memory management)
If you're building decentralized Erlang/Elixir applications that need to work in real-world network conditions (edge, IoT, hybrid cloud), Macula provides the infrastructure layer you need.

← Back to README | Use Cases →

 Use Cases

Macula enables a wide range of decentralized applications across multiple domains. Here are some real-world scenarios where Macula provides the ideal infrastructure.
Business Applications
Partner Networks
Organizations need to share services and capabilities without centralizing control or data.
Example: Supply chain collaboration where multiple companies track shipments, share inventory status, and coordinate logistics without a single company controlling the platform.
Why Macula:
	Each organization runs nodes on their own infrastructure
	Services are discovered via DHT without centralized registry
	Data stays within organizational boundaries
	Multi-tenancy via realms ensures isolation between partners

Supply Chain Tracking
Track goods and events across multiple companies' infrastructure without a central database.
Example: Farm-to-table food tracking where farms, processors, distributors, and retailers each publish events about product movements, with consumers able to trace the complete journey.
Why Macula:
	Events published via pub/sub stay with the originating organization
	Downstream parties subscribe to relevant event streams
	No single point of failure or data custody
	Real-time updates without API polling

Collaborative Platforms
Teams work together without depending on a single SaaS vendor.
Example: Research collaboration platform where universities and research institutions share datasets, computational resources, and results without centralizing sensitive research data.
Why Macula:
	Institutions maintain sovereignty over their data
	RPC enables distributed computation requests
	Pub/sub enables real-time research updates
	Works across institutional firewalls via HTTP/3

IoT & Edge Computing
Smart Homes
Devices communicate locally without cloud dependency.
Example: Home automation where lights, thermostats, sensors, and controllers coordinate via the local mesh, continuing to operate even during internet outages.
Why Macula:
	Devices discover each other via mDNS locally
	Pub/sub for event broadcasting (motion detected, temperature changed)
	RPC for device control (turn on lights, adjust temperature)
	No cloud latency or bandwidth costs
	Privacy: data stays within the home

Industrial Automation
Factories continue operating during network outages.
Example: Manufacturing floor where robots, sensors, quality control systems, and inventory management coordinate production without relying on centralized cloud services.
Why Macula:
	Local mesh operates independently of WAN connectivity
	Real-time control via RPC (< 10ms latency)
	Event streams for monitoring and analytics
	Fault tolerance via OTP supervision
	Scales to thousands of sensors and actuators

Distributed Sensor Networks
Environmental monitoring, agriculture, infrastructure health.
Example: Agricultural IoT network where soil moisture sensors, weather stations, irrigation controllers, and drones share data and coordinate actions across a large farm.
Why Macula:
	Sensors publish readings via pub/sub
	Controllers subscribe to relevant sensor streams
	RPC for remote commands (start irrigation, launch drone survey)
	Works through rural NAT/firewall constraints
	Edge processing reduces bandwidth usage

Adaptive & Collaborative AI
TWEANN-Based Systems
Neural networks that evolve topology and weights locally, then share insights.
Example: Adaptive manufacturing optimization where each production line runs TWEANN agents that learn optimal parameters, then share successful mutations across the mesh.
Why Macula:
	Each edge node runs local evolutionary algorithms
	Successful genome variations published via pub/sub
	Other nodes subscribe and integrate improvements
	No centralized training infrastructure needed
	Continuous adaptation to local conditions

Federated Learning
Train models across distributed nodes without centralizing data.
Example: Healthcare diagnostics where hospitals train ML models on local patient data, share model updates (not data) via the mesh, and collaboratively improve diagnostic accuracy.
Why Macula:
	Model updates published as events (not raw data)
	Privacy-preserving: data never leaves institutions
	Gradual convergence via distributed gradient sharing
	Works across institutional network boundaries
	Multi-tenancy ensures proper isolation

Edge Intelligence
Decision-making at the edge with selective cloud synchronization.
Example: Autonomous vehicle fleet coordination where vehicles make local decisions using onboard AI, share observations and planned maneuvers via the mesh, and only sync aggregated data to the cloud.
Why Macula:
	Low-latency local decision making (< 5ms)
	Real-time coordination via pub/sub
	RPC for requesting assistance from nearby vehicles
	Operates during cellular network dropouts
	Selective cloud sync reduces bandwidth costs

Gaming & Real-Time Applications
Multiplayer Game Meshes
Players connect peer-to-peer without dedicated servers.
Example: LAN party games where players discover each other locally, form game sessions, and play without internet connectivity or centralized game servers.
Why Macula:
	mDNS for local player discovery
	Pub/sub for game state synchronization
	RPC for player actions
	Works offline, no server hosting costs
	Realm isolation per game session

Collaborative Editing
Real-time document collaboration without centralized services.
Example: Privacy-focused collaborative editor where teams edit documents in real-time, with all data staying within the organization's infrastructure.
Why Macula:
	Operational transforms via pub/sub
	Cursor positions and selections as events
	RPC for conflict resolution
	Works through corporate firewalls
	No data leaves organizational control

Infrastructure & Networking
Content Delivery Networks
Decentralized content distribution at the edge.
Example: Community CDN where participants cache and serve content to local peers, reducing bandwidth costs and improving latency without centralized CDN providers.
Why Macula:
	DHT-based content discovery
	Pub/sub for cache invalidation
	RPC for content requests
	Scales organically as nodes join
	No CDN provider fees

Service Mesh for Edge Computing
Microservices at the edge with automatic discovery.
Example: Edge computing platform where microservices discover dependencies, route requests, and balance load across edge nodes without centralized orchestration.
Why Macula:
	Service registry via DHT
	Pub/sub for service health events
	RPC with automatic failover
	Multi-tenancy for SaaS deployments
	Works through NAT and firewalls

Getting Started
Ready to build? See our Hello World Tutorial to build your first decentralized application in 30 minutes.
For technical architecture details, see the Technical Documentation.

← Back to README | Comparisons →

 Development Guide

This guide covers setting up a development environment for contributing to Macula.
Prerequisites
	Erlang/OTP 26+ - Installation Guide
	Rebar3 - Erlang build tool (Installation)
	Git - Version control
	Docker (optional) - For multi-node testing

Quick Setup
Clone the repository
git clone https://github.com/macula-io/macula.git
cd macula

Fetch dependencies
rebar3 get-deps

Compile
rebar3 compile

Run tests
rebar3 eunit

Start a shell with Macula loaded
rebar3 shell

Project Structure
Macula is organized as a single Erlang/OTP library with ~68 modules:
macula/
├── src/ # Source code (~68 .erl files)
│ ├── macula_quic*.erl # QUIC transport layer
│ ├── macula_protocol*.erl # Wire protocol encoding/decoding
│ ├── macula_connection*.erl # Connection management
│ ├── macula_gateway*.erl # Gateway components
│ ├── macula_routing*.erl # Kademlia DHT routing
│ ├── macula_pubsub*.erl # Pub/Sub messaging
│ ├── macula_rpc*.erl # RPC operations
│ └── macula_*.erl # Core utilities
├── test/ # EUnit tests
├── include/ # Header files (.hrl)
├── architecture/ # Architecture documentation
├── docs/ # User-facing documentation
├── examples/ # Example applications
└── rebar.config # Build configuration
See Project Structure for complete module documentation.
Running Tests
All Tests
rebar3 eunit

Specific Module Tests
rebar3 eunit --module=macula_id_tests
rebar3 eunit --module=macula_gateway_client_manager_tests

Test Coverage
rebar3 do eunit, cover

Multi-Node Integration Tests
cd docker
docker compose -f docker-compose.multi-node-test.yml build --no-cache
docker compose -f docker-compose.multi-node-test.yml up

Code Quality Standards
Macula follows Idiomatic Erlang principles:
Core Principles
	✅ Pattern matching on function heads - Avoid if and cond
	✅ Guards instead of case - Use guards for simple conditions
	✅ Shallow nesting - Keep nesting to 1-2 levels maximum
	✅ Let it crash - Don't catch errors unless you can handle them meaningfully
	✅ OTP behaviors - Use gen_server, gen_statem, supervisor where appropriate

Example: Good vs. Bad
❌ Bad:
process_message(Msg, State) ->
 if
 is_binary(Msg) ->
 case decode_message(Msg) of
 {ok, Data} ->
 if
 Data#data.type == request ->
 handle_request(Data, State);
 Data#data.type == response ->
 handle_response(Data, State)
 end
 end
 end.
✅ Good:
%% Guard ensures binary input
process_message(Msg, State) when is_binary(Msg) ->
 case decode_message(Msg) of
 {ok, Data} -> handle_decoded_message(Data, State);
 {error, Reason} -> {error, Reason}
 end;
process_message(_Msg, _State) ->
 {error, invalid_message}.

%% Pattern match on data type
handle_decoded_message(#data{type = request} = Data, State) ->
 handle_request(Data, State);
handle_decoded_message(#data{type = response} = Data, State) ->
 handle_response(Data, State).
See CLAUDE.md for complete coding guidelines.
Building Documentation
Macula uses ex_doc for documentation generation:
rebar3 ex_doc

Generated docs appear in doc/ directory. Open doc/index.html in a browser.
Docker Development
Clean Build (Always After Code Changes)
Prune cache and rebuild from scratch
docker builder prune -af
docker compose -f <compose-file> build --no-cache

Why? Docker build cache can use stale layers even after code changes. Always prune and rebuild when testing code changes.
Multi-Node Test Environment
cd docker
docker-compose -f docker-compose.multi-node-test.yml up

This starts:
	1 registry node (gateway)
	3 provider nodes (advertise services)
	1 client node (discovers and calls services)

Memory Management
Macula implements comprehensive memory leak prevention. See Memory Management for details.
Key Mechanisms:
	Bounded connection pools (max 1,000 connections, LRU eviction)
	Client connection limits (max 10,000 clients, configurable)
	Service TTL/cleanup (5-minute TTL, 60-second cleanup interval)
	Stream cleanup on disconnect
	Caller process monitoring for RPC handlers

Monitoring:
%% Check connection pool size
macula_gateway_mesh:pool_size(GatewayPid).

%% Check client count
macula_gateway_client_manager:client_count(ManagerPid).

%% Check service registry size
macula_service_registry:service_count().
Refactoring Status
Gateway Refactoring (COMPLETED - Jan 2025)
The gateway module has been refactored into 6 focused modules with comprehensive tests:
	✅ macula_gateway_client_manager.erl - Client lifecycle (24 tests)
	✅ macula_gateway_pubsub.erl - Pub/Sub routing (31 tests)
	✅ macula_gateway_rpc.erl - RPC handler management (20 tests)
	✅ macula_gateway_mesh.erl - Mesh connection pooling (16 tests)
	✅ macula_gateway_dht.erl - DHT query forwarding (stateless)
	✅ macula_gateway_rpc_router.erl - Multi-hop RPC routing (17 tests)
	✅ macula_gateway_sup.erl - Supervision tree (24 tests)

Total: 132 tests, all passing.
Connection Refactoring (IN PROGRESS - Jan 2025)
macula_connection.erl (2,030 LOC god module) is being refactored using TDD.
See:
	God Module Refactoring Plan - 9-week TDD plan
	Connection Behaviors - 275+ test scenarios
	Refactoring Status - Current progress

DO NOT modify macula_connection.erl without reading the refactoring plan first!
Contributing Workflow
	Read the documentation
	README.md
	CONTRIBUTING.md
	CLAUDE.md - Coding guidelines

	Create a feature branch
git checkout -b feature/your-feature-name

	Write tests first (TDD approach preferred)
Create test file
touch test/macula_your_module_tests.erl

Write failing tests
Implement functionality
Verify tests pass
rebar3 eunit --module=macula_your_module_tests

	Follow code quality standards
	Pattern matching over conditionals
	Guards instead of case where possible
	Maximum 1-2 levels of nesting
	Comprehensive tests for new functionality

	Commit and push
git add .
git commit -m "Add feature: your feature description"
git push origin feature/your-feature-name

	Create pull request
	Describe what the PR does
	Reference any related issues
	Ensure all tests pass
	Follow PR template guidelines

Getting Help
	Issues: GitHub Issues
	Documentation: Architecture Docs
	Code Quality: CODE_REVIEW_REPORT.md

← Back to README | Technical Documentation →

 Macula Documentation

Welcome to the Macula HTTP/3 Mesh documentation!
Macula is a distributed platform for building decentralized applications using HTTP/3 (QUIC) transport with P2P mesh networking.

🚀 Getting Started
	Quick Start - Build a distributed chat app in 30 minutes
	Architecture Overview - Complete documentation hub
	Project Structure - Module organization

📚 Core Documentation
Architecture & Design
	Kademlia DHT Architecture - Distributed hash table implementation
	QUIC/TLS Setup Guide - Gateway TLS configuration
	Memory Management - Production-ready leak prevention
	C4 Diagrams - Visual architecture overview

Planned Improvements
	Peer-Connection Separation Plan - v0.7.0 TDD refactoring (4.5 weeks)
	Nomenclature Proposal - connection → peer rename
	Peer vs Connection Analysis - Responsibility breakdown

🛠️ Development
Development Guides
	Testing Guide - Unit, integration, and E2E testing
	Docker Build Reference - Build best practices
	Hex Publication Guide - Publishing to Hex.pm
	mDNS Setup - Local service discovery configuration

Planning Documents
	Implementation Plan - Original 20-week roadmap
	Multi-Node Testing Plan - Testing strategy

📖 User Guides
	Quick Start - 15-minute mesh setup
	Hello World Tutorial - Build your first app
	RPC Guide - Remote procedure calls
	API Reference - Complete API docs

🔍 Reference
Technical Deep Dives
	DHT Routed RPC - Multi-hop Kademlia routing
	Pub/Sub Optimization - 10,000+ msg/sec
	Isolation Mechanisms - Multi-tenancy
	NAT Traversal - Firewall-friendly transport

Comparisons
	vs libp2p - Why Macula?
	vs WAMP - HTTP/3 mesh advantages
	vs Distributed Erlang - QUIC benefits

📦 Release Information
	Changelog - Version history and breaking changes
	v0.6.0 Release Summary - Latest release details

📂 Archive & History
	Archive - Historical analysis and completed work (~40 documents)
	Sessions - Development session summaries

🤝 Contributing
	Contributing Guide - How to contribute
	Documentation Status - What's complete

📞 Community & Support
	Issues: GitHub Issues
	Examples: Examples Directory
	License: Apache 2.0

Built with ❤️ for the BEAM community

 Kademlia DHT Architecture in Macula

Overview
Macula uses a Kademlia Distributed Hash Table (DHT) for decentralized service discovery and peer-to-peer routing. This document describes how Kademlia principles are implemented in the HTTP/3 mesh network.
Key Reference: Kademlia: A Peer-to-peer Information System Based on the XOR Metric (Maymounkov & Mazières, 2002)
Why Kademlia?
Traditional DHTs (like Chord) use numeric distance metrics that don't align well with network topology. Kademlia's XOR-based metric provides:
	Symmetric distance - distance(A, B) = distance(B, A)
	Network-aware routing - Nodes sharing common prefixes tend to be routed through similar paths
	O(log N) lookup complexity - Efficient even with millions of nodes
	Self-organizing - No central coordination required
	NAT-friendly - Works well with HTTP/3's connection-oriented transport

Core Concepts
1. Node IDs and XOR Metric
Every node in the Macula mesh has a 160-bit Node ID derived from:
	Gateway mode: Hash of (realm + IP + port)
	Edge peer mode: Randomly generated on startup

XOR Distance Formula:
distance(A, B) = A ⊕ B (bitwise XOR)
Example:
Node A: 0b10110101
Node B: 0b11010011

XOR: 0b01100110 (distance = 102 decimal)
Nodes are considered "closer" when their XOR distance is smaller. This creates a geometric address space where routing naturally follows network topology.
2. K-Buckets (Routing Table)
Each node maintains a routing table of 160 k-buckets, where k = 20 (typical value).
Structure:
	Bucket 0: Nodes at distance 2^0 to 2^1 - 1 (immediate neighbors)
	Bucket 1: Nodes at distance 2^1 to 2^2 - 1
	Bucket i: Nodes at distance 2^i to 2^(i+1) - 1
	Bucket 159: Nodes at distance 2^159 to 2^160 - 1 (furthest)

K-Bucket Properties:
	Maximum of k entries per bucket
	Least-recently-seen nodes are evicted first (LRU)
	Bucket 0 (closest nodes) is most important for routing

Macula Implementation:
%% In macula_routing.erl (conceptual)
-define(KADEMLIA_K, 20). %% Bucket size
-define(KADEMLIA_ALPHA, 3). %% Parallel lookup factor
-define(ID_BITS, 160). %% SHA-1 hash size

-record(k_bucket, {
 distance_range :: {integer(), integer()},
 nodes :: [node_entry()], %% Max 20 entries
 last_updated :: erlang:timestamp()
}).
3. DHT Operations
Kademlia defines four core RPC operations:
PING
Purpose: Check if a node is alive
Request:
{ping, FromNodeID, Timestamp}
Response:
{pong, ToNodeID, Timestamp}
Use Case: Health checking, routing table maintenance

STORE
Purpose: Store a key-value pair on a node
Request:
{store, Key, Value, TTL}
Response:
{stored, Key, ExpiresAt}
Macula Mapping:
	Key: Service name hash (e.g., sha1("game.matchmaking"))
	Value: Service endpoint info (realm, node_id, capabilities)
	TTL: Advertisement lifetime (default: 5 minutes)

FIND_NODE
Purpose: Locate k closest nodes to a target ID
Request:
{find_node, TargetID, K}
Response:
{nodes, [
 {NodeID1, IP1, Port1, Realm1},
 {NodeID2, IP2, Port2, Realm2},
 ...
]} %% Sorted by XOR distance to TargetID
Use Case: Populating routing table, iterative lookups

FIND_VALUE
Purpose: Retrieve value for a key (service discovery)
Request:
{find_value, Key}
Response (if found):
{value, Key, ServiceInfo}
Response (if not found):
{nodes, [...]} %% Fallback to FIND_NODE
Macula Mapping:
	Key: Service name (e.g., "game.matchmaking")
	ServiceInfo: List of providers advertising that service

4. Iterative Lookup Algorithm
To find a service or node, Macula performs an iterative FIND_VALUE lookup:
Algorithm:
	Start with the α = 3 closest nodes from local routing table
	Send parallel FIND_VALUE requests to these nodes
	If value found → return immediately
	Otherwise, add returned nodes to candidate set
	Select next α closest unqueried nodes
	Repeat until:	Value is found, OR
	No closer nodes remain, OR
	Maximum hops reached (log₂N)

Convergence: Guaranteed to find value in O(log N) hops
Macula Implementation (conceptual):
find_service(ServiceName, Realm) ->
 Key = crypto:hash(sha, ServiceName),
 ClosestNodes = get_closest_nodes(Key, ?KADEMLIA_ALPHA),
 iterative_lookup(Key, ClosestNodes, #{}, 0).

iterative_lookup(Key, [], _Queried, _Hops) ->
 {error, not_found};
iterative_lookup(Key, Candidates, Queried, Hops) when Hops > 20 ->
 {error, max_hops_exceeded};
iterative_lookup(Key, Candidates, Queried, Hops) ->
 %% Query α closest unqueried nodes in parallel
 Results = query_nodes(Candidates, {find_value, Key}),

 case find_value_in_results(Results) of
 {ok, Value} ->
 {ok, Value};
 not_found ->
 NewNodes = extract_nodes(Results),
 NextCandidates = select_closest_unqueried(Key, NewNodes, Queried),
 iterative_lookup(Key, NextCandidates,
 maps:merge(Queried, mark_queried(Candidates)),
 Hops + 1)
 end.

Macula-Specific Adaptations
1. Realm-Scoped DHT
Unlike traditional Kademlia, Macula implements multi-tenancy via realms:
	Each realm has its own isolated DHT keyspace
	Node IDs include realm hash: sha1(Realm || IP || Port)
	Service keys are realm-scoped: sha1(Realm || ServiceName)
	Cross-realm queries are blocked at protocol level

Example:
%% Realm "macula.arcade"
NodeID_A = sha1("macula.arcade" ++ "192.168.1.10" ++ "4433")

%% Realm "macula.energy"
NodeID_B = sha1("macula.energy" ++ "192.168.1.10" ++ "4433")

%% Same IP/port, different realms → different DHT partitions
2. Gateway Bootstrap Nodes
Traditional Kademlia requires bootstrap nodes to join the network. Macula handles this differently:
Gateway Mode:
	Gateways act as well-known bootstrap nodes
	Published at predictable URLs (e.g., https://gateway.example.com:4433)
	Maintain authoritative registry for their realm

Edge Peer Mode:
	Peers connect to gateway via MACULA_BOOTSTRAP_REGISTRY env var
	Gateway returns α closest nodes to peer's ID
	Peer populates routing table via FIND_NODE requests

No Hardcoded Bootstrap IPs: Unlike BitTorrent DHT, Macula uses DNS/HTTPS URLs for gateway discovery, making it firewall-friendly.
3. Service Advertisement TTL
Services are stored in the DHT with a Time-To-Live (TTL):
	Default TTL: 5 minutes
	Providers re-advertise every 60 seconds (heartbeat)
	Expired entries are removed by macula_advertisement_manager

Rationale: Short TTL ensures stale services don't linger after node crashes, while frequent heartbeats maintain availability.
4. HTTP/3 Transport Integration
Traditional Kademlia uses UDP for RPCs. Macula uses QUIC (HTTP/3):
Advantages:
	Reliable transport (no packet loss issues)
	Connection multiplexing (multiple RPCs over one connection)
	TLS 1.3 encryption (secure by default)
	NAT traversal (QUIC connection migration)

Message Encoding:
%% DHT query wrapped in Macula protocol
#{
 type => dht_query,
 operation => find_value,
 key => <<ServiceNameHash:160>>,
 realm => <<"macula.arcade">>,
 from_node_id => <<SenderNodeID:160>>,
 timestamp => erlang:system_time(millisecond)
}

Routing Table Maintenance
Macula keeps routing tables fresh through active probing:
1. Passive Updates
	When receiving any message from node N, refresh N's entry in k-bucket
	Update last-seen timestamp
	Move N to tail of LRU list (most recently seen)

2. Active Probing
	Every 60 seconds, ping least-recently-seen node in each non-empty bucket
	If ping fails 3 times consecutively, evict node
	Backfill bucket via FIND_NODE request

3. Bucket Splitting
	When bucket 0 (closest nodes) exceeds k entries, split into two buckets
	Move nodes to new buckets based on refined distance ranges
	Only split buckets containing own node ID (hot zone)

Implementation:
%% In macula_routing.erl
-define(REFRESH_INTERVAL, 60000). %% 60 seconds
-define(PING_TIMEOUT, 5000). %% 5 seconds
-define(MAX_FAILURES, 3).

refresh_buckets(State) ->
 lists:foldl(fun refresh_bucket/2, State, State#state.k_buckets).

refresh_bucket(Bucket, State) ->
 case get_least_recent_node(Bucket) of
 undefined -> State; %% Empty bucket
 Node ->
 case ping_node(Node) of
 pong -> update_node_timestamp(Node, State);
 timeout -> handle_ping_failure(Node, State)
 end
 end.

Performance Characteristics
	Metric	Value	Notes
	Lookup Time	O(log N) hops	N = total nodes in mesh
	Routing Table Size	O(log N) entries	~160 buckets × 20 nodes = 3,200 max
	Network Traffic	O(log N) messages/lookup	α parallel requests per hop
	Storage	O(k × log N)	Per node, for advertised services
	Convergence	< 1 second	Typical for 10,000-node network

Example (10,000-node network):
	Expected hops: log₂(10,000) ≈ 13.3 → 14 hops max
	Parallel factor α = 3 → ~5 rounds of queries
	Average lookup time: 5 rounds × 100ms RTT = 500ms

Comparison to Other DHTs
	Feature	Kademlia (Macula)	Chord	Pastry
	Distance Metric	XOR (symmetric)	Modular arithmetic	Numeric proximity
	Routing Complexity	O(log N)	O(log N)	O(log N)
	Lookup Parallelism	Yes (α = 3)	No (sequential)	Limited
	NAT-Friendly	✅ (with HTTP/3)	❌	❌
	Bootstrap Required	Optional (gateway)	Yes	Yes
	Self-Organizing	✅	✅	✅

Future Enhancements
1. S/Kademlia (Secure Kademlia)
	Cryptographic node ID generation (prevent Sybil attacks)
	Require nodes to solve proof-of-work for ID assignment
	Disjoint routing paths for redundancy

2. DHT Persistence
	Store service advertisements in distributed database (e.g., CRDT)
	Survive network partitions with eventual consistency
	Reduce re-advertisement overhead

3. Adaptive K-Bucket Sizing
	Dynamically adjust k based on network churn rate
	Larger k for stable networks (less probing overhead)
	Smaller k for high-churn networks (faster convergence)

References
	Kademlia Paper: Maymounkov & Mazières (2002)
	S/Kademlia: Baumgart & Mies (2007)
	BitTorrent DHT (BEP-0005): bittorrent.org/beps/bep_0005.html
	QUIC Protocol: RFC 9000
	Macula Architecture: docs/QUIC_TLS_GATEWAY_SETUP.md

Last Updated: 2025-11-15
Macula Version: 0.6.0
Status: ✅ Production-ready DHT implementation

 Peer-Connection Separation: TDD Implementation Plan

Date: 2025-11-15
Target Version: 0.6.0
Approach: Option B - Full separation with comprehensive test coverage

Executive Summary
Split macula_connection into two distinct responsibilities:
	macula_peer - High-level mesh participant (pub/sub, RPC, DHT)
	macula_connection - Low-level QUIC transport

Strategy: Test-Driven Development with no regression

Current Test Coverage
Existing Test Files (144 tests total)
	Test File	Tests	Coverage
	macula_connection_error_tests.erl	25	Error handling
	macula_connection_manager_tests.erl	25	QUIC lifecycle
	macula_connection_rpc_tests.erl	25	RPC operations
	macula_connection_pool_tests.erl	19	Connection pooling
	macula_connection_sup_tests.erl	15	Supervision
	macula_connection_protocol_tests.erl	14	Protocol encoding
	macula_connection_tests.erl	11	Facade API
	macula_connection_pubsub_tests.erl	10	Pub/sub operations
	macula_connection_integration_tests.erl	0	Integration (empty)
	macula_connection_pattern_qos_tests.erl	0	QoS patterns (empty)

Total: 144 test functions across 10 files

Target Architecture
macula_peer.erl - Mesh Participant API
Responsibilities:
	Mesh-level operations (pub/sub, RPC, service discovery)
	DHT participation and peer discovery
	Peer identity management (node ID, realm)
	Application-facing high-level API

API:
%% Lifecycle
-spec start_link(PeerOpts :: map()) -> {ok, pid()} | {error, term()}.
-spec stop(Peer :: pid()) -> ok.
-spec get_info(Peer :: pid()) -> #{node_id => binary(), realm => binary(), status => atom()}.

%% Pub/Sub (mesh-level)
-spec publish(Peer :: pid(), Topic :: binary(), Data :: term()) -> ok | {error, term()}.
-spec publish(Peer :: pid(), Topic :: binary(), Data :: term(), Opts :: map()) -> ok | {error, term()}.
-spec subscribe(Peer :: pid(), Topic :: binary(), Callback :: fun()) -> {ok, reference()} | {error, term()}.
-spec unsubscribe(Peer :: pid(), SubRef :: reference()) -> ok | {error, term()}.

%% RPC (mesh-level)
-spec call(Peer :: pid(), Procedure :: binary(), Args :: term()) -> {ok, term()} | {error, term()}.
-spec call(Peer :: pid(), Procedure :: binary(), Args :: term(), Opts :: map()) -> {ok, term()} | {error, term()}.
-spec advertise(Peer :: pid(), Procedure :: binary(), Handler :: fun(), Opts :: map()) -> ok | {error, term()}.
-spec unadvertise(Peer :: pid(), Procedure :: binary()) -> ok | {error, term()}.

%% DHT/Mesh Operations
-spec discover_peers(Peer :: pid(), Realm :: binary()) -> {ok, [peer_info()]} | {error, term()}.
-spec find_service(Peer :: pid(), Service :: binary()) -> {ok, [endpoint()]} | {error, term()}.
State:
-record(peer_state, {
 node_id :: binary(),
 realm :: binary(),
 status :: connecting | connected | disconnected,

 %% Child process PIDs
 connection_pid :: pid() | undefined, %% macula_connection
 pubsub_handler_pid :: pid() | undefined, %% macula_pubsub_handler
 rpc_handler_pid :: pid() | undefined, %% macula_rpc_handler
 advertisement_manager_pid :: pid() | undefined, %% macula_advertisement_manager

 %% Mesh-level state
 subscriptions :: #{reference() => subscription()},
 advertised_services :: #{binary() => handler()}
}).

macula_connection.erl - QUIC Transport Layer
Responsibilities:
	QUIC connection establishment and lifecycle
	Stream management (send/receive)
	Message encoding/decoding
	Reconnection and error handling
	Transport-level concerns ONLY

API:
%% Lifecycle
-spec start_link(ConnectionOpts :: map()) -> {ok, pid()} | {error, term()}.
-spec stop(Connection :: pid()) -> ok.
-spec get_status(Connection :: pid()) -> connecting | connected | disconnected | error.

%% Transport operations
-spec send(Connection :: pid(), Message :: binary()) -> ok | {error, term()}.
-spec send_message(Connection :: pid(), Type :: atom(), Data :: map()) -> ok | {error, term()}.

%% Stream management
-spec get_stream_info(Connection :: pid()) -> #{stream_id => integer(), bytes_sent => integer()}.

%% Callbacks (for receiving data)
-spec set_message_handler(Connection :: pid(), Handler :: pid()) -> ok.
State:
-record(connection_state, {
 url :: binary(),
 host :: binary(),
 port :: integer(),

 %% QUIC state
 connection :: pid() | undefined, %% quicer connection
 stream :: pid() | undefined, %% quicer stream
 status :: connecting | connected | disconnected | error,

 %% Transport state
 recv_buffer :: binary(),
 message_handler :: pid() | undefined, %% Who to send decoded messages to

 %% Reconnection
 reconnect_timer :: reference() | undefined,
 reconnect_attempts :: integer()
}).

Implementation Phases
Phase 1: Test Coverage Analysis ✅ (COMPLETED)
Tasks:
	[x] Identify all existing test files
	[x] Count test functions per file
	[x] Map tests to responsibilities (peer vs connection)

Results:
	144 tests across 10 files
	Need to split into peer tests (pub/sub, RPC, DHT) vs connection tests (QUIC, transport)

Phase 2: Design New Architecture (2 days)
Tasks:
	Define macula_peer API and behavior specification
	Define macula_connection API and behavior specification
	Design interaction protocol between peer and connection
	Design supervision tree structure
	Document state management and ownership

Deliverables:
	docs/macula_peer_specification.md
	docs/macula_connection_specification.md
	docs/peer_connection_interaction_protocol.md

Phase 3: Write Peer Tests (3 days)
Test Files to Create:
test/macula_peer_tests.erl - Core peer functionality
%% Lifecycle tests
peer_start_link_test() -> ...
peer_stop_test() -> ...
peer_get_info_test() -> ...

%% State management
peer_tracks_node_id_test() -> ...
peer_tracks_realm_test() -> ...
peer_tracks_status_test() -> ...

%% Connection integration
peer_starts_connection_test() -> ...
peer_handles_connection_failure_test() -> ...
peer_reconnects_after_disconnect_test() -> ...
test/macula_peer_pubsub_tests.erl - Pub/sub operations
%% Publishing
peer_publish_simple_test() -> ...
peer_publish_with_opts_test() -> ...
peer_publish_while_disconnected_test() -> ...
peer_publish_queues_when_connecting_test() -> ...

%% Subscribing
peer_subscribe_test() -> ...
peer_unsubscribe_test() -> ...
peer_receives_published_events_test() -> ...
peer_wildcard_subscribe_test() -> ...

%% Error handling
peer_publish_invalid_topic_test() -> ...
peer_subscribe_callback_error_test() -> ...
test/macula_peer_rpc_tests.erl - RPC operations
%% Calling services
peer_call_simple_test() -> ...
peer_call_with_timeout_test() -> ...
peer_call_nonexistent_service_test() -> ...
peer_call_multiple_providers_test() -> ...

%% Advertising services
peer_advertise_test() -> ...
peer_unadvertise_test() -> ...
peer_handler_receives_call_test() -> ...
peer_handler_returns_result_test() -> ...

%% Failover
peer_call_failover_on_timeout_test() -> ...
peer_call_failover_on_error_test() -> ...
test/macula_peer_dht_tests.erl - DHT and discovery
%% Peer discovery
peer_discover_peers_test() -> ...
peer_discover_peers_in_realm_test() -> ...
peer_discover_peers_empty_test() -> ...

%% Service discovery
peer_find_service_test() -> ...
peer_find_service_multiple_providers_test() -> ...
peer_find_service_not_found_test() -> ...

%% DHT operations
peer_dht_query_test() -> ...
peer_dht_store_test() -> ...
Estimated Tests: ~60-70 new tests

Phase 4: Write Connection Tests (2 days)
Test Files to Create:
test/macula_connection_tests.erl - Core transport
%% Lifecycle
connection_start_link_test() -> ...
connection_stop_test() -> ...
connection_get_status_test() -> ...

%% QUIC connection
connection_establishes_quic_test() -> ...
connection_creates_stream_test() -> ...
connection_handles_connection_failure_test() -> ...

%% Reconnection
connection_reconnects_on_disconnect_test() -> ...
connection_backs_off_on_repeated_failures_test() -> ...
connection_max_reconnect_attempts_test() -> ...
test/macula_connection_send_tests.erl - Sending messages
%% Send operations
connection_send_binary_test() -> ...
connection_send_message_test() -> ...
connection_send_while_connecting_test() -> ...
connection_send_while_disconnected_test() -> ...

%% Encoding
connection_encodes_message_type_test() -> ...
connection_encodes_message_data_test() -> ...
connection_handles_encoding_error_test() -> ...
test/macula_connection_receive_tests.erl - Receiving messages
%% Receive operations
connection_receives_data_test() -> ...
connection_decodes_messages_test() -> ...
connection_handles_partial_messages_test() -> ...
connection_forwards_to_handler_test() -> ...

%% Buffering
connection_buffers_incomplete_messages_test() -> ...
connection_clears_buffer_on_reconnect_test() -> ...
Estimated Tests: ~40-50 new tests

Phase 5: Implement macula_connection (TDD) (4 days)
Approach:
	Write tests first (Red)
	Implement minimal code to pass (Green)
	Refactor for idiomatic Erlang (Refactor)
	Repeat

Sub-tasks:
	Day 1: Lifecycle and QUIC connection setup
	Day 2: Send operations and encoding
	Day 3: Receive operations and decoding
	Day 4: Reconnection logic and error handling

Success Criteria:
	All connection tests passing
	No direct mesh logic in connection module
	Clean transport abstraction

Phase 6: Implement macula_peer (TDD) (5 days)
Approach: Same TDD cycle
Sub-tasks:
	Day 1: Lifecycle and peer identity
	Day 2: Pub/sub operations (uses macula_pubsub_handler)
	Day 3: RPC operations (uses macula_rpc_handler)
	Day 4: DHT and service discovery
	Day 5: Error handling and edge cases

Success Criteria:
	All peer tests passing
	Clean delegation to connection layer
	No transport logic in peer module

Phase 7: Integration and Migration (3 days)
Tasks:
	Update all references from old macula_connection to new modules
	Create backward-compatible wrapper (optional)
	Update supervision trees
	Update documentation
	Update examples and demos

Migration Script:
#!/bin/bash
scripts/migrate-to-peer-connection.sh

Rename test files
mv test/macula_connection_tests.erl test/macula_peer_facade_tests.erl
mv test/macula_connection_manager_tests.erl test/macula_connection_tests.erl

Update references in source files
find src -name "*.erl" -exec sed -i 's/macula_connection:start_link/macula_peer:start_link/g' {} \;
find src -name "*.erl" -exec sed -i 's/macula_connection:publish/macula_peer:publish/g' {} \;
... (complete list of API replacements)

Update test references
find test -name "*.erl" -exec sed -i 's/macula_connection:start_link/macula_peer:start_link/g' {} \;

Phase 8: Testing and Validation (2 days)
Test Levels:
	Unit Tests:
	All macula_peer tests passing (60-70 tests)
	All macula_connection tests passing (40-50 tests)
	All existing tests still passing (144 tests)

	Integration Tests:
	Multi-node pub/sub test
	Multi-node RPC test
	Service discovery test
	Reconnection scenario test

	Regression Tests:
	Run full eunit suite
	Run integration tests
	Test macula-arcade compatibility

Success Criteria:
	100% of existing tests passing
	100% of new tests passing
	No performance degradation
	Clean separation of concerns

Timeline
	Phase	Duration	Status
	1. Test Coverage Analysis	0.5 days	✅ COMPLETED
	2. Design New Architecture	2 days	📋 PENDING
	3. Write Peer Tests	3 days	📋 PENDING
	4. Write Connection Tests	2 days	📋 PENDING
	5. Implement macula_connection (TDD)	4 days	📋 PENDING
	6. Implement macula_peer (TDD)	5 days	📋 PENDING
	7. Integration and Migration	3 days	📋 PENDING
	8. Testing and Validation	2 days	📋 PENDING
	TOTAL	21.5 days (~4.5 weeks)	

Risk Mitigation
Risk 1: Breaking Existing Functionality
Mitigation:
	Keep all existing tests
	Run tests after each phase
	Create backward-compatible wrapper if needed

Risk 2: State Management Complexity
Mitigation:
	Design state ownership upfront
	Document interaction protocol
	Use well-defined message passing

Risk 3: Performance Degradation
Mitigation:
	Benchmark before and after
	Profile message passing overhead
	Optimize hot paths

Risk 4: Timeline Overrun
Mitigation:
	Daily progress tracking
	Adjust scope if needed
	Pair programming for complex areas

Success Metrics
Code Quality
	[x] Single Responsibility Principle: Each module has ONE clear purpose
	[] Test Coverage: >90% for new modules
	[] Idiomatic Erlang: Pattern matching, guards, no deep nesting
	[] Documentation: Comprehensive specs and examples

Functionality
	[] All existing features working
	[] Clean API separation
	[] No performance regression
	[] Backward compatibility (via wrapper)

Architecture
	[] macula_peer = mesh logic only
	[] macula_connection = transport only
	[] Clear interface contract
	[] Easy to extend/modify

Next Steps
	Get approval for 4.5-week timeline
	Start Phase 2: Design specifications
	Daily standup: Track progress and blockers
	Weekly review: Adjust timeline if needed

Decision Point: Proceed with Option B full separation?
Estimated Completion: 4.5 weeks from start (around early December 2025)

 Macula v0.6.0 Release Summary

Release Date: 2025-11-15
Status: ✅ Ready for Hex publication

What's in v0.6.0
Breaking Changes
	Environment Variable Rename: GATEWAY_REALM → MACULA_REALM	Consistent naming across all MACULA_* environment variables
	Applies to both gateway mode and edge peer mode

Documentation Improvements
	New: Comprehensive Kademlia DHT Architecture documentation	Location: docs/KADEMLIA_DHT_ARCHITECTURE.md
	380 lines covering XOR metrics, k-buckets, DHT operations, and Macula-specific adaptations

Migration Path
Simple find-and-replace for environment variables:
Before (v0.5.0):
export GATEWAY_REALM=my-app

After (v0.6.0):
export MACULA_REALM=my-app

Elixir/Phoenix runtime.exs:
Before
System.put_env("GATEWAY_REALM", realm)

After
System.put_env("MACULA_REALM", realm)

Pre-Release Checklist
✅ Completed
	[x] Version bumped to 0.6.0 in src/macula.app.src
	[x] Version bumped to 0.6.0 in rebar.config
	[x] CHANGELOG.md updated with breaking changes and migration guide
	[x] All MACULA_REALM references consistent throughout codebase
	[x] Documentation generated (ex_doc)
	[x] All tests passing (81 tests, 0 failures)
	[x] Compilation clean (no warnings)
	[x] Kademlia DHT documentation added

📋 Next Steps (For User)
	Run publication script: ./scripts/publish-to-hex.sh
	Verify on hex.pm
	Update macula-arcade to use v0.6.0
	Test Snake game with new version

Files Changed in v0.6.0
Version Files
	src/macula.app.src (line 3: version bump)
	rebar.config (line 68: version bump)

Environment Variable Updates
	src/macula_sup.erl (line 125: GATEWAY_REALM → MACULA_REALM)
	entrypoint.sh (lines 11, 17, 27: GATEWAY_REALM → MACULA_REALM)
	Dockerfile.gateway (line 60: ENV variable)
	config/sys.config (line 10: comment update)

Documentation
	docs/QUIC_TLS_GATEWAY_SETUP.md (added MACULA_REALM examples)
	docs/KADEMLIA_DHT_ARCHITECTURE.md (NEW - 380 lines)
	docs/NOMENCLATURE_PROPOSAL_CONNECTION_TO_PEER.md (NEW - for v0.7.0)
	docs/PEER_VS_CONNECTION_ANALYSIS.md (NEW - for v0.7.0)
	docs/PEER_CONNECTION_SEPARATION_PLAN.md (NEW - for v0.7.0)
	CHANGELOG.md (v0.6.0 entry added)

Total: 11 files modified, 4 files created

Test Results
Compilation: ✅ Clean (no warnings)
Tests: ✅ 81 tests, 0 failures, 6 cancelled
Documentation: ✅ Generated successfully
The 6 cancelled tests are integration tests requiring external infrastructure (expected behavior).

What's Coming in v0.7.0
Planned: Peer-Connection Separation (4.5 weeks)
Major architectural improvement to separate concerns:
macula_peer (High-Level Mesh API):
	Pub/sub operations
	RPC calls
	Service discovery
	DHT participation
	Peer identity management

macula_connection (Low-Level QUIC Transport):
	QUIC connection lifecycle
	Stream management
	Message encoding/decoding
	Reconnection logic

Benefits:
	Single Responsibility Principle
	Better testability
	Future-proof for alternative transports
	Clearer API separation

Timeline: 4-5 weeks TDD implementation
Documentation: See docs/PEER_CONNECTION_SEPARATION_PLAN.md

Package Metadata
Name: macula
Version: 0.6.0
License: Apache-2.0
Description: Macula HTTP/3 Mesh Platform - Complete distributed application framework
Dependencies:
	quicer: 0.2.15
	msgpack: 0.8.1
	gproc: 0.9.1

Links:
	GitHub: https://github.com/macula-io/macula
	Hex: https://hex.pm/packages/macula (after publication)

Publication Commands
Run the publish script (handles everything)
./scripts/publish-to-hex.sh

Or manual steps:
rebar3 hex build
rebar3 hex publish

Post-Publication Verification
After publishing, verify:
	Hex.pm: Check version appears at https://hex.pm/packages/macula
	Documentation: Verify docs rendered correctly on hex.pm
	Download Test: Try installing in a test project
	macula-arcade: Update dependency to v0.6.0 and test

Status: ✅ READY FOR PUBLICATION
Run ./scripts/publish-to-hex.sh when ready!

 Macula HTTP/3 Mesh - Project Structure and Libraries

Actual Erlang/Elixir projects and libraries to build
Created: 2025-01-08
Status: Planning Document

Overview
This document outlines the actual Erlang/Elixir libraries, applications, and projects that need to be created to implement the Macula HTTP/3 Mesh platform.

Repository Organization Strategy
Option A: Monorepo (Recommended for Initial Development)
macula/
├── apps/
│ ├── macula_core/ # Core protocols and types
│ ├── macula_quic/ # QUIC transport layer
│ ├── macula_protocol/ # Wire protocol (framing, encoding)
│ ├── macula_membership/ # SWIM membership
│ ├── macula_routing/ # Kademlia DHT routing
│ ├── macula_topology/ # Mesh topology management
│ ├── macula_pubsub/ # Pub/sub implementation
│ ├── macula_rpc/ # RPC implementation
│ ├── macula_gateway/ # Cross-realm gateway
│ ├── macula_discovery/ # Node discovery
│ ├── macula_security/ # Auth, ACLs, certificates
│ └── macula/ # Main application (umbrella)
├── rebar.config # Rebar3 umbrella config
├── mix.exs # Mix umbrella config (if supporting Elixir)
└── README.md
Benefits:
	Easy cross-library development
	Shared dependencies
	Single release
	Atomic commits across components
	Simplified CI/CD

Option B: Multi-repo (For Maturity/Modularity)
Separate repositories for each library (similar to Erlang/OTP structure).
Benefits:
	Independent versioning
	Smaller, focused repos
	Can use different libraries independently
	Clear boundaries

Recommendation: Start with Option A (monorepo), split later if needed.

Core Libraries (Required for MVP)
1. macula_core
Purpose: Core types, protocols, and shared utilities.
Modules:
%% Core types
macula_types.erl - Common type definitions
macula_node.erl - Node identity and metadata
macula_realm.erl - Realm management
macula_topic.erl - Topic parsing and validation

%% Utilities
macula_time.erl - Time utilities
macula_id.erl - ID generation (SHA-256 node IDs)
macula_uri.erl - Macula URI parsing (macula://realm/node)
Dependencies: None (pure Erlang)
Rebar3 Config:
{application, macula_core, [
 {description, "Macula core types and protocols"},
 {vsn, "0.1.0"},
 {modules, []},
 {registered, []},
 {applications, [kernel, stdlib]}
]}.

2. macula_quic
Purpose: QUIC transport layer (wrapper around quicer).
Modules:
macula_quic_listener.erl - QUIC listener (accept connections)
macula_quic_client.erl - QUIC client (initiate connections)
macula_quic_connection.erl - GenServer per QUIC connection
macula_quic_stream.erl - Stream management
macula_quic_config.erl - QUIC configuration (TLS, ALPN, etc.)
Dependencies:
	quicer (NIF for MsQuic)

Key Features:
	Connection pooling
	Stream multiplexing
	0-RTT support
	Connection migration
	Backpressure handling

Rebar3 Config:
{application, macula_quic, [
 {description, "Macula QUIC transport layer"},
 {vsn, "0.1.0"},
 {modules, []},
 {registered, []},
 {applications, [kernel, stdlib, macula_core, quicer]},
 {mod, {macula_quic_app, []}}
]}.

{deps, [
 {quicer, {git, "https://github.com/emqx/quic.git", {branch, "main"}}}
]}.

3. macula_protocol
Purpose: Wire protocol (message framing, encoding/decoding).
Modules:
macula_protocol.erl - Main protocol API
macula_frame.erl - Frame encoding/decoding
macula_message.erl - Message types and validation
macula_codec.erl - Binary serialization (Erlang term format or MessagePack)
Message Types:
-define(MSG_HANDSHAKE, 16#01).
-define(MSG_HANDSHAKE_ACK, 16#02).
-define(MSG_HEARTBEAT, 16#03).
-define(MSG_PING, 16#04).
-define(MSG_PONG, 16#05).
-define(MSG_PUBLISH, 16#10).
-define(MSG_SUBSCRIBE, 16#11).
-define(MSG_UNSUBSCRIBE, 16#12).
-define(MSG_EVENT, 16#13).
-define(MSG_RPC_CALL, 16#20).
-define(MSG_RPC_RESULT, 16#21).
-define(MSG_RPC_ERROR, 16#22).
-define(MSG_ERROR, 16#F0).
-define(MSG_CLOSE, 16#FF).
Dependencies:
	macula_core

Optional Dependencies:
	msgpack (if using MessagePack instead of Erlang term format)

Rebar3 Config:
{application, macula_protocol, [
 {description, "Macula wire protocol"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core]}
]}.

4. macula_membership
Purpose: SWIM-based membership and failure detection.
Modules:
macula_membership.erl - Main membership API
macula_swim.erl - SWIM protocol GenServer
macula_swim_detector.erl - Failure detector
macula_swim_gossip.erl - Gossip dissemination
macula_member.erl - Member record and state
Features:
	Membership list management
	Direct ping / indirect ping
	Suspicion mechanism
	Incarnation numbers
	Realm-scoped membership

Dependencies:
	macula_core
	macula_protocol
	macula_quic

Rebar3 Config:
{application, macula_membership, [
 {description, "Macula SWIM membership"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol, macula_quic]},
 {mod, {macula_membership_app, []}}
]}.

5. macula_routing
Purpose: Kademlia DHT for routing.
Modules:
macula_routing.erl - Routing API
macula_kademlia.erl - Kademlia DHT GenServer
macula_k_bucket.erl - K-bucket management
macula_node_lookup.erl - Node lookup (iterative)
macula_topic_registry.erl - Topic → Nodes mapping (for pub/sub)
macula_rpc_registry.erl - RPC name → Node mapping
Features:
	256 k-buckets (for 256-bit node IDs)
	XOR distance metric
	Iterative lookups
	Bucket refresh
	Realm partitioning

Dependencies:
	macula_core
	macula_membership

Rebar3 Config:
{application, macula_routing, [
 {description, "Macula Kademlia DHT routing"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_membership]},
 {mod, {macula_routing_app, []}}
]}.

6. macula_topology
Purpose: Mesh topology management (k-regular graph).
Modules:
macula_topology.erl - Topology management
macula_k_regular.erl - k-regular graph algorithm
macula_connection_pool.erl - Connection pool supervisor
macula_connection.erl - GenServer per peer connection
Features:
	k-regular graph topology
	Connection lifecycle (connect, disconnect, reconnect)
	Exponential backoff for reconnections
	Topology visualization

Dependencies:
	macula_core
	macula_quic
	macula_membership
	macula_routing

Rebar3 Config:
{application, macula_topology, [
 {description, "Macula mesh topology management"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_quic,
 macula_membership, macula_routing]},
 {mod, {macula_topology_app, []}}
]}.

7. macula_pubsub
Purpose: Publish/subscribe messaging.
Modules:
macula_pubsub.erl - Pub/sub API
macula_topic_tree.erl - Topic subscription tree (pattern matching)
macula_subscription.erl - Subscription management
macula_publisher.erl - Publishing logic
macula_event_router.erl - Event routing to subscribers
Features:
	Topic pattern matching (exact, prefix, wildcard)
	Local and remote subscriptions
	Subscription announcements (via DHT)
	Event delivery guarantees (at-most-once, at-least-once)

Dependencies:
	macula_core
	macula_protocol
	macula_routing
	macula_topology

Rebar3 Config:
{application, macula_pubsub, [
 {description, "Macula pub/sub messaging"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_routing, macula_topology]},
 {mod, {macula_pubsub_app, []}}
]}.

8. macula_rpc
Purpose: Remote procedure call (RPC) implementation.
Modules:
macula_rpc.erl - RPC API (call, register, unregister)
macula_rpc_server.erl - RPC request handler
macula_rpc_client.erl - RPC call client
macula_rpc_registry.erl - Local RPC endpoint registry
Features:
	Synchronous RPC (with timeout)
	Asynchronous RPC (cast)
	RPC endpoint registration (name → handler function)
	Endpoint discovery via DHT
	Load balancing (if multiple nodes register same RPC)

Dependencies:
	macula_core
	macula_protocol
	macula_routing
	macula_topology

Rebar3 Config:
{application, macula_rpc, [
 {description, "Macula RPC"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_routing, macula_topology]},
 {mod, {macula_rpc_app, []}}
]}.

9. macula_discovery
Purpose: Node discovery (DNS-SD, mDNS, static, cloud).
Modules:
macula_discovery.erl - Discovery coordinator
macula_discovery_static.erl - Static bootstrap nodes
macula_discovery_mdns.erl - mDNS (Multicast DNS)
macula_discovery_dns.erl - DNS SRV records
macula_discovery_consul.erl - Consul service discovery
macula_discovery_k8s.erl - Kubernetes endpoints
Features:
	Multiple discovery methods (configurable)
	Continuous discovery (periodic re-discovery)
	Bootstrap node list
	Realm-aware discovery

Dependencies:
	macula_core
	mdns (for mDNS support)

Rebar3 Config:
{application, macula_discovery, [
 {description, "Macula node discovery"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core]},
 {mod, {macula_discovery_app, []}}
]}.

{deps, [
 {mdns, {git, "https://github.com/benoitc/erlang-mdns.git", {branch, "master"}}}
]}.

10. macula_security
Purpose: Security (TLS certificates, ACLs, audit logging).
Modules:
macula_security.erl - Security API
macula_cert.erl - Certificate generation and validation
macula_acl.erl - Access control lists
macula_audit.erl - Audit logging
macula_crypto.erl - Message signing/verification
Features:
	Certificate generation (self-signed, CA-signed)
	Certificate validation (realm extraction from SAN)
	ACL enforcement (topic/RPC access control)
	Audit log (security events)
	Optional message signing

Dependencies:
	macula_core
	public_key (Erlang stdlib)
	ssl (Erlang stdlib)

Rebar3 Config:
{application, macula_security, [
 {description, "Macula security"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, public_key, ssl, macula_core]},
 {mod, {macula_security_app, []}}
]}.

11. macula_gateway
Purpose: Cross-realm gateway functionality.
Modules:
macula_gateway.erl - Gateway API
macula_gateway_server.erl - Gateway GenServer
macula_policy.erl - Policy engine (topic filtering, rate limiting)
macula_translation.erl - Topic translation
macula_rate_limiter.erl - Rate limiting per realm pair
Features:
	Multi-realm support
	Policy-based message filtering
	Topic translation
	Rate limiting
	Audit logging of cross-realm traffic

Dependencies:
	macula_core
	macula_protocol
	macula_pubsub
	macula_rpc
	macula_security

Rebar3 Config:
{application, macula_gateway, [
 {description, "Macula cross-realm gateway"},
 {vsn, "0.1.0"},
 {applications, [kernel, stdlib, macula_core, macula_protocol,
 macula_pubsub, macula_rpc, macula_security]},
 {mod, {macula_gateway_app, []}}
]}.

12. macula (Main Application)
Purpose: Umbrella application that ties everything together.
Modules:
macula.erl - Main API
macula_app.erl - Application callback
macula_sup.erl - Top-level supervisor
macula_config.erl - Configuration management
Supervision Tree:
macula_sup (one_for_one)
├── macula_discovery_sup
├── macula_quic_sup
├── macula_membership_sup
├── macula_routing_sup
├── macula_topology_sup
├── macula_pubsub_sup
├── macula_rpc_sup
├── macula_security_sup
└── macula_gateway_sup (optional, if gateway mode)
Dependencies: All macula_* libraries
Rebar3 Config:
{application, macula, [
 {description, "Macula HTTP/3 Mesh Platform"},
 {vsn, "0.1.0"},
 {applications, [
 kernel, stdlib,
 macula_core,
 macula_quic,
 macula_protocol,
 macula_membership,
 macula_routing,
 macula_topology,
 macula_pubsub,
 macula_rpc,
 macula_discovery,
 macula_security,
 macula_gateway
]},
 {mod, {macula_app, []}},
 {env, [
 {realm, <<"org.example.mesh">>},
 {listen_port, 4433},
 {discovery, [{methods, [static, mdns]}]},
 {topology, [{type, k_regular}, {k, 2}]}
]}
]}.

Supporting Tools and Utilities
13. macula_cli
Purpose: Command-line tool for Macula operations.
Features:
	Start/stop nodes
	Join mesh
	View topology
	Send test messages
	Query membership
	Inspect routing table

Implementation: Escript
Rebar3 Config:
{escript_name, macula}.
{escript_emu_args, "%%! -escript main macula_cli\n"}.
Usage:
macula start --realm org.example.mesh --port 4433
macula join 192.168.1.100:4433
macula topology
macula publish topic.name '{"data": "hello"}'
macula stats

14. macula_observer
Purpose: Real-time mesh visualization and monitoring.
Features:
	Visual mesh topology (graphviz-style)
	Live message flow
	Membership state
	Connection status
	Metrics dashboard

Implementation: Phoenix LiveView application (if using Elixir)
Alternative: Standalone Erlang application with web UI (Cowboy + WebSocket)

15. macula_loadtest
Purpose: Load testing and benchmarking tool.
Features:
	Spawn N virtual nodes
	Pub/sub throughput testing
	RPC latency testing
	Failure injection
	Report generation

Implementation: Standalone Erlang application using Tsung or custom framework

Optional/Future Libraries
16. macula_wamp_compat
Purpose: WAMP compatibility layer (bridge WAMP clients to Macula).
Modules:
	WAMP protocol adapter
	WebSocket server
	Message translation (WAMP ↔ Macula)

Use Case: Migrate from Bondy/WAMP to Macula gradually

17. macula_http_bridge
Purpose: HTTP/REST gateway for Macula (publish via HTTP POST).
Modules:
	Cowboy HTTP handler
	REST API (publish, call, subscribe via SSE)

Use Case: Non-BEAM clients accessing Macula

18. macula_kafka_connector
Purpose: Kafka bridge (publish Macula events to Kafka, consume Kafka events).
Dependencies: brod (Kafka client)

19. macula_postgres_connector
Purpose: PostgreSQL integration (CDC, event sourcing).
Dependencies: epgsql or postgrex

20. macula_metrics
Purpose: Metrics and observability (Prometheus, OpenTelemetry).
Modules:
	Prometheus exporter
	OpenTelemetry integration
	StatsD reporter

Dependencies:
	prometheus or prometheus_ex
	opentelemetry and opentelemetry_exporter

Development Roadmap
Phase 1: Foundation (Weeks 1-4)
Goal: Get basic QUIC transport and protocol working.
Libraries to build:
	macula_core - Types and utilities
	macula_quic - QUIC wrapper
	macula_protocol - Wire protocol

Deliverable: Two nodes can connect and exchange handshake messages.

Phase 2: Mesh Topology (Weeks 5-8)
Goal: Self-organizing mesh network.
Libraries to build:
	macula_membership - SWIM
	macula_routing - Kademlia DHT
	macula_topology - k-regular graph
	macula_discovery - Node discovery

Deliverable: N nodes form a mesh and detect failures.

Phase 3: Messaging (Weeks 9-12)
Goal: Pub/sub and RPC working across mesh.
Libraries to build:
	macula_pubsub - Pub/sub
	macula_rpc - RPC

Deliverable: Applications can publish/subscribe and make RPC calls.

Phase 4: Security and Gateways (Weeks 13-16)
Goal: Production-ready security and multi-tenancy.
Libraries to build:
	macula_security - Certificates, ACLs, audit
	macula_gateway - Cross-realm gateway

Deliverable: Secure mesh with realm isolation.

Phase 5: Tooling and Monitoring (Weeks 17-20)
Goal: Developer experience and operations tooling.
Tools to build:
	macula_cli - Command-line tool
	macula_observer - Visualization
	macula_loadtest - Benchmarking
	macula_metrics - Observability

Deliverable: Production-ready platform with tooling.

Testing Strategy
Unit Tests
Each library has its own test suite:
apps/macula_core/test/
apps/macula_quic/test/
apps/macula_protocol/test/
...
Framework: EUnit (Erlang) or ExUnit (Elixir)
Run:
rebar3 eunit
or
mix test

Integration Tests
Multi-node integration tests:
test/integration/
├── mesh_formation_test.erl
├── pubsub_test.erl
├── rpc_test.erl
├── failure_recovery_test.erl
└── gateway_test.erl
Framework: Common Test (Erlang)
Run:
rebar3 ct

Property-Based Tests
Use PropEr (Erlang) or StreamData (Elixir):
apps/macula_routing/test/prop_kademlia.erl
apps/macula_membership/test/prop_swim.erl
Run:
rebar3 proper

Load Tests
Separate load testing suite:
loadtest/
├── pubsub_throughput.erl
├── rpc_latency.erl
├── mesh_scale.erl (1000+ nodes)
└── failure_injection.erl
Framework: Tsung or custom

Continuous Integration
GitHub Actions Workflow
name: CI

on: [push, pull_request]

jobs:
 test:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: erlef/setup-beam@v1
 with:
 otp-version: '26.2'
 rebar3-version: '3.22'
 - run: rebar3 compile
 - run: rebar3 eunit
 - run: rebar3 ct
 - run: rebar3 dialyzer

 integration:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - uses: erlef/setup-beam@v1
 - run: rebar3 as test release
 - run: ./test/integration/run_all.sh

Release Strategy
Rebar3 Release
%% rebar.config
{relx, [
 {release, {macula, "0.1.0"}, [
 macula,
 sasl
]},

 {mode, prod},
 {include_erts, true},
 {extended_start_script, true},

 {overlay, [
 {copy, "config/sys.config.example", "etc/sys.config"},
 {copy, "config/vm.args.example", "etc/vm.args"}
]}
]}.
Build:
rebar3 release

Result: _build/default/rel/macula/

Docker Image
FROM erlang:26-alpine AS builder

WORKDIR /build
COPY . .
RUN rebar3 as prod release

FROM alpine:latest

RUN apk add --no-cache openssl ncurses-libs libstdc++

COPY --from=builder /build/_build/prod/rel/macula /opt/macula

EXPOSE 4433/udp

CMD ["/opt/macula/bin/macula", "foreground"]
Build:
docker build -t macula:latest .

Repository Initialization
Create Umbrella Application
Erlang (Rebar3)
rebar3 new umbrella macula
cd macula

Create apps
rebar3 new lib apps/macula_core
rebar3 new lib apps/macula_quic
rebar3 new lib apps/macula_protocol
... etc

Compile
rebar3 compile

Test
rebar3 eunit

Release
rebar3 release

OR Elixir (Mix)
Elixir (Mix)
mix new macula --umbrella
cd macula

Create apps
cd apps
mix new macula_core
mix new macula_quic
mix new macula_protocol
... etc

cd ..

Compile
mix compile

Test
mix test

Release
mix release

Summary
Core Libraries (12):
	✅ macula_core - Core types and utilities
	✅ macula_quic - QUIC transport
	✅ macula_protocol - Wire protocol
	✅ macula_membership - SWIM membership
	✅ macula_routing - Kademlia DHT
	✅ macula_topology - Mesh topology
	✅ macula_pubsub - Pub/sub
	✅ macula_rpc - RPC
	✅ macula_discovery - Node discovery
	✅ macula_security - Security
	✅ macula_gateway - Cross-realm gateway
	✅ macula - Main application

Tools (3):
	✅ macula_cli - CLI tool
	✅ macula_observer - Visualization
	✅ macula_loadtest - Load testing

Optional (5):
	⚠️ macula_wamp_compat - WAMP bridge
	⚠️ macula_http_bridge - HTTP gateway
	⚠️ macula_kafka_connector - Kafka integration
	⚠️ macula_postgres_connector - PostgreSQL integration
	⚠️ macula_metrics - Metrics/observability

Total: 20 libraries/applications

Next Step: Initialize the repository structure and start with Phase 1 (Foundation).

Last Updated: 2025-01-08
Maintainers: [To be assigned]

 Macula HTTP/3 Mesh - Documentation Root

A distributed mesh networking platform for BEAM, built on HTTP/3/QUIC

Vision
Build a unique, standards-based distributed networking layer for Erlang/Elixir applications that:
	Uses HTTP/3 (QUIC) for NAT-friendly, firewall-friendly transport
	Forms self-organizing mesh topologies at the edge
	Provides pub/sub and RPC primitives
	Scales to thousands of nodes
	Supports multi-tenancy and realm isolation
	Delivers "Wow! How do they do it?" factor

Target Use Cases:
	Edge-first IoT networks
	Decentralized energy trading platforms
	Multi-tenant SaaS applications
	Partner data exchange networks
	Hybrid cloud-edge systems

Documentation Index
Core Architecture Documents
1. Technical Roadmap ⭐ START HERE
20-week implementation plan with detailed technical specifications
Contents:
	Understanding QUIC and HTTP/3 (protocol deep dive)
	QUIC/HTTP/3 libraries for BEAM (comparison matrix)
	Complete 5-layer architecture
	Phase-by-phase implementation (Weeks 1-20)
	Code examples for each phase
	Success criteria and benchmarks
	Technical deep dives (QUIC vs TCP, SWIM gossip, Kademlia DHT)

Who should read this: Engineers implementing the platform, technical leads evaluating feasibility
Key decisions documented:
	QUIC library choice: quicer (Erlang NIF wrapper for MsQuic)
	Topology: k-regular graph with SWIM gossip
	Routing: Kademlia DHT (O(log N) lookups)
	NAT traversal: STUN/ICE + UDP hole punching

2. C4 Architecture Diagrams
Multi-level architecture visualization using C4 model
Contents:
	Level 1 - System Context: Ecosystem view (developers, nodes, infrastructure)
	Level 2 - Container: Technology stack, BEAM VM internals
	Level 3 - Component: Mesh Services and Protocol Layer components
	Level 4 - Code: Detailed macula_connection GenServer implementation
	Supplementary - Deployment: Physical deployment scenarios

Who should read this: Architects, new team members, stakeholders wanting visual overview
Diagram formats: ASCII (easy to view in terminal, version control friendly)

3. Isolation Mechanisms
Multi-tenancy, realms, and cross-realm communication
Contents:
	Realm concept and namespacing
	Identity layer (node-level realm membership)
	Topic namespacing and validation
	Routing table partitioning by realm
	Three cross-realm communication models:	Model A: Gateway Nodes (recommended)
	Model B: Federation Protocol
	Model C: Strict Isolation

	Protocol-level realm support
	SWIM membership per realm
	Pub/sub with realm scoping
	Certificate-based security
	Use cases (SaaS, energy markets, IoT, partners)
	Implementation roadmap (Weeks 21-27)

Who should read this: SaaS platform engineers, security architects, multi-tenant deployment teams
Key features:
	Isolation by default
	Policy-based gateways for controlled data sharing
	Certificate validation with realm in SAN
	ACL enforcement
	Audit logging

4. Module Dependencies and Architecture ⭐
How the pieces fit together: From QUIC to your application
Contents:
	Layered architecture diagram - Visual representation of all components
	Module responsibilities - What each component does and why
	Message flow examples - Follow an RPC call and pub/sub message through the stack
	The philosophy - Gateway as "dumb transport" vs RPC/PubSub as "smart orchestration"
	Current implementation status - What works, what's in progress, what's planned

Who should read this: All developers working on Macula, architects understanding the system
Key insight: Macula separates transport concerns (gateway) from business logic (RPC/PubSub servers), similar to how nginx handles HTTP routing while your application handles business logic. This separation enables independent evolution, testing, and scaling of each layer.
Why this matters: Understanding the layered architecture prevents confusion about where functionality belongs. For example, topic pattern matching belongs in macula_pubsub_server (business logic), not macula_gateway (transport).

Quick Start Guides
5. Quick Start Guide 🚀 ⚠️ TODO
Get a 3-node mesh running in 15 minutes
Planned contents:
	Prerequisites (Erlang/OTP 26+, quicer installation)
	Download and build Macula
	Start first node
	Start and join second node
	Start and join third node
	Send first pub/sub message
	Make first RPC call
	Verify mesh topology
	Common troubleshooting

Target audience: Developers wanting hands-on experience

6. Hello World Tutorial 📚 ⚠️ TODO
Build your first Macula application
Planned contents:
	Create new Elixir/Mix project
	Add Macula dependency
	Configure node identity and realm
	Implement simple pub/sub chat application
	Deploy across multiple nodes
	Add RPC endpoint (echo service)
	Monitor with Observer

Target audience: Application developers new to Macula

API and Protocol Specifications
7. Wire Protocol Specification 📋 ⚠️ TODO
Complete wire protocol documentation
Planned contents:
	Packet format and framing
	Message types (handshake, heartbeat, send, pub, sub, rpc, etc.)
	Encoding/decoding rules (Erlang term format)
	Handshake protocol flow
	Stream multiplexing
	Error handling
	Protocol versioning
	Compatibility matrix

Target audience: Protocol implementers, interoperability teams

8. API Reference 📖 ⚠️ TODO
Complete Erlang/Elixir API documentation
Planned contents:
	macula:start/1 - Start node
	macula:connect/2 - Connect to peer
	macula:publish/2,3 - Publish message
	macula:subscribe/1,2 - Subscribe to topic
	macula:call/3,4 - RPC call
	macula:register/2 - Register RPC endpoint
	Gateway APIs
	Policy configuration APIs
	Metrics and monitoring APIs

Target audience: Application developers

Advanced Topics
9. NAT Traversal Deep Dive 🌐 ⚠️ TODO
How Macula works behind NATs and firewalls
Planned contents:
	NAT types and challenges (full cone, symmetric, etc.)
	STUN protocol for public IP discovery
	ICE protocol for connectivity establishment
	UDP hole punching techniques
	TURN relay fallback
	Connection migration on IP change
	Mobile/cellular network considerations
	Enterprise firewall traversal

Target audience: Network engineers, DevOps, deployment teams

10. Security Model 🔒 ⚠️ TODO
Comprehensive security architecture
Planned contents:
	Threat model
	TLS 1.3 integration with QUIC
	Certificate-based node authentication
	Realm isolation via certificates
	ACL enforcement
	Message signing and verification
	Audit logging
	Denial-of-service protection
	Rate limiting
	Security best practices
	Penetration testing results

Target audience: Security teams, compliance officers, architects

11. Performance Tuning Guide ⚡ ⚠️ TODO
Optimize for throughput and latency
Planned contents:
	Benchmarking methodology
	OS-level tuning (UDP buffers, file descriptors)
	BEAM VM tuning (schedulers, memory)
	QUIC connection parameters
	Stream multiplexing configuration
	Routing table optimization
	SWIM protocol tuning
	Gateway throughput optimization
	Monitoring and profiling tools
	Load testing scenarios

Target audience: Performance engineers, SREs

12. Observability Guide 📊 ⚠️ TODO
Monitor, trace, and debug Macula networks
Planned contents:
	Prometheus metrics (all available metrics)
	Grafana dashboards (pre-built templates)
	OpenTelemetry tracing integration
	Log aggregation (structured logging)
	Mesh topology visualization
	Real-time message flow visualization
	Health checks and alerts
	Debugging tools (observer, recon, etc.)
	Common issues and diagnostics

Target audience: SREs, DevOps, operations teams

13. Deployment Patterns 🚀 ⚠️ TODO
Production deployment architectures
Planned contents:
	Single-region mesh
	Multi-region with gateways
	Hybrid cloud-edge
	Kubernetes deployment (Helm charts)
	Docker Compose examples
	Bare metal / VM deployment
	DNS/discovery configuration
	Load balancing strategies
	High availability patterns
	Disaster recovery
	Migration strategies (zero-downtime updates)

Target audience: DevOps, platform engineers, architects

14. Gateway Operations Manual 🌉 ⚠️ TODO
Deploy and operate gateway nodes
Planned contents:
	Gateway node requirements
	Policy configuration (YAML/JSON schemas)
	Topic translation setup
	Rate limiting configuration
	Audit log management
	Certificate management for gateways
	High availability setup (active-active)
	Monitoring gateway health
	Troubleshooting cross-realm issues
	Performance optimization
	Security hardening

Target audience: Gateway operators, platform admins

Comparisons and Design Decisions
15. Macula vs Distributed Erlang ⭐
Does Macula augment or replace Distributed Erlang?
Answer: Macula replaces Distributed Erlang for internet-scale, multi-tenant scenarios.
Contents:
	The key differences - Security, network assumptions, multi-tenancy, scalability
	Architectural comparison - Cookie-based mesh vs TLS-based selective connectivity
	When to use each - Tightly-coupled clusters (disterl) vs loosely-coupled services (Macula)
	Code comparison - Side-by-side examples showing explicit vs implicit communication
	Hybrid approach - Can you use both? (Yes, with gateways between data centers)
	Migration path - Moving from disterl to Macula incrementally

Who should read this: Teams familiar with Distributed Erlang, architects deciding between approaches
Key takeaway: Distributed Erlang excels at <50 node, single-datacenter, fully-trusted clusters. Macula excels at 100s-1000s of nodes across the internet with realm isolation and NAT traversal. They solve different problems.

16. Comparison with WAMP/Bondy 🔄 ⚠️ TODO
Why build Macula when WAMP exists?
Planned contents:
	WAMP strengths and weaknesses
	Why WAMP over WebSocket doesn't work well for edge
	NAT traversal comparison
	Bondy clustering (Partisan) vs Macula mesh
	Protocol overhead comparison
	Latency and throughput benchmarks
	When to use WAMP/Bondy vs Macula
	Migration path from WAMP to Macula
	Interoperability (WAMP compatibility layer)

Target audience: Teams familiar with WAMP, decision makers

17. Comparison with libp2p 🔄 ⚠️ TODO
Macula vs libp2p (IPFS networking stack)
Planned contents:
	libp2p architecture overview
	BEAM libp2p implementations (ex_libp2p)
	Why not use libp2p?	Complexity
	Maturity in BEAM ecosystem
	Distributed Erlang incompatibility

	Protocol comparison (QUIC, GossipSub, Kademlia)
	Use case fit analysis
	Performance comparison

Target audience: P2P networking engineers, architects

18. Design Decision Log 📝 ⚠️ TODO
Why we made the choices we did
Planned contents:
	ADR 001: Why QUIC instead of TCP?
	ADR 002: Why quicer (MsQuic) instead of pure Erlang?
	ADR 003: Why Kademlia instead of Chord/Pastry?
	ADR 004: Why SWIM instead of Raft for membership?
	ADR 005: Why k-regular graph instead of full mesh?
	ADR 006: Why gateway pattern for cross-realm?
	ADR 007: Why certificate-based auth instead of API keys?
	ADR 008: Why UDP hole punching instead of TURN-only?

Format: Architecture Decision Records (ADRs)
Target audience: Architects, long-term maintainers

Reference Materials
19. Glossary 📖 ⚠️ TODO
Terms and definitions
Planned contents:
	QUIC, HTTP/3, UDP, DTLS, TLS 1.3
	Mesh, topology, k-regular graph
	SWIM, gossip, failure detection
	Kademlia, DHT, XOR distance
	Realm, tenant, gateway
	Pub/sub, RPC, stream
	NAT, STUN, ICE, TURN, hole punching
	Connection migration, 0-RTT
	ACL, policy, audit

Target audience: Everyone (reference)

20. FAQ ❓ ⚠️ TODO
Frequently asked questions
Planned contents:
	What is Macula?
	Why HTTP/3 instead of traditional distributed Erlang?
	Can it work behind NAT?
	How many nodes can it scale to?
	What's the latency overhead?
	Is it production-ready?
	How does it compare to X? (where X = WAMP, libp2p, Partisan, gRPC, etc.)
	Can I use it with Phoenix/LiveView?
	Does it work in Kubernetes?
	What license is it?

Target audience: Everyone (first questions)

21. Troubleshooting Guide 🔧 ⚠️ TODO
Common issues and solutions
Planned contents:
	Nodes can't discover each other
	Connection timeout / handshake failure
	NAT traversal failures
	Certificate validation errors
	SWIM membership flapping
	Routing table inconsistencies
	Gateway policy denials
	Performance issues (high latency, low throughput)
	Memory leaks
	Crash dumps analysis

Format: Problem → Diagnosis → Solution
Target audience: Operations, support teams

Contributing and Community
22. Contributing Guide 🤝 ⚠️ TODO
How to contribute to Macula
Planned contents:
	Code of conduct
	Development setup
	Testing requirements (unit, integration, property-based)
	Code style guide (Erlang/Elixir conventions)
	Documentation requirements
	Pull request process
	Release process
	Community channels (Discord, mailing list, etc.)
	Roadmap and feature requests

Target audience: Contributors, open source community

Document Status
	Document	Status	Priority	Target Week
	Technical Roadmap	✅ Complete	P0	Week 0
	C4 Diagrams	✅ Complete	P0	Week 0
	Isolation Mechanisms	✅ Complete	P0	Week 0
	Module Dependencies	✅ Complete	P0	Week 0
	Macula vs Distributed Erlang	✅ Complete	P1	Week 0
	Quick Start Guide	⚠️ TODO	P1	Week 4
	Hello World Tutorial	⚠️ TODO	P1	Week 4
	Wire Protocol Spec	⚠️ TODO	P1	Week 8
	API Reference	⚠️ TODO	P1	Week 12
	NAT Traversal Deep Dive	⚠️ TODO	P2	Week 12
	Security Model	⚠️ TODO	P1	Week 16
	Performance Tuning	⚠️ TODO	P2	Week 20
	Observability Guide	⚠️ TODO	P2	Week 20
	Deployment Patterns	⚠️ TODO	P1	Week 20
	Gateway Operations	⚠️ TODO	P2	Week 24
	Comparison with WAMP	⚠️ TODO	P2	Week 8
	Comparison with libp2p	⚠️ TODO	P3	Week 12
	Design Decision Log	⚠️ TODO	P2	Ongoing
	Glossary	⚠️ TODO	P2	Week 4
	FAQ	⚠️ TODO	P1	Week 4
	Troubleshooting Guide	⚠️ TODO	P2	Week 20
	Contributing Guide	⚠️ TODO	P2	Week 4

Priority Levels:
	P0: Must have before any code (architecture)
	P1: Required for MVP release
	P2: Important for production use
	P3: Nice to have

Reading Paths
For Evaluators (Decision Makers)
	This document (overview)
	Technical Roadmap - Sections: Vision, Architecture Overview, Timeline
	C4 Diagrams - Level 1 and Level 2
	Isolation Mechanisms - Use Cases section

Time: ~1 hour

For Architects (System Design)
	Technical Roadmap - Complete read
	C4 Diagrams - All levels
	Module Dependencies - Understand the layers
	Isolation Mechanisms - Complete read
	Macula vs Distributed Erlang - Architectural trade-offs
	NAT Traversal Deep Dive ⚠️ TODO
	Security Model ⚠️ TODO
	Design Decision Log ⚠️ TODO

Time: ~5 hours

For Implementers (Engineers)
	Module Dependencies - Understand where code belongs
	Technical Roadmap - Focus on code examples
	Wire Protocol Spec ⚠️ TODO
	API Reference ⚠️ TODO
	Quick Start Guide ⚠️ TODO
	Hello World Tutorial ⚠️ TODO

Time: ~3 hours + hands-on

For Operators (DevOps/SRE)
	Quick Start Guide ⚠️ TODO
	Deployment Patterns ⚠️ TODO
	Observability Guide ⚠️ TODO
	Performance Tuning ⚠️ TODO
	Troubleshooting Guide ⚠️ TODO
	Gateway Operations ⚠️ TODO

Time: ~2 hours + practice

For Security Teams
	Security Model ⚠️ TODO
	Isolation Mechanisms - Security sections
	NAT Traversal Deep Dive ⚠️ TODO
	Gateway Operations ⚠️ TODO - Security hardening

Time: ~3 hours

Additional Topics to Document
Based on the comprehensive nature of this project, here are additional topics that should be documented:
21. Testing Strategy 🧪
Comprehensive testing approach
Contents:
	Unit testing (EUnit, ExUnit)
	Property-based testing (PropEr, StreamData)
	Integration testing (multi-node scenarios)
	Chaos engineering (partition testing, node crashes)
	Load testing (Tsung, k6)
	Security testing (penetration testing)
	Fuzz testing (protocol fuzzing)
	Continuous integration setup

22. Migration Guide 🔄
Moving from other systems to Macula
Contents:
	Migrating from WAMP/Bondy
	Migrating from distributed Erlang
	Migrating from RabbitMQ/Kafka
	Migrating from gRPC
	Co-existence strategies (gradual migration)
	Data migration patterns
	Rollback procedures

23. Scaling Patterns 📈
How to scale from 10 to 10,000 nodes
Contents:
	Topology evolution (full mesh → k-regular → hierarchical)
	Region sharding
	DHT bucket optimization
	SWIM tuning for large networks
	Gateway scaling (horizontal)
	Database scaling (if persistence layer added)
	Cost analysis at scale

24. Protocol Evolution 🔬
Versioning and backward compatibility
Contents:
	Protocol version negotiation
	Backward compatibility guarantees
	Deprecation policy
	Feature flags
	Upgrade paths (rolling upgrades)
	Breaking changes process

25. Mobile and Browser Support 📱
Extending Macula to constrained environments
Contents:
	WebAssembly BEAM (lumen, AtomVM)
	Browser WebTransport (QUIC in browsers)
	React Native integration
	Mobile battery optimization
	Offline-first patterns
	Connection resumption on network change

26. Plugin Architecture 🔌
Extend Macula with custom behaviors
Contents:
	Hook system for message interception
	Custom discovery plugins (Consul, etcd)
	Custom transport plugins (WebRTC, Bluetooth)
	Custom routing strategies
	Custom serialization formats
	Plugin development guide

27. Cost Analysis 💰
TCO comparison vs alternatives
Contents:
	Infrastructure costs (vs cloud load balancers)
	Bandwidth costs (UDP vs TCP, compression)
	Operational costs (automation, monitoring)
	Development costs (time to market)
	Licensing costs (vs commercial solutions)
	ROI calculator

28. Regulatory Compliance 📜
GDPR, HIPAA, SOC2 considerations
Contents:
	Data residency (realm isolation for regions)
	Right to be forgotten (message expiry)
	Audit logging requirements
	Encryption at rest/in transit
	Access controls
	Compliance checklists

29. Interoperability 🔗
Connect Macula to other systems
Contents:
	WAMP compatibility layer (adapter)
	gRPC bridge
	REST/GraphQL gateway
	MQTT bridge (for IoT)
	Kafka/RabbitMQ connectors
	Database change data capture (CDC)

30. Case Studies 📚
Real-world deployments (when available)
Contents:
	Example Platform energy trading platform
	Industrial IoT deployment
	Multi-tenant SaaS platform
	Gaming backend
	Financial data mesh
	Lessons learned, metrics, testimonials

Contributing to Documentation
Documentation is as important as code! To contribute:
	Choose a TODO document from the status table above
	Follow the template provided in the document outline
	Include code examples (working, tested code)
	Add diagrams (ASCII art for version control friendliness)
	Get review from at least one core team member
	Update this index when document is complete

Documentation Standards:
	Use Markdown (.md)
	ASCII diagrams (box drawing characters: ┌─┐│└┘)
	Code examples must be syntactically correct
	Include both Erlang and Elixir examples where applicable
	Cross-reference related documents
	Keep language clear and concise (avoid jargon, or define it)

License
[To be determined - likely Apache 2.0 or MIT]

Contact and Community
	GitHub: macula-io/macula ⚠️ TODO
	Discord: Join our Discord ⚠️ TODO
	Mailing List: macula-dev@googlegroups.com ⚠️ TODO
	Twitter: @MaculaMesh ⚠️ TODO

Last Updated: 2025-01-08
Maintainers: Macula Core Team
Status: Living Document (updated as project evolves)

 Macula HTTP/3 Mesh - Quick Start Guide

Get a 3-node mesh running in 15 minutes

Prerequisites
Required Software
	Erlang/OTP 26.0 or later
Check version
erl -eval 'erlang:display(erlang:system_info(otp_release)), halt().' -noshell

Install from:
	Ubuntu/Debian: sudo apt-get install erlang
	macOS: brew install erlang
	From source: https://www.erlang.org/downloads

	Elixir 1.15 or later (optional, for Elixir examples)
Check version
elixir --version

Install from:
	Ubuntu/Debian: sudo apt-get install elixir
	macOS: brew install elixir
	From source: https://elixir-lang.org/install.html

	Git
git --version

	C Compiler (for building quicer NIF)
	Ubuntu/Debian: sudo apt-get install build-essential cmake
	macOS: xcode-select --install

System Requirements
	OS: Linux (Ubuntu 20.04+), macOS 11+, or Windows WSL2
	RAM: 512 MB minimum per node (2 GB recommended for development)
	Network: UDP port access (default: 4433)
	Disk: 100 MB for Macula + dependencies

Step 1: Download and Build Macula
Clone the Repository
cd ~/projects
git clone https://github.com/macula-io/macula.git
cd macula

Install Dependencies
For Erlang (Rebar3)
rebar3 get-deps

For Elixir (Mix)
mix deps.get

Build quicer (QUIC Library)
The quicer library includes native code and may take a few minutes to compile:
Rebar3
rebar3 compile

Mix
mix compile

Expected output:
===> Fetching quicer (from {git,"https://github.com/emqx/quic.git",...})
===> Compiling quicer
 ...
 [100%] Built target msquic
===> Compiled quicer
Verify Installation
Erlang
rebar3 shell
> macula:version().
{ok, "0.1.0"}

Elixir
iex -S mix
iex> Macula.version()
{:ok, "0.1.0"}

Step 2: Start Node 1 (Bootstrap Node)
Create Configuration File
Create config/node1.config:
%% config/node1.config
[
 {macula, [
 {node_id, <<"node1">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4433},
 {listen_address, "0.0.0.0"},

 %% Discovery
 {discovery, [
 {methods, [static]}, % Use static bootstrap for this example
 {static_nodes, []} % First node has no bootstrap peers
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2} % Each node connects to 2 peers
]},

 %% TLS/Certificates (auto-generate for demo)
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 1
Erlang
erl -config config/node1 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node1@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node1.config

Expected output:
[info] Macula node started: node1
[info] Listening on 0.0.0.0:4433 (UDP)
[info] Node ID: a3f5b2e1c4d8a7f9...
[info] Realm: org.example.mesh
[info] Topology: k_regular (k=2)
[info] Discovery: static
[info] Ready to accept connections
Keep this terminal open - Node 1 is now running.

Step 3: Start Node 2 (Join the Mesh)
Create Configuration File
Create config/node2.config:
%% config/node2.config
[
 {macula, [
 {node_id, <<"node2">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4434}, % Different port
 {listen_address, "0.0.0.0"},

 %% Discovery - bootstrap from Node 1
 {discovery, [
 {methods, [static]},
 {static_nodes, [
 {"127.0.0.1", 4433} % Node 1's address
]}
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2}
]},

 %% TLS/Certificates
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 2 (in new terminal)
Open new terminal
cd ~/projects/macula

Erlang
erl -config config/node2 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node2@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node2.config

Expected output:
[info] Macula node started: node2
[info] Listening on 0.0.0.0:4434 (UDP)
[info] Node ID: b7c3d8e2f5a9b4c1...
[info] Realm: org.example.mesh
[info] Connecting to bootstrap node 127.0.0.1:4433...
[info] Connected to node1 (a3f5b2e1c4d8a7f9...)
[info] SWIM membership: 2 nodes alive
[info] Mesh topology established
In Node 1's terminal, you should see:
[info] New connection from 127.0.0.1:xxxxx
[info] Handshake complete: node2 (b7c3d8e2f5a9b4c1...)
[info] SWIM membership: 2 nodes alive

Step 4: Start Node 3 (Expand the Mesh)
Create Configuration File
Create config/node3.config:
%% config/node3.config
[
 {macula, [
 {node_id, <<"node3">>},
 {realm, <<"org.example.mesh">>},
 {listen_port, 4435},
 {listen_address, "0.0.0.0"},

 %% Discovery - can bootstrap from either node
 {discovery, [
 {methods, [static]},
 {static_nodes, [
 {"127.0.0.1", 4433}, % Node 1
 {"127.0.0.1", 4434} % Node 2
]}
]},

 %% Topology
 {topology, [
 {type, k_regular},
 {k, 2}
]},

 %% TLS/Certificates
 {cert_mode, auto_generate},

 %% Logging
 {log_level, info}
]}
].
Start Node 3 (in new terminal)
Open new terminal
cd ~/projects/macula

Erlang
erl -config config/node3 -pa _build/default/lib/*/ebin -eval 'application:ensure_all_started(macula).'

Elixir
iex --name node3@127.0.0.1 --cookie macula_demo -S mix run -e 'Application.ensure_all_started(:macula)' -- --config config/node3.config

Expected output:
[info] Macula node started: node3
[info] Listening on 0.0.0.0:4435 (UDP)
[info] Node ID: c8d4e9f3a6b2c7d1...
[info] Realm: org.example.mesh
[info] Connecting to bootstrap nodes...
[info] Connected to node1 (a3f5b2e1c4d8a7f9...)
[info] Connected to node2 (b7c3d8e2f5a9b4c1...)
[info] SWIM membership: 3 nodes alive
[info] Mesh topology: k_regular (k=2)
[info] Routing table: 3 nodes
Congratulations! You now have a 3-node mesh network running.

Step 5: Verify Mesh Topology
Check Membership (on any node)
In any node's console:
% Erlang
macula_membership:get_members().

% Expected output:
[
 #{node_id => <<"a3f5b2e1...">>, state => alive, ...},
 #{node_id => <<"b7c3d8e2...">>, state => alive, ...},
 #{node_id => <<"c8d4e9f3...">>, state => alive, ...}
]
Elixir
Macula.Membership.get_members()

Expected output:
[
 %{node_id: "a3f5b2e1...", state: :alive, ...},
 %{node_id: "b7c3d8e2...", state: :alive, ...},
 %{node_id: "c8d4e9f3...", state: :alive, ...}
]
Check Connections
% Erlang
macula_topology:get_connections().

% Expected output:
[
 #{peer_id => <<"b7c3d8e2...">>, state => active, rtt_ms => 1.2},
 #{peer_id => <<"c8d4e9f3...">>, state => active, rtt_ms => 1.5}
]
Visualize Topology (ASCII Art)
% Erlang
macula_topology:print_topology().
Expected output:
Mesh Topology (k-regular, k=2)
==============================

node1 (a3f5...) ←─→ node2 (b7c3...)
 ↑ ↑
 └────────────→ node3 (c8d4...)
 ↑
 └────────→ node1

3 nodes, 3 connections
Average RTT: 1.3ms

Step 6: Send Your First Message (Pub/Sub)
Subscribe to a Topic (on Node 3)
In Node 3's console:
% Erlang
Subscriber = spawn(fun() ->
 receive
 {event, Topic, Msg} ->
 io:format("Received on ~s: ~p~n", [Topic, Msg])
 end
end).

macula_pubsub:subscribe(<<"hello.world">>, Subscriber).
Elixir
pid = spawn(fn ->
 receive do
 {:event, topic, msg} ->
 IO.puts("Received on #{topic}: #{inspect(msg)}")
 end
end)

Macula.PubSub.subscribe("hello.world", pid)
Expected output:
[info] Subscribed to org.example.mesh.hello.world
ok
Publish a Message (on Node 1)
In Node 1's console:
% Erlang
macula_pubsub:publish(<<"hello.world">>, #{
 message => <<"Hello from Node 1!">>,
 timestamp => erlang:system_time(millisecond)
}).
Elixir
Macula.PubSub.publish("hello.world", %{
 message: "Hello from Node 1!",
 timestamp: System.system_time(:millisecond)
})
Expected output on Node 1:
[info] Published to org.example.mesh.hello.world
ok
Expected output on Node 3 (subscriber):
Received on org.example.mesh.hello.world: #{
 message => <<"Hello from Node 1!">>,
 timestamp => 1704723456789,
 publisher => <<"a3f5b2e1...">>
}
Message flow: Node 1 → QUIC/HTTP3 → Node 3 (may route via Node 2 depending on topology)

Step 7: Make Your First RPC Call
Register RPC Endpoint (on Node 2)
In Node 2's console:
% Erlang
EchoHandler = fun(Args) ->
 {ok, #{echo => Args, node => node()}}
end.

macula_rpc:register(<<"echo_service">>, EchoHandler).
Elixir
echo_handler = fn args ->
 {:ok, %{echo: args, node: Node.self()}}
end

Macula.RPC.register("echo_service", echo_handler)
Expected output:
[info] Registered RPC endpoint: org.example.mesh.echo_service
ok
Call RPC (from Node 1)
In Node 1's console:
% Erlang
macula_rpc:call(<<"echo_service">>, #{
 test => <<"Hello RPC!">>,
 value => 42
}, 5000). % 5 second timeout
Elixir
Macula.RPC.call("echo_service", %{
 test: "Hello RPC!",
 value: 42
}, 5000)
Expected output on Node 1:
{ok, #{
 echo => #{test => <<"Hello RPC!">>, value => 42},
 node => 'node2@127.0.0.1'
}}
Expected output on Node 2 (handler):
[info] RPC call received: echo_service
[info] Args: #{test => <<"Hello RPC!">>, value => 42}
RPC flow: Node 1 → finds registration via DHT → routes to Node 2 → executes handler → returns result

Step 8: Test Fault Tolerance
Stop Node 2
In Node 2's terminal, press Ctrl+C twice to stop the node.
Expected output on Node 1 and Node 3:
[warning] Connection lost to node2 (b7c3d8e2...)
[info] SWIM detected failure: node2
[info] SWIM membership: 2 nodes alive, 1 suspect
[info] Topology reconfiguring...
[info] New connection established: node1 ←→ node3
[info] SWIM membership: 2 nodes alive
Verify Mesh Adapted
On Node 1 or Node 3:
% Erlang
macula_topology:get_connections().

% Expected output (now only 1 connection):
[
 #{peer_id => <<"c8d4e9f3...">>, state => active, rtt_ms => 1.1}
]
The mesh automatically adapts - Node 1 and Node 3 now connect directly.
Restart Node 2
Restart Node 2 (using the same command from Step 3).
Expected output:
[info] Macula node started: node2
[info] Reconnecting to mesh...
[info] SWIM membership: 3 nodes alive
[info] Topology restored
The mesh self-heals automatically.

Common Operations
List All Nodes in Mesh
% Erlang
macula_membership:list_nodes().
Elixir
Macula.Membership.list_nodes()
Get Node Statistics
% Erlang
macula:stats().

% Output:
#{
 messages_sent => 1543,
 messages_received => 1687,
 bytes_sent => 245678,
 bytes_received => 267890,
 active_connections => 2,
 routing_table_size => 3,
 uptime_seconds => 3600
}
Subscribe with Pattern Matching
% Erlang - Subscribe to all topics starting with "sensor."
macula_pubsub:subscribe(<<"sensor.*">>, Pid, #{match => prefix}).

% Matches: sensor.temperature, sensor.humidity, etc.
Publish with Options
% Erlang - Publish with acknowledgment
macula_pubsub:publish(<<"important.event">>, Data, #{
 acknowledge => true, % Wait for delivery confirmation
 retain => true % Store for late subscribers
}).

Troubleshooting
Problem: "Port already in use"
Error:
{error, eaddrinuse}
Solution: Change the listen_port in your config file to an unused port (e.g., 4436, 4437).

Problem: Nodes can't discover each other
Symptoms: Node 2 or 3 logs show "Connection timeout" or "No route to bootstrap node"
Checks:
	Firewall: Ensure UDP port 4433-4435 are not blocked
Ubuntu/Debian
sudo ufw allow 4433:4435/udp

macOS
Check System Preferences → Security & Privacy → Firewall

	Correct IP address: If running on different machines, replace 127.0.0.1 with actual IP
Find your IP
ip addr show # Linux
ifconfig # macOS

	Same realm: All nodes must have the same realm in config

Problem: "Certificate validation failed"
Error:
{error, {tls_alert, "certificate unknown"}}
Cause: Certificate mismatch (usually in manual cert mode)
Solution: Use {cert_mode, auto_generate} for development, or ensure all nodes trust the same CA.

Problem: High latency or packet loss
Check network conditions:
% Erlang
macula_connection:ping(<<"node2_id">>).

% Output:
{ok, 1.2} % RTT in milliseconds
If RTT > 100ms on localhost, check:
	System load (CPU usage)
	Other applications using network
	Docker/VM networking overhead

Next Steps
Congratulations! You've successfully:
	✅ Built Macula from source
	✅ Started a 3-node mesh network
	✅ Verified mesh topology
	✅ Sent pub/sub messages across the mesh
	✅ Made RPC calls between nodes
	✅ Tested fault tolerance and self-healing

Learn More
	Hello World Tutorial - Build a complete application
	API Reference - Complete API documentation
	Deployment Patterns - Production deployments
	Performance Tuning - Optimize for your use case

Try More Advanced Features
	Realm isolation: Start nodes in different realms and use gateways
	NAT traversal: Run nodes on different networks (home, cloud, mobile)
	Large mesh: Scale to 10+ nodes and observe routing behavior
	Persistence: Add event sourcing with persistent subscriptions
	Monitoring: Set up Prometheus metrics and Grafana dashboards

Join the Community
	GitHub: https://github.com/macula-io/macula
	Discord: https://discord.gg/macula
	Docs: https://docs.macula.io

Happy meshing! 🎉

 Macula HTTP/3 Mesh - Hello World Tutorial

Build your first distributed application on Macula

What We'll Build
A distributed chat application where:
	Multiple nodes can join a chat room
	Users can send messages that appear on all nodes
	Messages are routed via the Macula mesh (pub/sub)
	Users can query "who's online" (RPC call)
	Graceful handling of nodes joining/leaving

Time to complete: 30 minutes
Prerequisites:
	Completed Quick Start Guide
	Basic Erlang or Elixir knowledge
	Macula installed and working

Project Structure
We'll create a new Mix (Elixir) or Rebar3 (Erlang) project:
macula_chat/
├── config/
│ └── config.exs # Application configuration
├── lib/
│ ├── macula_chat.ex # Application entry point
│ ├── chat_room.ex # Chat room GenServer
│ └── chat_client.ex # User client
├── mix.exs # Project definition
└── README.md

Step 1: Create New Project
Using Mix (Elixir)
mix new macula_chat --sup
cd macula_chat

Using Rebar3 (Erlang)
rebar3 new app macula_chat
cd macula_chat

Step 2: Add Macula Dependency
Mix (Elixir)
Edit mix.exs:
defmodule MaculaChat.MixProject do
 use Mix.Project

 def project do
 [
 app: :macula_chat,
 version: "0.1.0",
 elixir: "~> 1.15",
 start_permanent: Mix.env() == :prod,
 deps: deps()
]
 end

 def application do
 [
 extra_applications: [:logger],
 mod: {MaculaChat.Application, []}
]
 end

 defp deps do
 [
 {:macula, "~> 0.6"}
]
 end
end
Rebar3 (Erlang)
Edit rebar.config:
{erl_opts, [debug_info]}.

{deps, [
 {macula, "0.6.6"}
]}.

{shell, [
 {apps, [macula_chat]}
]}.
Install Dependencies
Mix
mix deps.get

Rebar3
rebar3 get-deps

Step 3: Configure Macula
Mix Configuration
Create config/config.exs:
import Config

config :macula,
 realm: "io.macula.chat",
 listen_port: System.get_env("MACULA_PORT", "4433") |> String.to_integer(),
 discovery: [
 methods: [:static, :mdns],
 static_nodes: [] # Add bootstrap nodes via env var
],
 topology: [
 type: :k_regular,
 k: 2
],
 cert_mode: :auto_generate,
 log_level: :info

Chat-specific config
config :macula_chat,
 username: System.get_env("CHAT_USER", "Anonymous"),
 room: System.get_env("CHAT_ROOM", "general")
Rebar3 Configuration
Create config/sys.config:
[
 {macula, [
 {realm, <<"io.macula.chat">>},
 {listen_port, 4433},
 {discovery, [
 {methods, [static, mdns]},
 {static_nodes, []}
]},
 {topology, [
 {type, k_regular},
 {k, 2}
]},
 {cert_mode, auto_generate},
 {log_level, info}
]},

 {macula_chat, [
 {username, <<"Anonymous">>},
 {room, <<"general">>}
]}
].

Step 4: Implement Chat Room
Elixir Implementation
Create lib/chat_room.ex:
defmodule MaculaChat.ChatRoom do
 @moduledoc """
 Chat room GenServer that handles:
 - Subscribing to chat messages
 - Publishing messages to the room
 - Tracking online users
 """

 use GenServer
 require Logger

 @topic_prefix "io.macula.chat.room"

 ## Client API

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 @doc "Send a message to the chat room"
 def send_message(message) do
 GenServer.cast(__MODULE__, {:send_message, message})
 end

 @doc "Get list of online users (RPC)"
 def get_online_users do
 GenServer.call(__MODULE__, :get_online_users)
 end

 @doc "Join a chat room"
 def join_room(room_name) do
 GenServer.call(__MODULE__, {:join_room, room_name})
 end

 ## Server Callbacks

 def init(opts) do
 username = Keyword.get(opts, :username, "Anonymous")
 room = Keyword.get(opts, :room, "general")

 state = %{
 username: username,
 room: room,
 topic: "#{@topic_prefix}.#{room}",
 presence_topic: "#{@topic_prefix}.#{room}.presence",
 online_users: %{}
 }

 # Subscribe to room messages
 :ok = Macula.PubSub.subscribe(state.topic, self())

 # Subscribe to presence (join/leave notifications)
 :ok = Macula.PubSub.subscribe(state.presence_topic, self())

 # Register RPC endpoint for "who's online"
 rpc_name = "chat.#{room}.users"
 :ok = Macula.RPC.register(rpc_name, fn _ ->
 {:ok, Map.keys(state.online_users)}
 end)

 # Announce presence
 announce_join(state)

 # Schedule periodic presence heartbeat
 schedule_heartbeat()

 Logger.info("Joined chat room: #{room} as #{username}")

 {:ok, state}
 end

 def handle_call(:get_online_users, _from, state) do
 users = Map.keys(state.online_users)
 {:reply, {:ok, users}, state}
 end

 def handle_call({:join_room, new_room}, _from, state) do
 # Unsubscribe from old room
 Macula.PubSub.unsubscribe(state.topic, self())
 Macula.PubSub.unsubscribe(state.presence_topic, self())

 # Announce leave
 announce_leave(state)

 # Update state
 new_state = %{state |
 room: new_room,
 topic: "#{@topic_prefix}.#{new_room}",
 presence_topic: "#{@topic_prefix}.#{new_room}.presence",
 online_users: %{}
 }

 # Subscribe to new room
 :ok = Macula.PubSub.subscribe(new_state.topic, self())
 :ok = Macula.PubSub.subscribe(new_state.presence_topic, self())

 # Announce join
 announce_join(new_state)

 Logger.info("Switched to chat room: #{new_room}")

 {:reply, :ok, new_state}
 end

 def handle_cast({:send_message, message}, state) do
 # Publish message to room
 payload = %{
 username: state.username,
 message: message,
 timestamp: System.system_time(:millisecond),
 node_id: Macula.node_id()
 }

 :ok = Macula.PubSub.publish(state.topic, payload)

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :message} = event}, state) do
 # Received chat message
 username = event.username
 message = event.message
 timestamp = event.timestamp

 # Format timestamp
 {:ok, dt} = DateTime.from_unix(timestamp, :millisecond)
 time_str = Calendar.strftime(dt, "%H:%M:%S")

 # Print to console
 IO.puts("[#{time_str}] <#{username}> #{message}")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :join} = event}, state) do
 # User joined
 username = event.username
 node_id = event.node_id

 state = put_in(state.online_users[username], node_id)

 Logger.info("#{username} joined the room")
 IO.puts("*** #{username} joined the room")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :leave} = event}, state) do
 # User left
 username = event.username

 {_node_id, state} = pop_in(state.online_users[username])

 Logger.info("#{username} left the room")
 IO.puts("*** #{username} left the room")

 {:noreply, state}
 end

 def handle_info({:event, _topic, %{type: :heartbeat} = event}, state) do
 # Presence heartbeat
 username = event.username
 node_id = event.node_id

 state = put_in(state.online_users[username], node_id)

 {:noreply, state}
 end

 def handle_info(:send_heartbeat, state) do
 announce_heartbeat(state)
 schedule_heartbeat()
 {:noreply, state}
 end

 ## Private Functions

 defp announce_join(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :join,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp announce_leave(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :leave,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp announce_heartbeat(state) do
 Macula.PubSub.publish(state.presence_topic, %{
 type: :heartbeat,
 username: state.username,
 node_id: Macula.node_id(),
 timestamp: System.system_time(:millisecond)
 })
 end

 defp schedule_heartbeat do
 Process.send_after(self(), :send_heartbeat, 30_000) # Every 30 seconds
 end
end
Erlang Implementation
Create src/chat_room.erl:
-module(chat_room).
-behaviour(gen_server).

-export([start_link/1, send_message/1, get_online_users/0, join_room/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

-define(TOPIC_PREFIX, <<"io.macula.chat.room">>).

%% Client API

start_link(Opts) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, Opts, []).

send_message(Message) ->
 gen_server:cast(?MODULE, {send_message, Message}).

get_online_users() ->
 gen_server:call(?MODULE, get_online_users).

join_room(RoomName) ->
 gen_server:call(?MODULE, {join_room, RoomName}).

%% Server Callbacks

init(Opts) ->
 Username = proplists:get_value(username, Opts, <<"Anonymous">>),
 Room = proplists:get_value(room, Opts, <<"general">>),

 Topic = <<?TOPIC_PREFIX/binary, ".", Room/binary>>,
 PresenceTopic = <<Topic/binary, ".presence">>,

 State = #{
 username => Username,
 room => Room,
 topic => Topic,
 presence_topic => PresenceTopic,
 online_users => #{}
 },

 %% Subscribe to room messages
 ok = macula_pubsub:subscribe(Topic, self()),
 ok = macula_pubsub:subscribe(PresenceTopic, self()),

 %% Register RPC endpoint
 RpcName = <<"chat.", Room/binary, ".users">>,
 ok = macula_rpc:register(RpcName, fun(_Args) ->
 {ok, maps:keys(maps:get(online_users, State))}
 end),

 %% Announce presence
 announce_join(State),

 %% Schedule heartbeat
 schedule_heartbeat(),

 logger:info("Joined chat room: ~s as ~s", [Room, Username]),

 {ok, State}.

handle_call(get_online_users, _From, State) ->
 Users = maps:keys(maps:get(online_users, State)),
 {reply, {ok, Users}, State};

handle_call({join_room, NewRoom}, _From, State) ->
 %% Unsubscribe from old room
 macula_pubsub:unsubscribe(maps:get(topic, State), self()),
 macula_pubsub:unsubscribe(maps:get(presence_topic, State), self()),

 %% Announce leave
 announce_leave(State),

 %% Update state
 NewTopic = <<?TOPIC_PREFIX/binary, ".", NewRoom/binary>>,
 NewPresenceTopic = <<NewTopic/binary, ".presence">>,

 NewState = State#{
 room => NewRoom,
 topic => NewTopic,
 presence_topic => NewPresenceTopic,
 online_users => #{}
 },

 %% Subscribe to new room
 ok = macula_pubsub:subscribe(NewTopic, self()),
 ok = macula_pubsub:subscribe(NewPresenceTopic, self()),

 %% Announce join
 announce_join(NewState),

 logger:info("Switched to chat room: ~s", [NewRoom]),

 {reply, ok, NewState}.

handle_cast({send_message, Message}, State) ->
 Payload = #{
 type => message,
 username => maps:get(username, State),
 message => Message,
 timestamp => erlang:system_time(millisecond),
 node_id => macula:node_id()
 },

 ok = macula_pubsub:publish(maps:get(topic, State), Payload),

 {noreply, State}.

handle_info({event, _Topic, #{type := message} = Event}, State) ->
 Username = maps:get(username, Event),
 Message = maps:get(message, Event),
 Timestamp = maps:get(timestamp, Event),

 %% Print to console
 {{Y,M,D},{H,Min,S}} = calendar:system_time_to_universal_time(Timestamp, millisecond),
 io:format("[~2..0B:~2..0B:~2..0B] <~s> ~s~n", [H, Min, S, Username, Message]),

 {noreply, State};

handle_info({event, _Topic, #{type := join} = Event}, State) ->
 Username = maps:get(username, Event),
 NodeId = maps:get(node_id, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:put(Username, NodeId, OnlineUsers),

 io:format("*** ~s joined the room~n", [Username]),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info({event, _Topic, #{type := leave} = Event}, State) ->
 Username = maps:get(username, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:remove(Username, OnlineUsers),

 io:format("*** ~s left the room~n", [Username]),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info({event, _Topic, #{type := heartbeat} = Event}, State) ->
 Username = maps:get(username, Event),
 NodeId = maps:get(node_id, Event),

 OnlineUsers = maps:get(online_users, State),
 NewOnlineUsers = maps:put(Username, NodeId, OnlineUsers),

 {noreply, State#{online_users => NewOnlineUsers}};

handle_info(send_heartbeat, State) ->
 announce_heartbeat(State),
 schedule_heartbeat(),
 {noreply, State}.

%% Private Functions

announce_join(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => join,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

announce_leave(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => leave,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

announce_heartbeat(State) ->
 macula_pubsub:publish(maps:get(presence_topic, State), #{
 type => heartbeat,
 username => maps:get(username, State),
 node_id => macula:node_id(),
 timestamp => erlang:system_time(millisecond)
 }).

schedule_heartbeat() ->
 erlang:send_after(30000, self(), send_heartbeat).

Step 5: Update Application Supervisor
Elixir
Edit lib/macula_chat/application.ex:
defmodule MaculaChat.Application do
 use Application

 @impl true
 def start(_type, _args) do
 # Get config
 username = Application.get_env(:macula_chat, :username, "Anonymous")
 room = Application.get_env(:macula_chat, :room, "general")

 children = [
 # Start Macula mesh
 {Macula, []},

 # Start chat room
 {MaculaChat.ChatRoom, [username: username, room: room]}
]

 opts = [strategy: :one_for_one, name: MaculaChat.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Erlang
Edit src/macula_chat_app.erl:
-module(macula_chat_app).
-behaviour(application).

-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
 %% Get config
 {ok, Username} = application:get_env(macula_chat, username),
 {ok, Room} = application:get_env(macula_chat, room),

 Children = [
 %% Start Macula mesh
 #{
 id => macula,
 start => {macula, start_link, []},
 restart => permanent,
 type => supervisor
 },

 %% Start chat room
 #{
 id => chat_room,
 start => {chat_room, start_link, [[{username, Username}, {room, Room}]]},
 restart => permanent,
 type => worker
 }
],

 SupFlags = #{strategy => one_for_one, intensity => 1, period => 5},

 supervisor:start_link({local, macula_chat_sup}, ?MODULE, {SupFlags, Children}).

stop(_State) ->
 ok.

Step 6: Create Interactive Client
Elixir
Create lib/chat_client.ex:
defmodule MaculaChat.Client do
 @moduledoc """
 Interactive chat client - run from IEx
 """

 @doc "Send a message to the chat room"
 def say(message) when is_binary(message) do
 MaculaChat.ChatRoom.send_message(message)
 :ok
 end

 @doc "List who's online"
 def who do
 {:ok, users} = MaculaChat.ChatRoom.get_online_users()
 IO.puts("\nOnline users (#{length(users)}):")
 Enum.each(users, fn user ->
 IO.puts(" - #{user}")
 end)
 :ok
 end

 @doc "Switch to different room"
 def join(room_name) when is_binary(room_name) do
 :ok = MaculaChat.ChatRoom.join_room(room_name)
 IO.puts("Joined room: #{room_name}")
 :ok
 end

 @doc "Show help"
 def help do
 IO.puts("""

 Macula Chat Client Commands:
 =============================

 Chat.say("message") - Send a message
 Chat.who() - List online users
 Chat.join("room") - Switch to different room
 Chat.help() - Show this help

 Examples:
 Chat.say("Hello world!")
 Chat.who()
 Chat.join("random")

 """)
 :ok
 end
end

Alias for convenience
alias MaculaChat.Client, as: Chat
Erlang
Create src/chat_client.erl:
-module(chat_client).
-export([say/1, who/0, join/1, help/0]).

say(Message) when is_binary(Message) ->
 chat_room:send_message(Message),
 ok.

who() ->
 {ok, Users} = chat_room:get_online_users(),
 io:format("~nOnline users (~p):~n", [length(Users)]),
 lists:foreach(fun(User) ->
 io:format(" - ~s~n", [User])
 end, Users),
 ok.

join(RoomName) when is_binary(RoomName) ->
 ok = chat_room:join_room(RoomName),
 io:format("Joined room: ~s~n", [RoomName]),
 ok.

help() ->
 io:format("~n~s~n", [
 "Macula Chat Client Commands:\n"
 "=============================\n"
 "\n"
 "chat_client:say(<<\"message\">>) - Send a message\n"
 "chat_client:who() - List online users\n"
 "chat_client:join(<<\"room\">>) - Switch to different room\n"
 "chat_client:help() - Show this help\n"
 "\n"
 "Examples:\n"
 " chat_client:say(<<\"Hello world!\">>).\n"
 " chat_client:who().\n"
 " chat_client:join(<<\"random\">>).\n"
]),
 ok.

Step 7: Run the Chat Application
Terminal 1: User "Alice"
Elixir
CHAT_USER=Alice CHAT_ROOM=general MACULA_PORT=4433 iex -S mix

Erlang
CHAT_USER=Alice CHAT_ROOM=general MACULA_PORT=4433 rebar3 shell

You should see:
[info] Macula node started
[info] Joined chat room: general as Alice

Terminal 2: User "Bob"
Elixir
CHAT_USER=Bob CHAT_ROOM=general MACULA_PORT=4434 iex -S mix

Erlang
CHAT_USER=Bob CHAT_ROOM=general MACULA_PORT=4434 rebar3 shell

Both terminals show:
*** Bob joined the room

Terminal 3: User "Charlie"
Elixir
CHAT_USER=Charlie CHAT_ROOM=general MACULA_PORT=4435 iex -S mix

Erlang
CHAT_USER=Charlie CHAT_ROOM=general MACULA_PORT=4435 rebar3 shell

All terminals show:
*** Charlie joined the room

Step 8: Chat!
Send Messages
In Alice's terminal (Elixir):
Chat.say("Hello everyone!")
In Bob's terminal (Erlang):
chat_client:say(<<"Hey Alice!">>).
In Charlie's terminal:
Chat.say("What's up?")
All terminals show:
[12:34:56] <Alice> Hello everyone!
[12:34:58] <Bob> Hey Alice!
[12:35:01] <Charlie> What's up?
List Online Users
In any terminal (Elixir):
Chat.who()
Output:
Online users (3):
 - Alice
 - Bob
 - Charlie
Switch Rooms
In Charlie's terminal:
Chat.join("random")
Alice and Bob's terminals show:
*** Charlie left the room
Charlie's terminal shows:
Joined room: random
Now Charlie is in a different room and won't see messages in "general".

Step 9: Test Fault Tolerance
Stop Bob's Node
In Bob's terminal, press Ctrl+C twice.
Alice and Charlie's terminals show:
*** Bob left the room
Restart Bob
Restart Bob's node (same command as before).
All terminals show:
*** Bob joined the room
Messages continue flowing - the mesh automatically reconnected Bob.

Understanding the Architecture
Message Flow (Pub/Sub)
Alice's Node Macula Mesh Bob's Node
┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ Chat.say() │──publish───→ │ Topic: │ ──route───→ │ handle_info │
│ │ │ io.macula. │ │ {:event,...} │
│ │ │ chat.room. │ │ │
│ │ │ general │ │ IO.puts() │
└──────────────┘ └─────────────┘ └──────────────┘
How it works:
	Alice calls Chat.say("hello")
	ChatRoom GenServer calls Macula.PubSub.publish(topic, %{message: "hello"})
	Macula encodes the message and sends it via QUIC to subscribers
	Bob's ChatRoom GenServer receives {:event, topic, payload}
	Bob's node prints the message to console

No central server - messages route peer-to-peer through the mesh!
RPC Flow (Who's Online)
Alice's Node Macula Mesh Bob's Node
┌──────────────┐ ┌─────────────┐ ┌──────────────┐
│ Chat.who() │──RPC call──→ │ Routing │ ──lookup──→ │ RPC Handler │
│ │ │ Table │ │ │
│ │ ←──result── │ (DHT) │ ←─return── │ return users │
│ │ │ │ │ │
│ Print users │ └─────────────┘ └──────────────┘
└──────────────┘
How it works:
	Alice calls Chat.who()
	ChatRoom calls Macula.RPC.call("chat.general.users", %{})
	Macula looks up which node registered "chat.general.users" (could be any node)
	Macula routes RPC request to that node
	RPC handler executes and returns list of users
	Result routes back to Alice
	Alice prints the list

Distributed RPC - any node can register an endpoint, any node can call it!

Enhancements
Try adding these features:
1. Private Messages (DMs)
In chat_room.ex
def send_dm(to_username, message) do
 GenServer.cast(__MODULE__, {:send_dm, to_username, message})
end

def handle_cast({:send_dm, to_username, message}, state) do
 # Find target user's node via presence
 case Map.get(state.online_users, to_username) do
 nil ->
 IO.puts("User #{to_username} not found")

 node_id ->
 # Send directly to that node
 topic = "io.macula.chat.dm.#{node_id}"
 payload = %{
 from: state.username,
 to: to_username,
 message: message,
 timestamp: System.system_time(:millisecond)
 }

 Macula.PubSub.publish(topic, payload)
 end

 {:noreply, state}
end
2. Message History (Last 10 Messages)
In chat_room.ex
def init(opts) do
 # ... existing code ...

 state = Map.put(state, :message_history, [])

 # ... rest of init ...
end

def handle_info({:event, _topic, %{type: :message} = event}, state) do
 # ... existing code to print message ...

 # Store in history
 history = [event | state.message_history] |> Enum.take(10)
 state = Map.put(state, :message_history, history)

 {:noreply, state}
end

def get_history do
 GenServer.call(__MODULE__, :get_history)
end

def handle_call(:get_history, _from, state) do
 {:reply, {:ok, Enum.reverse(state.message_history)}, state}
end
3. Typing Indicator
In chat_client.ex
def typing do
 # Publish ephemeral "typing" event
 Macula.PubSub.publish("io.macula.chat.room.general.typing", %{
 username: MaculaChat.ChatRoom.get_username(),
 timestamp: System.system_time(:millisecond)
 })
end
4. File Sharing
Use RPC to request file chunks:
def share_file(filename) do
 # Read file and encode as base64
 content = File.read!(filename) |> Base.encode64()

 # Announce file availability
 Macula.PubSub.publish("io.macula.chat.room.general.file", %{
 filename: Path.basename(filename),
 size: byte_size(content),
 owner: Macula.node_id()
 })

 # Register RPC endpoint to serve chunks
 Macula.RPC.register("chat.file.#{filename}", fn %{offset: offset, length: length} ->
 chunk = binary_part(content, offset, length)
 {:ok, %{chunk: chunk}}
 end)
end

What You've Learned
Congratulations! You've built a fully distributed chat application using Macula. You now understand:
✅ Pub/Sub: How to publish events and subscribe to topics across the mesh
✅ RPC: How to register callable endpoints and invoke them from any node
✅ Mesh Topology: How nodes discover each other and form a network
✅ Fault Tolerance: How the mesh adapts when nodes join/leave
✅ Presence: How to track who's online using heartbeats
✅ BEAM OTP: How to structure applications with GenServers and supervisors

Next Steps
	API Reference - Explore all Macula APIs
	Deployment Patterns - Deploy to production
	Performance Tuning - Optimize for scale
	Security Model - Secure your mesh
	Build something cool! Share it with the community on Discord

Happy coding! 🚀

 Macula HTTP/3 Mesh: Comprehensive Technical Roadmap

Executive Summary
Vision: Macula enables distributed BEAM applications to form encrypted, self-healing mesh networks over HTTP/3, with zero infrastructure dependencies. Works behind NATs, scales to thousands of nodes, native distributed Erlang semantics - all over standard HTTPS.
The "Wow" Factor:
	Distributed Erlang over HTTP/3 (nobody else does this!)
	Works through corporate firewalls (it's just HTTPS!)
	Self-healing mesh topology (no central coordinator)
	Built-in NAT traversal (QUIC magic)
	Native BEAM implementation (minimal NIFs)

Timeline: 20 weeks (5 months)
Outcome: Production-ready mesh networking infrastructure for edge BEAM applications.

Table of Contents
	Understanding QUIC and HTTP/3
	QUIC/HTTP/3 Libraries for BEAM
	Architecture Overview
	Detailed Roadmap
	Architecture Diagrams
	Technical Deep Dives
	Success Metrics

Understanding QUIC and HTTP/3
What is QUIC?
QUIC (Quick UDP Internet Connections) is a modern transport protocol developed by Google and standardized by IETF as RFC 9000. It's designed to replace TCP for web traffic.
Key Characteristics
1. UDP-Based Transport
Traditional: HTTP/2 → TLS → TCP → IP
Modern: HTTP/3 → QUIC (includes TLS 1.3) → UDP → IP
QUIC runs over UDP instead of TCP, which provides several advantages:
	Faster connection establishment (0-RTT and 1-RTT)
	No head-of-line blocking across streams
	Better performance on lossy networks
	Easier NAT traversal (UDP is simpler than TCP for NAT)

2. Built-in Encryption
	TLS 1.3 is integrated into QUIC (not layered on top)
	All packets are encrypted (except initial handshake metadata)
	Forward secrecy by default
	Connection migration (can change IP addresses mid-connection)

3. Multiplexed Streams
┌─────────────────────────────────────┐
│ QUIC Connection │
│ ┌───────────┐ ┌───────────┐ │
│ │ Stream 0 │ │ Stream 1 │ ... │
│ │ (Ordered) │ │ (Ordered) │ │
│ └───────────┘ └───────────┘ │
│ │
│ Streams are independent! │
│ Loss in Stream 0 doesn't block │
│ Stream 1 (unlike TCP) │
└─────────────────────────────────────┘
4. Connection Establishment
Traditional TCP + TLS:
Client → Server: SYN (1 RTT)
Server → Client: SYN-ACK
Client → Server: ACK
Client → Server: ClientHello (TLS) (2 RTT)
Server → Client: ServerHello + Certificate
Client → Server: Finished
Server → Client: Finished
Client → Server: HTTP Request (3 RTT)
 Total: 3 Round Trips
QUIC (first connection):
Client → Server: Initial (ClientHello) (1 RTT)
Server → Client: Handshake (ServerHello)
Client → Server: HTTP Request (1 RTT)
 Total: 1 Round Trip
QUIC (resumed connection):
Client → Server: 0-RTT Data + HTTP Request (0 RTT!)
 Total: 0 Round Trips
5. Loss Recovery
	Per-stream reliability (not per-connection like TCP)
	More sophisticated than TCP (monotonically increasing packet numbers)
	Better handling of spurious retransmissions
	Pluggable congestion control

6. Connection Migration
Mobile device scenario:
WiFi (IP: 192.168.1.100) → Cellular (IP: 10.20.30.40)

TCP: Connection breaks, must reconnect (new handshake)
QUIC: Connection continues seamlessly (connection ID stays same)
What is HTTP/3?
HTTP/3 is the third major version of HTTP, using QUIC as its transport instead of TCP.
HTTP Evolution
HTTP/1.1 (1997)
 ↓
 - Text-based protocol
 - One request per connection (or pipelining)
 - Head-of-line blocking

HTTP/2 (2015)
 ↓
 - Binary framing
 - Multiplexing over single TCP connection
 - Header compression (HPACK)
 - Still suffers from TCP head-of-line blocking

HTTP/3 (2022)
 ↓
 - Same semantics as HTTP/2
 - QUIC transport (UDP-based)
 - No head-of-line blocking
 - 0-RTT connection resumption
 - Better mobile performance
HTTP/3 Frame Types
HTTP/3 uses similar frames to HTTP/2 but adapted for QUIC:
Frame Types:
- DATA: Application data (response body)
- HEADERS: HTTP headers (compressed with QPACK)
- PRIORITY: Stream priority hints
- CANCEL_PUSH: Cancel server push
- SETTINGS: Connection parameters
- PUSH_PROMISE: Server push announcement
- GOAWAY: Graceful shutdown
- MAX_PUSH_ID: Limit server push
QPACK Header Compression
HTTP/3 uses QPACK (QUIC-aware header compression) instead of HPACK:
	Dynamic table updates on dedicated stream
	Prevents head-of-line blocking from header compression
	Better performance on lossy networks

Why QUIC/HTTP/3 for Macula Mesh?
1. NAT Traversal
UDP is much easier to punch through NATs than TCP:
	Simpler state machines in NAT devices
	Easier simultaneous open
	Better compatibility with STUN/TURN

2. Multiplexing Without Head-of-Line Blocking
Perfect for distributed Erlang:
Process A → Stream 0: send(...) → [packet lost!] → retransmit
Process B → Stream 1: send(...) → delivered immediately!

With TCP: Process B would be blocked waiting for Process A's retransmit
With QUIC: Process B's stream is independent
3. Connection Migration
Edge devices often change networks:
IoT device switches from WiFi to cellular:
 - TCP: Connection lost, full reconnect
 - QUIC: Seamless migration, no interruption
4. Firewall Friendly
	Uses port 443 (standard HTTPS)
	Looks like HTTPS to middleboxes
	No special firewall rules needed

5. 0-RTT Resumption
Reconnecting nodes don't waste time:
Node rejoins mesh after brief disconnect:
 - TCP + TLS: 3 RTT to re-establish
 - QUIC 0-RTT: Immediate data transmission
6. Built-in Encryption
	TLS 1.3 integrated (not optional)
	Perfect forward secrecy
	No configuration needed

QUIC Protocol Details
Connection ID
QUIC uses Connection IDs instead of 4-tuple (src IP, src port, dst IP, dst port):
┌─────────────────────────────────────┐
│ QUIC Packet │
├─────────────────────────────────────┤
│ Header: │
│ - Connection ID: 0x1a2b3c4d... │ ← Identifies connection
│ - Packet Number: 42 │
│ - Flags: ... │
├─────────────────────────────────────┤
│ Encrypted Payload │
└─────────────────────────────────────┘

Benefits:
- Connection survives IP address changes
- Load balancers can route without decryption
- NAT rebinding doesn't break connection
Stream Management
QUIC streams are lightweight:
% Each Erlang process can have its own stream
spawn(fun() ->
 {ok, StreamId} = quic:open_stream(Conn),
 quic:send(StreamId, Data),
 receive
 {stream_data, StreamId, Response} -> handle(Response)
 end,
 quic:close_stream(StreamId)
end).

% Streams are cheap! Can create thousands
% No overhead like TCP sockets
Congestion Control
QUIC implements multiple congestion control algorithms:
	Reno: Traditional TCP-like
	Cubic: Linux default (aggressive)
	BBR: Google's Bottleneck Bandwidth and RTT
	Custom: Can implement your own!

For Macula Mesh:
% Could implement edge-optimized congestion control
-module(macula_congestion).

estimate_bandwidth(Samples) ->
 % Use local measurements instead of RTT
 % Better for edge networks with variable latency
 ...
Flow Control
QUIC has flow control at two levels:
	Stream-level: Each stream has credit
	Connection-level: Overall connection credit

┌─────────────────────────────────────┐
│ Connection Credit: 1 MB │
├─────────────────────────────────────┤
│ Stream 0: 256 KB credit │
│ Stream 1: 512 KB credit │
│ Stream 2: 256 KB credit │
└─────────────────────────────────────┘

Prevents any single stream from starving the connection

QUIC/HTTP/3 Libraries for BEAM
1. quicer (Recommended)
Repository: https://github.com/emqx/quic
License: Apache 2.0
Maintainer: EMQX Team (Erlang Solutions)
Language: Erlang + C (NIF wrapper)
Backend: Microsoft MsQuic
Overview
quicer is an Erlang NIF binding for Microsoft's MsQuic library. MsQuic is a production-grade QUIC implementation used by Windows, Azure, and various Microsoft services.
Architecture
┌─────────────────────────────────────┐
│ Erlang Application │
├─────────────────────────────────────┤
│ quicer (Erlang API) │
│ - quicer:listen/2 │
│ - quicer:connect/3 │
│ - quicer:send/2 │
│ - quicer:recv/2 │
├─────────────────────────────────────┤
│ quicer NIF (C) │
│ - Erlang ↔ MsQuic bridge │
│ - Resource management │
│ - Callback handling │
├─────────────────────────────────────┤
│ MsQuic (C) │
│ - RFC 9000 QUIC implementation │
│ - TLS 1.3 integration │
│ - Platform-specific optimizations │
├─────────────────────────────────────┤
│ OS Network Stack (UDP) │
└─────────────────────────────────────┘
Features
✅ Supported:
	QUIC v1 (RFC 9000)
	TLS 1.3
	0-RTT connection resumption
	Connection migration
	Multiple streams per connection
	Flow control and congestion control
	Both client and server modes

❌ Limitations:
	NIF dependency (requires C compilation)
	Tied to MsQuic release cycle
	Platform-specific quirks

API Examples
%% Server
start_server() ->
 %% Load certificate
 {ok, Cert} = file:read_file("server.crt"),
 {ok, Key} = file:read_file("server.key"),

 %% Listen options
 ListenOpts = #{
 cert => Cert,
 key => Key,
 alpn => ["macula/1.0"],
 peer_unidi_stream_count => 10,
 peer_bidi_stream_count => 10
 },

 %% Start listener
 {ok, Listener} = quicer:listen("0.0.0.0", 4433, ListenOpts),

 %% Accept loop
 accept_loop(Listener).

accept_loop(Listener) ->
 {ok, Conn} = quicer:accept(Listener, [], 5000),
 {ok, Conn} = quicer:handshake(Conn),

 %% Spawn handler
 spawn(fun() -> handle_connection(Conn) end),

 %% Continue accepting
 accept_loop(Listener).

handle_connection(Conn) ->
 %% Accept stream
 {ok, Stream} = quicer:accept_stream(Conn, []),

 %% Receive data
 {ok, Data} = quicer:recv(Stream, 0),

 %% Process and respond
 Response = process(Data),
 ok = quicer:send(Stream, Response),

 %% Close stream
 quicer:close_stream(Stream).

%% Client
start_client() ->
 %% Connect options
 ConnOpts = #{
 alpn => ["macula/1.0"],
 verify => verify_peer,
 cacertfile => "ca.crt"
 },

 %% Connect
 {ok, Conn} = quicer:connect("server.example.com", 4433, ConnOpts, 5000),

 %% Open stream
 StreamOpts = #{active => false},
 {ok, Stream} = quicer:start_stream(Conn, StreamOpts),

 %% Send data
 ok = quicer:send(Stream, <<"Hello, QUIC!">>),

 %% Receive response
 {ok, Response} = quicer:recv(Stream, 0),
 io:format("Received: ~p~n", [Response]),

 %% Close
 quicer:close_stream(Stream),
 quicer:close_connection(Conn).
Production Usage
EMQX: Used in EMQX 5.0+ for MQTT over QUIC
	Handles millions of concurrent connections
	Production-tested at scale
	Good performance characteristics

RabbitMQ: Experimental QUIC support via quicer
	AMQP 1.0 over QUIC transport
	Still in development

Pros & Cons
Pros:
	✅ Battle-tested (MsQuic used in Windows, Azure)
	✅ Actively maintained
	✅ Good documentation
	✅ Performance optimized
	✅ Cross-platform (Linux, macOS, Windows)
	✅ Production-ready (used in EMQX)

Cons:
	❌ NIF dependency (requires compilation)
	❌ Tied to MsQuic (external C library)
	❌ Breaking changes between MsQuic versions
	❌ Limited control over low-level behavior

Verdict: ⭐⭐⭐⭐⭐ Best choice for Macula Mesh
2. xquic (Alternative)
Repository: https://github.com/alibaba/xquic
License: Apache 2.0
Maintainer: Alibaba Cloud
Language: C + Erlang bindings
Backend: xquic (Alibaba's QUIC)
Overview
xquic is Alibaba's in-house QUIC implementation, used in their edge CDN and cloud services.
Features
	QUIC v1 + IETF draft-29
	HTTP/3 support
	QUIC multipath extension
	BBR congestion control
	High performance (optimized for Alibaba scale)

Erlang Bindings
Erlang bindings exist but are less mature than quicer:
	https://github.com/emqx/xquic-erl (community maintained)

Pros & Cons
Pros:
	✅ Very high performance
	✅ Multipath QUIC support
	✅ Used at Alibaba scale

Cons:
	❌ Less mature Erlang bindings
	❌ Documentation mostly in Chinese
	❌ Smaller community
	❌ Not as widely tested outside Alibaba

Verdict: ⭐⭐⭐ Good but less accessible
3. quinn (Rust, via Rustler)
Repository: https://github.com/quinn-rs/quinn
License: Apache 2.0 / MIT
Language: Rust
Bindings: Could use Rustler for Erlang
Overview
quinn is a pure Rust QUIC implementation, considered one of the best non-C QUIC libraries.
Hypothetical Erlang Integration
┌─────────────────────────────────────┐
│ Erlang Application │
├─────────────────────────────────────┤
│ quinn_nif (Rustler) │
│ - Erlang ↔ Rust bridge │
├─────────────────────────────────────┤
│ quinn (Rust) │
│ - Pure Rust QUIC implementation │
├─────────────────────────────────────┤
│ tokio (Rust async runtime) │
└─────────────────────────────────────┘
Pros & Cons
Pros:
	✅ Pure Rust (memory safe)
	✅ Excellent performance
	✅ Active development
	✅ Clean API

Cons:
	❌ No official Erlang bindings
	❌ Would need to build Rustler wrapper
	❌ Rust async runtime complexity
	❌ Additional development effort

Verdict: ⭐⭐ Interesting but requires work
4. Pure Erlang QUIC (Hypothetical)
Status: Doesn't exist
Effort: 6-12 months of development
Why Pure Erlang?
Pros:
	✅ No NIFs (easier deployment)
	✅ Full control over implementation
	✅ Could optimize for BEAM semantics
	✅ Easier debugging

Cons:
	❌ Huge development effort
	❌ Likely slower than C/Rust
	❌ Hard to match performance of tuned C libs
	❌ Cryptography still needs NIFs

Feasibility Analysis
Components needed:
1. UDP socket handling ✅ (gen_udp)
2. TLS 1.3 implementation ⚠️ (ssl app, but need low-level access)
3. Packet parsing ✅ (binary pattern matching)
4. Connection state machine ✅ (gen_statem)
5. Stream multiplexing ✅ (processes)
6. Flow control ✅ (credits/backpressure)
7. Congestion control ✅ (algorithms in Erlang)
8. Loss detection ✅ (timers + state)
9. 0-RTT resumption ⚠️ (needs crypto primitives)

Estimated effort: 3-6 person-months for basic implementation
 12+ person-months for production-ready
Verdict: ⭐ Not practical for Phase 1
Library Comparison Matrix
	Feature	quicer	xquic	quinn	Pure Erlang
	Maturity	⭐⭐⭐⭐⭐	⭐⭐⭐	⭐⭐⭐⭐	❌
	Erlang Integration	⭐⭐⭐⭐⭐	⭐⭐	❌	⭐⭐⭐⭐⭐
	Performance	⭐⭐⭐⭐⭐	⭐⭐⭐⭐⭐	⭐⭐⭐⭐⭐	⭐⭐⭐
	Documentation	⭐⭐⭐⭐	⭐⭐	⭐⭐⭐⭐⭐	N/A
	Production Ready	✅	✅	✅	❌
	Cross-platform	✅	✅	✅	✅
	NIF Required	Yes	Yes	Yes	No
	Development Effort	Low	Medium	High	Very High
	Community Support	Strong	Moderate	Strong	N/A

Recommendation: quicer
For Macula Mesh Phase 1, quicer is the clear choice:
	Production-ready: Used in EMQX with millions of connections
	Well-documented: Good examples and API docs
	Actively maintained: Regular updates, responsive maintainers
	Erlang-native: Designed for BEAM from the ground up
	MsQuic backend: Battle-tested in Microsoft services

Migration Path:
	Phase 1: Use quicer (proven, fast path to PoC)
	Phase 2: Optimize (profile, tune, maybe contribute improvements)
	Phase 3: Evaluate alternatives (if needed, could switch to pure Erlang or Rust)

Architecture Overview
High-Level Architecture
┌───┐
│ Macula Mesh Network │
│ │
│ ┌────────┐ ┌────────┐ ┌────────┐ │
│ │ Node A │◄────►│ Node B │◄────►│ Node C │ │
│ │ │ │ │ │ │ │
│ └────┬───┘ └────┬───┘ └────┬───┘ │
│ │ │ │ │
│ └───────────────┼───────────────┘ │
│ │ │
│ HTTP/3 (QUIC) │
│ (Encrypted, Multiplexed) │
└───┘
Layered Architecture
┌───┐
│ Layer 5: Application │
│ • Elixir/Erlang Applications │
│ • Standard distributed Erlang API │
│ • spawn/2, send/2, monitor/2, etc. │
└───┘
 ↓ (transparent to application)
┌───┐
│ Layer 4: WAMP Protocol (Optional Compatibility) │
│ • publish(Topic, Data) │
│ • subscribe(Topic, Handler) │
│ • call(Procedure, Args) │
│ • register(Procedure, Handler) │
└───┘
 ↓
┌───┐
│ Layer 3: Mesh Routing │
│ • Node discovery (bootstrap, mDNS, DHT) │
│ • Membership management (SWIM gossip) │
│ • Topology management (k-regular graph) │
│ • Message routing (DHT-based, O(log n) hops) │
└───┘
 ↓
┌───┐
│ Layer 2: Macula Distribution Protocol │
│ • Message framing (wire protocol) │
│ • Handshake and authentication │
│ • Process messaging (SEND, LINK, MONITOR, etc.) │
│ • Stream multiplexing (process ↔ stream mapping) │
└───┘
 ↓
┌───┐
│ Layer 1: QUIC Transport (HTTP/3) │
│ • quicer (Erlang NIF) │
│ • MsQuic (C library) │
│ • UDP sockets │
│ • TLS 1.3 encryption │
│ • NAT traversal (STUN/ICE) │
└───┘
Component Architecture
┌───┐
│ Macula Node (Erlang/OTP Application) │
├───┤
│ │
│ ┌──┐ │
│ │ Supervision Tree │ │
│ │ │ │
│ │ macula_sup (top-level supervisor) │ │
│ │ ├─ macula_connection_sup (connections) │ │
│ │ ├─ macula_membership (SWIM gossip) │ │
│ │ ├─ macula_topology (neighbor management) │ │
│ │ ├─ macula_routing (DHT routing) │ │
│ │ ├─ macula_discovery (node discovery) │ │
│ │ ├─ macula_pubsub (pub/sub registry) │ │
│ │ └─ macula_dist (distribution driver) │ │
│ └──┘ │
│ │
│ ┌──┐ │
│ │ Connection Pool (one per remote node) │ │
│ │ │ │
│ │ connection_1 (QUIC, 5 streams active) │ │
│ │ connection_2 (QUIC, 3 streams active) │ │
│ │ connection_3 (QUIC, 8 streams active) │ │
│ └──┘ │
│ │
│ ┌──┐ │
│ │ ETS Tables (shared state) │ │
│ │ │ │
│ │ - membership_table (alive nodes) │ │
│ │ - routing_table (DHT entries) │ │
│ │ - stream_registry (stream_id → pid) │ │
│ │ - subscription_registry (topic → [pids]) │ │
│ └──┘ │
└───┘

Detailed Roadmap
Phase 1: Foundation (Weeks 1-4)
Goal: Prove HTTP/3 Can Carry Erlang Distribution Traffic
Week 1-2: QUIC Transport Layer
Objectives:
	Set up quicer dependency
	Create basic QUIC server/client
	Implement bidirectional streaming
	Build connection management

Deliverables:
%% File: macula_quic_echo.erl
%% Simple QUIC echo server/client to validate transport

-module(macula_quic_echo).
-export([start_server/1, start_client/2]).

start_server(Port) ->
 %% Generate self-signed cert for testing
 {Cert, Key} = macula_cert:generate_self_signed("localhost"),

 ListenOpts = #{
 cert => Cert,
 key => Key,
 alpn => ["macula/1.0"],
 idle_timeout_ms => 10000,
 peer_unidi_stream_count => 10,
 peer_bidi_stream_count => 100
 },

 {ok, Listener} = quicer:listen(Port, ListenOpts),
 io:format("QUIC server listening on port ~p~n", [Port]),

 accept_loop(Listener).

accept_loop(Listener) ->
 case quicer:accept(Listener, [], infinity) of
 {ok, Conn} ->
 %% Complete handshake
 {ok, Conn} = quicer:handshake(Conn),

 %% Get peer info
 {ok, PeerAddr} = quicer:getopt(Conn, peer_addr),
 io:format("Accepted connection from ~p~n", [PeerAddr]),

 %% Spawn connection handler
 spawn_link(fun() -> handle_connection(Conn) end),

 %% Continue accepting
 accept_loop(Listener);
 {error, Reason} ->
 io:format("Accept error: ~p~n", [Reason]),
 timer:sleep(1000),
 accept_loop(Listener)
 end.

handle_connection(Conn) ->
 %% Accept streams
 stream_accept_loop(Conn).

stream_accept_loop(Conn) ->
 case quicer:accept_stream(Conn, []) of
 {ok, Stream} ->
 %% Spawn stream handler
 spawn_link(fun() -> echo_stream(Stream) end),
 stream_accept_loop(Conn);
 {error, closed} ->
 io:format("Connection closed~n");
 {error, Reason} ->
 io:format("Stream accept error: ~p~n", [Reason])
 end.

echo_stream(Stream) ->
 case quicer:recv(Stream, 0) of
 {ok, Data} ->
 io:format("Received: ~p~n", [Data]),
 quicer:send(Stream, Data),
 echo_stream(Stream);
 {error, closed} ->
 quicer:close_stream(Stream);
 {error, Reason} ->
 io:format("Recv error: ~p~n", [Reason]),
 quicer:close_stream(Stream)
 end.

start_client(Host, Port) ->
 ConnOpts = #{
 alpn => ["macula/1.0"],
 verify => verify_none %% For testing only!
 },

 io:format("Connecting to ~s:~p~n", [Host, Port]),
 {ok, Conn} = quicer:connect(Host, Port, ConnOpts, 5000),

 %% Open stream
 {ok, Stream} = quicer:start_stream(Conn, #{active => false}),

 %% Send message
 Message = <<"Hello, QUIC!">>,
 ok = quicer:send(Stream, Message),
 io:format("Sent: ~p~n", [Message]),

 %% Receive echo
 {ok, Echo} = quicer:recv(Stream, 0),
 io:format("Received echo: ~p~n", [Echo]),

 %% Close
 quicer:close_stream(Stream),
 quicer:close_connection(Conn).
Testing:
Terminal 1: Start server
$ erl -pa _build/default/lib/*/ebin
1> macula_quic_echo:start_server(4433).

Terminal 2: Connect client
$ erl -pa _build/default/lib/*/ebin
1> macula_quic_echo:start_client("localhost", 4433).

Success Criteria:
	✅ Server accepts QUIC connections
	✅ Client can connect and exchange data
	✅ Multiple streams work concurrently
	✅ Connection survives stream closure

Week 3: Message Framing Protocol
Objectives:
	Design Macula wire protocol v1
	Implement message encoding/decoding
	Define message types for distribution

Wire Protocol Specification:
Macula Wire Protocol v1
=======================

All integers are big-endian.

Packet Format:
┌──────┬──────┬───────┬────────┬─────────┐
│ Ver │ Type │ Flags │ Length │ Payload │
│ (1B) │ (1B) │ (2B) │ (4B) │ (N B) │
└──────┴──────┴───────┴────────┴─────────┘

Version (1 byte):
 - 0x01: Version 1

Type (1 byte):
 - 0x01: HANDSHAKE
 - 0x02: HEARTBEAT
 - 0x03: SEND (send message to process)
 - 0x04: REG_SEND (send to registered name)
 - 0x05: EXIT (process exit signal)
 - 0x06: LINK (link processes)
 - 0x07: UNLINK (unlink processes)
 - 0x08: MONITOR (monitor process)
 - 0x09: DEMONITOR (demonitor)
 - 0x0A: GROUP_LEADER (group leader operations)
 - 0x0B: RPC (remote procedure call)
 - 0x0C: SPAWN_REQUEST (spawn on remote node)
 - 0x0D: SPAWN_REPLY (spawn result)

Flags (2 bytes):
 Bit 0: COMPRESSED (payload is compressed)
 Bit 1: FRAGMENTED (part of fragmented message)
 Bit 2-15: Reserved

Length (4 bytes):
 - Payload length in bytes (max 16 MB)

Payload (N bytes):
 - Message-type specific data
 - Encoded using Erlang External Term Format (EETF)
Implementation:
%% File: macula_protocol.erl
-module(macula_protocol).
-export([encode/2, decode/1]).

%% Protocol version
-define(VERSION, 1).

%% Message types
-define(MSG_HANDSHAKE, 16#01).
-define(MSG_HEARTBEAT, 16#02).
-define(MSG_SEND, 16#03).
-define(MSG_REG_SEND, 16#04).
-define(MSG_EXIT, 16#05).
-define(MSG_LINK, 16#06).
-define(MSG_UNLINK, 16#07).
-define(MSG_MONITOR, 16#08).
-define(MSG_DEMONITOR, 16#09).
-define(MSG_GROUP_LEADER, 16#0A).
-define(MSG_RPC, 16#0B).
-define(MSG_SPAWN_REQUEST, 16#0C).
-define(MSG_SPAWN_REPLY, 16#0D).

%% Flags
-define(FLAG_COMPRESSED, 16#0001).
-define(FLAG_FRAGMENTED, 16#0002).

%% Encode message
encode(Type, Payload) when is_integer(Type), Type >= 0, Type =< 255 ->
 encode(Type, 0, Payload).

encode(Type, Flags, Payload) ->
 %% Serialize payload
 PayloadBin = term_to_binary(Payload, [compressed]),
 Length = byte_size(PayloadBin),

 %% Check size limit (16 MB)
 if
 Length > 16#1000000 ->
 {error, payload_too_large};
 true ->
 %% Build packet
 <<?VERSION:8, Type:8, Flags:16, Length:32, PayloadBin/binary>>
 end.

%% Decode message
decode(<<?VERSION:8, Type:8, Flags:16, Length:32, PayloadBin:Length/binary, Rest/binary>>) ->
 %% Deserialize payload
 Payload = binary_to_term(PayloadBin),

 {ok, #{
 type => Type,
 flags => Flags,
 payload => Payload
 }, Rest};
decode(Bin) when byte_size(Bin) < 8 ->
 {error, insufficient_data};
decode(<<Version:8, _/binary>>) when Version =/= ?VERSION ->
 {error, {unsupported_version, Version}};
decode(_) ->
 {error, invalid_packet}.

%% Helper: Encode SEND message
encode_send(FromPid, ToPid, Message) ->
 encode(?MSG_SEND, {FromPid, ToPid, Message}).

%% Helper: Encode LINK message
encode_link(Pid1, Pid2) ->
 encode(?MSG_LINK, {Pid1, Pid2}).

%% Helper: Encode MONITOR message
encode_monitor(Pid, Ref, MonitoredPid) ->
 encode(?MSG_MONITOR, {Pid, Ref, MonitoredPid}).

%% Helper: Encode SPAWN_REQUEST message
encode_spawn_request(ReqId, Module, Function, Args) ->
 encode(?MSG_SPAWN_REQUEST, {ReqId, Module, Function, Args}).
Handshake Protocol:
%% File: macula_handshake.erl
-module(macula_handshake).
-export([perform/1, accept/1]).

-record(handshake, {
 version = ?MACULA_VERSION,
 node_name :: atom(),
 node_id :: binary(), %% SHA256(certificate)
 capabilities = [] :: [atom()],
 creation :: integer(), %% Node start time
 challenge :: binary() %% Random bytes for auth
}).

%% Initiate handshake (client side)
perform(Conn) ->
 %% Generate our handshake
 Handshake = #handshake{
 node_name = node(),
 node_id = macula_identity:node_id(),
 capabilities = [compression, rpc, monitoring, streams],
 creation = erlang:system_time(millisecond),
 challenge = crypto:strong_rand_bytes(32)
 },

 %% Send handshake
 Packet = macula_protocol:encode(?MSG_HANDSHAKE, Handshake),
 {ok, Stream} = quicer:start_stream(Conn, #{active => false}),
 ok = quicer:send(Stream, Packet),

 %% Receive remote handshake
 {ok, ResponsePacket} = quicer:recv(Stream, 0),
 {ok, #{payload := RemoteHandshake}, _} = macula_protocol:decode(ResponsePacket),

 %% Verify compatibility
 case check_compatibility(Handshake, RemoteHandshake) of
 ok ->
 %% Send acknowledgment
 Ack = macula_protocol:encode(?MSG_HANDSHAKE, {ack, Handshake#handshake.challenge}),
 ok = quicer:send(Stream, Ack),
 {ok, RemoteHandshake};
 {error, Reason} ->
 {error, Reason}
 end.

%% Accept handshake (server side)
accept(Conn) ->
 %% Accept stream
 {ok, Stream} = quicer:accept_stream(Conn, []),

 %% Receive handshake
 {ok, Packet} = quicer:recv(Stream, 0),
 {ok, #{payload := RemoteHandshake}, _} = macula_protocol:decode(Packet),

 %% Generate our handshake
 Handshake = #handshake{
 node_name = node(),
 node_id = macula_identity:node_id(),
 capabilities = [compression, rpc, monitoring, streams],
 creation = erlang:system_time(millisecond),
 challenge = crypto:strong_rand_bytes(32)
 },

 %% Verify compatibility
 case check_compatibility(Handshake, RemoteHandshake) of
 ok ->
 %% Send our handshake
 Response = macula_protocol:encode(?MSG_HANDSHAKE, Handshake),
 ok = quicer:send(Stream, Response),

 %% Wait for acknowledgment
 {ok, AckPacket} = quicer:recv(Stream, 0),
 {ok, #{payload := {ack, Challenge}}, _} = macula_protocol:decode(AckPacket),

 %% Verify challenge
 if
 Challenge =:= Handshake#handshake.challenge ->
 {ok, RemoteHandshake};
 true ->
 {error, invalid_challenge}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

check_compatibility(Local, Remote) ->
 %% Check version
 if
 Local#handshake.version =/= Remote#handshake.version ->
 {error, version_mismatch};
 true ->
 %% Check capabilities
 CommonCaps = sets:intersection(
 sets:from_list(Local#handshake.capabilities),
 sets:from_list(Remote#handshake.capabilities)
),
 if
 sets:size(CommonCaps) > 0 -> ok;
 true -> {error, no_common_capabilities}
 end
 end.

Week 4: Basic Distribution Protocol
Objectives:
	Implement net_kernel distribution driver
	Support basic message sending
	Enable process spawning

Distribution Driver:
%% File: macula_dist.erl
%% Erlang distribution protocol driver for Macula
%%
%% This module implements the callbacks required by Erlang's net_kernel
%% to use Macula as a custom distribution protocol.

-module(macula_dist).

%% Distribution driver callbacks
-export([
 listen/1,
 accept/1,
 accept_connection/5,
 setup/5,
 close/1,
 select/1,
 is_node_name/1,
 address/0
]).

%% Internal API
-export([
 send/2,
 send/3,
 recv/2
]).

-record(macula_dist_state, {
 listener, %% QUIC listener
 connection, %% QUIC connection
 node, %% Remote node name
 streams = #{} %% Map: purpose => stream
}).

%% Listen for incoming connections
listen(Name) ->
 %% Extract port from name (e.g., node@host:4433)
 Port = extract_port(Name, 4433),

 %% Generate certificate
 {Cert, Key} = macula_cert:generate_node_cert(Name),

 ListenOpts = #{
 cert => Cert,
 key => Key,
 alpn => ["macula-dist/1.0"],
 peer_bidi_stream_count => 100
 },

 case quicer:listen(Port, ListenOpts) of
 {ok, Listener} ->
 {ok, {Listener, #macula_dist_state{listener = Listener}}};
 {error, Reason} ->
 {error, Reason}
 end.

%% Accept incoming connection
accept(Listen) ->
 Listener = element(1, Listen),
 case quicer:accept(Listener, [], infinity) of
 {ok, Conn} ->
 %% Perform handshake
 case macula_handshake:accept(Conn) of
 {ok, RemoteHandshake} ->
 RemoteNode = RemoteHandshake#handshake.node_name,
 State = #macula_dist_state{
 connection = Conn,
 node = RemoteNode
 },
 {ok, Conn, State};
 {error, Reason} ->
 quicer:close_connection(Conn),
 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

%% Accept connection (post-handshake setup)
accept_connection(AcceptPid, DistCtrl, MyNode, Allowed, SetupTime) ->
 %% This is called by net_kernel after accept/1 succeeds
 gen_server:call(DistCtrl, {accept_connection, AcceptPid, MyNode, Allowed, SetupTime}).

%% Setup outgoing connection
setup(Node, Type, MyNode, LongOrShortNames, SetupTime) ->
 %% Extract host and port
 {Host, Port} = parse_node_name(Node),

 %% Connect
 ConnOpts = #{
 alpn => ["macula-dist/1.0"],
 verify => verify_peer
 },

 case quicer:connect(Host, Port, ConnOpts, 5000) of
 {ok, Conn} ->
 %% Perform handshake
 case macula_handshake:perform(Conn) of
 {ok, RemoteHandshake} ->
 State = #macula_dist_state{
 connection = Conn,
 node = Node
 },
 {ok, Conn, State};
 {error, Reason} ->
 quicer:close_connection(Conn),
 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

%% Close connection
close(Conn) ->
 quicer:close_connection(Conn),
 ok.

%% Select (for epmd compatibility)
select(Node) ->
 %% Macula doesn't use epmd
 {ok, Node}.

%% Check if valid node name
is_node_name(Node) when is_atom(Node) ->
 case atom_to_list(Node) of
 [$@ | _] -> false;
 Name ->
 case string:chr(Name, $@) of
 0 -> false;
 _ -> true
 end
 end;
is_node_name(_) ->
 false.

%% Get address (for net_kernel)
address() ->
 %% Return local node address
 {ok, {0, 0, 0, 0}}.

%% Send message to process on remote node
send(Conn, Pid, Message) ->
 %% Encode SEND message
 Packet = macula_protocol:encode_send(self(), Pid, Message),

 %% Get or create stream for this message
 {ok, Stream} = get_or_create_stream(Conn, control),

 %% Send
 quicer:send(Stream, Packet).

send(Conn, Name, Message) when is_atom(Name) ->
 %% Send to registered name
 Packet = macula_protocol:encode(?MSG_REG_SEND, {self(), Name, Message}),
 {ok, Stream} = get_or_create_stream(Conn, control),
 quicer:send(Stream, Packet).

%% Receive message
recv(Conn, Timeout) ->
 %% Accept next stream with data
 case quicer:accept_stream(Conn, [], Timeout) of
 {ok, Stream} ->
 case quicer:recv(Stream, 0) of
 {ok, Packet} ->
 {ok, Msg, _} = macula_protocol:decode(Packet),
 {ok, Msg};
 {error, Reason} ->
 {error, Reason}
 end;
 {error, Reason} ->
 {error, Reason}
 end.

%%% Internal functions

get_or_create_stream(Conn, Purpose) ->
 %% Look up existing stream for this purpose
 %% If not found, create new stream
 case ets:lookup(macula_streams, {Conn, Purpose}) of
 [{_, Stream}] ->
 {ok, Stream};
 [] ->
 {ok, Stream} = quicer:start_stream(Conn, #{active => false}),
 ets:insert(macula_streams, {{Conn, Purpose}, Stream}),
 {ok, Stream}
 end.

parse_node_name(Node) when is_atom(Node) ->
 case string:split(atom_to_list(Node), "@") of
 [_Name, HostPort] ->
 case string:split(HostPort, ":") of
 [Host, Port] -> {Host, list_to_integer(Port)};
 [Host] -> {Host, 4433} %% Default port
 end;
 _ ->
 {error, invalid_node_name}
 end.

extract_port(Name, Default) ->
 case string:split(atom_to_list(Name), ":") of
 [_, Port] -> list_to_integer(Port);
 _ -> Default
 end.
Testing:
Terminal 1: Start first node
$ erl -name node1@localhost:4433 -proto_dist macula -pa _build/default/lib/*/ebin

Terminal 2: Start second node
$ erl -name node2@localhost:4434 -proto_dist macula -pa _build/default/lib/*/ebin

In node2:
(node2@localhost:4434)1> net_kernel:connect_node('node1@localhost:4433').
true

(node2@localhost:4434)2> nodes().
['node1@localhost:4433']

(node2@localhost:4434)3> {node1, 'node1@localhost:4433'} ! {hello, from, node2}.
{hello, from, node2}

In node1, check process mailbox:
(node1@localhost:4433)1> receive Msg -> Msg end.
{hello, from, node2}

Spawn remote process:
(node2@localhost:4434)4> spawn('node1@localhost:4433', fun() ->
 io:format("Running on ~p!~n", [node()])
end).
<12345.67.0>

On node1, see output:
Running on 'node1@localhost:4433'!

Success Criteria:
	✅ Two nodes can connect via Macula
	✅ nodes() shows connected nodes
	✅ Messages can be sent between nodes
	✅ Remote spawning works
	✅ Basic distributed Erlang operations function

Phase 2: Mesh Topology (Weeks 5-8)
Goal: Move Beyond Point-to-Point to Self-Organizing Mesh
Week 5-6: Node Discovery and Membership
Objectives:
	Implement multi-strategy node discovery
	Build SWIM-based membership protocol
	Handle node joins, leaves, failures

Node Discovery:
%% File: macula_discovery.erl
-module(macula_discovery).
-behaviour(gen_server).

-export([start_link/0, discover/0, get_known_nodes/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

-record(state, {
 bootstrap_nodes = [],
 known_nodes = sets:new(),
 discovery_interval = 30000 %% 30 seconds
}).

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

discover() ->
 gen_server:call(?MODULE, discover).

get_known_nodes() ->
 gen_server:call(?MODULE, get_known_nodes).

init([]) ->
 %% Load bootstrap nodes from config
 Bootstrap = application:get_env(macula, bootstrap_nodes, []),

 %% Start discovery timer
 erlang:send_after(1000, self(), discover),

 {ok, #state{bootstrap_nodes = Bootstrap}}.

handle_call(discover, _From, State) ->
 %% Run all discovery strategies in parallel
 Self = self(),
 spawn(fun() -> Self ! {discovered, discover_via_bootstrap(State#state.bootstrap_nodes)} end),
 spawn(fun() -> Self ! {discovered, discover_via_mdns()} end),
 spawn(fun() -> Self ! {discovered, discover_via_dns_srv()} end),

 {reply, ok, State};

handle_call(get_known_nodes, _From, State) ->
 Nodes = sets:to_list(State#state.known_nodes),
 {reply, Nodes, State}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(discover, State) ->
 %% Trigger discovery
 discover(),

 %% Schedule next discovery
 erlang:send_after(State#state.discovery_interval, self(), discover),
 {noreply, State};

handle_info({discovered, Nodes}, State) ->
 %% Merge discovered nodes
 KnownNodes = lists:foldl(
 fun(Node, Acc) -> sets:add_element(Node, Acc) end,
 State#state.known_nodes,
 Nodes
),

 %% Notify membership protocol
 macula_membership:discovered_nodes(Nodes),

 {noreply, State#state{known_nodes = KnownNodes}}.

%%% Discovery Strategies

%% Strategy 1: Bootstrap Nodes
discover_via_bootstrap(Bootstrap) ->
 %% Try to connect to bootstrap nodes
 lists:filtermap(fun(Node) ->
 case macula_connection:ping(Node, 1000) of
 pong -> {true, Node};
 timeout -> false
 end
 end, Bootstrap).

%% Strategy 2: mDNS (local network)
discover_via_mdns() ->
 %% Send mDNS query for _macula._udp.local
 case macula_mdns:discover("_macula._udp.local", 2000) of
 {ok, Nodes} -> Nodes;
 {error, _} -> []
 end.

%% Strategy 3: DNS SRV Records
discover_via_dns_srv() ->
 %% Query DNS SRV for _macula._udp.example.com
 Domain = application:get_env(macula, dns_domain, "macula.local"),
 SRVName = "_macula._udp." ++ Domain,

 case inet_res:lookup(SRVName, in, srv) of
 [] -> [];
 Records ->
 %% Extract host:port from SRV records
 lists:map(fun({_Priority, _Weight, Port, Host}) ->
 list_to_atom(atom_to_list(node()) ++ "@" ++ Host ++ ":" ++ integer_to_list(Port))
 end, Records)
 end.
SWIM Membership Protocol:
%% File: macula_membership.erl
%% SWIM: Scalable Weakly-consistent Infection-style Process Group Membership Protocol
-module(macula_membership).
-behaviour(gen_server).

-export([start_link/0, join/1, leave/0, get_members/0, discovered_nodes/1]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

-record(member, {
 node_id,
 address,
 state = alive, %% alive | suspect | dead
 incarnation = 0, %% For conflict resolution
 last_seen, %% Timestamp
 metadata = #{} %% Arbitrary key-value data
}).

-record(state, {
 local_member,
 members = #{}, %% node_id => member
 protocol_period = 1000, %% 1 second
 suspect_timeout = 5000, %% 5 seconds
 ping_targets = []
}).

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

join(BootstrapNode) ->
 gen_server:call(?MODULE, {join, BootstrapNode}).

leave() ->
 gen_server:call(?MODULE, leave).

get_members() ->
 gen_server:call(?MODULE, get_members).

discovered_nodes(Nodes) ->
 gen_server:cast(?MODULE, {discovered_nodes, Nodes}).

init([]) ->
 %% Create local member
 Local = #member{
 node_id = macula_identity:node_id(),
 address = macula_identity:address(),
 state = alive,
 incarnation = 0,
 last_seen = erlang:system_time(millisecond),
 metadata = #{
 node_name => node(),
 started_at => erlang:system_time(millisecond)
 }
 },

 %% Start protocol tick
 erlang:send_after(1000, self(), protocol_tick),

 {ok, #state{local_member = Local}}.

handle_call({join, BootstrapNode}, _From, State) ->
 %% Contact bootstrap node and exchange membership
 case macula_connection:connect(BootstrapNode) of
 {ok, Conn} ->
 %% Send join request
 Request = {join, State#state.local_member},
 case macula_rpc:call(Conn, ?MODULE, handle_join, [Request]) of
 {ok, RemoteMembers} ->
 %% Merge members
 Members = maps:merge(State#state.members, RemoteMembers),
 {reply, ok, State#state{members = Members}};
 {error, Reason} ->
 {reply, {error, Reason}, State}
 end;
 {error, Reason} ->
 {reply, {error, Reason}, State}
 end;

handle_call(get_members, _From, State) ->
 Members = maps:values(State#state.members),
 AliveMembers = lists:filter(fun(M) -> M#member.state =:= alive end, Members),
 {reply, AliveMembers, State};

handle_call(leave, _From, State) ->
 %% Broadcast leave message
 Members = maps:values(State#state.members),
 Msg = {leave, State#state.local_member},
 lists:foreach(fun(Member) ->
 macula_connection:send(Member#member.node_id, Msg)
 end, Members),

 {stop, normal, ok, State}.

handle_cast({discovered_nodes, Nodes}, State) ->
 %% Add discovered nodes to members (if not already known)
 NewMembers = lists:foldl(fun(Node, Acc) ->
 NodeId = macula_identity:node_id(Node),
 case maps:is_key(NodeId, Acc) of
 true -> Acc;
 false ->
 Member = #member{
 node_id = NodeId,
 address = Node,
 state = alive,
 last_seen = erlang:system_time(millisecond)
 },
 maps:put(NodeId, Member, Acc)
 end
 end, State#state.members, Nodes),

 {noreply, State#state{members = NewMembers}};

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(protocol_tick, State) ->
 %% SWIM protocol tick
 NewState = swim_tick(State),

 %% Schedule next tick
 erlang:send_after(State#state.protocol_period, self(), protocol_tick),

 {noreply, NewState};

handle_info({ping, From, Incarnation}, State) ->
 %% Respond to ping
 macula_connection:send(From, {ack, State#state.local_member#member.incarnation}),
 {noreply, State};

handle_info({ack, _Incarnation}, State) ->
 %% Received ack from ping
 {noreply, State};

handle_info({ping_req, Target, From}, State) ->
 %% Indirect ping request
 case macula_connection:ping(Target, 500) of
 pong ->
 macula_connection:send(From, {ping_req_ack, Target});
 timeout ->
 macula_connection:send(From, {ping_req_timeout, Target})
 end,
 {noreply, State}.

%%% SWIM Protocol Implementation

swim_tick(State) ->
 %% 1. Select random member to ping
 case select_random_member(State#state.members) of
 {ok, Target} ->
 case direct_ping(Target) of
 pong ->
 %% Update last_seen
 update_member_state(Target#member.node_id, alive, State);
 timeout ->
 %% Try indirect ping via other members
 case indirect_ping(Target, State) of
 ok ->
 update_member_state(Target#member.node_id, alive, State);
 failed ->
 %% Mark as suspect
 State1 = update_member_state(Target#member.node_id, suspect, State),
 %% Schedule suspicion timeout
 erlang:send_after(State#state.suspect_timeout, self(),
 {suspect_timeout, Target#member.node_id}),
 State1
 end
 end;
 error ->
 State
 end,

 %% 2. Gossip membership changes
 gossip_changes(State),

 State.

direct_ping(Target) ->
 case macula_connection:ping(Target#member.node_id, 1000) of
 pong -> pong;
 _ -> timeout
 end.

indirect_ping(Target, State) ->
 %% Select K random members for indirect ping
 K = 3,
 Members = maps:values(State#state.members),
 Proxies = select_random_n(Members, K),

 %% Send ping_req to proxies
 Ref = make_ref(),
 lists:foreach(fun(Proxy) ->
 macula_connection:send(Proxy#member.node_id, {ping_req, Target, self(), Ref})
 end, Proxies),

 %% Wait for responses
 wait_for_ping_req_responses(Ref, K, 2000).

wait_for_ping_req_responses(_Ref, 0, _Timeout) ->
 failed;
wait_for_ping_req_responses(Ref, Remaining, Timeout) ->
 receive
 {ping_req_ack, _Target, Ref} ->
 ok;
 {ping_req_timeout, _Target, Ref} ->
 wait_for_ping_req_responses(Ref, Remaining - 1, Timeout)
 after Timeout ->
 failed
 end.

gossip_changes(State) ->
 %% Select random peers for gossip
 Members = maps:values(State#state.members),
 GossipTargets = select_random_n(Members, 3),

 %% Get recent changes
 Changes = get_recent_changes(State),

 %% Send to targets
 lists:foreach(fun(Target) ->
 macula_connection:send(Target#member.node_id, {gossip, Changes})
 end, GossipTargets).

get_recent_changes(State) ->
 %% Get members that changed state recently (last 10 seconds)
 Now = erlang:system_time(millisecond),
 RecentWindow = 10000,

 maps:filter(fun(_NodeId, Member) ->
 (Now - Member#member.last_seen) < RecentWindow
 end, State#state.members).

update_member_state(NodeId, NewState, State) ->
 case maps:find(NodeId, State#state.members) of
 {ok, Member} ->
 UpdatedMember = Member#member{
 state = NewState,
 last_seen = erlang:system_time(millisecond)
 },
 Members = maps:put(NodeId, UpdatedMember, State#state.members),
 State#state{members = Members};
 error ->
 State
 end.

select_random_member(Members) when map_size(Members) > 0 ->
 List = maps:values(Members),
 {ok, lists:nth(rand:uniform(length(List)), List)};
select_random_member(_) ->
 error.

select_random_n(List, N) when length(List) =< N ->
 List;
select_random_n(List, N) ->
 %% Shuffle and take N
 Shuffled = [X || {_, X} <- lists:sort([{rand:uniform(), E} || E <- List])],
 lists:sublist(Shuffled, N).

Week 7: Topology Management and Routing
Objectives:
	Implement k-regular graph topology
	Build DHT-based routing
	Optimize for low diameter

Topology Manager:
%% File: macula_topology.erl
%% Manages connection topology using k-regular graph
%% Each node maintains K connections to neighbors on consistent hash ring

-module(macula_topology).
-behaviour(gen_server).

-export([start_link/0, maintain/0, get_neighbors/0]).
-export([init/1, handle_call/3, handle_cast/2, handle_info/2]).

-define(K_NEIGHBORS, 6). %% Number of neighbors to maintain

-record(state, {
 neighbors = [], %% Current neighbor connections
 desired_neighbors = [], %% Neighbors we should connect to
 ring_position %% Our position on hash ring
}).

start_link() ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, [], []).

maintain() ->
 gen_server:call(?MODULE, maintain).

get_neighbors() ->
 gen_server:call(?MODULE, get_neighbors).

init([]) ->
 %% Calculate our position on hash ring
 NodeId = macula_identity:node_id(),
 Position = crypto:hash(sha256, NodeId),

 %% Start maintenance timer
 erlang:send_after(5000, self(), maintain),

 {ok, #state{ring_position = Position}}.

handle_call(get_neighbors, _From, State) ->
 {reply, State#state.neighbors, State};

handle_call(maintain, _From, State) ->
 NewState = maintain_topology(State),
 {reply, ok, NewState}.

handle_cast(_Msg, State) ->
 {noreply, State}.

handle_info(maintain, State) ->
 NewState = maintain_topology(State),
 erlang:send_after(5000, self(), maintain),
 {noreply, NewState}.

maintain_topology(State) ->
 %% Get all known members
 Members = macula_membership:get_members(),

 %% Select desired neighbors using consistent hashing
 DesiredNeighbors = select_neighbors(Members, ?K_NEIGHBORS, State#state.ring_position),

 %% Current connections
 CurrentNeighbors = State#state.neighbors,

 %% Find missing connections
 Missing = DesiredNeighbors -- CurrentNeighbors,

 %% Find extra connections (if we're over K neighbors)
 Extra = CurrentNeighbors -- DesiredNeighbors,

 %% Connect to missing
 lists:foreach(fun(NodeId) ->
 case macula_connection:connect(NodeId) of
 {ok, _Conn} ->
 io:format("Connected to neighbor: ~p~n", [NodeId]);
 {error, Reason} ->
 io:format("Failed to connect to ~p: ~p~n", [NodeId, Reason])
 end
 end, Missing),

 %% Disconnect extra (if too many connections)
 if
 length(CurrentNeighbors) > ?K_NEIGHBORS * 2 ->
 lists:foreach(fun(NodeId) ->
 macula_connection:disconnect(NodeId)
 end, Extra);
 true ->
 ok
 end,

 %% Update state
 NewNeighbors = (CurrentNeighbors ++ Missing) -- Extra,
 State#state{
 neighbors = NewNeighbors,
 desired_neighbors = DesiredNeighbors
 }.

select_neighbors(Members, K, MyPosition) ->
 %% Place all members on hash ring
 Ring = lists:map(fun(Member) ->
 NodeId = Member#member.node_id,
 Position = crypto:hash(sha256, NodeId),
 {Position, NodeId}
 end, Members),

 %% Sort by position
 SortedRing = lists:sort(Ring),

 %% Find our position
 MyIndex = find_position(MyPosition, SortedRing),

 %% Select K clockwise neighbors (for redundancy, select K/2 clockwise + K/2 counter-clockwise)
 ClockwiseCount = K div 2,
 CounterClockwiseCount = K - ClockwiseCount,

 Clockwise = select_clockwise(MyIndex, ClockwiseCount, SortedRing),
 CounterClockwise = select_counter_clockwise(MyIndex, CounterClockwiseCount, SortedRing),

 Clockwise ++ CounterClockwise.

find_position(MyPosition, Ring) ->
 find_position(MyPosition, Ring, 0).

find_position(_MyPosition, [], _Index) ->
 0;
find_position(MyPosition, [{Position, _NodeId} | _Rest], Index) when Position >= MyPosition ->
 Index;
find_position(MyPosition, [_H | Rest], Index) ->
 find_position(MyPosition, Rest, Index + 1).

select_clockwise(MyIndex, Count, Ring) ->
 RingSize = length(Ring),
 Indices = [(MyIndex + I) rem RingSize || I <- lists:seq(1, Count)],
 [NodeId || {Idx, {_Pos, NodeId}} <- lists:zip(Indices, Ring), Idx =:= element(1, lists:nth(Idx + 1, lists:zip(lists:seq(0, RingSize - 1), Ring)))].

select_counter_clockwise(MyIndex, Count, Ring) ->
 RingSize = length(Ring),
 Indices = [(MyIndex - I + RingSize) rem RingSize || I <- lists:seq(1, Count)],
 [NodeId || {Idx, {_Pos, NodeId}} <- lists:zip(Indices, Ring), Idx =:= element(1, lists:nth(Idx + 1, lists:zip(lists:seq(0, RingSize - 1), Ring)))].
DHT Routing:
%% File: macula_routing.erl
%% Kademlia-inspired DHT routing for mesh

-module(macula_routing).
-export([route/2, find_node/1, find_closest_nodes/2]).

-define(K, 20). %% Replication factor
-define(ALPHA, 3). %% Concurrency parameter

%% Route message to destination node
route(DestNodeId, Message) ->
 case macula_connection:is_connected(DestNodeId) of
 true ->
 %% Direct connection, send immediately
 macula_connection:send(DestNodeId, Message);
 false ->
 %% Find next hop via DHT
 NextHop = find_next_hop(DestNodeId),
 forward(NextHop, DestNodeId, Message)
 end.

%% Find next hop closer to destination
find_next_hop(DestNodeId) ->
 MyNodeId = macula_identity:node_id(),

 %% Get connected neighbors
 Neighbors = macula_topology:get_neighbors(),

 %% Calculate XOR distance from each neighbor to destination
 Distances = lists:map(fun(NeighborId) ->
 Dist = xor_distance(NeighborId, DestNodeId),
 {Dist, NeighborId}
 end, Neighbors),

 %% Sort by distance (closest first)
 Sorted = lists:sort(Distances),

 %% Return closest neighbor
 case Sorted of
 [{_Dist, NextHop} | _] ->
 %% Check if NextHop is closer than us
 MyDist = xor_distance(MyNodeId, DestNodeId),
 if
 _Dist < MyDist -> NextHop;
 true -> DestNodeId %% We're closest, destination must be dead
 end;
 [] ->
 %% No neighbors, can't route
 {error, no_route}
 end.

%% Forward message to next hop
forward(NextHop, FinalDest, Message) ->
 ForwardMsg = {forward, FinalDest, Message},
 macula_connection:send(NextHop, ForwardMsg).

%% XOR distance metric (like Kademlia)
xor_distance(A, B) when is_binary(A), is_binary(B) ->
 crypto:bytes_to_integer(crypto:exor(A, B));
xor_distance(A, B) ->
 xor_distance(term_to_binary(A), term_to_binary(B)).

%% Find node by ID (iterative lookup)
find_node(TargetId) ->
 find_node(TargetId, [], [macula_identity:node_id()]).

find_node(TargetId, Queried, Closest) ->
 %% Select ALPHA closest unqueried nodes
 ToQuery = select_unqueried(Closest, Queried, ?ALPHA),

 case ToQuery of
 [] ->
 %% No more nodes to query, return closest
 {ok, lists:sublist(Closest, ?K)};
 _ ->
 %% Query nodes in parallel
 Results = query_nodes(ToQuery, TargetId),

 %% Merge results
 NewClosest = merge_and_sort(Closest, Results, TargetId),
 NewQueried = Queried ++ ToQuery,

 %% Check if we found target
 case lists:member(TargetId, NewClosest) of
 true -> {ok, TargetId};
 false -> find_node(TargetId, NewQueried, NewClosest)
 end
 end.

query_nodes(Nodes, TargetId) ->
 %% Query each node for closer nodes
 lists:flatmap(fun(NodeId) ->
 case macula_rpc:call(NodeId, ?MODULE, find_closest_nodes, [TargetId, ?K], 1000) of
 {ok, Nodes} -> Nodes;
 {error, _} -> []
 end
 end, Nodes).

find_closest_nodes(TargetId, K) ->
 %% Return K closest known nodes to TargetId
 Members = macula_membership:get_members(),
 Distances = [{xor_distance(M#member.node_id, TargetId), M#member.node_id} || M <- Members],
 Sorted = lists:sort(Distances),
 {ok, [NodeId || {_Dist, NodeId} <- lists:sublist(Sorted, K)]}.

select_unqueried(Closest, Queried, Alpha) ->
 Unqueried = Closest -- Queried,
 lists:sublist(Unqueried, Alpha).

merge_and_sort(Closest, New, TargetId) ->
 All = lists:usort(Closest ++ New),
 Distances = [{xor_distance(NodeId, TargetId), NodeId} || NodeId <- All],
 Sorted = lists:sort(Distances),
 [NodeId || {_Dist, NodeId} <- Sorted].

(Continuing in next section due to length...)
Phase 3: NAT Traversal (Weeks 9-12)
Phase 4: WAMP Layer (Weeks 13-16)
Phase 5: Production Hardening (Weeks 17-20)

Architecture Diagrams
1. System Architecture
┌───┐
│ Macula Mesh Network │
│ │
│ Internet / WAN │
│ ┌──┐ │
│ │ │ │
│ │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │ │
│ │ │ Node A │◄────────►│ Node B │◄────────►│ Node C │ │ │
│ │ │ (USA) │ │ (Europe)│ │ (Asia) │ │ │
│ │ └────┬────┘ └────┬────┘ └────┬────┘ │ │
│ │ │ │ │ │ │
│ │ └────────────────────┼────────────────────┘ │ │
│ │ │ │ │
│ │ HTTP/3 (QUIC/UDP) │ │
│ │ Port 443/UDP │ │
│ └──┘ │
│ │
│ NAT/Firewall Traversal: │
│ • STUN for public address discovery │
│ • ICE for connectivity checks │
│ • UDP hole punching │
│ • TURN relay as fallback │
└───┘
2. Node Internal Architecture
┌───┐
│ Macula Node (BEAM VM) │
├───┤
│ │
│ ┌──┐ │
│ │ Application Layer │ │
│ │ • Elixir/Erlang Apps │ │
│ │ • spawn/2, send/2, monitor/2 │ │
│ │ • Transparent distribution │ │
│ └──┘ │
│ ↓ │
│ ┌──┐ │
│ │ WAMP Compatibility Layer (Optional) │ │
│ │ • publish/subscribe │ │
│ │ • call/register (RPC) │ │
│ └──┘ │
│ ↓ │
│ ┌──┐ │
│ │ Mesh Services │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Discovery │ │ Membership │ │ Topology │ │ │
│ │ │ (Bootstrap, │ │ (SWIM │ │ (k-regular │ │ │
│ │ │ mDNS, DNS) │ │ Gossip) │ │ graph) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ │
│ │ │ Routing │ │ Pub/Sub │ │ RPC │ │ │
│ │ │ (DHT, │ │ (Topic-based │ │ (Request/ │ │ │
│ │ │ Kademlia) │ │ Registry) │ │ Response) │ │ │
│ │ └──────────────┘ └──────────────┘ └──────────────┘ │ │
│ └──┘ │
│ ↓ │
│ ┌──┐ │
│ │ Macula Distribution Protocol │ │
│ │ • Message framing (wire protocol) │ │
│ │ • Handshake & authentication │ │
│ │ • Stream multiplexing │ │
│ │ • Process ↔ Stream mapping │ │
│ └──┘ │
│ ↓ │
│ ┌──┐ │
│ │ QUIC Transport (via quicer NIF) │ │
│ │ ┌──┐ │ │
│ │ │ MsQuic (C library) │ │ │
│ │ │ • RFC 9000 QUIC implementation │ │ │
│ │ │ • TLS 1.3 integrated │ │ │
│ │ │ • Streams, flow control, congestion control │ │ │
│ │ └──┘ │ │
│ └──┘ │
│ ↓ │
│ ┌──┐ │
│ │ UDP Sockets (OS Network Stack) │ │
│ └──┘ │
└───┘
3. Message Flow Diagram
Process A (Node 1) Process B (Node 2)
 │ │
 │ Pid ! Message │
 ├──────────────────────┐ │
 │ │ │
 ▼ │ │
 macula_dist │ │
 │ │ │
 │ encode_send() │ │
 ├─────────────┐ │ │
 │ │ │ │
 ▼ │ │ │
 macula_protocol │ │ │
 │ │ │ │
 │ Frame: │ │ │
 │ [Ver|Type| │ │ │
 │ Flags|Len| │ │ │
 │ Payload] │ │ │
 ├─────────────┘ │ │
 │ │ │
 ▼ │ │
 macula_connection │ │
 │ │ │
 │ Get/Create Stream │ │
 ├─────────────┐ │ │
 │ │ │ │
 ▼ │ │ │
 quicer (NIF) │ │ │
 │ │ │ │
 │ quicer:send() │ │
 ├─────────────┘ │ │
 │ │ │
 ▼ │ │
 MsQuic (C) │ │
 │ │ │
 │ QUIC Packet │ │
 │ (encrypted) │ │
 ├──────────────────────┘ │
 │ │
 ▼ │
 UDP Socket │
 │ │
 │ ═══► │
 │ Network (Internet) │
 │ │
 │ UDP Socket
 │ │
 │ ▼
 │ MsQuic (C)
 │ │
 │ │ Decrypt
 │ │ Reassemble
 │ ├─────────┐
 │ │ │
 │ ▼ │
 │ quicer (NIF) │
 │ │ │
 │ │ quicer:recv()
 │ ├─────────┘
 │ │
 │ ▼
 │ macula_connection
 │ │
 │ │ Stream → Pid lookup
 │ ├─────────┐
 │ │ │
 │ ▼ │
 │ macula_protocol │
 │ │ │
 │ │ decode()│
 │ ├─────────┘
 │ │
 │ ▼
 │ macula_dist
 │ │
 │ │ Deliver to process
 │ ├────────┐
 │ │ │
 │ ▼ │
 │ Process B │
 │ │ │
 │ │ receive │
 │ │ Message
 │ ├────────┘
 │ │
 │ ▼
4. Mesh Topology Diagram
┌──┐
│ Consistent Hash Ring (k-regular graph, k=6) │
│ │
│ Node 3 │
│ ● │
│ ╱ ╲ │
│ ╱ ╲ │
│ ╱ ╲ │
│ ╱ ╲ │
│ Node 2 ●─────────────────────────────● Node 4 │
│ │ ╲ ╱ │ │
│ │ ╲ ╱ │ │
│ │ ╲ ╱ │ │
│ │ ● Node 5 │ │
│ │ ╱ ╲ │ │
│ │ ╱ ╲ │ │
│ │ ╱ ╲ │ │
│ Node 1 ●─────────────────────────────● Node 6 │
│ ╲ ╱ │
│ ╲ ╱ │
│ ╲ ╱ │
│ ╲ ╱ │
│ ● │
│ Node 7 │
│ │
│ Each node connects to K neighbors (K=6 in this example) │
│ • K/2 clockwise neighbors (3) │
│ • K/2 counter-clockwise neighbors (3) │
│ │
│ Properties: │
│ • Low diameter (O(log n) hops between any two nodes) │
│ • High fault tolerance (multiple paths) │
│ • Scalable (each node has fixed K connections) │
└──┘
5. NAT Traversal Flow
┌──┐
│ NAT Traversal Using STUN + ICE │
│ │
│ Node A (behind NAT) STUN Server Node B (public)│
│ │ │ │ │
│ │ 1. STUN Binding Request │ │ │
│ ├───────────────────────────►│ │ │
│ │ │ │ │
│ │ 2. STUN Response │ │ │
│ │ (Public IP: 1.2.3.4) │ │ │
│ │◄───────────────────────────┤ │ │
│ │ │ │ │
│ │ 3. Register with Signaling Server │ │
│ │ POST /register │ │
│ │ { candidates: [│ │
│ │ {type: "host", addr: "192.168.1.100"}, │ │
│ │ {type: "srflx", addr: "1.2.3.4"} │ │
│ │]} │ │
│ ├───►│ │
│ │ │ │
│ │ 4. Query for Node B candidates │ │
│ │ GET /lookup/node_b │ │
│ ├───►│ │
│ │ │ │
│ │ 5. Receive Node B candidates │ │
│ │ { candidates: [{type: "host", addr: "5.6.7.8"}]} │
│ │◄───┤ │
│ │ │ │
│ │ 6. Connectivity Checks (ICE) │ │
│ │ Send STUN probes to all candidate pairs │ │
│ ├───►│ │
│ │◄───┤ │
│ │ │ │
│ │ 7. Select best candidate pair │ │
│ │ (Direct: 1.2.3.4 ↔ 5.6.7.8) │ │
│ │ │ │
│ │ 8. Establish QUIC Connection │ │
│ │═══►│ │
│ │ │ │
│ │ 9. Communication over QUIC/UDP │ │
│ │◄══►│ │
│ │ │ │
└──┘
6. Development Roadmap Gantt Chart
Week Phase Milestone
──
 1-2 │■■■■■■│ QUIC Transport Layer
 │ │ • quicer integration
 │ │ • Basic client/server
 │ │ • Bidirectional streams
──
 3 │ ■■■ │ Message Framing Protocol
 │ │ • Wire protocol spec
 │ │ • Encode/decode
 │ │ • Handshake
──
 4 │ ■■■│ Distribution Protocol
 │ │ • net_kernel driver
 │ │ • Basic messaging
 │ │ • Remote spawn
──
 5-6 │ ■■■■■│ Node Discovery
 │ │ • Bootstrap
 │ │ • mDNS
 │ │ • SWIM membership
──
 7 │ ■■■│ Topology & Routing
 │ │ • k-regular graph
 │ │ • DHT routing
──
 8 │ ■■│ Testing & Validation
 │ │ • Chaos testing
 │ │ • Benchmarks
──
 9-10 │ ■■■■│ NAT Traversal
 │ │ • STUN client
 │ │ • ICE implementation
──
11-12 │ ■■■■│ Hole Punching
 │ │ • UDP hole punch
 │ │ • TURN relay
──
13-14 │ ■■■■│ Distributed Pub/Sub
 │ │ • Topic registry
 │ │ • Content routing
──
15-16 │ ■■■■│ RPC Layer
 │ │ • Sync RPC
 │ │ • WAMP compat
──
17 │ ■■│ Security
 │ │ • TLS certs
 │ │ • Rate limiting
──
18 │ ■■│ Monitoring
 │ │ • Metrics
 │ │ • Visualization
──
19 │ ■■│ Performance
 │ │ • Optimization
 │ │ • Benchmarks
──
20 │ ■■│ Documentation
 │ │ • Arch guide
 │ │ • API docs
──

Legend:
■ = Active development

Technical Deep Dives
Deep Dive 1: QUIC vs TCP for Distributed Erlang
Why QUIC is Better for Distributed Erlang:
1. Head-of-Line Blocking
TCP Problem:
Process A sends: ──[Packet 1]──[Packet 2]──[Packet 3*LOST]──[Packet 4]──►
 ▲
 │
 All packets 4+ blocked until 3 retransmitted!

Process B waiting to receive Packet 4: ⏳ BLOCKED
QUIC Solution:
Stream 0 (Process A): ──[Pkt 1]──[Pkt 2]──[Pkt 3*LOST]──►
 ▲ Retransmit only this
 │
Stream 1 (Process B): ──[Pkt 1]──[Pkt 2]──[Pkt 3]──► ✓ NOT BLOCKED!

Independent streams = No cross-stream blocking
2. Connection Migration
TCP Problem:
Mobile device moves from WiFi to Cellular:

WiFi IP: 192.168.1.100:5000
 ↓ [Connection established]
 ↓ [Active transfers]
 ↓ [Network switches]
Cellular IP: 10.20.30.40:6000
 ↓ [TCP connection LOST]
 ↓ [Must re-establish: 3 RTT]
 ↓ [Resume transfers]
QUIC Solution:
WiFi IP: 192.168.1.100:5000
 ↓ [Connection ID: 0x1a2b3c4d]
 ↓ [Active transfers]
 ↓ [Network switches]
Cellular IP: 10.20.30.40:6000
 ↓ [Same Connection ID!]
 ↓ [Continue immediately: 0 RTT]
 ↓ [Transfers uninterrupted]
3. 0-RTT Resumption
TCP + TLS 1.2:
Client → Server: SYN RTT 1
Server → Client: SYN-ACK
Client → Server: ACK
Client → Server: ClientHello RTT 2
Server → Client: ServerHello + Certificate
Client → Server: Finished
Server → Client: Finished
Client → Server: HTTP Request RTT 3

Total: 3 RTT before application data
QUIC (with 0-RTT token):
Client → Server: Initial + 0-RTT Data + App Request RTT 0

Total: 0 RTT! Data sent immediately
This is HUGE for edge devices that frequently reconnect!
4. Multiplexing Efficiency
HTTP/2 over TCP:
┌──────────────────────────────────────┐
│ TCP Connection │
│ ┌──────────────────────────────┐ │
│ │ HTTP/2 Multiplexing │ │
│ │ Stream 1, Stream 2, ... │ │
│ └──────────────────────────────┘ │
│ │
│ Problem: TCP sees bytes, not streams │
│ Single packet loss blocks ALL streams│
└──────────────────────────────────────┘
HTTP/3 over QUIC:
┌──────────────────────────────────────┐
│ QUIC Connection │
│ Stream 1 (independent) │
│ Stream 2 (independent) │
│ Stream 3 (independent) │
│ ... │
│ │
│ QUIC understands streams natively! │
│ Packet loss only affects one stream │
└──────────────────────────────────────┘
For Erlang distribution with millions of processes, this is critical!

Deep Dive 2: SWIM Gossip Protocol
SWIM: Scalable Weakly-consistent Infection-style Process Group Membership
Why SWIM?
Traditional heartbeat protocols don't scale:
N nodes sending heartbeats to all others:
 Network load: O(N²) messages per period

Example: 1000 nodes, 1 sec heartbeat
 = 1,000,000 messages/sec
 = NOT SCALABLE
SWIM uses gossip:
Each node:
 - Pings 1 random member per period
 - Gossips to K random members

Network load: O(N) messages per period

Example: 1000 nodes, K=3
 = 1000 pings + 3000 gossip = 4000 messages/sec
 = SCALABLE!
SWIM Algorithm
Every protocol period (1 second):

1. SELECT random member M
2. PING M (wait for ACK)
 ├─ If ACK received → M is alive
 └─ If timeout → INDIRECT PING

3. INDIRECT PING:
 ├─ Select K random members (e.g., K=3)
 ├─ Ask each to ping M on your behalf
 └─ If any ACK → M is alive
 If all timeout → M is SUSPECT

4. SUSPECT handling:
 ├─ Don't immediately mark M as dead
 ├─ Give time for refutation (5 seconds)
 ├─ M can increase its "incarnation number" to refute
 └─ If no refutation → M is DEAD

5. GOSSIP:
 ├─ Select K random members
 └─ Send recent membership changes
 (new members, state changes, etc.)
Suspicion Mechanism
Timeline:

T+0s: Node fails to respond to ping
 │
 ▼
 Mark as SUSPECT (not dead!)
 │
 ├─ Broadcast "Node X is suspect"
 │ via gossip
 │
T+1s: │ Other nodes hear rumor
 │ └─► Try to ping Node X
 │ └─► Some may succeed!
 │
T+2s: │ Node X hears it's suspected
 │ └─► Refutes by increasing
 │ incarnation number
 │
T+5s: ▼
 If no refutation → Mark as DEAD
 │
 └─ Broadcast "Node X is dead"
This prevents false positives from temporary network glitches!
Gossip Dissemination
Epidemic-style spread:

T+0: Node A detects change (Node X joined)
 ┌───────┐
 │ A │ knows: X joined
 └───────┘

T+1: A gossips to B, C, D (K=3 random)
 ┌───────┐ ┌───────┐ ┌───────┐ ┌───────┐
 │ A │──►│ B │──►│ C │──►│ D │
 └───────┘ └───────┘ └───────┘ └───────┘
 knows knows knows

T+2: B, C, D gossip to 3 others each (exponential spread)
 9 nodes know

T+3: 27 nodes know

T+log₃(N): All nodes know!
Convergence time: O(log N)

Deep Dive 3: Kademlia DHT for Routing
Why DHT (Distributed Hash Table)?
In large mesh networks, full mesh (N² connections) doesn't scale:
Nodes Connections Problem
 10 45 OK
 100 4,950 Getting expensive
1000 499,500 IMPOSSIBLE
DHT enables O(log N) routing:
Nodes Hops (log₂ N)
 10 3
 100 6
1000 10
Kademlia Basics
XOR Distance Metric:
Node IDs are 256-bit hashes (SHA256)

Node A: 0x3a7f...
Node B: 0x8c12...

Distance = A XOR B
 = 0x3a7f... XOR 0x8c12...
 = 0xb66d...

Properties:
 • d(A, B) = d(B, A) (symmetric)
 • d(A, A) = 0
 • d(A, B) + d(B, C) >= d(A, C) (triangle inequality)
k-buckets:
Each node maintains k-buckets for distance ranges:

Bucket 0: Distance 2^0 to 2^1 (1 hop away)
Bucket 1: Distance 2^1 to 2^2 (2 hops)
Bucket 2: Distance 2^2 to 2^3 (4 hops)
...
Bucket 255: Distance 2^255 to 2^256 (very far)

Each bucket stores up to K nodes (e.g., K=20)
Routing:
To send message to target T:

1. Calculate distance: d = XOR(my_id, T)
2. Find bucket for distance d
3. Select closest node N from bucket
4. Forward to N
5. Repeat until reached T

Max hops: log₂(total_nodes)
Iterative Node Lookup
find_node(TargetId) ->
 % Start with K closest known nodes
 Closest = get_k_closest(TargetId, K),
 find_node_iter(TargetId, Closest, [], K).

find_node_iter(TargetId, Closest, Queried, K) ->
 % Select ALPHA unqueried nodes to ask
 ToQuery = select_closest_unqueried(Closest, Queried, ALPHA),

 if
 ToQuery =:= [] ->
 % No more to query, return result
 lists:sublist(Closest, K);
 true ->
 % Query nodes in parallel
 Results = pmap(fun(Node) ->
 rpc:call(Node, kademlia, get_closest, [TargetId, K])
 end, ToQuery),

 % Merge results and sort by distance
 NewClosest = merge_and_sort(Closest, lists:flatten(Results), TargetId),
 NewQueried = Queried ++ ToQuery,

 % Check if target found
 case lists:member(TargetId, NewClosest) of
 true -> {found, TargetId};
 false -> find_node_iter(TargetId, NewClosest, NewQueried, K)
 end
 end.
Complexity: O(log N) lookups, O(ALPHA * log N) messages

Success Metrics
Phase 1 Success Criteria
	✅ QUIC Transport Works
	Server accepts connections
	Client can connect
	Bidirectional streams function
	Connection survives stream closure

	✅ Wire Protocol Implemented
	Messages encode/decode correctly
	Handshake completes successfully
	All message types supported

	✅ Basic Distribution Functions
	net_kernel:connect_node/1 works
	nodes() shows connected nodes
	Message sending: {Name, Node} ! Msg
	Remote spawn: spawn(Node, Fun)
	Process linking works
	Monitoring works

Deliverable: Two Erlang nodes communicating over HTTP/3

Phase 2 Success Criteria
	✅ Node Discovery Works
	Bootstrap discovery functional
	mDNS discovery works locally
	DNS SRV discovery works

	✅ Membership Protocol Stable
	SWIM protocol running
	Failures detected within 10 seconds
	Gossip converges in O(log N) time
	No false positives in stable network

	✅ Topology Self-Organizes
	Nodes form k-regular graph
	New nodes join smoothly
	Departed nodes removed from topology
	Healing after network partition

	✅ Routing Functions
	Messages route through mesh
	DHT lookup finds nodes
	O(log N) hops for routing

Deliverable: 20+ node mesh that self-heals from failures

Phase 3 Success Criteria
	✅ NAT Traversal Works
	STUN discovers public address
	ICE negotiates connectivity
	UDP hole punching succeeds (>80%)
	TURN relay works as fallback

	✅ Real-World Scenarios
	Home router NAT traversed
	Corporate firewall traversed
	Mobile hotspot NAT traversed
	Symmetric NAT handled

Deliverable: Nodes behind different NATs forming mesh

Phase 4 Success Criteria
	✅ Pub/Sub Works
	Topic subscriptions work
	Messages routed by topic
	Pattern matching (prefix/wildcard)
	Scalable (not flooding all nodes)

	✅ RPC Works
	Synchronous RPC calls
	Timeouts handled correctly
	Error propagation works

	✅ WAMP Compatible
	Existing WAMP clients can connect
	Subscribe/Publish semantics match
	Call/Register semantics match

Deliverable: Example Platform PoC runs on Macula Mesh

Phase 5 Success Criteria
	✅ Security Hardened
	TLS certificates managed
	Message authentication
	Rate limiting prevents DoS
	Access control enforced

	✅ Production Monitoring
	Prometheus metrics exported
	Topology visualization works
	Alerts fire on anomalies
	Distributed tracing available

	✅ Performance Acceptable
	<10ms latency (local)
	<100ms latency (internet)
	10,000 msg/sec throughput

	Scales to 1000+ nodes

	✅ Documentation Complete
	Architecture guide published
	API reference docs
	Deployment guide
	Migration from Bondy guide

Deliverable: Production-ready Macula Mesh 1.0

Conclusion
Macula HTTP/3 Mesh represents a unique opportunity to build world-class distributed infrastructure for the BEAM ecosystem. By leveraging QUIC's modern transport capabilities, we can create a mesh network that:
	Works anywhere - Through NATs, firewalls, mobile networks
	Scales effortlessly - O(log N) routing, not O(N²) connections
	Feels native - Standard Erlang distribution semantics
	Performs brilliantly - 0-RTT reconnection, no head-of-line blocking
	Stands out - Nobody else has this for BEAM

This is a 20-week journey that will culminate in a "Wow, how do they do it?" moment.
Next Steps:
	Set up development environment
	Integrate quicer dependency
	Build Week 1 deliverable (QUIC echo server/client)
	Start the journey! 🚀

References
QUIC & HTTP/3
	RFC 9000: QUIC Transport Protocol
	RFC 9001: Using TLS to Secure QUIC
	RFC 9114: HTTP/3
	MsQuic Documentation

Libraries
	quicer (Erlang NIF)
	xquic (Alibaba)
	quinn (Rust)

Algorithms
	SWIM: Scalable Membership Protocol
	Kademlia: A Peer-to-peer Information System
	Consistent Hashing

Related Work
	Partisan: Flexible Distributed Erlang
	Bondy: Distributed WAMP Router
	Riak Core: Distributed Systems Framework

Document Version: 1.0
Last Updated: 2025-11-07
Author: Macula Architecture Team
Status: Proposal

 Macula HTTP/3 Mesh - Documentation Status Tracker

Last Updated: 2025-01-08
This file tracks the completion status of all Macula HTTP/3 Mesh documentation.

Status Legend
	✅ Complete: Document is comprehensive and ready for use
	🚧 Skeleton: Structure exists, needs content
	⚠️ Planned: Outlined in root index, not yet created
	📝 In Progress: Actively being written

Core Architecture (P0)
	Document	Status	Priority	Completion	Target Week	Last Updated
	Technical Roadmap	✅ Complete	P0	100%	Week 0	2025-01-08
	C4 Diagrams	✅ Complete	P0	100%	Week 0	2025-01-08
	Isolation Mechanisms	✅ Complete	P0	100%	Week 0	2025-01-08
	Documentation Root	✅ Complete	P0	100%	Week 0	2025-01-08

Summary: 4/4 complete (100%)

Getting Started (P1)
	Document	Status	Priority	Completion	Target Week	Last Updated
	Quick Start Guide	✅ Complete	P1	100%	Week 4	2025-01-08
	Hello World Tutorial	✅ Complete	P1	100%	Week 4	2025-01-08

Summary: 2/2 complete (100%)

API and Protocol (P1)
	Document	Status	Priority	Completion	Target Week	Last Updated
	Wire Protocol Spec	🚧 Skeleton	P1	10%	Week 8	2025-01-08
	API Reference	🚧 Skeleton	P1	10%	Week 12	2025-01-08

Summary: 0/2 complete (20% average progress)

Advanced Topics
	Document	Status	Priority	Completion	Target Week	Last Updated
	NAT Traversal Deep Dive	🚧 Skeleton	P2	10%	Week 12	2025-01-08
	Security Model	🚧 Skeleton	P1	10%	Week 16	2025-01-08
	Performance Tuning	🚧 Skeleton	P2	10%	Week 20	2025-01-08
	Observability Guide	🚧 Skeleton	P2	10%	Week 20	2025-01-08
	Deployment Patterns	🚧 Skeleton	P1	10%	Week 20	2025-01-08
	Gateway Operations	🚧 Skeleton	P2	10%	Week 24	2025-01-08

Summary: 0/6 complete (10% average progress)

Comparisons
	Document	Status	Priority	Completion	Target Week	Last Updated
	WAMP Comparison	🚧 Skeleton	P2	10%	Week 8	2025-01-08
	libp2p Comparison	🚧 Skeleton	P3	10%	Week 12	2025-01-08

Summary: 0/2 complete (10% average progress)

Reference Materials
	Document	Status	Priority	Completion	Target Week	Last Updated
	Design Decision Log	🚧 Skeleton	P2	10%	Ongoing	2025-01-08
	Glossary	🚧 Skeleton	P2	10%	Week 4	2025-01-08
	FAQ	🚧 Skeleton	P1	10%	Week 4	2025-01-08
	Troubleshooting Guide	🚧 Skeleton	P2	10%	Week 20	2025-01-08
	Contributing Guide	🚧 Skeleton	P2	10%	Week 4	2025-01-08

Summary: 0/5 complete (10% average progress)

Overall Progress
	Category	Complete	In Progress	Planned	Total	Completion %
	Core Architecture (P0)	4	0	0	4	100%
	Getting Started (P1)	2	0	0	2	100%
	API and Protocol (P1)	0	2	0	2	20%
	Advanced Topics	0	6	0	6	10%
	Comparisons	0	2	0	2	10%
	Reference Materials	0	5	0	5	10%
	TOTAL	6	15	0	21	34%

Priority Breakdown
P0 (Must have before code)
	✅ 4/4 complete (100%)

P1 (Required for MVP release)
	✅ 2/6 complete (33%)
	🚧 Need: Wire Protocol Spec, API Reference, Security Model, Deployment Patterns, FAQ

P2 (Important for production)
	🚧 0/8 complete (0%)

P3 (Nice to have)
	🚧 0/1 complete (0%)

Completion Roadmap
Immediate Priorities (Next 2 weeks)
	FAQ - Quick wins, high user value
	Glossary - Reference for all other docs
	Wire Protocol Spec - Critical for implementers

Short Term (Weeks 3-8)
	API Reference - Essential for developers
	Security Model - Critical for production use
	WAMP Comparison - Address "why not WAMP" question
	Design Decision Log - Document architectural choices

Medium Term (Weeks 9-16)
	Deployment Patterns - Production deployment guidance
	NAT Traversal Deep Dive - Technical deep dive
	Performance Tuning - Optimization guide
	Observability Guide - Monitoring and debugging

Long Term (Weeks 17+)
	Gateway Operations - Advanced realm features
	Troubleshooting Guide - Support documentation
	Contributing Guide - Community building
	libp2p Comparison - Additional comparison

Contribution Workflow
How to Contribute to Documentation
	Choose a skeleton document from the table above
	Claim it by creating an issue or commenting in Discord
	Fill in sections following the existing structure
	Update this status file with your progress
	Submit PR when section(s) are complete
	Code review from maintainers
	Merge and update "Last Updated" date

Section-by-Section Approach
You don't need to complete an entire document! Contribute section by section:
	Pick one section from a skeleton
	Fill it in completely
	Submit PR with partial completion
	Update completion % in this file

Tracking Your Progress
When working on a document:
	Update status from 🚧 to 📝 (in progress)
	Update completion % as sections are finished
	When 100% complete, change status to ✅
	Update "Last Updated" date

Document Quality Standards
Complete (✅) Criteria
A document is "Complete" when it has:
	✅ All sections from skeleton filled in
	✅ Code examples tested and working
	✅ Diagrams added where helpful
	✅ Links to related docs
	✅ No ⚠️ TODO markers remaining
	✅ Reviewed by at least one other person

Skeleton (🚧) Criteria
A document is "Skeleton" when it has:
	✅ Clear structure with section headings
	✅ ⚠️ TODO markers indicating what needs to be written
	✅ Estimated effort and priority
	✅ Outline of content to be added

Need Help?
	Questions about what to write? Check the document outline and related complete docs
	Technical questions? Ask in Discord #documentation channel
	Want to collaborate? Find others working on same doc area
	Stuck? Tag a maintainer for guidance

Maintainers
Documentation maintainers who can review PRs:
	[To be assigned]

This file is updated automatically when documentation PRs are merged.

 Contributing

 STDIN
 1 # Macula HTTP/3 Mesh - Contributing Guide
 2
 3 How to contribute to Macula
 4
 5 Status: 🚧 SKELETON - Needs completion
 6 Priority: P2
 7 Estimated effort: 4 hours
 8
 9 ---
 10
 11 ## Welcome
 12
 13 ⚠️ TODO: Welcome message for contributors.
 14
 15 ---
 16
 17 ## Code of Conduct
 18
 19 ⚠️ TODO: Community code of conduct.
 20
 21 ---
 22
 23 ## Development Setup
 24
 25 ⚠️ TODO: How to set up development environment.
 26
 27 Sections needed:
 28 - Prerequisites
 29 - Fork and clone
 30 - Install dependencies
 31 - Run tests
 32 - Start local mesh
 33
 34 ---
 35
 36 ## Testing Requirements
 37
 38 ⚠️ TODO: Testing standards.
 39
 40 Topics:
 41 - Unit tests (EUnit/ExUnit)
 42 - Integration tests
 43 - Property-based tests (PropEr/StreamData)
 44 - Coverage requirements
 45
 46 ---
 47
 48 ## Code Style Guide
 49
 50 ⚠️ TODO: Erlang/Elixir coding conventions.
 51
 52 Topics:
 53 - Formatting (mix format, erlfmt)
 54 - Naming conventions
 55 - Documentation requirements
 56 - Type specifications
 57
 58 ---
 59
 60 ## Documentation Requirements
 61
 62 ⚠️ TODO: How to document code.
 63
 64 ---
 65
 66 ## Pull Request Process
 67
 68 ⚠️ TODO: PR workflow.
 69
 70 Steps:
 71 1. Create feature branch
 72 2. Make changes
 73 3. Write tests
 74 4. Update docs
 75 5. Submit PR
 76 6. Code review
 77 7. Merge
 78
 79 ---
 80
 81 ## Release Process
 82
 83 ⚠️ TODO: How releases are managed.
 84
 85 ---
 86
 87 ## Community Channels
 88
 89 ⚠️ TODO: Where to get help and discuss.
 90
 91 Channels:
 92 - GitHub Discussions
 93 - Discord server
 94 - Mailing list
 95 - Monthly community calls
 96
 97 ---
 98
 99 ## Roadmap and Feature Requests
 100
 101 ⚠️ TODO: How to propose new features.
 102
 103 ---
 104
 105 ## Reporting Issues
 106
 107 ⚠️ TODO: Bug report template and guidelines.
 108
 109 ---
 110
 111 ## Recognition
 112
 113 ⚠️ TODO: How contributors are recognized.
 114
 115 ---
 116
 117 Last Updated: 2025-01-08
 118 Contributors: [Add names as sections are completed]

 Memory Management Architecture

Status: ✅ PRODUCTION-READY (Completed 2025-11-14)
Project: Macula HTTP/3 Mesh Platform

Overview
Macula implements comprehensive memory management to prevent OOM (Out-Of-Memory) crashes through 5 critical fixes that bound memory usage and enable automatic cleanup.
Problem Solved: Platform experienced OOM crashes after 30-60 minutes of operation due to unbounded data structure growth.
Solution: Bounded pools, backpressure mechanisms, TTL-based cleanup, coordinated map management, and process monitoring.
Result: Stable memory usage, no crashes, production-ready platform.

5 Critical Memory Leak Fixes
1. Bounded Connection Pool (macula_gateway_mesh)
Problem: Unbounded mesh connection pool
Solution: LRU eviction, max 1,000 connections
Module: src/macula_gateway_mesh.erl
Tests: 22 tests passing
Documentation: 02_service_ttl_cleanup.md
Key Implementation:
	Track last access time for each connection
	Evict Least Recently Used when pool is full
	O(1) connection lookup and update

2. Client Connection Limits (macula_gateway_client_manager)
Problem: Unbounded client connections
Solution: Backpressure mechanism, max 10,000 clients (configurable)
Module: src/macula_gateway_client_manager.erl
Tests: 30 tests passing
Documentation: 03_stream_cleanup.md
Key Implementation:
	Check pool size before accepting new client
	Return {error, max_clients_reached} when full
	Graceful degradation under load

3. Service TTL/Cleanup (macula_service_registry)
Problem: Unbounded local_services map
Solution: 300-second TTL, periodic cleanup
Modules:
	src/macula_service_registry.erl (cleanup function)
	src/macula_advertisement_manager.erl (periodic timer)
Tests: 27 tests passing
Documentation:
	02_service_ttl_cleanup.md
	06_periodic_cleanup.md

Key Implementation:
	Track advertised_at timestamp for each service
	Automatic cleanup every 60 seconds
	Remove services older than 300 seconds

4. Stream Cleanup (macula_gateway_client_manager)
Problem: client_streams map leaked on disconnect
Solution: Coordinated cleanup of both clients and client_streams maps
Module: src/macula_gateway_client_manager.erl
Tests: 32 tests passing (includes 2 new stream tests)
Documentation: 03_stream_cleanup.md
Key Implementation:
	Extract node_id from client info before removal
	Atomic cleanup of both maps
	Works for both explicit disconnect and crashes

5. Caller Process Monitoring (macula_rpc_handler)
Problem: Dead caller processes left entries for 5 seconds
Solution: Monitor caller processes, immediate cleanup via DOWN messages
Module: src/macula_rpc_handler.erl
Tests: 27 tests passing (includes 2 new monitoring tests)
Documentation:
	04_caller_monitoring.md
	05_caller_monitoring_tests.md

Key Implementation:
	Two-way mapping: MonitorRef ↔ CallId/ServiceKey
	Handle DOWN messages for immediate cleanup
	Cancel timers to prevent leaks

Documentation Index
Implementation Details
	Overview - Complete implementation summary (all 5 fixes)
	Service TTL Cleanup - Fix #3 details
	Stream Cleanup - Fix #4 details
	Caller Monitoring - Fix #5 details
	Caller Monitoring Tests - Fix #5 test coverage
	Periodic Cleanup - Automation (Task B)

Testing & Validation
	Load Testing - Load test script & results
	Complete Summary - Comprehensive final report

Maintenance & Operations
	Housekeeping Report - Architecture review, code quality analysis, future improvements

Visual Documentation
	Diagrams - Mermaid diagrams for all memory management mechanisms

Architecture Diagram
[image: Memory Management Overview]
The platform implements memory management at 3 layers:
Gateway Layer (Infrastructure)
├── mesh: Bounded Pool (LRU, max 1,000)
├── client_manager: Client Limits (backpressure, max 10,000)
└── client_manager: Stream Cleanup (coordinated maps)

Service Layer
├── service_registry: TTL Cleanup (300s expiry)
└── advertisement_manager: Periodic Cleanup (60s interval)

Application Layer
└── rpc_handler: Caller Monitoring (immediate cleanup)

Test Coverage
All memory leak fixes are comprehensively tested:
	Fix	Module	Tests	Status
	#1 Bounded Pool	macula_gateway_mesh	22	✅ PASS
	#2 Client Limits	macula_gateway_client_manager	30	✅ PASS
	#3 Service TTL	macula_service_registry	27	✅ PASS
	#4 Stream Cleanup	macula_gateway_client_manager	32	✅ PASS
	#5 Caller Monitoring	macula_rpc_handler	27	✅ PASS

Total: 138 tests (7 new tests added for memory leak fixes)
All tests passing: ✅

Production Monitoring
Key Metrics to Monitor
	Connection Pool Size
	Should stay ≤ 1,000
	Alert if consistently at max

	Client Count
	Should stay ≤ 10,000
	Track rejection rate (max_clients_reached errors)

	Service Registry Size
	Should remain stable over time
	Monitor periodic cleanup logs

	Stream Map Size
	Should match client count
	No orphaned entries

	Pending Calls/Queries
	Should trend toward 0
	Spikes OK, sustained high values indicate issues

Log Monitoring
Service Cleanup (runs every 60s):
[info] Service cleanup: removed 3 expired service(s) % Normal
[debug] Service cleanup: no expired services % Also normal
Client Rejections:
[warn] Client connection rejected: max_clients_reached % Monitor frequency
Caller Cleanup:
[debug] Cleaned up pending call due to caller death % Expected behavior

Quick Start
Understanding the Fixes
	Start here: Complete Summary
	Deep dive: Individual fix documentation (02-06)
	Visual learners: Diagrams
	Troubleshooting: Housekeeping Report (Section 3: Documentation)

Implementation References
All fixes follow idiomatic Erlang patterns:
	✅ Pattern matching on function heads
	✅ Guards instead of if/case
	✅ Atomic state updates
	✅ OTP best practices (process monitoring, timers)
	✅ No deep nesting

See Housekeeping Report Section 2 for code quality analysis.

Performance Impact
Before Fixes:
	OOM crashes after 30-60 minutes
	Unbounded memory growth
	No cleanup mechanisms

After Fixes:
	Stable memory usage
	Bounded pools prevent growth
	Automatic cleanup maintains stability
	No OOM crashes observed

Overhead:
	LRU tracking: O(1) per operation
	Periodic cleanup: Runs every 60s, negligible CPU
	Process monitoring: Native Erlang, no overhead

Future Improvements
See Housekeeping Report Section 5 for detailed recommendations:
High Priority
	Memory metrics/observability (telemetry integration)
	Troubleshooting guide for production

Medium Priority
	Refactor nested case statements for clarity
	Memory pressure handling (dynamic limits)

Low Priority
	Memory manager behavior abstraction
	Unified memory management interface

Related Documentation
	Gateway Refactoring - Context for client_manager extraction
	Code Review Report - Overall code quality assessment
	CLAUDE.md - Development guidelines and memory management summary

Contributors
Implementation: Completed 2025-11-14
Documentation: ~2,500 lines across 9 documents
Diagrams: 5 Mermaid diagrams
Time Investment: ~6 hours (fixes + tests + docs)

Status: Production Ready ✅
All 5 critical memory leak fixes are:
	✅ Implemented and tested
	✅ Following idiomatic Erlang patterns
	✅ Comprehensively documented
	✅ Production-ready

Deployment Recommendation: Ready for staging → production with monitoring in place.

Last Updated: 2025-11-14
Next Review: After first production deployment

macula_advertisement_manager

Advertisement manager GenServer - manages DHT service advertisements.
Responsibilities: - Advertise services in DHT with periodic re-advertisement - Unadvertise services and cancel timers - Register handlers with local gateway - Manage service advertisement lifecycle - Periodic cleanup of expired local services (every 60s, TTL 300s default)
Extracted from macula_connection.erl (Phase 6)

 Summary

 Functions

 advertise_service(Pid, Procedure, Handler, Opts)

 Advertise a service in DHT and local registry

 get_active_advertisements(Pid)

 Get list of actively advertised services

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle re-advertisement timer

 init(Opts)

 start_link(Opts)

 terminate(Reason, State)

 unadvertise_service(Pid, Procedure)

 Stop advertising a service

 Functions

 advertise_service(Pid, Procedure, Handler, Opts)

 -spec advertise_service(pid(), binary() | atom() | string(), fun((term()) -> term()), map()) ->
 {ok, reference()} | {error, term()}.

Advertise a service in DHT and local registry

 get_active_advertisements(Pid)

 -spec get_active_advertisements(pid()) -> {ok, [binary()]}.

Get list of actively advertised services

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle re-advertisement timer

 init(Opts)

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unadvertise_service(Pid, Procedure)

 -spec unadvertise_service(pid(), binary() | atom() | string()) -> ok | {error, term()}.

Stop advertising a service

macula_app

macula public API

 Summary

 Functions

 start(StartType, StartArgs)

 stop(State)

 Functions

 start(StartType, StartArgs)

 stop(State)

macula_cache

Generic LRU cache implementation. Provides least-recently-used eviction with configurable max size.

 Summary

 Types

 cache/0

 entry/0

 key/0

 timestamp/0

 value/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Key)

 Get entry from cache. Returns {ok, Value, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 keys(_)

 Get all keys in cache (most recent first).

 max_size(_)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Key, Value)

 Put entry in cache with current timestamp.

 put(Cache, Key, Value, Timestamp)

 Put entry in cache with custom timestamp (for testing).

 remove(Cache, Key)

 Remove entry from cache.

 size(_)

 Get number of entries.

 Types

 cache/0

 -type cache() :: #{entries := [entry()], max_size := pos_integer()}.

 entry/0

 -type entry() :: #{key := key(), value := value(), timestamp := timestamp()}.

 key/0

 -type key() :: term().

 timestamp/0

 -type timestamp() :: integer().

 value/0

 -type value() :: term().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Key)

 -spec get(cache(), key()) -> {ok, value(), cache()} | not_found.

Get entry from cache. Returns {ok, Value, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 keys(_)

 -spec keys(cache()) -> [key()].

Get all keys in cache (most recent first).

 max_size(_)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Key, Value)

 -spec put(cache(), key(), value()) -> cache().

Put entry in cache with current timestamp.

 put(Cache, Key, Value, Timestamp)

 -spec put(cache(), key(), value(), timestamp()) -> cache().

Put entry in cache with custom timestamp (for testing).

 remove(Cache, Key)

 -spec remove(cache(), key()) -> cache().

Remove entry from cache.

 size(_)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_client

Macula SDK - Main API module for HTTP/3 mesh client operations.
This module provides the primary interface for applications to connect to Macula mesh networks and perform pub/sub and RPC operations over HTTP/3 (QUIC) transport.
[bookmark: Quick_Start]Quick Start
Connect to a mesh, publish events, subscribe to topics, and make RPC calls. See individual function documentation for detailed examples with code.

 Summary

 Types

 args/0

 Arguments for RPC calls.

 client/0

 Reference to a connected Macula mesh client.

 event_data/0

 Event payload data. Typically a map that will be JSON-encoded.

 options/0

 Connection or operation options.

 procedure/0

 RPC procedure name. Example: "my.app.get_user".

 subscription_ref/0

 Reference to an active subscription for unsubscribe operations.

 topic/0

 Topic name for pub/sub operations. Topics should describe event types, not entity IDs. Example: "my.app.user.registered" (good), not "my.app.user.123.registered" (bad - ID belongs in payload).

 Functions

 advertise(Client, Procedure, Handler)

 Advertise a service that this client provides.

 advertise(Client, Procedure, Handler, Opts)

 Advertise a service with options.

 call(Client, Procedure, Args)

 Make a synchronous RPC call.

 call(Client, Procedure, Args, Opts)

 Make an RPC call with options.

 connect(Url, Opts)

 Connect to a Macula mesh network.

 disconnect(Client)

 Disconnect from the Macula mesh.

 discover_subscribers(Client, Topic)

 Discover subscribers to a topic via DHT query.

 get_node_id(Client)

 Get the node ID of this client.

 publish(Client, Topic, Data)

 Publish an event to a topic.

 publish(Client, Topic, Data, Opts)

 Publish an event with options.

 subscribe(Client, Topic, Callback)

 Subscribe to a topic.

 unadvertise(Client, Procedure)

 Stop advertising a service.

 unsubscribe(Client, SubRef)

 Unsubscribe from a topic.

 Types

 args/0

 -type args() :: map() | list() | binary().

Arguments for RPC calls.

 client/0

 -type client() :: pid().

Reference to a connected Macula mesh client.

 event_data/0

 -type event_data() :: map() | binary().

Event payload data. Typically a map that will be JSON-encoded.

 options/0

 -type options() :: map().

Connection or operation options.

 procedure/0

 -type procedure() :: binary().

RPC procedure name. Example: "my.app.get_user".

 subscription_ref/0

 -type subscription_ref() :: reference().

Reference to an active subscription for unsubscribe operations.

 topic/0

 -type topic() :: binary().

Topic name for pub/sub operations. Topics should describe event types, not entity IDs. Example: "my.app.user.registered" (good), not "my.app.user.123.registered" (bad - ID belongs in payload).

 Functions

 advertise(Client, Procedure, Handler)

 -spec advertise(Client :: client(),
 Procedure :: procedure(),
 Handler :: macula_service_registry:handler_fn()) ->
 {ok, reference()} | {error, Reason :: term()}.

Advertise a service that this client provides.
Registers a handler function for the specified procedure and advertises it to the DHT so other clients can discover and call it.
The handler function receives a map of arguments and must return {ok, Result} or {error, Reason}.
[bookmark: Options]Options
	ttl - Advertisement TTL in seconds (default: 300)
	metadata - Custom metadata map (default: #{})

[bookmark: Examples]Examples
 %% Define a handler function
 Handler = fun(#{user_id := UserId}) ->
 {ok, #{user_id => UserId, name => <<"Alice">>}}
 end.

 %% Advertise the service
 {ok, Ref} = macula_client:advertise(
 Client,
 <<"my.app.get_user">>,
 Handler
).

 %% Other clients can now call:
 %% {ok, User} = macula_client:call(OtherClient, <<"my.app.get_user">>,
 %% #{user_id => <<"user-123">>}).

 advertise(Client, Procedure, Handler, Opts)

 -spec advertise(Client :: client(),
 Procedure :: procedure(),
 Handler :: macula_service_registry:handler_fn(),
 Opts :: options()) ->
 {ok, reference()} | {error, Reason :: term()}.

Advertise a service with options.

 call(Client, Procedure, Args)

 -spec call(Client :: client(), Procedure :: procedure(), Args :: args()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make a synchronous RPC call.
Calls a remote procedure and waits for the result.
[bookmark: Examples]Examples
 %% Simple RPC call
 {ok, User} = macula_client:call(Client, <<"my.app.get_user">>, #{
 user_id => <<"user-123">>
 }).

 %% With timeout
 {ok, Result} = macula_client:call(Client, <<"my.app.process">>,
 #{data => <<"large">>},
 #{timeout => 30000}).

 call(Client, Procedure, Args, Opts)

 -spec call(Client :: client(), Procedure :: procedure(), Args :: args(), Opts :: options()) ->
 {ok, Result :: term()} | {error, Reason :: term()}.

Make an RPC call with options.

 connect(Url, Opts)

 -spec connect(Url :: binary(), Opts :: options()) -> {ok, client()} | {error, Reason :: term()}.

Connect to a Macula mesh network.
Creates a new HTTP/3 (QUIC) connection to the specified mesh endpoint.
[bookmark: Options]Options
	realm - Required. Binary realm identifier (e.g., <<"my.app.realm">>)
	auth - Optional. Authentication map with api_key or other auth methods
	timeout - Optional. Connection timeout in milliseconds (default: 5000)
	node_id - Optional. 32-byte node ID (generated if not provided)

[bookmark: Examples]Examples
 %% Basic connection
 {ok, Client} = macula_client:connect(<<"https://mesh.local:443">>, #{
 realm => <<"my.realm">>
 }).

 %% With API key authentication
 {ok, Client} = macula_client:connect(<<"https://mesh.local:443">>, #{
 realm => <<"my.realm">>,
 auth => #{api_key => <<"secret-key">>}
 }).

 disconnect(Client)

 -spec disconnect(Client :: client()) -> ok | {error, Reason :: term()}.

Disconnect from the Macula mesh.
Cleanly closes the HTTP/3 connection and cleans up all subscriptions.

 discover_subscribers(Client, Topic)

 -spec discover_subscribers(Client :: client(), Topic :: topic()) ->
 {ok, [#{node_id := binary(), endpoint := binary()}]} |
 {error, Reason :: term()}.

Discover subscribers to a topic via DHT query.
Queries the DHT for all nodes subscribed to the given topic. Returns a list of subscriber nodes with their node IDs and endpoints.
This is used for P2P discovery before sending direct messages.

 get_node_id(Client)

 -spec get_node_id(Client :: client()) -> {ok, binary()} | {error, Reason :: term()}.

Get the node ID of this client.
Returns the 32-byte node ID assigned to this client.

 publish(Client, Topic, Data)

 -spec publish(Client :: client(), Topic :: topic(), Data :: event_data()) ->
 ok | {error, Reason :: term()}.

Publish an event to a topic.
Publishes data to the specified topic. All subscribers to this topic will receive the event.
[bookmark: Topic_Design]Topic Design
Topics should describe EVENT TYPES, not entity instances:
	Good: <<"my.app.user.registered">> (event type)
	Bad: <<"my.app.user.123.registered">> (entity ID in topic)

Entity IDs belong in the event payload, not the topic name.
[bookmark: Examples]Examples
 %% Publish with default options
 ok = macula_client:publish(Client, <<"my.app.events">>, #{
 type => <<"user.registered">>,
 user_id => <<"user-123">>,
 email => <<"user@example.com">>
 }).

 %% Publish with options
 ok = macula_client:publish(Client, <<"my.app.events">>, #{
 data => <<"important">>
 }, #{acknowledge => true}).

 publish(Client, Topic, Data, Opts)

 -spec publish(Client :: client(), Topic :: topic(), Data :: event_data(), Opts :: options()) ->
 ok | {error, Reason :: term()}.

Publish an event with options.

 subscribe(Client, Topic, Callback)

 -spec subscribe(Client :: client(), Topic :: topic(), Callback :: fun((event_data()) -> ok)) ->
 {ok, subscription_ref()} | {error, Reason :: term()}.

Subscribe to a topic.
Subscribes to events on the specified topic. The callback function will be invoked for each event received.
[bookmark: Callback_Function]Callback Function
The callback receives the event data and should return ok.
[bookmark: Examples]Examples
 %% Simple subscription
 {ok, SubRef} = macula_client:subscribe(Client, <<"my.app.events">>,
 fun(EventData) ->
 io:format("Event: ~p~n", [EventData]),
 ok
 end).

 %% Unsubscribe later
 ok = macula_client:unsubscribe(Client, SubRef).

 unadvertise(Client, Procedure)

 -spec unadvertise(Client :: client(), Procedure :: procedure()) -> ok | {error, Reason :: term()}.

Stop advertising a service.
Removes the local handler and stops advertising to the DHT.
[bookmark: Examples]Examples
 ok = macula_client:unadvertise(Client, <<"my.app.get_user">>).

 unsubscribe(Client, SubRef)

 -spec unsubscribe(Client :: client(), SubRef :: subscription_ref()) -> ok | {error, Reason :: term()}.

Unsubscribe from a topic.
Removes the subscription identified by the subscription reference.

macula_connection

Macula Connection - QUIC Transport Layer (v0.7.0+).
This module manages the low-level QUIC connection lifecycle and message transport for mesh participants.
Responsibilities: - Establish and maintain QUIC connection - Send messages via QUIC stream - Receive and route incoming messages to handlers - Handle connection errors and reconnection - Message encoding/decoding and buffering
Renamed from macula_connection in v0.7.0 for clarity: - macula_connection = QUIC transport (this module - low-level) - macula_peer = mesh participant (high-level API)

 Summary

 Functions

 decode_messages(Buffer, Acc)

 Decode all complete messages from buffer.

 default_config()

 get_status(Pid)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 send_message(Pid, Type, Msg)

 start_keepalive_timer(State)

 Start keep-alive timer if enabled in options.

 start_link(Url, Opts)

 terminate(Reason, State)

 Functions

 decode_messages(Buffer, Acc)

 -spec decode_messages(binary(), list()) -> {list(), binary()}.

Decode all complete messages from buffer.

 default_config()

 -spec default_config() -> map().

 get_status(Pid)

 -spec get_status(pid()) -> connecting | connected | disconnected | error.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 send_message(Pid, Type, Msg)

 -spec send_message(pid(), atom(), map()) -> ok | {error, term()}.

 start_keepalive_timer(State)

 -spec start_keepalive_timer(#state{url :: binary(),
 opts :: map(),
 node_id :: binary(),
 realm :: binary(),
 connection :: pid() | undefined,
 stream :: pid() | undefined,
 status :: connecting | connected | disconnected | error,
 recv_buffer :: binary(),
 keepalive_timer :: reference() | undefined}) ->
 #state{url :: binary(),
 opts :: map(),
 node_id :: binary(),
 realm :: binary(),
 connection :: pid() | undefined,
 stream :: pid() | undefined,
 status :: connecting | connected | disconnected | error,
 recv_buffer :: binary(),
 keepalive_timer :: reference() | undefined}.

Start keep-alive timer if enabled in options.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

macula_connection_pool

Connection pool manager for endpoint connections.
Manages a pool of QUIC connections to remote endpoints, providing connection caching and reuse to avoid connection overhead for multi-endpoint RPC operations.
Connection pool structure: #{Endpoint => #{connection => Conn, stream => Stream, last_used => Timestamp}}

 Summary

 Functions

 close_all_connections(Pool)

 Close all connections in the pool.

 create_connection(Endpoint, NodeId, RealmId, Pool)

 Create a new connection to an endpoint.

 get_or_create_connection(Endpoint, NodeId, RealmId, Pool)

 Get or create a connection to an endpoint. Returns {ok, Conn, Stream, UpdatedPool} or {error, Reason, Pool}.

 Functions

 close_all_connections(Pool)

 -spec close_all_connections(map()) -> ok.

Close all connections in the pool.

 create_connection(Endpoint, NodeId, RealmId, Pool)

 -spec create_connection(binary(), binary(), binary(), map()) ->
 {ok, pid(), pid(), map()} | {error, term(), map()}.

Create a new connection to an endpoint.

 get_or_create_connection(Endpoint, NodeId, RealmId, Pool)

 -spec get_or_create_connection(binary(), binary(), binary(), map()) ->
 {ok, pid(), pid(), map()} | {error, term(), map()}.

Get or create a connection to an endpoint. Returns {ok, Conn, Stream, UpdatedPool} or {error, Reason, Pool}.

macula_core_types

Core type definitions and encoding/decoding for Macula. Provides fundamental types like node IDs, realm IDs, and addresses.

 Summary

 Types

 address/0

 ip_address/0

 node_id/0

 32-byte unique node identifier

 port_number/0

 realm_id/0

 32-byte realm identifier

 Functions

 decode_address(_)

 Decode binary address format to {IP, Port} tuple.

 encode_address(_)

 Encode an IP address and port to binary format. Format: - 1 byte: IP version (4 or 6) - 4 or 16 bytes: IP address - 2 bytes: port (big-endian)

 node_id()

 Generate a unique node ID. Uses cryptographically strong random bytes for uniqueness.

 realm_id(RealmName)

 Generate a deterministic realm ID from a realm name. Same name always produces the same ID (uses SHA-256 hash).

 Types

 address/0

 -type address() :: {ip_address(), port_number()}.

 ip_address/0

 -type ip_address() :: inet:ip_address().

 node_id/0

 -type node_id() :: binary().

32-byte unique node identifier

 port_number/0

 -type port_number() :: inet:port_number().

 realm_id/0

 -type realm_id() :: binary().

32-byte realm identifier

 Functions

 decode_address(_)

 -spec decode_address(binary()) -> {ok, address()} | {error, invalid_address}.

Decode binary address format to {IP, Port} tuple.

 encode_address(_)

 -spec encode_address(address()) -> binary().

Encode an IP address and port to binary format. Format: - 1 byte: IP version (4 or 6) - 4 or 16 bytes: IP address - 2 bytes: port (big-endian)

 node_id()

 -spec node_id() -> node_id().

Generate a unique node ID. Uses cryptographically strong random bytes for uniqueness.

 realm_id(RealmName)

 -spec realm_id(binary()) -> realm_id().

Generate a deterministic realm ID from a realm name. Same name always produces the same ID (uses SHA-256 hash).

macula_dht_rpc

DHT RPC client for querying remote nodes. Provides callback functions for macula_routing_dht algorithms.

 Summary

 Functions

 make_query_fn()

 Create a query_fn callback for DHT algorithms.

 make_store_fn()

 Create a store_fn callback for DHT algorithms.

 query_find_node(NodeInfo, Target)

 Query remote node for closest nodes to target. Returns {ok, [NodeInfo]} or {error, Reason}.

 query_find_value(NodeInfo, Key)

 Query remote node for value by key. Returns {value, Value} if found, {nodes, [NodeInfo]} if not found, or {error, Reason}.

 query_store(NodeInfo, Key, Value)

 Store key-value pair on remote node. Returns ok or {error, Reason}.

 Functions

 make_query_fn()

 -spec make_query_fn() ->
 fun((macula_routing_bucket:node_info(), binary()) ->
 {ok, [macula_routing_bucket:node_info()]} |
 {value, term()} |
 {nodes, [macula_routing_bucket:node_info()]} |
 {error, term()}).

Create a query_fn callback for DHT algorithms.

 make_store_fn()

 -spec make_store_fn() ->
 fun((macula_routing_bucket:node_info(), binary(), term()) -> ok | {error, term()}).

Create a store_fn callback for DHT algorithms.

 query_find_node(NodeInfo, Target)

 -spec query_find_node(macula_routing_bucket:node_info(), binary()) ->
 {ok, [macula_routing_bucket:node_info()]} | {error, term()}.

Query remote node for closest nodes to target. Returns {ok, [NodeInfo]} or {error, Reason}.

 query_find_value(NodeInfo, Key)

 -spec query_find_value(macula_routing_bucket:node_info(), binary()) ->
 {value, term()} |
 {nodes, [macula_routing_bucket:node_info()]} |
 {error, term()}.

Query remote node for value by key. Returns {value, Value} if found, {nodes, [NodeInfo]} if not found, or {error, Reason}.

 query_store(NodeInfo, Key, Value)

 -spec query_store(macula_routing_bucket:node_info(), binary(), term()) -> ok | {error, term()}.

Store key-value pair on remote node. Returns ok or {error, Reason}.

macula_discovery

Generic DHT-based service discovery. Provides cache-integrated lookup and announcement operations. Used by both pub/sub and RPC discovery layers.

 Summary

 Types

 key/0

 lookup_fun/0

 publish_fun/0

 unpublish_fun/0

 value/0

 Functions

 announce(Key, PublishFun)

 Announce value to DHT.

 filter_by_age(Items, TTL, TimestampField)

 Filter items by age based on last_seen timestamp and TTL. Items must have #{last_seen := integer()} in their structure.

 find(Key, LookupFun)

 Find values for a key via DHT lookup.

 find_with_cache(Key, Cache, LookupFun)

 Find values with cache (default TTL: 300 seconds).

 find_with_cache(Key, Cache, LookupFun, TTL)

 Find values with cache and custom TTL.

 unannounce(Key, UnpublishFun)

 Remove value from DHT.

 Types

 key/0

 -type key() :: binary().

 lookup_fun/0

 -type lookup_fun() :: fun((key()) -> {ok, [value()]} | {error, term()}).

 publish_fun/0

 -type publish_fun() :: fun((key(), value()) -> ok | {error, term()}).

 unpublish_fun/0

 -type unpublish_fun() :: fun((key()) -> ok | {error, term()}).

 value/0

 -type value() :: term().

 Functions

 announce(Key, PublishFun)

 -spec announce(key(), publish_fun()) -> ok | {error, term()}.

Announce value to DHT.

 filter_by_age(Items, TTL, TimestampField)

 -spec filter_by_age([map()], pos_integer(), atom()) -> [map()].

Filter items by age based on last_seen timestamp and TTL. Items must have #{last_seen := integer()} in their structure.

 find(Key, LookupFun)

 -spec find(key(), lookup_fun()) -> {ok, [value()]} | {error, term()}.

Find values for a key via DHT lookup.

 find_with_cache(Key, Cache, LookupFun)

 -spec find_with_cache(key(), macula_cache:cache(), lookup_fun()) ->
 {ok, [value()], macula_cache:cache()} | {error, term(), macula_cache:cache()}.

Find values with cache (default TTL: 300 seconds).

 find_with_cache(Key, Cache, LookupFun, TTL)

 -spec find_with_cache(key(), macula_cache:cache(), lookup_fun(), pos_integer()) ->
 {ok, [value()], macula_cache:cache()} | {error, term(), macula_cache:cache()}.

Find values with cache and custom TTL.

 unannounce(Key, UnpublishFun)

 -spec unannounce(key(), unpublish_fun()) -> ok | {error, term()}.

Remove value from DHT.

macula_gateway

Macula Gateway - HTTP/3 Message Router & Orchestrator
Main API module and coordinator for the Macula Gateway. The gateway can be embedded in applications or run standalone.
Architecture (Modular Design - Refactored Jan 2025): ==
Gateway (this module): - QUIC Listener Management - Message Decoding & Routing - Supervisor Coordination - API Facade
Child Modules (managed via macula_gateway_workers_sup): - macula_gateway_clients: Client lifecycle management - macula_gateway_pubsub: Pub/Sub message routing with wildcards - macula_gateway_rpc: RPC handler registration & invocation - macula_gateway_mesh: Mesh connection pooling
Stateless Delegation Modules: - macula_gateway_dht: DHT query forwarding to routing server - macula_gateway_rpc_router: Multi-hop RPC routing via DHT
Single Responsibility Principle: Each module has one clear purpose and delegates to specialized child modules. Gateway acts as orchestrator, not implementer.
Usage (Embedded):
 {ok, Pid} = macula_gateway:start_link([
 {port, 9443},
 {realm, <<"com.example.realm">>}
]).

 %% Register RPC handler
 macula_gateway:register_handler(<<"add">>, fun(#{a := A, b := B}) ->
 #{result => A + B}
 end).
Usage (Standalone):
 application:start(macula_gateway).

 Summary

 Functions

 get_stats(Gateway)

 Get gateway statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

 Handle rpc_route message forwarded from connection

 handle_continue(_, State)

 Wire gateway to siblings after init completes. This avoids initialization deadlock from calling supervisor:which_children/1 during init/1 before supervisor has finished starting all children.

 handle_info(Info, State)

 init(Opts)

 register_handler(Procedure, Handler)

 Register a handler for a procedure.

 start_link()

 Start the gateway with default options.

 start_link(Opts)

 Start the gateway with custom options. Options: {port, Port} - Listen port (default: 9443) {realm, Realm} - Default realm (default: "macula.default")

 stop(Gateway)

 Stop the gateway.

 terminate(Reason, State)

 unregister_handler(Procedure)

 Unregister a handler for a procedure.

 Functions

 get_stats(Gateway)

 -spec get_stats(pid()) -> map().

Get gateway statistics.

 handle_call(Request, From, State)

 handle_cast(Request, State)

Handle rpc_route message forwarded from connection

 handle_continue(_, State)

Wire gateway to siblings after init completes. This avoids initialization deadlock from calling supervisor:which_children/1 during init/1 before supervisor has finished starting all children.

 handle_info(Info, State)

 init(Opts)

 register_handler(Procedure, Handler)

 -spec register_handler(binary(), fun()) -> ok | {error, term()}.

Register a handler for a procedure.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the gateway with default options.

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the gateway with custom options. Options: {port, Port} - Listen port (default: 9443) {realm, Realm} - Default realm (default: "macula.default")

 stop(Gateway)

 -spec stop(pid()) -> ok.

Stop the gateway.

 terminate(Reason, State)

 unregister_handler(Procedure)

 -spec unregister_handler(binary()) -> ok.

Unregister a handler for a procedure.

macula_gateway_clients

Clients Worker GenServer - tracks connected clients.
Responsibilities: - Track connected clients with metadata (BOUNDED POOL) - Enforce max_clients limit with backpressure - Monitor client processes for automatic cleanup - Store bidirectional streams for client communication - Provide client query APIs
Pattern: Bounded client pool with backpressure - Tracks clients with max_clients limit (default: 10,000) - Rejects new clients when pool is full (backpressure) - Allows updates to existing clients even when pool is full
Configuration: - max_clients: Maximum concurrent clients (default: 10,000)
Extracted from macula_gateway.erl (Phase 2) Renamed from macula_gateway_client_manager (Phase 2 QUIC refactoring)

 Summary

 Types

 client_info/0

 Functions

 client_connected(Pid, ClientPid, ClientInfo)

 Register a connected client with metadata. Monitors the client process for automatic cleanup on death.

 client_disconnected(Pid, ClientPid)

 Unregister a disconnected client.

 get_all_clients(Pid)

 Get all connected clients.

 get_all_node_ids(Pid)

 Get all node IDs with stored client streams (for debugging).

 get_client_info(Pid, ClientPid)

 Get information about a specific client.

 get_client_stream(Pid, NodeId)

 Get the stored stream for a client node.

 get_stream_by_endpoint(Pid, Endpoint)

 Get the stream PID for a given endpoint URL. Used for routing pub/sub messages to remote subscribers.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle client process death - automatic cleanup.

 init(Opts)

 is_client_alive(Pid, ClientPid)

 Check if a client is alive (process still running).

 start_link(Opts)

 Start the client manager with options.

 stop(Pid)

 Stop the client manager.

 store_client_stream(Pid, NodeId, StreamPid)

 Store a bidirectional stream for a client node (legacy 3-arg version).

 terminate(Reason, State)

 Types

 client_info/0

 -type client_info() ::
 #{realm := binary(), node_id := binary(), endpoint => binary(), capabilities => [atom()]}.

 Functions

 client_connected(Pid, ClientPid, ClientInfo)

 -spec client_connected(pid(), pid(), client_info()) -> ok.

Register a connected client with metadata. Monitors the client process for automatic cleanup on death.

 client_disconnected(Pid, ClientPid)

 -spec client_disconnected(pid(), pid()) -> ok.

Unregister a disconnected client.

 get_all_clients(Pid)

 -spec get_all_clients(pid()) -> {ok, [{pid(), client_info()}]}.

Get all connected clients.

 get_all_node_ids(Pid)

 -spec get_all_node_ids(pid()) -> [binary()].

Get all node IDs with stored client streams (for debugging).

 get_client_info(Pid, ClientPid)

 -spec get_client_info(pid(), pid()) -> {ok, client_info()} | not_found.

Get information about a specific client.

 get_client_stream(Pid, NodeId)

 -spec get_client_stream(pid(), binary()) -> {ok, pid()} | not_found.

Get the stored stream for a client node.

 get_stream_by_endpoint(Pid, Endpoint)

 -spec get_stream_by_endpoint(pid(), binary()) -> {ok, pid()} | {error, not_found}.

Get the stream PID for a given endpoint URL. Used for routing pub/sub messages to remote subscribers.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle client process death - automatic cleanup.

 init(Opts)

 is_client_alive(Pid, ClientPid)

 -spec is_client_alive(pid(), pid()) -> boolean().

Check if a client is alive (process still running).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the client manager with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the client manager.

 store_client_stream(Pid, NodeId, StreamPid)

 -spec store_client_stream(pid(), binary(), pid()) -> ok.

Store a bidirectional stream for a client node (legacy 3-arg version).

 terminate(Reason, State)

macula_gateway_dht

DHT Query Handler Module - handles DHT message forwarding to routing server.
Responsibilities: - Forward DHT STORE messages to routing server - Forward DHT FIND_VALUE messages to routing server, send encoded replies - Forward DHT FIND_NODE messages to routing server, send encoded replies - Handle DHT queries from process messages - Encode replies using protocol encoder - Handle errors gracefully
Pattern: Stateless delegation module - No GenServer (no state to manage) - Pure functions forwarding to routing server - Consistent error handling ({ok, Result} | {error, Reason})
Extracted from macula_gateway.erl (Phase 10)

 Summary

 Functions

 handle_find_node(Stream, FindNodeMsg)

 Handle DHT FIND_NODE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_find_value(Stream, FindValueMsg)

 Handle DHT FIND_VALUE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_query(FromPid, QueryType, QueryData)

 Handle DHT query from process message. Decodes query, forwards to routing server, encodes reply, sends to requesting process. Crashes on decode or routing failures - exposes protocol/DHT bugs.

 handle_store(Stream, StoreMsg)

 Handle DHT STORE message. Forwards to routing server (no reply sent back). Crashes on routing server failures - this exposes DHT issues immediately.

 lookup_value(Key)

 Look up a value from the DHT by key. Synchronous lookup from local DHT storage. Returns list of subscribers for the given key.

 Functions

 handle_find_node(Stream, FindNodeMsg)

 -spec handle_find_node(pid(), map()) -> ok.

Handle DHT FIND_NODE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_find_value(Stream, FindValueMsg)

 -spec handle_find_value(pid(), map()) -> ok.

Handle DHT FIND_VALUE message. Forwards to routing server and sends encoded reply over stream. Crashes on routing server or encoding failures - exposes DHT/protocol bugs.

 handle_query(FromPid, QueryType, QueryData)

 -spec handle_query(pid(), atom(), binary()) -> ok.

Handle DHT query from process message. Decodes query, forwards to routing server, encodes reply, sends to requesting process. Crashes on decode or routing failures - exposes protocol/DHT bugs.

 handle_store(Stream, StoreMsg)

 -spec handle_store(pid(), map()) -> ok.

Handle DHT STORE message. Forwards to routing server (no reply sent back). Crashes on routing server failures - this exposes DHT issues immediately.

 lookup_value(Key)

 -spec lookup_value(binary()) -> {ok, list()} | {error, not_found}.

Look up a value from the DHT by key. Synchronous lookup from local DHT storage. Returns list of subscribers for the given key.

macula_gateway_diagnostics

Macula Gateway Diagnostics Service
Provides simple diagnostic procedures that clients can call to verify connectivity and test the gateway's RPC functionality.
Available procedures: - com.macula.diagnostics.hello - Returns a friendly greeting with gateway info - com.macula.diagnostics.echo - Echoes back the arguments sent by client - com.macula.diagnostics.info - Returns detailed gateway information
Usage: The diagnostics service automatically registers when the gateway starts. Clients can call these procedures using the Macula SDK:
Elixir: {:ok, result} = MaculaSdk.Client.call(client, "com.macula.diagnostics.hello", %{})
Result: %{ "message" => "Hello from Macula Gateway!", "gateway" => "macula@127.0.0.1", "realm" => "com.example.realm", "uptime_seconds" => 42, "timestamp" => 1699612800 }

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 register_procedures(GatewayPid)

 Register diagnostic procedures with the gateway

 start_link(Opts)

 Start the diagnostics service

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 register_procedures(GatewayPid)

 -spec register_procedures(pid()) -> ok.

Register diagnostic procedures with the gateway

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the diagnostics service

 terminate(Reason, State)

macula_gateway_health

Macula Gateway Health Check Server
Provides HTTP health endpoints for Kubernetes liveness and readiness probes. Runs on a separate port (8080) from the main QUIC gateway (9443).
Endpoints: GET /health - Overall health status GET /ready - Readiness check (can accept traffic) GET /live - Liveness check (process is alive) GET /metrics - Basic metrics (optional)

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 is_healthy()

 Check if the gateway is healthy.

 set_ready(Ready)

 Set the readiness state.

 start_link(Opts)

 Start the health check server.

 stop()

 Stop the health check server.

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Request, State)

 handle_info(Info, State)

 init(Opts)

 is_healthy()

 -spec is_healthy() -> boolean().

Check if the gateway is healthy.

 set_ready(Ready)

 -spec set_ready(boolean()) -> ok.

Set the readiness state.

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the health check server.

 stop()

 -spec stop() -> ok.

Stop the health check server.

 terminate(Reason, State)

macula_gateway_mesh

Mesh Connection Manager GenServer - manages peer-to-peer QUIC connections.
Responsibilities: - Pool QUIC connections to remote peers by node_id (BOUNDED POOL) - Enforce max_connections limit with LRU eviction - Check connection liveness before reuse - Open new streams on pooled connections - Monitor connection processes for automatic cleanup - Cache connection metadata with timestamps
Pattern: Bounded connection pooling with LRU eviction - Cache connections by node_id (max: max_mesh_connections, default 1000) - Evict least recently used when pool is full - Verify liveness before reuse (open new stream) - Remove dead connections and recreate on demand
Configuration: - max_mesh_connections: Maximum pooled connections (default: 1000)
Extracted from macula_gateway.erl (Phase 9)

 Summary

 Types

 connection_info/0

 Functions

 get_connection_info(Pid, NodeId)

 Get connection metadata for a node.

 get_or_create_connection(Pid, NodeId, Address)

 Get existing connection or create new one. Returns opened stream ready for use.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 list_connections(Pid)

 List all cached connections.

 remove_connection(Pid, NodeId)

 Explicitly remove connection from cache.

 start_link(Opts)

 Start the mesh connection manager with options. Options: - cert_file: Path to TLS certificate - key_file: Path to TLS private key

 stop(Pid)

 Stop the mesh connection manager.

 terminate(Reason, State)

 Types

 connection_info/0

 -type connection_info() ::
 #{connection => pid() | reference() | undefined,
 address => {inet:ip_address(), inet:port_number()},
 last_used => integer()}.

 Functions

 get_connection_info(Pid, NodeId)

 -spec get_connection_info(pid(), binary()) -> {ok, connection_info()} | not_found.

Get connection metadata for a node.

 get_or_create_connection(Pid, NodeId, Address)

 -spec get_or_create_connection(pid(), binary(), {inet:ip_address(), inet:port_number()}) ->
 {ok, pid()} | {error, term()}.

Get existing connection or create new one. Returns opened stream ready for use.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 list_connections(Pid)

 -spec list_connections(pid()) -> {ok, [{binary(), connection_info()}]}.

List all cached connections.

 remove_connection(Pid, NodeId)

 -spec remove_connection(pid(), binary()) -> ok.

Explicitly remove connection from cache.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the mesh connection manager with options. Options: - cert_file: Path to TLS certificate - key_file: Path to TLS private key

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the mesh connection manager.

 terminate(Reason, State)

macula_gateway_pubsub

Pub/Sub Handler GenServer - manages topic subscriptions and message routing.
Responsibilities: - Subscribe/unsubscribe streams to topics - Route published messages to matching subscribers - Support wildcard topics (* single-level, ** multi-level) - Track bidirectional mapping (topic ↔ stream) - Monitor stream processes for automatic cleanup
Extracted from macula_gateway.erl (Phase 3)

 Summary

 Functions

 get_stream_topics(Pid, Stream)

 Get all topics a stream is subscribed to.

 get_subscribers(Pid, Topic)

 Get all subscribers for a topic (exact and wildcard matches).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle stream process death - automatic cleanup.

 init(Opts)

 publish(Pid, Topic, Payload)

 Publish a message to a topic (routes to matching subscribers).

 start_link(Opts)

 Start the pub/sub handler with options.

 stop(Pid)

 Stop the pub/sub handler.

 subscribe(Pid, Stream, Topic)

 Subscribe a stream to a topic (supports wildcards).

 terminate(Reason, State)

 unsubscribe(Pid, Stream, Topic)

 Unsubscribe a stream from a topic.

 Functions

 get_stream_topics(Pid, Stream)

 -spec get_stream_topics(pid(), pid()) -> {ok, [binary()]}.

Get all topics a stream is subscribed to.

 get_subscribers(Pid, Topic)

 -spec get_subscribers(pid(), binary()) -> {ok, [pid()]}.

Get all subscribers for a topic (exact and wildcard matches).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle stream process death - automatic cleanup.

 init(Opts)

 publish(Pid, Topic, Payload)

 -spec publish(pid(), binary(), map()) -> ok.

Publish a message to a topic (routes to matching subscribers).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the pub/sub handler with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the pub/sub handler.

 subscribe(Pid, Stream, Topic)

 -spec subscribe(pid(), pid(), binary()) -> ok.

Subscribe a stream to a topic (supports wildcards).

 terminate(Reason, State)

 unsubscribe(Pid, Stream, Topic)

 -spec unsubscribe(pid(), pid(), binary()) -> ok.

Unsubscribe a stream from a topic.

macula_gateway_pubsub_router

Macula Gateway Pub/Sub Router - DHT-Routed Message Distribution
Handles distribution of pub/sub messages to both local and remote subscribers using multi-hop Kademlia DHT routing (v0.7.8+).
Responsibilities: - Deliver messages to local subscribers via QUIC streams - Query DHT for remote subscribers - Route messages via DHT multi-hop (pubsub_route protocol) - Wrap PUBLISH messages in pubsub_route envelopes
Extracted from macula_gateway.erl (v0.7.9) for better separation of concerns.

 Summary

 Functions

 distribute(LocalSubscribers, PubMsg, LocalNodeId, Mesh, Clients)

 Distribute pub/sub message to both local and remote subscribers. Uses DHT routing for remote subscribers (multi-hop Kademlia). For connected clients, uses existing bidirectional streams instead of mesh connections.

 Functions

 distribute(LocalSubscribers, PubMsg, LocalNodeId, Mesh, Clients)

 -spec distribute(LocalSubscribers :: [quicer:stream_handle()],
 PubMsg :: map(),
 LocalNodeId :: binary(),
 Mesh :: pid(),
 Clients :: pid()) ->
 ok.

Distribute pub/sub message to both local and remote subscribers. Uses DHT routing for remote subscribers (multi-hop Kademlia). For connected clients, uses existing bidirectional streams instead of mesh connections.

macula_gateway_quic_server

QUIC Transport Layer Gen_Server
Handles all QUIC transport operations for the gateway: - Owns QUIC listener - Receives {quic, ...} events - Decodes protocol messages - Routes messages to gateway for business logic
This separation follows proper OTP design: - One process, one responsibility (transport vs routing) - Clean fault isolation (QUIC crashes don't crash gateway) - Proper supervision (supervisor can restart independently) - Testability (can test transport in isolation)

 Summary

 Functions

 handle_call(Request, From, State)

 Handle synchronous calls. Set gateway PID for message routing

 handle_cast(Msg, State)

 Handle asynchronous casts.

 handle_info(Info, State)

 Handle QUIC event: new_stream (stream created by peer).

 init(Opts)

 Initialize the QUIC server and start QUIC listener.

 set_gateway(QuicServerPid, GatewayPid)

 Set the gateway PID for message routing. Called by supervisor after both quic_server and gateway have started.

 start_link(Opts)

 Start the QUIC server gen_server.

 terminate(Reason, State)

 Cleanup on termination.

 Functions

 handle_call(Request, From, State)

Handle synchronous calls. Set gateway PID for message routing

 handle_cast(Msg, State)

Handle asynchronous casts.

 handle_info(Info, State)

Handle QUIC event: new_stream (stream created by peer).

 init(Opts)

Initialize the QUIC server and start QUIC listener.

 set_gateway(QuicServerPid, GatewayPid)

 -spec set_gateway(pid(), pid()) -> ok.

Set the gateway PID for message routing. Called by supervisor after both quic_server and gateway have started.

 start_link(Opts)

 -spec start_link(Opts :: proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the QUIC server gen_server.

 terminate(Reason, State)

Cleanup on termination.

macula_gateway_rpc

RPC Handler GenServer - manages RPC handler registration and call routing.
Responsibilities: - Register/unregister RPC handlers for procedures - Route RPC calls to registered handlers - Handle call/response matching - Monitor handler processes for automatic cleanup
Extracted from macula_gateway.erl (Phase 4)

 Summary

 Functions

 call(Pid, Procedure, Args, Opts)

 Make an RPC call to a procedure.

 get_handler(Pid, Procedure)

 Get the handler for a procedure.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle handler process death - automatic cleanup.

 init(Opts)

 list_handlers(Pid)

 List all registered handlers.

 register_handler(Pid, Procedure, Handler)

 Register a handler for an RPC procedure.

 start_link(Opts)

 Start the RPC handler with options.

 stop(Pid)

 Stop the RPC handler.

 terminate(Reason, State)

 unregister_handler(Pid, Procedure)

 Unregister a handler for an RPC procedure.

 Functions

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary(), map(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call to a procedure.

 get_handler(Pid, Procedure)

 -spec get_handler(pid(), binary()) -> {ok, pid()} | not_found.

Get the handler for a procedure.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle handler process death - automatic cleanup.

 init(Opts)

 list_handlers(Pid)

 -spec list_handlers(pid()) -> {ok, [{binary(), pid()}]}.

List all registered handlers.

 register_handler(Pid, Procedure, Handler)

 -spec register_handler(pid(), binary(), pid()) -> ok.

Register a handler for an RPC procedure.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the RPC handler with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the RPC handler.

 terminate(Reason, State)

 unregister_handler(Pid, Procedure)

 -spec unregister_handler(pid(), binary()) -> ok.

Unregister a handler for an RPC procedure.

macula_gateway_rpc_router

RPC Router Module - handles routed RPC messages (CALL/REPLY).
Responsibilities: - Process routed CALL messages delivered locally - Process routed REPLY messages delivered locally - Send REPLY back via routing path - Forward rpc_route messages to next hop - Coordinate between RPC handler, mesh, and routing modules
Pattern: Stateless delegation module - No GenServer (no state to manage) - Pure functions coordinating between modules - Consistent error handling ({ok, Result} | {error, Reason})
Extracted from macula_gateway.erl (Phase 11)

 Summary

 Functions

 forward_rpc_route(NextHopNodeInfo, RpcRouteMsg, MeshPid)

 Forward rpc_route message to next hop. Gets mesh connection and sends encoded message. Crashes on connection/encoding failures - exposes mesh/protocol issues.

 handle_routed_call(CallMsg, RpcRouteMsg, NodeId, RpcPid, MeshPid)

 Handle routed CALL message delivered locally. Looks up RPC handler, invokes it, sends reply via routing path.

 handle_routed_reply(ReplyMsg, RpcRouteMsg, NodeId, ClientStreams)

 Handle routed REPLY message delivered locally. Routes to connection via gproc (local node) or to client stream (remote client).

 send_reply_via_routing(ReplyMsg, DestNodeId, NodeId, MeshPid)

 Send REPLY back via routing path. Wraps reply in rpc_route envelope and routes to destination. Crashes on routing failures - exposes mesh/routing issues immediately.

 Functions

 forward_rpc_route(NextHopNodeInfo, RpcRouteMsg, MeshPid)

 -spec forward_rpc_route(map(), map(), pid()) -> ok.

Forward rpc_route message to next hop. Gets mesh connection and sends encoded message. Crashes on connection/encoding failures - exposes mesh/protocol issues.

 handle_routed_call(CallMsg, RpcRouteMsg, NodeId, RpcPid, MeshPid)

 -spec handle_routed_call(map(), map(), binary(), pid(), pid()) -> ok | {error, term()}.

Handle routed CALL message delivered locally. Looks up RPC handler, invokes it, sends reply via routing path.

 handle_routed_reply(ReplyMsg, RpcRouteMsg, NodeId, ClientStreams)

 -spec handle_routed_reply(map(), map(), binary(), map()) -> ok | {error, term()}.

Handle routed REPLY message delivered locally. Routes to connection via gproc (local node) or to client stream (remote client).

 send_reply_via_routing(ReplyMsg, DestNodeId, NodeId, MeshPid)

 -spec send_reply_via_routing(map(), binary(), binary(), pid()) -> ok.

Send REPLY back via routing path. Wraps reply in rpc_route envelope and routes to destination. Crashes on routing failures - exposes mesh/routing issues immediately.

macula_gateway_system

Gateway Root Supervisor - top-level supervisor for gateway subsystem.
Supervision Strategy: - rest_for_one: Dependency-based restart ordering - Child order reflects dependencies: 1. quic_server (owns QUIC listener, no dependencies) 2. gateway (depends on quic_server PID) 3. workers_sup (depends on gateway PID)
Fault Isolation: - quic_server crash → restart quic_server, gateway, workers_sup - gateway crash → restart gateway, workers_sup (quic_server continues) - workers_sup crash → restart workers_sup only (quic_server and gateway continue)
Architecture:
 macula_gateway_system (this module)
 ├── macula_gateway_health - Health check HTTP server
 ├── macula_gateway_diagnostics - Diagnostics service
 ├── macula_gateway_quic_server - QUIC transport layer
 ├── macula_gateway - Message routing coordinator
 └── macula_gateway_workers_sup - Business logic workers
 ├── macula_gateway_clients - Client tracking
 ├── macula_gateway_pubsub - Pub/Sub routing
 ├── macula_gateway_rpc - RPC handling
 └── macula_gateway_mesh - Mesh connections

Circular Dependency Resolution: - quic_server starts first (without gateway PID) - gateway starts second (receives quic_server PID) - Supervisor calls quic_server:set_gateway/1 to complete link - workers_sup starts last (receives gateway PID)
Created during Phase 2 QUIC refactoring to enable proper OTP supervision.

 Summary

 Functions

 init(Opts)

 start_link(Opts)

 Start the root gateway supervisor with configuration.

 Functions

 init(Opts)

 start_link(Opts)

 -spec start_link(proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the root gateway supervisor with configuration.

macula_gateway_workers_sup

Gateway Workers Supervisor - supervises gateway worker processes.
Supervision Strategy: - rest_for_one: If child N crashes, restart N and all children after N - Rationale: Only clients is foundational; pubsub/rpc/mesh depend on it but are independent of each other. This strategy provides fault isolation while maintaining consistency when clients restarts.
Children (in dependency order): - macula_gateway_clients: Client tracking (foundational) - macula_gateway_pubsub: Pub/Sub message routing (depends on clients) - macula_gateway_rpc: RPC handler registration and routing (depends on clients) - macula_gateway_mesh: Mesh connection pooling and management (independent)
Fault Isolation Examples: - mesh crash → only mesh restarts (0 clients disconnected) - rpc crash → rpc + mesh restart (0 clients disconnected) - pubsub crash → pubsub + rpc + mesh restart (0 clients disconnected) - clients crash → all restart (unavoidable - foundational)
Extracted from macula_gateway.erl (Phase 6, 9) Renamed from macula_gateway_sup (Phase 2 QUIC refactoring)

 Summary

 Functions

 get_clients(SupPid)

 Get the clients worker child PID.

 get_mesh(SupPid)

 Get the mesh connection manager child PID.

 get_pubsub(SupPid)

 Get the pubsub handler child PID.

 get_rpc(SupPid)

 Get the RPC handler child PID.

 init(Config)

 start_link(Config)

 Start the gateway supervisor with configuration.

 Functions

 get_clients(SupPid)

 -spec get_clients(pid()) -> {ok, pid()} | {error, not_found}.

Get the clients worker child PID.

 get_mesh(SupPid)

 -spec get_mesh(pid()) -> {ok, pid()} | {error, not_found}.

Get the mesh connection manager child PID.

 get_pubsub(SupPid)

 -spec get_pubsub(pid()) -> {ok, pid()} | {error, not_found}.

Get the pubsub handler child PID.

 get_rpc(SupPid)

 -spec get_rpc(pid()) -> {ok, pid()} | {error, not_found}.

Get the RPC handler child PID.

 init(Config)

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start the gateway supervisor with configuration.

macula_id

ID generation utilities for Macula. Provides functions for generating various types of IDs.

 Summary

 Functions

 from_hex(Hex)

 Convert hex string to binary. Crashes on invalid hex - exposes bugs in validation logic.

 from_uuid(Uuid)

 Convert UUID string to 16-byte binary ID. Crashes on invalid UUID format - exposes bugs in validation logic.

 hash_id(Data)

 Generate deterministic 256-bit hash ID from data.

 message_id()

 Generate 128-bit (16-byte) random message ID.

 node_id()

 Generate 256-bit (32-byte) random node ID.

 session_id()

 Generate 128-bit (16-byte) random session ID.

 to_hex(Binary)

 Convert binary to lowercase hex string.

 to_uuid(_)

 Convert 16-byte or 32-byte binary ID to UUID string format. For 16-byte: 8-4-4-4-12 (e.g., "12345678-90ab-cdef-1234-567890abcdef") For 32-byte: Uses first 16 bytes

 Functions

 from_hex(Hex)

 -spec from_hex(binary()) -> binary().

Convert hex string to binary. Crashes on invalid hex - exposes bugs in validation logic.

 from_uuid(Uuid)

 -spec from_uuid(binary()) -> binary().

Convert UUID string to 16-byte binary ID. Crashes on invalid UUID format - exposes bugs in validation logic.

 hash_id(Data)

 -spec hash_id(binary()) -> binary().

Generate deterministic 256-bit hash ID from data.

 message_id()

 -spec message_id() -> binary().

Generate 128-bit (16-byte) random message ID.

 node_id()

 -spec node_id() -> binary().

Generate 256-bit (32-byte) random node ID.

 session_id()

 -spec session_id() -> binary().

Generate 128-bit (16-byte) random session ID.

 to_hex(Binary)

 -spec to_hex(binary()) -> binary().

Convert binary to lowercase hex string.

 to_uuid(_)

 -spec to_uuid(binary()) -> binary().

Convert 16-byte or 32-byte binary ID to UUID string format. For 16-byte: 8-4-4-4-12 (e.g., "12345678-90ab-cdef-1234-567890abcdef") For 32-byte: Uses first 16 bytes

macula_membership_detector

SWIM failure detector (pure logic, no GenServer). Orchestrates member list, gossip, and protocol timing.

 Summary

 Types

 detector_state/0

 Functions

 add_member(State, Member)

 Add a member to the list.

 apply_gossip_updates(State, Updates)

 Apply received gossip updates.

 get_alive_members(_)

 Get all alive members.

 get_gossip_updates(_, MaxUpdates)

 Get gossip updates to piggyback on messages.

 get_member(_, NodeId)

 Get a member by node ID.

 local_node_id(_)

 Get local node ID.

 mark_dead(State, NodeId)

 Mark a member as dead.

 mark_suspect(State, NodeId)

 Mark a member as suspect.

 new(LocalMember, Config)

 Create a new detector state.

 protocol_period(_)

 Get protocol period.

 refute_suspicion(State)

 Refute suspicion (increment local incarnation).

 select_probe_target(State)

 Select a random member to probe (excluding self).

 Types

 detector_state/0

 -type detector_state() ::
 #{local_node_id := binary(),
 protocol_period := pos_integer(),
 indirect_count := pos_integer(),
 suspect_timeout := pos_integer(),
 member_list := macula_membership_list:member_list(),
 gossip := macula_membership_gossip:gossip_state()}.

 Functions

 add_member(State, Member)

 -spec add_member(detector_state(), macula_membership_member:member()) -> detector_state().

Add a member to the list.

 apply_gossip_updates(State, Updates)

 -spec apply_gossip_updates(detector_state(),
 [{binary(), macula_membership_member:status(), non_neg_integer()}]) ->
 detector_state().

Apply received gossip updates.

 get_alive_members(_)

 -spec get_alive_members(detector_state()) -> [macula_membership_member:member()].

Get all alive members.

 get_gossip_updates(_, MaxUpdates)

 -spec get_gossip_updates(detector_state(), pos_integer()) -> [macula_membership_gossip:update()].

Get gossip updates to piggyback on messages.

 get_member(_, NodeId)

 -spec get_member(detector_state(), binary()) -> {ok, macula_membership_member:member()} | not_found.

Get a member by node ID.

 local_node_id(_)

 -spec local_node_id(detector_state()) -> binary().

Get local node ID.

 mark_dead(State, NodeId)

 -spec mark_dead(detector_state(), binary()) -> detector_state().

Mark a member as dead.

 mark_suspect(State, NodeId)

 -spec mark_suspect(detector_state(), binary()) -> detector_state().

Mark a member as suspect.

 new(LocalMember, Config)

 -spec new(macula_membership_member:member(), map()) -> detector_state().

Create a new detector state.

 protocol_period(_)

 -spec protocol_period(detector_state()) -> pos_integer().

Get protocol period.

 refute_suspicion(State)

 -spec refute_suspicion(detector_state()) -> detector_state().

Refute suspicion (increment local incarnation).

 select_probe_target(State)

 -spec select_probe_target(detector_state()) ->
 {ok, macula_membership_member:member(), detector_state()} | none.

Select a random member to probe (excluding self).

macula_membership_gossip

Gossip dissemination for SWIM protocol. Tracks membership updates and provides them for piggybacking. Uses exponential decay: log(N) messages per update.

 Summary

 Types

 gossip_state/0

 update/0

 Functions

 add_update(State, NodeId, Status, Incarnation)

 Add a membership update to gossip. If a more recent update exists, it's replaced.

 get_updates(_, MaxUpdates)

 Get updates to piggyback on messages. Returns most recent updates first, limited by max_updates.

 mark_transmitted(State, NodeId)

 Mark an update as transmitted (increment transmit count).

 merge_updates(State, ReceivedUpdates)

 Merge received gossip updates into local state. Uses SWIM merge semantics (higher incarnation wins, etc.).

 new()

 Create a new gossip state.

 prune(State, TargetTransmitCount)

 Prune updates that have been transmitted enough times. Target is typically log(N) where N is cluster size.

 Types

 gossip_state/0

 -type gossip_state() ::
 #{updates =>
 #{binary() =>
 {macula_membership_member:status(),
 non_neg_integer(),
 non_neg_integer(),
 integer()}}}.

 update/0

 -type update() :: {binary(), macula_membership_member:status(), non_neg_integer(), non_neg_integer()}.

 Functions

 add_update(State, NodeId, Status, Incarnation)

 -spec add_update(gossip_state(), binary(), macula_membership_member:status(), non_neg_integer()) ->
 gossip_state().

Add a membership update to gossip. If a more recent update exists, it's replaced.

 get_updates(_, MaxUpdates)

 -spec get_updates(gossip_state(), pos_integer()) -> [update()].

Get updates to piggyback on messages. Returns most recent updates first, limited by max_updates.

 mark_transmitted(State, NodeId)

 -spec mark_transmitted(gossip_state(), binary()) -> gossip_state().

Mark an update as transmitted (increment transmit count).

 merge_updates(State, ReceivedUpdates)

 -spec merge_updates(gossip_state(), [{binary(), macula_membership_member:status(), non_neg_integer()}]) ->
 gossip_state().

Merge received gossip updates into local state. Uses SWIM merge semantics (higher incarnation wins, etc.).

 new()

 -spec new() -> gossip_state().

Create a new gossip state.

 prune(State, TargetTransmitCount)

 -spec prune(gossip_state(), non_neg_integer()) -> gossip_state().

Prune updates that have been transmitted enough times. Target is typically log(N) where N is cluster size.

macula_membership_list

Membership list for SWIM protocol. Maintains cluster membership view with fast concurrent access. Uses map-based storage (could be ETS in production).

 Summary

 Types

 member_list/0

 Functions

 add_member(List, Member)

 Add a new member to the list. If member already exists, this is a no-op (use update_member instead).

 get_alive_members(_)

 Get all alive members.

 get_all_members(_)

 Get all members.

 get_member(_, NodeId)

 Get a member by node ID.

 get_random_members(List, N)

 Get N random members from the list.

 get_random_members(_, N, ExcludeNodeId)

 Get N random members excluding specified node ID.

 get_suspect_members(_)

 Get all suspect members.

 new(LocalMember)

 Create a new membership list with the local node.

 remove_member(List, NodeId)

 Remove a member from the list.

 size(_)

 Get the number of members in the list.

 update_member(List, NewMember)

 Update an existing member (or add if not present). Uses merge semantics to resolve conflicts.

 Types

 member_list/0

 -type member_list() :: #{members := #{binary() => macula_membership_member:member()}}.

 Functions

 add_member(List, Member)

 -spec add_member(member_list(), macula_membership_member:member()) -> member_list().

Add a new member to the list. If member already exists, this is a no-op (use update_member instead).

 get_alive_members(_)

 -spec get_alive_members(member_list()) -> [macula_membership_member:member()].

Get all alive members.

 get_all_members(_)

 -spec get_all_members(member_list()) -> [macula_membership_member:member()].

Get all members.

 get_member(_, NodeId)

 -spec get_member(member_list(), binary()) -> {ok, macula_membership_member:member()} | not_found.

Get a member by node ID.

 get_random_members(List, N)

 -spec get_random_members(member_list(), pos_integer()) -> [macula_membership_member:member()].

Get N random members from the list.

 get_random_members(_, N, ExcludeNodeId)

 -spec get_random_members(member_list(), pos_integer(), binary() | undefined) ->
 [macula_membership_member:member()].

Get N random members excluding specified node ID.

 get_suspect_members(_)

 -spec get_suspect_members(member_list()) -> [macula_membership_member:member()].

Get all suspect members.

 new(LocalMember)

 -spec new(macula_membership_member:member()) -> member_list().

Create a new membership list with the local node.

 remove_member(List, NodeId)

 -spec remove_member(member_list(), binary()) -> member_list().

Remove a member from the list.

 size(_)

 -spec size(member_list()) -> non_neg_integer().

Get the number of members in the list.

 update_member(List, NewMember)

 -spec update_member(member_list(), macula_membership_member:member()) -> member_list().

Update an existing member (or add if not present). Uses merge semantics to resolve conflicts.

macula_membership_member

Member record and state transitions for SWIM protocol. Represents a single node in the membership list.

 Summary

 Types

 member/0

 status/0

 Functions

 address(_)

 Get address.

 compare(_, _)

 Compare two members to determine which is more recent. Returns: gt (M1 is newer), lt (M1 is older), eq (same)

 incarnation(_)

 Get incarnation number.

 mark_alive(Member, NewIncarnation)

 Mark member as alive with new incarnation (refutation). Dead members cannot be revived.

 mark_dead(Member)

 Mark member as dead (confirmed failure).

 mark_suspect(Member)

 Mark member as suspect (failed to respond to ping).

 merge(M1, M2)

 Merge two member states, keeping the most recent information. Rules: 1. Dead always wins 2. Higher incarnation wins 3. Same incarnation: suspect > alive

 metadata(_)

 Get metadata.

 new(NodeId, Address)

 Create a new member with alive status and incarnation 0.

 new(NodeId, Address, Metadata)

 Create a new member with custom metadata.

 node_id(_)

 Get node ID.

 status(_)

 Get status.

 Types

 member/0

 -type member() ::
 #{node_id := binary(),
 address := {inet:ip_address(), inet:port_number()},
 status := status(),
 incarnation := non_neg_integer(),
 metadata := map()}.

 status/0

 -type status() :: alive | suspect | dead.

 Functions

 address(_)

 -spec address(member()) -> {inet:ip_address(), inet:port_number()}.

Get address.

 compare(_, _)

 -spec compare(member(), member()) -> gt | lt | eq.

Compare two members to determine which is more recent. Returns: gt (M1 is newer), lt (M1 is older), eq (same)

 incarnation(_)

 -spec incarnation(member()) -> non_neg_integer().

Get incarnation number.

 mark_alive(Member, NewIncarnation)

 -spec mark_alive(member(), non_neg_integer()) -> member().

Mark member as alive with new incarnation (refutation). Dead members cannot be revived.

 mark_dead(Member)

 -spec mark_dead(member()) -> member().

Mark member as dead (confirmed failure).

 mark_suspect(Member)

 -spec mark_suspect(member()) -> member().

Mark member as suspect (failed to respond to ping).

 merge(M1, M2)

 -spec merge(member(), member()) -> member().

Merge two member states, keeping the most recent information. Rules: 1. Dead always wins 2. Higher incarnation wins 3. Same incarnation: suspect > alive

 metadata(_)

 -spec metadata(member()) -> map().

Get metadata.

 new(NodeId, Address)

 -spec new(binary(), {inet:ip_address(), inet:port_number()}) -> member().

Create a new member with alive status and incarnation 0.

 new(NodeId, Address, Metadata)

 -spec new(binary(), {inet:ip_address(), inet:port_number()}, map()) -> member().

Create a new member with custom metadata.

 node_id(_)

 -spec node_id(member()) -> binary().

Get node ID.

 status(_)

 -spec status(member()) -> status().

Get status.

macula_names

Shared naming utilities for hierarchical dot-separated names. Used by both pub/sub topics and RPC procedure names. Supports DNS-style reverse notation: org.domain.service.method

 Summary

 Types

 name/0

 options/0

 Functions

 namespace(Name)

 Extract namespace (first segment).

 normalize(Name)

 Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 Count number of segments in name.

 validate(Name)

 Validate name syntax with default options (no wildcards).

 validate(Name, Opts)

 Validate name syntax with options. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - Optionally allow wildcards (* and #) for patterns - No leading or trailing dots - No double dots

 Types

 name/0

 -type name() :: binary().

 options/0

 -type options() :: #{allow_wildcards => boolean()}.

 Functions

 namespace(Name)

 -spec namespace(name()) -> binary().

Extract namespace (first segment).

 normalize(Name)

 -spec normalize(name()) -> name().

Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 -spec segment_count(name()) -> non_neg_integer().

Count number of segments in name.

 validate(Name)

 -spec validate(name()) -> ok | {error, invalid_name}.

Validate name syntax with default options (no wildcards).

 validate(Name, Opts)

 -spec validate(name(), options()) -> ok | {error, invalid_name}.

Validate name syntax with options. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - Optionally allow wildcards (* and #) for patterns - No leading or trailing dots - No double dots

macula_node

Node identity and metadata management. Represents a single node in the Macula mesh.

 Summary

 Types

 address/0

 macula_node/0

 metadata/0

 node_id/0

 32-byte unique identifier

 realm/0

 Functions

 equals(Node1, Node2)

 Check if two nodes are equal (by ID).

 from_binary(Binary)

 Decode node from binary. Crashes on invalid binary or structure - exposes bugs in encoding/decoding logic.

 get_address(Node)

 Get address.

 get_id(_)

 Get node ID.

 get_metadata(Node)

 Get metadata.

 get_realm(_)

 Get realm.

 new(Realm)

 Create new node with random ID.

 new(Realm, Metadata)

 Create new node with random ID and metadata.

 set_address(Node, Address)

 Set address.

 set_metadata(Node, Metadata)

 Set metadata (replaces existing).

 to_binary(Node)

 Encode node to binary.

 update_metadata(Node, NewMetadata)

 Update metadata (merges with existing).

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 macula_node/0

 -type macula_node() ::
 #{node_id := node_id(), realm := realm(), metadata => metadata(), address => address()}.

 metadata/0

 -type metadata() :: map().

 node_id/0

 -type node_id() :: binary().

32-byte unique identifier

 realm/0

 -type realm() :: binary().

 Functions

 equals(Node1, Node2)

 -spec equals(macula_node(), macula_node()) -> boolean().

Check if two nodes are equal (by ID).

 from_binary(Binary)

 -spec from_binary(binary()) -> macula_node().

Decode node from binary. Crashes on invalid binary or structure - exposes bugs in encoding/decoding logic.

 get_address(Node)

 -spec get_address(macula_node()) -> address() | undefined.

Get address.

 get_id(_)

 -spec get_id(macula_node()) -> node_id().

Get node ID.

 get_metadata(Node)

 -spec get_metadata(macula_node()) -> metadata().

Get metadata.

 get_realm(_)

 -spec get_realm(macula_node()) -> realm().

Get realm.

 new(Realm)

 -spec new(realm()) -> macula_node().

Create new node with random ID.

 new(Realm, Metadata)

 -spec new(realm(), metadata()) -> macula_node().

Create new node with random ID and metadata.

 set_address(Node, Address)

 -spec set_address(macula_node(), address()) -> macula_node().

Set address.

 set_metadata(Node, Metadata)

 -spec set_metadata(macula_node(), metadata()) -> macula_node().

Set metadata (replaces existing).

 to_binary(Node)

 -spec to_binary(macula_node()) -> binary().

Encode node to binary.

 update_metadata(Node, NewMetadata)

 -spec update_metadata(macula_node(), metadata()) -> macula_node().

Update metadata (merges with existing).

macula_peer

Macula Peer - Mesh Participant API (v0.7.0+).
This module provides the high-level API for mesh participants. It acts as a facade/coordinator, delegating to specialized child processes: - macula_connection: QUIC transport layer (send/receive, encoding/decoding) - macula_pubsub_handler: Pub/sub message routing - macula_rpc_handler: RPC call/response handling - macula_advertisement_manager: DHT service advertisements
Renamed from macula_connection in v0.7.0 for clarity: - macula_peer = mesh participant (this module) - macula_connection = QUIC transport (low-level)

 Summary

 Functions

 advertise(Client, Procedure, Handler, Opts)

 Advertise a service handler for a procedure.

 call(Client, Procedure, Args)

 Make an RPC call through this client (default timeout).

 call(Client, Procedure, Args, Opts)

 Make an RPC call through this client with options.

 discover_subscribers(Client, Topic)

 Discover subscribers to a topic via DHT query.

 get_node_id(Client)

 Get the node ID of this peer.

 publish(Client, Topic, Data)

 Publish an event through this client (no options).

 publish(Client, Topic, Data, Opts)

 Publish an event through this client with options.

 start_link(Url, Opts)

 Start a client connection to a Macula mesh.

 stop(Client)

 Stop the client connection.

 subscribe(Client, Topic, Callback)

 Subscribe to a topic through this client.

 unadvertise(Client, Procedure)

 Stop advertising a service.

 unsubscribe(Client, SubRef)

 Unsubscribe from a topic.

 Functions

 advertise(Client, Procedure, Handler, Opts)

 -spec advertise(pid(), binary(), fun((map()) -> {ok, term()} | {error, term()}), map()) ->
 ok | {error, term()}.

Advertise a service handler for a procedure.
This makes the local handler available to other mesh nodes via DHT. The handler will be periodically re-advertised based on TTL.

 call(Client, Procedure, Args)

 -spec call(pid(), binary(), map() | list()) -> {ok, term()} | {error, term()}.

Make an RPC call through this client (default timeout).

 call(Client, Procedure, Args, Opts)

 -spec call(pid(), binary(), map() | list(), map()) -> {ok, term()} | {error, term()}.

Make an RPC call through this client with options.

 discover_subscribers(Client, Topic)

 -spec discover_subscribers(pid(), binary()) ->
 {ok, [#{node_id := binary(), endpoint := binary()}]} | {error, term()}.

Discover subscribers to a topic via DHT query.

 get_node_id(Client)

 -spec get_node_id(pid()) -> {ok, binary()} | {error, term()}.

Get the node ID of this peer.

 publish(Client, Topic, Data)

 -spec publish(pid(), binary(), map() | binary()) -> ok | {error, term()}.

Publish an event through this client (no options).

 publish(Client, Topic, Data, Opts)

 -spec publish(pid(), binary(), map() | binary(), map()) -> ok | {error, term()}.

Publish an event through this client with options.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start a client connection to a Macula mesh.

 stop(Client)

 -spec stop(pid()) -> ok.

Stop the client connection.

 subscribe(Client, Topic, Callback)

 -spec subscribe(pid(), binary(), fun((map()) -> ok)) -> {ok, reference()} | {error, term()}.

Subscribe to a topic through this client.

 unadvertise(Client, Procedure)

 -spec unadvertise(pid(), binary()) -> ok | {error, term()}.

Stop advertising a service.
Removes the local handler and stops advertising to the DHT.

 unsubscribe(Client, SubRef)

 -spec unsubscribe(pid(), reference()) -> ok | {error, term()}.

Unsubscribe from a topic.

macula_peer_system

Peer System Supervisor - supervises the peer subsystem.
Supervision Strategy: - rest_for_one: If child N crashes, restart N and all children after N - Rationale: connection_manager is foundational; handlers depend on it but are independent of each other. This provides fault isolation while maintaining consistency when connection_manager restarts.
Architecture:
 macula_peer_system (this module)
 ├── macula_connection - QUIC connection lifecycle (transport layer)
 ├── macula_pubsub_handler - Pub/sub operations
 ├── macula_rpc_handler - RPC operations
 └── macula_advertisement_manager - DHT service advertisements

Children (in dependency order): - macula_connection: QUIC connection lifecycle (foundational) - macula_pubsub_handler: Pub/sub operations (depends on connection) - macula_rpc_handler: RPC operations (depends on connection) - macula_advertisement_manager: DHT advertisements (depends on connection)
Fault Isolation: - advertisement_manager crash → only advertisement restarts - rpc_handler crash → rpc + advertisement restart - pubsub_handler crash → pubsub + rpc + advertisement restart - connection crash → all restart (unavoidable - foundational)
Renamed from macula_connection_sup (v0.7.10) to align with macula_peer nomenclature and macula_gateway_system naming convention.

 Summary

 Functions

 init(_)

 Initialize the supervisor with child specifications.

 start_link(Url, Opts)

 Start the peer system supervisor with given URL and options.

 stop(Sup)

 Stop the peer system supervisor and all children.

 Functions

 init(_)

 -spec init({binary(), map()}) -> {ok, {supervisor:sup_flags(), [supervisor:child_spec()]}}.

Initialize the supervisor with child specifications.

 start_link(Url, Opts)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start the peer system supervisor with given URL and options.

 stop(Sup)

 -spec stop(pid()) -> ok.

Stop the peer system supervisor and all children.

macula_protocol_decoder

Protocol message decoder for Macula mesh. Decodes binary wire format to message maps.

 Summary

 Functions

 decode(Binary)

 Decode a binary message to {Type, Msg} tuple. Returns {ok, {Type, Msg}} on success or {error, Reason} on failure.

 Functions

 decode(Binary)

 -spec decode(binary()) -> {ok, {atom(), map()}} | {error, term()}.

Decode a binary message to {Type, Msg} tuple. Returns {ok, {Type, Msg}} on success or {error, Reason} on failure.

macula_protocol_encoder

Protocol message encoder for Macula mesh. Encodes message maps to binary wire format.
Frame Format (8-byte header + payload): - Version (1 byte): Protocol version (currently 0x01) - Type (1 byte): Message type ID - Flags (1 byte): Reserved for future use (0x00) - Reserved (1 byte): Must be 0x00 - Payload Length (4 bytes): Big-endian uint32 - Payload (N bytes): MessagePack-encoded message data

 Summary

 Functions

 encode(Type, Msg)

 Encode a message to binary format. Returns a binary with 8-byte header + MessagePack payload.

 Functions

 encode(Type, Msg)

 -spec encode(macula_protocol_types:message_type(), map()) -> binary().

Encode a message to binary format. Returns a binary with 8-byte header + MessagePack payload.

macula_protocol_types

Protocol message type definitions and constants for Macula mesh. Defines all message types that can be sent over QUIC streams.

 Summary

 Types

 call_msg/0

 cast_msg/0

 connect_msg/0

 disconnect_msg/0

 message/0

 message_type/0

 ping_msg/0

 pong_msg/0

 publish_msg/0

 pubsub_route_msg/0

 reply_msg/0

 rpc_route_msg/0

 subscribe_msg/0

 unsubscribe_msg/0

 Functions

 message_type_id(_)

 Get numeric ID for a message type.

 message_type_name(_)

 Get message type name from numeric ID.

 Types

 call_msg/0

 -type call_msg() ::
 #{procedure := binary(), args := binary(), call_id := binary(), timeout => integer()}.

 cast_msg/0

 -type cast_msg() :: #{procedure := binary(), args := binary()}.

 connect_msg/0

 -type connect_msg() ::
 #{version := binary(),
 node_id := binary(),
 realm_id := binary(),
 capabilities := [atom()],
 endpoint => binary()}.

 disconnect_msg/0

 -type disconnect_msg() :: #{reason := atom(), message := binary()}.

 message/0

 -type message() ::
 {connect, connect_msg()} |
 {disconnect, disconnect_msg()} |
 {ping, ping_msg()} |
 {pong, pong_msg()} |
 {publish, publish_msg()} |
 {subscribe, subscribe_msg()} |
 {unsubscribe, unsubscribe_msg()} |
 {pubsub_route, pubsub_route_msg()} |
 {call, call_msg()} |
 {reply, reply_msg()} |
 {cast, cast_msg()} |
 {rpc_route, rpc_route_msg()}.

 message_type/0

 -type message_type() ::
 connect | disconnect | ping | pong | publish | subscribe | unsubscribe | pubsub_route | call |
 reply | cast | rpc_route | swim_ping | swim_ack | swim_ping_req | find_node |
 find_node_reply | store | find_value | find_value_reply.

 ping_msg/0

 -type ping_msg() :: #{timestamp := integer()}.

 pong_msg/0

 -type pong_msg() :: #{timestamp := integer(), server_time := integer()}.

 publish_msg/0

 -type publish_msg() ::
 #{topic := binary(),
 payload := binary(),
 qos := 0 | 1 | 2,
 retain := boolean(),
 message_id := binary()}.

 pubsub_route_msg/0

 -type pubsub_route_msg() ::
 #{destination_node_id := binary(),
 source_node_id := binary(),
 hop_count := non_neg_integer(),
 max_hops := pos_integer(),
 topic := binary(),
 payload := publish_msg()}.

 reply_msg/0

 -type reply_msg() ::
 #{call_id := binary(), result => binary(), error => #{code := binary(), message := binary()}}.

 rpc_route_msg/0

 -type rpc_route_msg() ::
 #{destination_node_id := binary(),
 source_node_id := binary(),
 hop_count := non_neg_integer(),
 max_hops := pos_integer(),
 payload_type := call | reply,
 payload := call_msg() | reply_msg()}.

 subscribe_msg/0

 -type subscribe_msg() :: #{topics := [binary()], qos := 0 | 1 | 2}.

 unsubscribe_msg/0

 -type unsubscribe_msg() :: #{topics := [binary()]}.

 Functions

 message_type_id(_)

 -spec message_type_id(message_type()) -> byte().

Get numeric ID for a message type.

 message_type_name(_)

 -spec message_type_name(byte()) -> {ok, message_type()} | {error, unknown_type}.

Get message type name from numeric ID.

macula_provider_selector

Provider selection strategies for multi-provider RPC load balancing.
Supports multiple strategies for choosing which provider to use when multiple providers advertise the same service.
Strategies: - round_robin: Distribute calls evenly across providers - random: Random provider selection - first: Always use first provider (default/simple)

 Summary

 Types

 provider_info/0

 Provider information returned from DHT.

 selection_state/0

 strategy/0

 Selection strategy for choosing a provider from multiple options.

 Functions

 select_provider(Providers, State)

 Select a provider from a list using the default strategy (random).

 select_provider(Providers, Strategy, State)

 Select a provider from a list using a specific strategy.

 Types

 provider_info/0

 -type provider_info() ::
 #{node_id := binary(),
 endpoint := binary(),
 metadata := map(),
 advertised_at => integer(),
 ttl => pos_integer()}.

Provider information returned from DHT.

 selection_state/0

 -type selection_state() :: #{strategy => strategy(), counters => #{binary() => non_neg_integer()}}.

 strategy/0

 -type strategy() :: round_robin | random | first.

Selection strategy for choosing a provider from multiple options.

 Functions

 select_provider(Providers, State)

 -spec select_provider([provider_info()], selection_state()) ->
 {ok, provider_info(), selection_state()} | {error, no_providers}.

Select a provider from a list using the default strategy (random).
Returns the selected provider or error if list is empty.

 select_provider(Providers, Strategy, State)

 -spec select_provider([provider_info()], strategy(), selection_state()) ->
 {ok, provider_info(), selection_state()} | {error, no_providers}.

Select a provider from a list using a specific strategy.
Strategies: - first: Always select the first provider (simple, no state) - random: Randomly select a provider - round_robin: Distribute calls evenly using a counter
Examples:
 %% Random selection
 State = new_state(random),
 {ok, Provider, State2} = select_provider(Providers, random, State).

 %% Round-robin selection
 State = new_state(round_robin),
 {ok, P1, State2} = select_provider(Providers, round_robin, State),
 {ok, P2, State3} = select_provider(Providers, round_robin, State2),
 %% P1 and P2 will be different providers (if multiple available)

macula_pubsub_cache

LRU cache for remote subscriber lists. Caches DHT query results to avoid repeated lookups. Wraps macula_cache with subscriber-specific logic.

 Summary

 Types

 cache/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Pattern)

 Get entry from cache. Returns {ok, Subscribers, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 invalidate(Cache, Pattern)

 Invalidate (remove) entry.

 is_expired(Cache, Pattern, TTL)

 Check if entry is expired based on TTL. This checks if entry exists and its age exceeds TTL.

 max_size(Cache)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Pattern, Subscribers)

 Put entry in cache.

 put_with_timestamp(Cache, Pattern, Subscribers, Timestamp)

 Put entry with custom timestamp (for testing).

 size(Cache)

 Get number of entries.

 Types

 cache/0

 -type cache() :: macula_cache:cache().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Pattern)

 -spec get(cache(), binary()) -> {ok, [map()], cache()} | not_found.

Get entry from cache. Returns {ok, Subscribers, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU).

 invalidate(Cache, Pattern)

 -spec invalidate(cache(), binary()) -> cache().

Invalidate (remove) entry.

 is_expired(Cache, Pattern, TTL)

 -spec is_expired(cache(), binary(), pos_integer()) -> boolean().

Check if entry is expired based on TTL. This checks if entry exists and its age exceeds TTL.

 max_size(Cache)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Pattern, Subscribers)

 -spec put(cache(), binary(), [map()]) -> cache().

Put entry in cache.

 put_with_timestamp(Cache, Pattern, Subscribers, Timestamp)

 -spec put_with_timestamp(cache(), binary(), [map()], integer()) -> cache().

Put entry with custom timestamp (for testing).

 size(Cache)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_pubsub_delivery

Message routing and delivery to local and remote subscribers. Combines local registry and remote discovery for full fan-out.

 Summary

 Types

 delivery_result/0

 discovery_fun/0

 message/0

 send_fun/0

 Functions

 deliver_local(Message, Registry)

 Deliver message to all matching local subscribers. Crashes if subscriber callback fails - indicates dead subscriber process.

 deliver_remote(Message, RemoteSubscribers, SendFun)

 Deliver message to remote subscribers via QUIC.

 get_matching_patterns(Topic, Registry)

 Get all unique patterns that match the topic. Used for remote subscriber discovery.

 publish(Message, Registry, DiscoveryFun, SendFun)

 Publish message to both local and remote subscribers. Returns {LocalResults, RemoteResults}.

 Types

 delivery_result/0

 -type delivery_result() :: ok | {ok, term()} | {error, term()}.

 discovery_fun/0

 -type discovery_fun() :: fun((binary()) -> {ok, [map()]} | {error, term()}).

 message/0

 -type message() :: #{topic := binary(), payload := term(), timestamp := integer()}.

 send_fun/0

 -type send_fun() :: fun((message(), macula_pubsub_discovery:address()) -> ok | {error, term()}).

 Functions

 deliver_local(Message, Registry)

 -spec deliver_local(message(), macula_pubsub_registry:registry()) -> [delivery_result()].

Deliver message to all matching local subscribers. Crashes if subscriber callback fails - indicates dead subscriber process.

 deliver_remote(Message, RemoteSubscribers, SendFun)

 -spec deliver_remote(message(), [macula_pubsub_discovery:subscriber()], send_fun()) ->
 [delivery_result()].

Deliver message to remote subscribers via QUIC.

 get_matching_patterns(Topic, Registry)

 -spec get_matching_patterns(binary(), macula_pubsub_registry:registry()) -> [binary()].

Get all unique patterns that match the topic. Used for remote subscriber discovery.

 publish(Message, Registry, DiscoveryFun, SendFun)

 -spec publish(message(), macula_pubsub_registry:registry(), discovery_fun(), send_fun()) ->
 {[delivery_result()], [delivery_result()]}.

Publish message to both local and remote subscribers. Returns {LocalResults, RemoteResults}.

macula_pubsub_dht

DHT operations for pub/sub - handles subscription advertisement and discovery.
Responsibilities: - Advertise subscriptions in DHT with TTL - Schedule re-advertisement timers - Discover remote subscribers via DHT queries - Route messages to remote subscribers - Track pending DHT queries
Extracted from macula_pubsub_handler.erl (Phase 3)

 Summary

 Types

 advertised_subscriptions/0

 connection_manager_pid/0

 node_id/0

 payload/0

 pending_queries/0

 qos/0

 subscription_ref/0

 topic/0

 url/0

 Functions

 advertise_subscription(Topic, SubRef, NodeId, Url, ConnMgrPid)

 Advertise a subscription in the DHT. Sends STORE message to DHT and schedules re-advertisement. Returns {ok, SubInfo}.

 cancel_advertisement(Topic, AdvertisedSubscriptions)

 Cancel advertisement for a topic. Cancels the re-advertisement timer. Returns updated advertised_subscriptions map.

 discover_subscribers(Topic, Payload, Qos, ConnMgrPid, ServiceRegistry, MsgIdCounter)

 Discover remote subscribers for a topic. Checks cache first, queries DHT on cache miss. Returns {cached, Subscribers, Registry} | {query_sent, Pending, MsgId, Registry}.

 handle_discovery_response(MsgId, Subscribers, PendingQueries)

 Handle DHT discovery response. Routes messages to discovered subscribers. Returns updated pending queries map.

 route_to_subscribers(Topic, Payload, Qos, Subscribers, NodeId)

 Route message to remote subscribers via DHT routing (v0.7.8+). Wraps publish in pubsub_route envelope and sends to each subscriber node.

 Types

 advertised_subscriptions/0

 -type advertised_subscriptions() ::
 #{topic() => #{sub_ref := reference(), ttl := pos_integer(), timer_ref := reference()}}.

 connection_manager_pid/0

 -type connection_manager_pid() :: pid().

 node_id/0

 -type node_id() :: binary().

 payload/0

 -type payload() :: binary().

 pending_queries/0

 -type pending_queries() :: #{binary() => {topic(), payload(), qos(), map()}}.

 qos/0

 -type qos() :: 0 | 1.

 subscription_ref/0

 -type subscription_ref() :: reference().

 topic/0

 -type topic() :: binary().

 url/0

 -type url() :: binary().

 Functions

 advertise_subscription(Topic, SubRef, NodeId, Url, ConnMgrPid)

 -spec advertise_subscription(topic(), subscription_ref(), node_id(), url(), connection_manager_pid()) ->
 {ok,
 #{sub_ref := reference(),
 ttl := pos_integer(),
 timer_ref := reference()}} |
 {error, term()}.

Advertise a subscription in the DHT. Sends STORE message to DHT and schedules re-advertisement. Returns {ok, SubInfo}.

 cancel_advertisement(Topic, AdvertisedSubscriptions)

 -spec cancel_advertisement(topic(), advertised_subscriptions()) -> advertised_subscriptions().

Cancel advertisement for a topic. Cancels the re-advertisement timer. Returns updated advertised_subscriptions map.

 discover_subscribers(Topic, Payload, Qos, ConnMgrPid, ServiceRegistry, MsgIdCounter)

 -spec discover_subscribers(topic(),
 payload(),
 qos(),
 connection_manager_pid(),
 term(),
 non_neg_integer()) ->
 {cached, list(), term()} |
 {query_sent, pending_queries(), binary(), term()}.

Discover remote subscribers for a topic. Checks cache first, queries DHT on cache miss. Returns {cached, Subscribers, Registry} | {query_sent, Pending, MsgId, Registry}.

 handle_discovery_response(MsgId, Subscribers, PendingQueries)

 -spec handle_discovery_response(binary(), list(), pending_queries()) ->
 {ok, pending_queries()} | {not_found, pending_queries()}.

Handle DHT discovery response. Routes messages to discovered subscribers. Returns updated pending queries map.

 route_to_subscribers(Topic, Payload, Qos, Subscribers, NodeId)

 -spec route_to_subscribers(topic(), payload(), qos(), list(), node_id()) -> ok.

Route message to remote subscribers via DHT routing (v0.7.8+). Wraps publish in pubsub_route envelope and sends to each subscriber node.

macula_pubsub_discovery

DHT integration for finding remote subscribers. Uses Kademlia DHT to publish and discover subscriptions. Wraps macula_discovery with pub/sub-specific types.

 Summary

 Types

 address/0

 dht_lookup_fun/0

 dht_publish_fun/0

 dht_unpublish_fun/0

 node_id/0

 pattern/0

 subscriber/0

 Functions

 announce(Pattern, LocalNodeId, LocalAddress, DhtPublishFun)

 Announce local subscription to DHT.

 find_subscribers(Pattern, DhtLookupFun)

 Find remote subscribers for a pattern via DHT.

 find_with_cache(Pattern, Cache, DhtLookupFun)

 Find subscribers with cache (default TTL: 300 seconds).

 find_with_cache(Pattern, Cache, DhtLookupFun, TTL)

 Find subscribers with cache and custom TTL.

 unannounce(Pattern, LocalNodeId, DhtUnpublishFun)

 Remove local subscription from DHT.

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 dht_lookup_fun/0

 -type dht_lookup_fun() :: fun((pattern()) -> {ok, [subscriber()]} | {error, term()}).

 dht_publish_fun/0

 -type dht_publish_fun() :: fun((pattern(), node_id(), address()) -> ok | {error, term()}).

 dht_unpublish_fun/0

 -type dht_unpublish_fun() :: fun((pattern(), node_id()) -> ok | {error, term()}).

 node_id/0

 -type node_id() :: binary().

 pattern/0

 -type pattern() :: binary().

 subscriber/0

 -type subscriber() :: #{node_id := node_id(), address := address()}.

 Functions

 announce(Pattern, LocalNodeId, LocalAddress, DhtPublishFun)

 -spec announce(pattern(), node_id(), address(), dht_publish_fun()) -> ok | {error, term()}.

Announce local subscription to DHT.

 find_subscribers(Pattern, DhtLookupFun)

 -spec find_subscribers(pattern(), dht_lookup_fun()) -> {ok, [subscriber()]} | {error, term()}.

Find remote subscribers for a pattern via DHT.

 find_with_cache(Pattern, Cache, DhtLookupFun)

 -spec find_with_cache(pattern(), macula_cache:cache(), dht_lookup_fun()) ->
 {ok, [subscriber()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find subscribers with cache (default TTL: 300 seconds).

 find_with_cache(Pattern, Cache, DhtLookupFun, TTL)

 -spec find_with_cache(pattern(), macula_cache:cache(), dht_lookup_fun(), pos_integer()) ->
 {ok, [subscriber()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find subscribers with cache and custom TTL.

 unannounce(Pattern, LocalNodeId, DhtUnpublishFun)

 -spec unannounce(pattern(), node_id(), dht_unpublish_fun()) -> ok | {error, term()}.

Remove local subscription from DHT.

macula_pubsub_handler

PubSub handler GenServer - facade that orchestrates pub/sub operations.
This module acts as a facade/coordinator, delegating business logic to: - macula_pubsub_subscription: Subscription storage, pattern matching, callbacks - macula_pubsub_dht: DHT advertisement, discovery, routing - macula_pubsub_qos: QoS 1 tracking and retry logic
Responsibilities: - API facade for subscribe/unsubscribe/publish operations - Message routing coordination between specialized modules - GenServer lifecycle management - State management (delegates actual operations to modules)
Extracted from macula_connection.erl (Phase 4) Refactored using TDD to extract god module (Phase 5)

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_publish(Pid, Msg)

 handle_info(Info, State)

 init(Opts)

 publish(Pid, Topic, Data, Opts)

 start_link(Opts)

 subscribe(Pid, Topic, Callback)

 terminate(Reason, State)

 unsubscribe(Pid, SubRef)

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_publish(Pid, Msg)

 -spec handle_incoming_publish(pid(), map()) -> ok.

 handle_info(Info, State)

 init(Opts)

 publish(Pid, Topic, Data, Opts)

 -spec publish(pid(), binary() | list() | atom(), term(), map()) -> ok | {error, term()}.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 subscribe(Pid, Topic, Callback)

 -spec subscribe(pid(), binary() | list() | atom(), fun((map()) -> ok)) ->
 {ok, reference()} | {error, term()}.

 terminate(Reason, State)

 unsubscribe(Pid, SubRef)

 -spec unsubscribe(pid(), reference()) -> ok | {error, term()}.

macula_pubsub_qos

QoS (Quality of Service) manager for pub/sub.
Handles QoS 1 (at-least-once delivery) logic: - Message tracking with timeout timers - Automatic retry on timeout (up to max retries) - Acknowledgment handling
Extracted from macula_pubsub_handler.erl (Phase 2)

 Summary

 Types

 connection_manager_pid/0

 message_id/0

 payload/0

 pending_pubacks/0

 qos/0

 retry_count/0

 timer_ref/0

 topic/0

 Functions

 get_pending(PendingPubacks)

 Get list of pending message IDs (for testing/debugging).

 handle_ack(MsgId, PendingPubacks)

 Handle acknowledgment for a message. Cancels timer and removes message from pending map. Returns updated pending_pubacks map.

 handle_timeout(MsgId, ConnMgrPid, PendingPubacks)

 Handle timeout for a pending message. Retries sending if under max retries, otherwise gives up. Returns {retry, UpdatedPending, PublishMsg} | {give_up, UpdatedPending}.

 track_message(MsgId, Topic, Payload, Qos, PendingPubacks)

 Track a message for QoS 1 acknowledgment. Starts a timeout timer and stores message in pending map. Returns updated pending_pubacks map.

 Types

 connection_manager_pid/0

 -type connection_manager_pid() :: pid().

 message_id/0

 -type message_id() :: binary().

 payload/0

 -type payload() :: binary().

 pending_pubacks/0

 -type pending_pubacks() :: #{message_id() => {topic(), payload(), qos(), retry_count(), timer_ref()}}.

 qos/0

 -type qos() :: 0 | 1.

 retry_count/0

 -type retry_count() :: non_neg_integer().

 timer_ref/0

 -type timer_ref() :: reference().

 topic/0

 -type topic() :: binary().

 Functions

 get_pending(PendingPubacks)

 -spec get_pending(pending_pubacks()) -> [message_id()].

Get list of pending message IDs (for testing/debugging).

 handle_ack(MsgId, PendingPubacks)

 -spec handle_ack(message_id(), pending_pubacks()) -> pending_pubacks().

Handle acknowledgment for a message. Cancels timer and removes message from pending map. Returns updated pending_pubacks map.

 handle_timeout(MsgId, ConnMgrPid, PendingPubacks)

 -spec handle_timeout(message_id(), connection_manager_pid(), pending_pubacks()) ->
 {retry, pending_pubacks(), map()} |
 {give_up, pending_pubacks()} |
 {not_found, pending_pubacks()}.

Handle timeout for a pending message. Retries sending if under max retries, otherwise gives up. Returns {retry, UpdatedPending, PublishMsg} | {give_up, UpdatedPending}.

 track_message(MsgId, Topic, Payload, Qos, PendingPubacks)

 -spec track_message(message_id(), topic(), payload(), qos(), pending_pubacks()) ->
 {ok, pending_pubacks()} | {error, term()}.

Track a message for QoS 1 acknowledgment. Starts a timeout timer and stores message in pending map. Returns updated pending_pubacks map.

macula_pubsub_registry

Local subscription registry for pub/sub. Maps topic patterns to local subscribers (callback PIDs).

 Summary

 Types

 registry/0

 subscription/0

 Functions

 get_subscription(_, SubscriberId, Pattern)

 Get specific subscription.

 list_patterns(_)

 List all unique patterns.

 match(_, Topic)

 Find subscriptions matching a topic.

 new()

 Create new empty registry.

 size(_)

 Get number of subscriptions.

 subscribe(Registry, SubscriberId, Pattern, Callback)

 Subscribe to a pattern. If subscription already exists (same subscriber_id + pattern), updates callback.

 unsubscribe(Registry, SubscriberId, Pattern)

 Unsubscribe from a pattern.

 Types

 registry/0

 -type registry() ::
 #{subscriptions := [subscription()], pattern_index := #{binary() => [subscription()]}}.

 subscription/0

 -type subscription() :: #{subscriber_id := binary(), pattern := binary(), callback := pid()}.

 Functions

 get_subscription(_, SubscriberId, Pattern)

 -spec get_subscription(registry(), binary(), binary()) -> {ok, subscription()} | not_found.

Get specific subscription.

 list_patterns(_)

 -spec list_patterns(registry()) -> [binary()].

List all unique patterns.

 match(_, Topic)

 -spec match(registry(), binary()) -> [subscription()].

Find subscriptions matching a topic.

 new()

 -spec new() -> registry().

Create new empty registry.

 size(_)

 -spec size(registry()) -> non_neg_integer().

Get number of subscriptions.

 subscribe(Registry, SubscriberId, Pattern, Callback)

 -spec subscribe(registry(), binary(), binary(), pid()) -> registry().

Subscribe to a pattern. If subscription already exists (same subscriber_id + pattern), updates callback.

 unsubscribe(Registry, SubscriberId, Pattern)

 -spec unsubscribe(registry(), binary(), binary()) -> registry().

Unsubscribe from a pattern.

macula_pubsub_routing

Pub/Sub routing for multi-hop DHT-routed pub/sub. Handles wrapping, unwrapping, and routing of PUBLISH messages through the Kademlia DHT mesh.
Pattern: Clone of macula_rpc_routing for pub/sub messages

 Summary

 Functions

 route_or_deliver(LocalNodeId, PubSubRouteMsg, RoutingServerPid)

 Route a pubsub_route message: either deliver locally or forward to next hop. Returns one of: {deliver, Topic, PublishMsg} - Message is for this node {forward, NextHopNodeInfo, UpdatedPubSubRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, PubSubRouteMsg)

 Determine if this node should deliver the message locally or forward it.

 wrap_publish(SourceNodeId, DestinationNodeId, PublishMsg, MaxHops)

 Wrap a PUBLISH message in pubsub_route envelope for DHT routing.

 Functions

 route_or_deliver(LocalNodeId, PubSubRouteMsg, RoutingServerPid)

 -spec route_or_deliver(binary(), macula_protocol_types:pubsub_route_msg(), pid()) ->
 {deliver, binary(), map()} |
 {forward,
 macula_routing_bucket:node_info(),
 macula_protocol_types:pubsub_route_msg()} |
 {error, term()}.

Route a pubsub_route message: either deliver locally or forward to next hop. Returns one of: {deliver, Topic, PublishMsg} - Message is for this node {forward, NextHopNodeInfo, UpdatedPubSubRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, PubSubRouteMsg)

 -spec should_deliver_locally(binary(), macula_protocol_types:pubsub_route_msg()) -> boolean().

Determine if this node should deliver the message locally or forward it.

 wrap_publish(SourceNodeId, DestinationNodeId, PublishMsg, MaxHops)

 -spec wrap_publish(binary(), binary(), macula_protocol_types:publish_msg(), pos_integer()) ->
 macula_protocol_types:pubsub_route_msg().

Wrap a PUBLISH message in pubsub_route envelope for DHT routing.

macula_pubsub_server

Pub/Sub GenServer - manages subscriptions and message delivery. Ties together registry, cache, discovery, and delivery layers.

 Summary

 Types

 options/0

 Functions

 cache_stats(Pid)

 Get cache statistics.

 list_patterns(Pid)

 List all unique patterns.

 list_subscriptions(Pid)

 List all subscriptions.

 publish(Pid, Message)

 Publish message to all matching subscribers.

 start_link()

 Start server with default options.

 start_link(Options)

 Start server with options.

 stop(Pid)

 Stop server.

 subscribe(Pid, SubscriberId, Pattern, Callback)

 Subscribe to a pattern.

 subscription_count(Pid)

 Get subscription count.

 unsubscribe(Pid, SubscriberId, Pattern)

 Unsubscribe from a pattern.

 Types

 options/0

 -type options() ::
 #{cache_size => pos_integer(),
 cache_ttl => pos_integer(),
 discovery_fun => macula_pubsub_discovery:dht_lookup_fun(),
 send_fun => macula_pubsub_delivery:send_fun()}.

 Functions

 cache_stats(Pid)

 -spec cache_stats(pid()) -> #{size := non_neg_integer(), max_size := pos_integer()}.

Get cache statistics.

 list_patterns(Pid)

 -spec list_patterns(pid()) -> [binary()].

List all unique patterns.

 list_subscriptions(Pid)

 -spec list_subscriptions(pid()) -> [macula_pubsub_registry:subscription()].

List all subscriptions.

 publish(Pid, Message)

 -spec publish(pid(), macula_pubsub_delivery:message()) -> ok.

Publish message to all matching subscribers.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start server with default options.

 start_link(Options)

 -spec start_link(options()) -> {ok, pid()} | {error, term()}.

Start server with options.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop server.

 subscribe(Pid, SubscriberId, Pattern, Callback)

 -spec subscribe(pid(), binary(), binary(), pid()) -> ok.

Subscribe to a pattern.

 subscription_count(Pid)

 -spec subscription_count(pid()) -> non_neg_integer().

Get subscription count.

 unsubscribe(Pid, SubscriberId, Pattern)

 -spec unsubscribe(pid(), binary(), binary()) -> ok.

Unsubscribe from a pattern.

macula_pubsub_subscription

Subscription management for pub/sub.
Responsibilities: - Store and retrieve subscriptions - Pattern matching with wildcards (*, **) - Find matching subscriptions for a topic - Invoke subscriber callbacks
Extracted from macula_pubsub_handler.erl (Phase 4)

 Summary

 Types

 callback/0

 node_id/0

 payload/0

 subscription_ref/0

 subscriptions/0

 topic/0

 Functions

 add_subscription(Topic, Callback, Subscriptions, SubRef)

 Add a subscription. Returns {ok, UpdatedSubscriptions, SubRef}.

 find_matches(Topic, Subscriptions, Config)

 Find matching subscriptions for a topic. Returns list of {SubRef, {Pattern, Callback}} tuples.

 invoke_callbacks(Matches, Topic, Payload, NodeId)

 Invoke callbacks for matching subscriptions. Spawns async tasks to invoke each callback.

 remove_subscription(SubRef, Subscriptions)

 Remove a subscription. Returns {ok, UpdatedSubscriptions, Topic} | {error, not_found}.

 Types

 callback/0

 -type callback() :: fun((map()) -> ok).

 node_id/0

 -type node_id() :: binary().

 payload/0

 -type payload() :: binary().

 subscription_ref/0

 -type subscription_ref() :: reference().

 subscriptions/0

 -type subscriptions() :: #{subscription_ref() => {topic(), callback()}}.

 topic/0

 -type topic() :: binary().

 Functions

 add_subscription(Topic, Callback, Subscriptions, SubRef)

 -spec add_subscription(topic(), callback(), subscriptions(), subscription_ref()) ->
 {ok, subscriptions(), subscription_ref()}.

Add a subscription. Returns {ok, UpdatedSubscriptions, SubRef}.

 find_matches(Topic, Subscriptions, Config)

 -spec find_matches(topic(), subscriptions(), #{atom() => binary()}) ->
 [{subscription_ref(), {topic(), callback()}}].

Find matching subscriptions for a topic. Returns list of {SubRef, {Pattern, Callback}} tuples.

 invoke_callbacks(Matches, Topic, Payload, NodeId)

 -spec invoke_callbacks([{subscription_ref(), {topic(), callback()}}], topic(), payload(), node_id()) ->
 ok.

Invoke callbacks for matching subscriptions. Spawns async tasks to invoke each callback.

 remove_subscription(SubRef, Subscriptions)

 -spec remove_subscription(subscription_ref(), subscriptions()) ->
 {ok, subscriptions(), topic()} | {error, not_found}.

Remove a subscription. Returns {ok, UpdatedSubscriptions, Topic} | {error, not_found}.

macula_pubsub_topic

Topic utilities for pub/sub system. Handles topic validation, pattern matching, and normalization. Supports MQTT-style wildcards: * (single-level) and # (multi-level).

 Summary

 Types

 pattern/0

 topic/0

 Functions

 matches(Topic, Pattern)

 Check if topic matches pattern. Patterns can contain: - * matches exactly one segment - # matches zero or more segments

 namespace(Topic)

 Extract namespace (first segment).

 normalize(Topic)

 Normalize topic (lowercase, trim, remove double dots).

 segment_count(Topic)

 Count number of segments in topic.

 validate(Topic)

 Validate topic syntax. Valid topics: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen, wildcards - No leading or trailing dots

 Types

 pattern/0

 -type pattern() :: binary().

 topic/0

 -type topic() :: binary().

 Functions

 matches(Topic, Pattern)

 -spec matches(topic(), pattern()) -> boolean().

Check if topic matches pattern. Patterns can contain: - * matches exactly one segment - # matches zero or more segments

 namespace(Topic)

 -spec namespace(topic()) -> binary().

Extract namespace (first segment).

 normalize(Topic)

 -spec normalize(topic()) -> topic().

Normalize topic (lowercase, trim, remove double dots).

 segment_count(Topic)

 -spec segment_count(topic()) -> non_neg_integer().

Count number of segments in topic.

 validate(Topic)

 -spec validate(topic()) -> ok | {error, invalid_topic}.

Validate topic syntax. Valid topics: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen, wildcards - No leading or trailing dots

macula_quic

Main API module for Macula QUIC transport. Provides a simplified wrapper around the quicer library.

 Summary

 Functions

 accept(ListenerPid, Timeout)

 Accept an incoming connection on a listener. After accepting, the connection needs handshake to complete.

 accept_stream(ConnPid, Timeout)

 Accept an incoming stream on a connection.

 async_send(StreamPid, Data)

 Send data on a stream asynchronously (non-blocking). This returns immediately without waiting for QUIC flow control.

 close(Pid)

 Close a listener, connection, or stream.

 connect(Host, Port, Opts, Timeout)

 Connect to a QUIC server. Options: {alpn, [Protocol]} - List of ALPN protocols {verify, none | verify_peer} - Certificate verification mode

 listen(Port, Opts)

 Start a QUIC listener on the specified port. Options: {cert, CertFile} - Path to PEM certificate file {key, KeyFile} - Path to PEM private key file {alpn, [Protocol]} - List of ALPN protocols (e.g., ["macula"]) {peer_unidi_stream_count, N} - Max unidirectional streams {peer_bidi_stream_count, N} - Max bidirectional streams

 open_stream(ConnPid)

 Open a new bidirectional stream on a connection.

 recv(StreamPid, Timeout)

 Receive data from a stream (blocking).

 send(StreamPid, Data)

 Send data on a stream (blocking).

 Functions

 accept(ListenerPid, Timeout)

 -spec accept(pid(), timeout()) -> {ok, pid()} | {error, term()}.

Accept an incoming connection on a listener. After accepting, the connection needs handshake to complete.

 accept_stream(ConnPid, Timeout)

 -spec accept_stream(pid(), timeout()) -> {ok, pid()} | {error, term()}.

Accept an incoming stream on a connection.

 async_send(StreamPid, Data)

 -spec async_send(pid(), binary()) -> ok | {error, term()}.

Send data on a stream asynchronously (non-blocking). This returns immediately without waiting for QUIC flow control.

 close(Pid)

 -spec close(pid()) -> ok.

Close a listener, connection, or stream.

 connect(Host, Port, Opts, Timeout)

 -spec connect(string() | inet:ip_address(), inet:port_number(), list(), timeout()) ->
 {ok, pid()} | {error, term()}.

Connect to a QUIC server. Options: {alpn, [Protocol]} - List of ALPN protocols {verify, none | verify_peer} - Certificate verification mode

 listen(Port, Opts)

 -spec listen(inet:port_number(), list()) -> {ok, pid()} | {error, term()}.

Start a QUIC listener on the specified port. Options: {cert, CertFile} - Path to PEM certificate file {key, KeyFile} - Path to PEM private key file {alpn, [Protocol]} - List of ALPN protocols (e.g., ["macula"]) {peer_unidi_stream_count, N} - Max unidirectional streams {peer_bidi_stream_count, N} - Max bidirectional streams

 open_stream(ConnPid)

 -spec open_stream(pid()) -> {ok, pid()} | {error, term()}.

Open a new bidirectional stream on a connection.

 recv(StreamPid, Timeout)

 -spec recv(pid(), timeout()) -> {ok, binary()} | {error, term()}.

Receive data from a stream (blocking).

 send(StreamPid, Data)

 -spec send(pid(), binary()) -> ok | {error, term()}.

Send data on a stream (blocking).

macula_quic_cert

Macula QUIC certificate utilities. Provides functions for generating and validating self-signed certificates for QUIC connections via OpenSSL command-line tool.

 Summary

 Functions

 generate_self_signed()

 Generate a self-signed certificate and key in a temporary directory. Returns {ok, CertFile, KeyFile} with paths to generated files. The files are created in /tmp/macula_certs_PID for test isolation.

 generate_self_signed(Dir)

 Generate a self-signed certificate and key in the given directory. Returns {ok, {CertFile, KeyFile}} with paths to generated files.

 generate_self_signed(Dir, Opts)

 Generate a self-signed certificate with custom options. Options: subject - Certificate subject (default: "/CN=macula.local") validity_days - Validity period in days (default: 365)

 validate_files(CertFile, KeyFile)

 Validate that both certificate and key files exist and are readable.

 Functions

 generate_self_signed()

 -spec generate_self_signed() -> {ok, file:filename(), file:filename()} | {error, term()}.

Generate a self-signed certificate and key in a temporary directory. Returns {ok, CertFile, KeyFile} with paths to generated files. The files are created in /tmp/macula_certs_PID for test isolation.

 generate_self_signed(Dir)

 -spec generate_self_signed(file:filename()) ->
 {ok, {file:filename(), file:filename()}} | {error, term()}.

Generate a self-signed certificate and key in the given directory. Returns {ok, {CertFile, KeyFile}} with paths to generated files.

 generate_self_signed(Dir, Opts)

 -spec generate_self_signed(file:filename(), map()) ->
 {ok, {file:filename(), file:filename()}} | {error, term()}.

Generate a self-signed certificate with custom options. Options: subject - Certificate subject (default: "/CN=macula.local") validity_days - Validity period in days (default: 365)

 validate_files(CertFile, KeyFile)

 -spec validate_files(file:filename(), file:filename()) -> ok | {error, term()}.

Validate that both certificate and key files exist and are readable.

macula_quic_conn_callback

QUIC connection callback module for Macula. Implements quicer_connection behavior to handle connection lifecycle.

 Summary

 Functions

 closed(Conn, Flags, State)

 Handle connection closed

 connected(Conn, Flags, State)

 Handle connection established

 handle_info(Info, State)

 Handle other messages

 init(ConnOpts)

 Initialize connection callback state

 local_address_changed(Conn, NewAddr, State)

 Handle local address changed

 new_conn(Conn, ConnProps, State)

 Handle new connection With quicer_server, streams are delivered automatically via new_stream/3

 new_stream(Stream, Props, State)

 Handle new stream With quicer_server, ALL streams are delivered here (not just orphans) Forward them to the gateway for processing

 nst_received(Conn, Data, State)

 Handle NST received (not used for server)

 peer_address_changed(Conn, NewAddr, State)

 Handle peer address changed

 peer_needs_streams(Conn, Undefined, State)

 Handle peer needs streams

 resumed(Conn, Data, State)

 Handle connection resumed

 shutdown(Conn, Reason, State)

 Handle connection shutdown

 streams_available(Conn, _, State)

 Handle streams available

 transport_shutdown(Conn, _, State)

 Handle transport shutdown

 Functions

 closed(Conn, Flags, State)

Handle connection closed

 connected(Conn, Flags, State)

Handle connection established

 handle_info(Info, State)

Handle other messages

 init(ConnOpts)

Initialize connection callback state

 local_address_changed(Conn, NewAddr, State)

Handle local address changed

 new_conn(Conn, ConnProps, State)

Handle new connection With quicer_server, streams are delivered automatically via new_stream/3

 new_stream(Stream, Props, State)

Handle new stream With quicer_server, ALL streams are delivered here (not just orphans) Forward them to the gateway for processing

 nst_received(Conn, Data, State)

Handle NST received (not used for server)

 peer_address_changed(Conn, NewAddr, State)

Handle peer address changed

 peer_needs_streams(Conn, Undefined, State)

Handle peer needs streams

 resumed(Conn, Data, State)

Handle connection resumed

 shutdown(Conn, Reason, State)

Handle connection shutdown

 streams_available(Conn, _, State)

Handle streams available

 transport_shutdown(Conn, _, State)

Handle transport shutdown

macula_quic_stream_acceptor

QUIC stream acceptor process. Dedicated process that waits for incoming streams on a connection and forwards them to the gateway for processing.

 Summary

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 Handle new stream from peer - THIS IS THE KEY MESSAGE!

 init(_)

 start_link(GatewayPid, Conn)

 Start stream acceptor process

 terminate(Reason, State)

 Functions

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

Handle new stream from peer - THIS IS THE KEY MESSAGE!

 init(_)

 start_link(GatewayPid, Conn)

 -spec start_link(pid(), term()) -> {ok, pid()} | {error, term()}.

Start stream acceptor process

 terminate(Reason, State)

macula_realm

Realm management and validation. Realms provide logical isolation boundaries in the mesh. Realm names follow reverse DNS notation (e.g., "org.example.mesh").

 Summary

 Types

 realm_id/0

 32-byte SHA-256 hash

 realm_name/0

 Functions

 equals(Realm1, Realm2)

 Check if two realm names are equal.

 from_binary(_)

 Decode realm name from binary.

 id(RealmName)

 Generate deterministic realm ID from name. Uses SHA-256 hash for 256-bit realm IDs.

 namespace(RealmName)

 Extract namespace (top-level domain) from realm name. Example: "org.example.mesh" -> "org"

 normalize(RealmName)

 Normalize realm name (lowercase, trim).

 to_binary(RealmName)

 Encode realm name to binary.

 validate(RealmName)

 Validate realm name format. Rules: - Reverse DNS notation (org.example.mesh) - Lowercase alphanumeric, dots, hyphens, underscores - No leading/trailing dots - No consecutive dots

 Types

 realm_id/0

 -type realm_id() :: binary().

32-byte SHA-256 hash

 realm_name/0

 -type realm_name() :: binary().

 Functions

 equals(Realm1, Realm2)

 -spec equals(realm_name(), realm_name()) -> boolean().

Check if two realm names are equal.

 from_binary(_)

 -spec from_binary(binary()) -> {ok, realm_name()} | {error, term()}.

Decode realm name from binary.

 id(RealmName)

 -spec id(realm_name()) -> realm_id().

Generate deterministic realm ID from name. Uses SHA-256 hash for 256-bit realm IDs.

 namespace(RealmName)

 -spec namespace(realm_name()) -> binary().

Extract namespace (top-level domain) from realm name. Example: "org.example.mesh" -> "org"

 normalize(RealmName)

 -spec normalize(realm_name()) -> realm_name().

Normalize realm name (lowercase, trim).

 to_binary(RealmName)

 -spec to_binary(realm_name()) -> binary().

Encode realm name to binary.

 validate(RealmName)

 -spec validate(realm_name()) -> ok | {error, term()}.

Validate realm name format. Rules: - Reverse DNS notation (org.example.mesh) - Lowercase alphanumeric, dots, hyphens, underscores - No leading/trailing dots - No consecutive dots

macula_root

Macula Application Root Supervisor.
This is the top-level supervisor for the Macula application. It manages core infrastructure and optionally starts gateway services.
Supervision Hierarchy:
 macula_root (this module - application root)
 ├── macula_routing_server (core DHT infrastructure)
 └── macula_gateway_system (optional - gateway subsystem)
 ├── macula_gateway_health
 ├── macula_gateway_diagnostics
 ├── macula_gateway_quic_server
 ├── macula_gateway
 └── macula_gateway_workers_sup

Naming Convention (v0.7.10+): - _root: Application root supervisor (one per application) - _system: Subsystem root supervisors (gateway, peer, etc.) - _sup: Worker supervisors (workers_sup)

 Summary

 Functions

 init(_)

 start_link()

 Functions

 init(_)

 start_link()

macula_routing_bucket

K-bucket for Kademlia routing table. Stores up to k nodes with LRU eviction policy.

 Summary

 Types

 bucket/0

 node_info/0

 Functions

 add_node(Bucket, NodeInfo)

 Add a node to the bucket. If node exists, move to tail (most recent). If bucket full, return {error, bucket_full}.

 capacity(_)

 Get bucket capacity.

 find_closest(_, Target, N)

 Find n closest nodes to target (sorted by XOR distance).

 find_node(_, NodeId)

 Find a node by ID.

 get_nodes(_)

 Get all nodes in the bucket (ordered: oldest first).

 has_node(_, NodeId)

 Check if bucket contains node.

 new(Capacity)

 Create a new bucket with capacity k.

 remove_node(Bucket, NodeId)

 Remove a node from the bucket.

 size(_)

 Get number of nodes in bucket.

 update_timestamp(Bucket, NodeId)

 Update node's last_seen timestamp (moves to tail).

 Types

 bucket/0

 -type bucket() :: #{capacity := pos_integer(), nodes := [node_info()]}.

 node_info/0

 -type node_info() ::
 #{node_id := binary(),
 address := {inet:ip_address(), inet:port_number()},
 last_seen => integer()}.

 Functions

 add_node(Bucket, NodeInfo)

 -spec add_node(bucket(), node_info()) -> bucket() | {error, bucket_full}.

Add a node to the bucket. If node exists, move to tail (most recent). If bucket full, return {error, bucket_full}.

 capacity(_)

 -spec capacity(bucket()) -> pos_integer().

Get bucket capacity.

 find_closest(_, Target, N)

 -spec find_closest(bucket(), binary(), pos_integer()) -> [node_info()].

Find n closest nodes to target (sorted by XOR distance).

 find_node(_, NodeId)

 -spec find_node(bucket(), binary()) -> {ok, node_info()} | not_found.

Find a node by ID.

 get_nodes(_)

 -spec get_nodes(bucket()) -> [node_info()].

Get all nodes in the bucket (ordered: oldest first).

 has_node(_, NodeId)

 -spec has_node(bucket(), binary()) -> boolean().

Check if bucket contains node.

 new(Capacity)

 -spec new(pos_integer()) -> bucket().

Create a new bucket with capacity k.

 remove_node(Bucket, NodeId)

 -spec remove_node(bucket(), binary()) -> bucket().

Remove a node from the bucket.

 size(_)

 -spec size(bucket()) -> non_neg_integer().

Get number of nodes in bucket.

 update_timestamp(Bucket, NodeId)

 -spec update_timestamp(bucket(), binary()) -> bucket().

Update node's last_seen timestamp (moves to tail).

macula_routing_dht

Core DHT algorithms for Kademlia routing. Implements iterative lookup, store, and find operations. Pure functions - no GenServer, designed to be called by macula_routing_server.

 Summary

 Types

 query_fn/0

 store_fn/0

 Functions

 find_value(RoutingTable, Key, K, QueryFn)

 Find value in DHT. Returns {ok, Value} if found, {nodes, [NodeInfo]} if not found.

 iterative_find_node(RoutingTable, Target, K, QueryFn)

 Iterative lookup to find k closest nodes to target. Uses alpha concurrent queries (default: 3).

 select_alpha(Closest, Queried, Alpha)

 Select up to alpha unqueried nodes from closest set.

 store_value(RoutingTable, Key, Value, K, QueryFn, StoreFn)

 Store value at k closest nodes to key.

 update_closest(CurrentClosest, NewNodes, Target, K)

 Update closest set with new nodes, maintaining k closest and removing duplicates.

 Types

 query_fn/0

 -type query_fn() ::
 fun((macula_routing_bucket:node_info(), binary()) ->
 {ok, [macula_routing_bucket:node_info()]} |
 {value, term()} |
 {nodes, [macula_routing_bucket:node_info()]} |
 {error, term()}).

 store_fn/0

 -type store_fn() :: fun((macula_routing_bucket:node_info(), binary(), term()) -> ok | {error, term()}).

 Functions

 find_value(RoutingTable, Key, K, QueryFn)

 -spec find_value(macula_routing_table:routing_table(), binary(), pos_integer(), query_fn()) ->
 {ok, term()} | {nodes, [macula_routing_bucket:node_info()]}.

Find value in DHT. Returns {ok, Value} if found, {nodes, [NodeInfo]} if not found.

 iterative_find_node(RoutingTable, Target, K, QueryFn)

 -spec iterative_find_node(macula_routing_table:routing_table(), binary(), pos_integer(), query_fn()) ->
 {ok, [macula_routing_bucket:node_info()]}.

Iterative lookup to find k closest nodes to target. Uses alpha concurrent queries (default: 3).

 select_alpha(Closest, Queried, Alpha)

 -spec select_alpha([macula_routing_bucket:node_info()], [binary()], pos_integer()) ->
 [macula_routing_bucket:node_info()].

Select up to alpha unqueried nodes from closest set.

 store_value(RoutingTable, Key, Value, K, QueryFn, StoreFn)

 -spec store_value(macula_routing_table:routing_table(),
 binary(),
 term(),
 pos_integer(),
 query_fn(),
 store_fn()) ->
 ok.

Store value at k closest nodes to key.

 update_closest(CurrentClosest, NewNodes, Target, K)

 -spec update_closest([macula_routing_bucket:node_info()],
 [macula_routing_bucket:node_info()],
 binary(),
 pos_integer()) ->
 [macula_routing_bucket:node_info()].

Update closest set with new nodes, maintaining k closest and removing duplicates.

macula_routing_nodeid

Node ID utilities for Kademlia DHT. 256-bit node identifiers with XOR distance metric.

 Summary

 Types

 node_id/0

 32 bytes (256 bits)

 Functions

 bucket_index(LocalNodeId, TargetNodeId)

 Calculate bucket index for a node relative to local node. Returns leading zero count of XOR distance (0..255). Special case: distance 0 (same node) returns 256. Normalizes inputs to 32 bytes if needed.

 closer_to(Target, NodeA, NodeB)

 Check if NodeA is closer to Target than NodeB. Normalizes inputs to 32 bytes if needed.

 compare(Target, NodeA, NodeB)

 Compare distances of NodeA and NodeB to Target. Returns: less (A closer), equal (same distance), greater (B closer). Normalizes inputs to 32 bytes if needed.

 distance(NodeId1, NodeId2)

 Calculate XOR distance between two node IDs. Normalizes inputs to 32 bytes if needed.

 from_binary(Binary)

 Create node ID from binary (validates size).

 from_hex(HexString)

 Parse node ID from hex string. Crashes on invalid hex or wrong length - exposes bugs in validation logic.

 generate()

 Generate a random 256-bit node ID.

 leading_zeros(Binary)

 Count leading zero bits in binary.

 normalize(Binary)

 Normalize any binary to a 32-byte node ID. If already 32 bytes, returns as-is. Otherwise, hashes with SHA-256.

 to_hex(NodeId)

 Convert node ID to hex string.

 Types

 node_id/0

 -type node_id() :: binary().

32 bytes (256 bits)

 Functions

 bucket_index(LocalNodeId, TargetNodeId)

 -spec bucket_index(binary(), binary()) -> 0..256.

Calculate bucket index for a node relative to local node. Returns leading zero count of XOR distance (0..255). Special case: distance 0 (same node) returns 256. Normalizes inputs to 32 bytes if needed.

 closer_to(Target, NodeA, NodeB)

 -spec closer_to(binary(), binary(), binary()) -> boolean().

Check if NodeA is closer to Target than NodeB. Normalizes inputs to 32 bytes if needed.

 compare(Target, NodeA, NodeB)

 -spec compare(binary(), binary(), binary()) -> less | equal | greater.

Compare distances of NodeA and NodeB to Target. Returns: less (A closer), equal (same distance), greater (B closer). Normalizes inputs to 32 bytes if needed.

 distance(NodeId1, NodeId2)

 -spec distance(binary(), binary()) -> binary().

Calculate XOR distance between two node IDs. Normalizes inputs to 32 bytes if needed.

 from_binary(Binary)

 -spec from_binary(binary()) -> {ok, node_id()} | {error, invalid_size}.

Create node ID from binary (validates size).

 from_hex(HexString)

 -spec from_hex(string()) -> node_id().

Parse node ID from hex string. Crashes on invalid hex or wrong length - exposes bugs in validation logic.

 generate()

 -spec generate() -> node_id().

Generate a random 256-bit node ID.

 leading_zeros(Binary)

 -spec leading_zeros(binary()) -> 0..256.

Count leading zero bits in binary.

 normalize(Binary)

 -spec normalize(binary()) -> node_id().

Normalize any binary to a 32-byte node ID. If already 32 bytes, returns as-is. Otherwise, hashes with SHA-256.

 to_hex(NodeId)

 -spec to_hex(node_id()) -> string().

Convert node ID to hex string.

macula_routing_protocol

DHT protocol message encoding/decoding. Maps DHT operations to/from message format.

 Summary

 Types

 message/0

 Functions

 decode_find_node(_)

 Decode FIND_NODE request.

 decode_find_node_reply(_)

 Decode FIND_NODE reply.

 decode_find_value(_)

 Decode FIND_VALUE request.

 decode_find_value_reply(_)

 Decode FIND_VALUE reply.

 decode_node_info(_)

 Decode node info.

 decode_store(_)

 Decode STORE request.

 encode_find_node(Target)

 Encode FIND_NODE request.

 encode_find_node_reply(Nodes)

 Encode FIND_NODE reply.

 encode_find_value(Key)

 Encode FIND_VALUE request.

 encode_find_value_reply(_)

 Encode FIND_VALUE reply.

 encode_node_info(NodeInfo)

 Encode node info (for transmission).

 encode_store(Key, Value)

 Encode STORE request.

 is_find_node(_)

 Check if message is FIND_NODE.

 is_find_value(_)

 Check if message is FIND_VALUE.

 is_store(_)

 Check if message is STORE.

 Types

 message/0

 -type message() :: map().

 Functions

 decode_find_node(_)

 -spec decode_find_node(message()) -> {ok, binary()} | {error, invalid_message}.

Decode FIND_NODE request.

 decode_find_node_reply(_)

 -spec decode_find_node_reply(message()) ->
 {ok, [macula_routing_bucket:node_info()]} | {error, invalid_message}.

Decode FIND_NODE reply.

 decode_find_value(_)

 -spec decode_find_value(message()) -> {ok, binary()} | {error, invalid_message}.

Decode FIND_VALUE request.

 decode_find_value_reply(_)

 -spec decode_find_value_reply(message()) ->
 {ok, {value, term()} | {nodes, [macula_routing_bucket:node_info()]}} |
 {error, invalid_message}.

Decode FIND_VALUE reply.

 decode_node_info(_)

 -spec decode_node_info(map()) -> {ok, macula_routing_bucket:node_info()} | {error, invalid_node_info}.

Decode node info.

 decode_store(_)

 -spec decode_store(message()) -> {ok, binary(), term()} | {error, invalid_message}.

Decode STORE request.

 encode_find_node(Target)

 -spec encode_find_node(binary()) -> message().

Encode FIND_NODE request.

 encode_find_node_reply(Nodes)

 -spec encode_find_node_reply([macula_routing_bucket:node_info()]) -> message().

Encode FIND_NODE reply.

 encode_find_value(Key)

 -spec encode_find_value(binary()) -> message().

Encode FIND_VALUE request.

 encode_find_value_reply(_)

 -spec encode_find_value_reply({value, term()} | {nodes, [macula_routing_bucket:node_info()]}) ->
 message().

Encode FIND_VALUE reply.

 encode_node_info(NodeInfo)

 -spec encode_node_info(macula_routing_bucket:node_info()) -> map().

Encode node info (for transmission).

 encode_store(Key, Value)

 -spec encode_store(binary(), term()) -> message().

Encode STORE request.

 is_find_node(_)

 -spec is_find_node(message()) -> boolean().

Check if message is FIND_NODE.

 is_find_value(_)

 -spec is_find_value(message()) -> boolean().

Check if message is FIND_VALUE.

 is_store(_)

 -spec is_store(message()) -> boolean().

Check if message is STORE.

macula_routing_server

GenServer managing Kademlia DHT routing table and operations. Integrates all routing components: table, DHT algorithms, protocol.

 Summary

 Functions

 add_node(Pid, NodeInfo)

 Add node to routing table.

 find_closest(Pid, Target, K)

 Find k closest nodes to target.

 find_value(Pid, Key, K)

 Find value in DHT using iterative lookup. Returns {ok, Value} if found, {nodes, Nodes} if not found.

 get_local(Pid, Key)

 Get value from local storage.

 get_routing_table(Pid)

 Get routing table snapshot.

 handle_message(Pid, Message)

 Handle incoming DHT message and return reply.

 size(Pid)

 Get number of nodes in routing table.

 start_link(LocalNodeId, Config)

 Start routing server with registered name macula_routing_server.

 store_local(Pid, Key, Value)

 Store value locally.

 Functions

 add_node(Pid, NodeInfo)

 -spec add_node(pid(), macula_routing_bucket:node_info()) -> ok.

Add node to routing table.

 find_closest(Pid, Target, K)

 -spec find_closest(pid(), binary(), pos_integer()) -> [macula_routing_bucket:node_info()].

Find k closest nodes to target.

 find_value(Pid, Key, K)

 -spec find_value(pid(), binary(), pos_integer()) ->
 {ok, term()} | {nodes, [macula_routing_bucket:node_info()]} | {error, term()}.

Find value in DHT using iterative lookup. Returns {ok, Value} if found, {nodes, Nodes} if not found.

 get_local(Pid, Key)

 -spec get_local(pid(), binary()) -> {ok, term()} | not_found.

Get value from local storage.

 get_routing_table(Pid)

 -spec get_routing_table(pid()) -> macula_routing_table:routing_table().

Get routing table snapshot.

 handle_message(Pid, Message)

 -spec handle_message(pid(), map()) -> map().

Handle incoming DHT message and return reply.

 size(Pid)

 -spec size(pid()) -> non_neg_integer().

Get number of nodes in routing table.

 start_link(LocalNodeId, Config)

 -spec start_link(binary(), map()) -> {ok, pid()} | {error, term()}.

Start routing server with registered name macula_routing_server.

 store_local(Pid, Key, Value)

 -spec store_local(pid(), binary(), term()) -> ok.

Store value locally.

macula_routing_table

Routing table for Kademlia DHT. Manages 256 k-buckets organized by XOR distance.

 Summary

 Types

 routing_table/0

 Functions

 add_node(Table, NodeInfo)

 Add a node to the routing table. Calculates bucket index and adds to appropriate bucket.

 bucket_size(Table, BucketIndex)

 Get size of a specific bucket.

 find_closest(_, Target, K)

 Find k closest nodes to target.

 get_all_nodes(_)

 Get all nodes from all buckets.

 get_bucket(_, BucketIndex)

 Get bucket by index.

 k(_)

 Get k (bucket capacity).

 local_node_id(_)

 Get local node ID.

 new(LocalNodeId, K)

 Create a new routing table.

 remove_node(Table, NodeId)

 Remove a node from the routing table.

 size(_)

 Get total number of nodes in routing table.

 update_timestamp(Table, NodeId)

 Update timestamp for a node (moves to tail in its bucket).

 Types

 routing_table/0

 -type routing_table() ::
 #{local_node_id := binary(),
 k := pos_integer(),
 buckets := #{0..255 => macula_routing_bucket:bucket()}}.

 Functions

 add_node(Table, NodeInfo)

 -spec add_node(routing_table(), macula_routing_bucket:node_info()) -> routing_table().

Add a node to the routing table. Calculates bucket index and adds to appropriate bucket.

 bucket_size(Table, BucketIndex)

 -spec bucket_size(routing_table(), 0..255) -> non_neg_integer().

Get size of a specific bucket.

 find_closest(_, Target, K)

 -spec find_closest(routing_table(), binary(), pos_integer()) -> [macula_routing_bucket:node_info()].

Find k closest nodes to target.

 get_all_nodes(_)

 -spec get_all_nodes(routing_table()) -> [macula_routing_bucket:node_info()].

Get all nodes from all buckets.

 get_bucket(_, BucketIndex)

 -spec get_bucket(routing_table(), 0..255) -> macula_routing_bucket:bucket().

Get bucket by index.

 k(_)

 -spec k(routing_table()) -> pos_integer().

Get k (bucket capacity).

 local_node_id(_)

 -spec local_node_id(routing_table()) -> binary().

Get local node ID.

 new(LocalNodeId, K)

 -spec new(binary(), pos_integer()) -> routing_table().

Create a new routing table.

 remove_node(Table, NodeId)

 -spec remove_node(routing_table(), binary()) -> routing_table().

Remove a node from the routing table.

 size(_)

 -spec size(routing_table()) -> non_neg_integer().

Get total number of nodes in routing table.

 update_timestamp(Table, NodeId)

 -spec update_timestamp(routing_table(), binary()) -> routing_table().

Update timestamp for a node (moves to tail in its bucket).

macula_rpc_cache

LRU cache for RPC procedure results. Caches results of idempotent procedures to avoid repeated execution. Wraps macula_cache with RPC-specific logic and TTL handling.

 Summary

 Types

 cache/0

 Functions

 clear(Cache)

 Clear all entries.

 get(Cache, Uri, Args)

 Get entry from cache. Returns {ok, Result, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU). Automatically removes expired entries.

 invalidate(Cache, Uri, Args)

 Invalidate (remove) entry.

 is_expired(Cache, Uri, Args)

 Check if entry is expired.

 make_key(Uri, Args)

 Make cache key from URI and args. Uses hash of URI and args for consistent key generation.

 max_size(Cache)

 Get max size.

 new(MaxSize)

 Create new cache with max size.

 put(Cache, Uri, Args, Result, TTL)

 Put entry in cache.

 put_with_timestamp(Cache, Uri, Args, Result, TTL, Timestamp)

 Put entry with custom timestamp (for testing).

 size(Cache)

 Get number of entries.

 Types

 cache/0

 -type cache() :: macula_cache:cache().

 Functions

 clear(Cache)

 -spec clear(cache()) -> cache().

Clear all entries.

 get(Cache, Uri, Args)

 -spec get(cache(), binary(), map()) -> {ok, term(), cache()} | not_found.

Get entry from cache. Returns {ok, Result, UpdatedCache} or not_found. The updated cache has the entry moved to front (LRU). Automatically removes expired entries.

 invalidate(Cache, Uri, Args)

 -spec invalidate(cache(), binary(), map()) -> cache().

Invalidate (remove) entry.

 is_expired(Cache, Uri, Args)

 -spec is_expired(cache(), binary(), map()) -> boolean().

Check if entry is expired.

 make_key(Uri, Args)

 -spec make_key(binary(), map()) -> binary().

Make cache key from URI and args. Uses hash of URI and args for consistent key generation.

 max_size(Cache)

 -spec max_size(cache()) -> pos_integer().

Get max size.

 new(MaxSize)

 -spec new(pos_integer()) -> cache().

Create new cache with max size.

 put(Cache, Uri, Args, Result, TTL)

 -spec put(cache(), binary(), map(), term(), pos_integer()) -> cache().

Put entry in cache.

 put_with_timestamp(Cache, Uri, Args, Result, TTL, Timestamp)

 -spec put_with_timestamp(cache(), binary(), map(), term(), pos_integer(), integer()) -> cache().

Put entry with custom timestamp (for testing).

 size(Cache)

 -spec size(cache()) -> non_neg_integer().

Get number of entries.

macula_rpc_discovery

DHT integration for finding RPC service providers. Uses Kademlia DHT to publish and discover RPC registrations. Wraps macula_discovery with RPC-specific types.

 Summary

 Types

 address/0

 dht_lookup_fun/0

 dht_publish_fun/0

 dht_unpublish_fun/0

 node_id/0

 provider_info/0

 uri/0

 Functions

 announce(Uri, LocalNodeId, LocalAddress, Metadata, DhtPublishFun)

 Announce local registration to DHT.

 filter_available(Providers, TTL)

 Filter providers to only available ones (based on last_seen TTL).

 find_providers(Uri, DhtLookupFun)

 Find service providers for a URI via DHT.

 find_with_cache(Uri, Cache, DhtLookupFun)

 Find providers with cache (default TTL: 300 seconds).

 find_with_cache(Uri, Cache, DhtLookupFun, TTL)

 Find providers with cache and custom TTL.

 unannounce(Uri, LocalNodeId, DhtUnpublishFun)

 Remove local registration from DHT.

 Types

 address/0

 -type address() :: {inet:ip_address(), inet:port_number()}.

 dht_lookup_fun/0

 -type dht_lookup_fun() :: fun((uri()) -> {ok, [provider_info()]} | {error, term()}).

 dht_publish_fun/0

 -type dht_publish_fun() :: fun((uri(), node_id(), address(), map()) -> ok | {error, term()}).

 dht_unpublish_fun/0

 -type dht_unpublish_fun() :: fun((uri(), node_id()) -> ok | {error, term()}).

 node_id/0

 -type node_id() :: binary().

 provider_info/0

 -type provider_info() ::
 #{node_id := node_id(), address := address(), metadata := map(), last_seen := integer()}.

 uri/0

 -type uri() :: binary().

 Functions

 announce(Uri, LocalNodeId, LocalAddress, Metadata, DhtPublishFun)

 -spec announce(uri(), node_id(), address(), map(), dht_publish_fun()) -> ok | {error, term()}.

Announce local registration to DHT.

 filter_available(Providers, TTL)

 -spec filter_available([provider_info()], pos_integer()) -> [provider_info()].

Filter providers to only available ones (based on last_seen TTL).

 find_providers(Uri, DhtLookupFun)

 -spec find_providers(uri(), dht_lookup_fun()) -> {ok, [provider_info()]} | {error, term()}.

Find service providers for a URI via DHT.

 find_with_cache(Uri, Cache, DhtLookupFun)

 -spec find_with_cache(uri(), macula_cache:cache(), dht_lookup_fun()) ->
 {ok, [provider_info()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find providers with cache (default TTL: 300 seconds).

 find_with_cache(Uri, Cache, DhtLookupFun, TTL)

 -spec find_with_cache(uri(), macula_cache:cache(), dht_lookup_fun(), pos_integer()) ->
 {ok, [provider_info()], macula_cache:cache()} |
 {error, term(), macula_cache:cache()}.

Find providers with cache and custom TTL.

 unannounce(Uri, LocalNodeId, DhtUnpublishFun)

 -spec unannounce(uri(), node_id(), dht_unpublish_fun()) -> ok | {error, term()}.

Remove local registration from DHT.

macula_rpc_executor

RPC call execution with timeout handling. Executes local handlers and remote calls via QUIC.

 Summary

 Types

 address/0

 handler_fn/0

 provider_info/0

 send_fun/0

 Functions

 execute_local(Handler, Args, Timeout)

 Execute local handler with timeout.

 execute_remote(Uri, Args, Provider, SendFun, Timeout)

 Execute remote call via QUIC with timeout.

 generate_call_id()

 Generate unique call ID (16-byte UUID).

 Types

 address/0

 -type address() :: macula_rpc_discovery:address().

 handler_fn/0

 -type handler_fn() :: macula_rpc_registry:handler_fn().

 provider_info/0

 -type provider_info() :: macula_rpc_discovery:provider_info().

 send_fun/0

 -type send_fun() :: fun((binary(), map(), address(), pos_integer()) -> {ok, term()} | {error, term()}).

 Functions

 execute_local(Handler, Args, Timeout)

 -spec execute_local(handler_fn(), map(), pos_integer()) -> {ok, term()} | {error, term()}.

Execute local handler with timeout.

 execute_remote(Uri, Args, Provider, SendFun, Timeout)

 -spec execute_remote(binary(), map(), provider_info(), send_fun(), pos_integer()) ->
 {ok, term()} | {error, term()}.

Execute remote call via QUIC with timeout.

 generate_call_id()

 -spec generate_call_id() -> binary().

Generate unique call ID (16-byte UUID).

macula_rpc_handler

RPC handler GenServer - manages RPC calls, replies, and failover.
Responsibilities: - Execute RPC calls (local check first, then DHT discovery) - Handle incoming RPC replies from network - Manage call timeouts with automatic failover - Track pending calls with call IDs - Monitor caller processes for automatic cleanup - Provider selection strategies (random, round-robin, etc.)
Memory Safety: - Monitors caller processes to prevent memory leaks - Cleans up immediately when caller dies (no waiting for timeout) - Cancels timers and removes pending entries on cleanup
Extracted from macula_connection.erl (Phase 5)

 Summary

 Functions

 call(Pid, Procedure, Args, Opts)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_reply(Pid, Msg)

 handle_info(Info, State)

 init(Opts)

 register_handler(Service, Handler)

 start_link(Opts)

 terminate(Reason, State)

 unregister_handler(Service)

 Functions

 call(Pid, Procedure, Args, Opts)

 -spec call(pid(), binary() | list() | atom(), term(), map()) -> {ok, term()} | {error, term()}.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_incoming_reply(Pid, Msg)

 -spec handle_incoming_reply(pid(), map()) -> ok.

 handle_info(Info, State)

 init(Opts)

 register_handler(Service, Handler)

 -spec register_handler(binary() | list() | atom(), fun((term()) -> {ok, term()} | {error, term()})) ->
 {ok, reference()} | {error, term()}.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unregister_handler(Service)

 -spec unregister_handler(binary() | list() | atom()) -> ok | {error, term()}.

macula_rpc_names

Name validation and utilities for RPC procedures. Uses reverse DNS notation: org.domain.service.procedure

 Summary

 Types

 name/0

 Functions

 matches(Name, Pattern)

 Check if name matches pattern. For now, only exact matching (no wildcards). Future: Could add wildcard patterns if needed.

 namespace(Name)

 Extract namespace (first segment).

 normalize(Name)

 Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 Count number of segments in name.

 validate(Name)

 Validate RPC procedure name syntax. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - No leading or trailing dots - No double dots - No wildcards allowed (unlike topics)

 Types

 name/0

 -type name() :: binary().

 Functions

 matches(Name, Pattern)

 -spec matches(name(), name()) -> boolean().

Check if name matches pattern. For now, only exact matching (no wildcards). Future: Could add wildcard patterns if needed.

 namespace(Name)

 -spec namespace(name()) -> binary().

Extract namespace (first segment).

 normalize(Name)

 -spec normalize(name()) -> name().

Normalize name (lowercase, trim, remove double dots).

 segment_count(Name)

 -spec segment_count(name()) -> non_neg_integer().

Count number of segments in name.

 validate(Name)

 -spec validate(name()) -> ok | {error, invalid_name}.

Validate RPC procedure name syntax. Valid names: - Non-empty - Segments separated by dots - Segments contain alphanumeric, underscore, hyphen - No leading or trailing dots - No double dots - No wildcards allowed (unlike topics)

macula_rpc_registry

Local RPC procedure registration registry. Maps URIs to handler functions. Supports multiple handlers per URI (for load balancing).

 Summary

 Types

 handler_fn/0

 invocation_strategy/0

 registration/0

 registry/0

 Functions

 find(_, Uri)

 Find all registrations for a URI.

 find_handlers(_, Uri)

 Find all handlers for a URI.

 list_registrations(_)

 List all registrations.

 list_uris(_)

 List all unique URIs in registry.

 new()

 Create new empty registry with default strategy (round_robin).

 new(Strategy)

 Create new empty registry with custom strategy.

 register(Registry, Uri, Handler, Metadata)

 Register a procedure handler. Allows multiple handlers for the same URI (for load balancing).

 size(_)

 Get total number of registrations.

 unregister(Registry, Uri, Handler)

 Unregister a specific procedure handler. Only removes the exact handler function.

 Types

 handler_fn/0

 -type handler_fn() :: fun((map()) -> {ok, term()} | {error, term()}).

 invocation_strategy/0

 -type invocation_strategy() :: round_robin | random | local_first.

 registration/0

 -type registration() :: #{uri := binary(), handler := handler_fn(), metadata := map()}.

 registry/0

 -type registry() :: #{registrations := [registration()], strategy := invocation_strategy()}.

 Functions

 find(_, Uri)

 -spec find(registry(), binary()) -> [registration()].

Find all registrations for a URI.

 find_handlers(_, Uri)

 -spec find_handlers(registry(), binary()) -> {ok, [registration()]} | not_found.

Find all handlers for a URI.

 list_registrations(_)

 -spec list_registrations(registry()) -> [registration()].

List all registrations.

 list_uris(_)

 -spec list_uris(registry()) -> [binary()].

List all unique URIs in registry.

 new()

 -spec new() -> registry().

Create new empty registry with default strategy (round_robin).

 new(Strategy)

 -spec new(invocation_strategy()) -> registry().

Create new empty registry with custom strategy.

 register(Registry, Uri, Handler, Metadata)

 -spec register(registry(), binary(), handler_fn(), map()) -> registry().

Register a procedure handler. Allows multiple handlers for the same URI (for load balancing).

 size(_)

 -spec size(registry()) -> non_neg_integer().

Get total number of registrations.

 unregister(Registry, Uri, Handler)

 -spec unregister(registry(), binary(), handler_fn()) -> registry().

Unregister a specific procedure handler. Only removes the exact handler function.

macula_rpc_router

RPC call routing strategies. Selects which provider to use for a call (local or remote).

 Summary

 Types

 provider_info/0

 registration/0

 router_state/0

 strategy/0

 Functions

 new_state(Strategy)

 Create new router state.

 select_local(Rest)

 Select local handler (returns first one).

 select_provider(_, LocalHandlers, RemoteProviders)

 Select provider using stateless strategy. For local_first, random, and closest strategies.

 select_provider_closest(LocalNodeId, LocalHandlers, RemoteProviders)

 Select provider using closest strategy (requires local node ID).

 select_provider_stateful(State, LocalHandlers, RemoteProviders)

 Select provider using stateful strategy (for round_robin).

 select_remote_random(Providers)

 Select random remote provider.

 Types

 provider_info/0

 -type provider_info() :: macula_rpc_discovery:provider_info().

 registration/0

 -type registration() :: macula_rpc_registry:registration().

 router_state/0

 -type router_state() :: #{strategy := strategy(), round_robin_index := non_neg_integer()}.

 strategy/0

 -type strategy() :: local_first | round_robin | random | closest.

 Functions

 new_state(Strategy)

 -spec new_state(strategy()) -> router_state().

Create new router state.

 select_local(Rest)

 -spec select_local([registration()]) -> {ok, registration()} | not_found.

Select local handler (returns first one).

 select_provider(_, LocalHandlers, RemoteProviders)

 -spec select_provider(strategy(), [registration()], [provider_info()]) ->
 {local, registration()} | {remote, provider_info()} | {error, no_provider}.

Select provider using stateless strategy. For local_first, random, and closest strategies.

 select_provider_closest(LocalNodeId, LocalHandlers, RemoteProviders)

 -spec select_provider_closest(binary(), [registration()], [provider_info()]) ->
 {local, registration()} |
 {remote, provider_info()} |
 {error, no_provider}.

Select provider using closest strategy (requires local node ID).

 select_provider_stateful(State, LocalHandlers, RemoteProviders)

 -spec select_provider_stateful(router_state(), [registration()], [provider_info()]) ->
 {{local, registration()} |
 {remote, provider_info()} |
 {error, no_provider},
 router_state()}.

Select provider using stateful strategy (for round_robin).

 select_remote_random(Providers)

 -spec select_remote_random([provider_info()]) -> {ok, provider_info()} | not_found.

Select random remote provider.

macula_rpc_routing

RPC routing for multi-hop DHT-routed RPC. Handles wrapping, unwrapping, and routing of RPC messages through the Kademlia DHT mesh.

 Summary

 Functions

 route_or_deliver(LocalNodeId, RpcRouteMsg, RoutingServerPid)

 Route an rpc_route message: either deliver locally or forward to next hop. Returns one of: {deliver, PayloadType, Payload} - Message is for this node {forward, NextHopNodeInfo, UpdatedRpcRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, RpcRouteMsg)

 Determine if this node should deliver the message locally or forward it.

 wrap_call(SourceNodeId, DestinationNodeId, CallMsg, MaxHops)

 Wrap a CALL message in rpc_route envelope for DHT routing.

 wrap_reply(SourceNodeId, DestinationNodeId, ReplyMsg, MaxHops)

 Wrap a REPLY message in rpc_route envelope for DHT routing back to caller.

 Functions

 route_or_deliver(LocalNodeId, RpcRouteMsg, RoutingServerPid)

 -spec route_or_deliver(binary(), macula_protocol_types:rpc_route_msg(), pid()) ->
 {deliver, call | reply, map()} |
 {forward,
 macula_routing_bucket:node_info(),
 macula_protocol_types:rpc_route_msg()} |
 {error, term()}.

Route an rpc_route message: either deliver locally or forward to next hop. Returns one of: {deliver, PayloadType, Payload} - Message is for this node {forward, NextHopNodeInfo, UpdatedRpcRouteMsg} - Forward to next hop {error, Reason} - Cannot route (TTL exceeded, no route, etc.)

 should_deliver_locally(LocalNodeId, RpcRouteMsg)

 -spec should_deliver_locally(binary(), macula_protocol_types:rpc_route_msg()) -> boolean().

Determine if this node should deliver the message locally or forward it.

 wrap_call(SourceNodeId, DestinationNodeId, CallMsg, MaxHops)

 -spec wrap_call(binary(), binary(), macula_protocol_types:call_msg(), pos_integer()) ->
 macula_protocol_types:rpc_route_msg().

Wrap a CALL message in rpc_route envelope for DHT routing.

 wrap_reply(SourceNodeId, DestinationNodeId, ReplyMsg, MaxHops)

 -spec wrap_reply(binary(), binary(), macula_protocol_types:reply_msg(), pos_integer()) ->
 macula_protocol_types:rpc_route_msg().

Wrap a REPLY message in rpc_route envelope for DHT routing back to caller.

macula_rpc_server

RPC server managing registrations and calls. GenServer that integrates registry, cache, discovery, router, and executor.

 Summary

 Types

 config/0

 state/0

 Functions

 call(Pid, Uri, Args, Timeout)

 Synchronous call to procedure.

 handle_call(_, From, State)

 Handle synchronous calls.

 handle_cast(Msg, State)

 Handle asynchronous casts (none implemented).

 handle_info(Info, State)

 Handle info messages (none expected).

 init(_)

 Initialize server state.

 list_registrations(Pid)

 List local registrations.

 register(Pid, Uri, Handler, Metadata)

 Register procedure.

 start_link(LocalNodeId, Config)

 Start RPC server.

 stop(Pid)

 Stop RPC server.

 terminate(Reason, State)

 Cleanup on termination.

 unregister(Pid, Uri, Handler)

 Unregister procedure.

 Types

 config/0

 -type config() ::
 #{routing_strategy => macula_rpc_router:strategy(),
 cache_enabled => boolean(),
 dht_lookup_fun => macula_rpc_discovery:dht_lookup_fun(),
 send_fun => macula_rpc_executor:send_fun()}.

 state/0

 -type state() ::
 #{local_node_id := binary(),
 registry := macula_rpc_registry:registry(),
 cache := macula_rpc_cache:cache(),
 router_state := macula_rpc_router:router_state(),
 config := config()}.

 Functions

 call(Pid, Uri, Args, Timeout)

 -spec call(pid(), binary(), map(), pos_integer()) -> {ok, term()} | {error, term()}.

Synchronous call to procedure.

 handle_call(_, From, State)

Handle synchronous calls.

 handle_cast(Msg, State)

Handle asynchronous casts (none implemented).

 handle_info(Info, State)

Handle info messages (none expected).

 init(_)

Initialize server state.

 list_registrations(Pid)

 -spec list_registrations(pid()) -> [macula_rpc_registry:registration()].

List local registrations.

 register(Pid, Uri, Handler, Metadata)

 -spec register(pid(), binary(), macula_rpc_registry:handler_fn(), map()) -> ok.

Register procedure.

 start_link(LocalNodeId, Config)

 -spec start_link(binary(), config()) -> {ok, pid()} | {error, term()}.

Start RPC server.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop RPC server.

 terminate(Reason, State)

Cleanup on termination.

 unregister(Pid, Uri, Handler)

 -spec unregister(pid(), binary(), macula_rpc_registry:handler_fn()) -> ok.

Unregister procedure.

macula_service_registry

Decentralized service advertisement registry using DHT.
Provides service discovery via Kademlia DHT instead of centralized registration. Services advertise their capabilities to the DHT, and clients discover providers by querying the DHT.
[bookmark: Architecture]Architecture
- Services advertise: "I provide procedure X" → DHT stores node_id at key=hash(procedure) - Clients discover: "Who provides procedure X?" → DHT returns list of node_ids - Local cache: Recent discoveries cached with TTL for low-latency lookups - Re-advertisement: Periodic republish to DHT for TTL renewal (default: every 5 min)
[bookmark: Features]Features
- Fully decentralized (no central authority) - Multiple providers supported (DHT returns list) - Load balancing (client picks from list) - Fault tolerant (try another provider if one fails) - Low latency after first lookup (local cache)

 Summary

 Types

 cache_entry/0

 handler_fn/0

 Handler function for local service implementations.

 local_service/0

 node_id/0

 32-byte node identifier.

 provider_info/0

 registry/0

 service_id/0

 Service identifier (procedure URI). Example: <<"energy.home.get">>.

 Functions

 advertise_local(Registry, ServiceId, Handler, Metadata)

 Advertise a service locally (stores handler for incoming calls).

 cache_service(Registry, ServiceId, Providers, TTL)

 Cache discovered service providers.

 cache_subscribers(Registry, Topic, Subscribers, TTL)

 Cache discovered subscribers for a topic.

 clear_cache(Registry)

 Clear the entire discovery cache.

 clear_subscriber_cache(Registry)

 Clear the entire subscriber cache.

 discover_service(Registry, ServiceId)

 Discover service providers (checks cache first, returns cached if available).

 discover_service(Registry, ServiceId, Opts)

 Discover service providers with options.

 discover_subscribers(Registry, Topic)

 Discover subscribers for a topic (checks cache first).

 get_local_handler(_, ServiceId)

 Get handler function for a locally advertised service.

 list_local_services(_)

 List all locally advertised services.

 new()

 Create new empty service registry with default settings.

 new(Opts)

 Create new service registry with custom options.

 prune_expired(Registry)

 Remove expired entries from discovery cache.

 prune_expired_local_services(Registry)

 Remove expired local services.

 prune_expired_subscribers(Registry)

 Remove expired subscriber cache entries.

 publish_to_dht(DhtPid, ServiceId, ProviderInfo, TTL, K)

 Publish a service advertisement to the DHT.

 query_dht_for_service(DhtPid, ServiceId, K)

 Query the DHT for service providers.

 remove_from_dht(DhtPid, ServiceId, NodeId)

 Remove a service advertisement from the DHT.

 unadvertise_local(Registry, ServiceId)

 Remove a local service advertisement.

 Types

 cache_entry/0

 -type cache_entry() ::
 #{service_id := service_id(),
 providers := [provider_info()],
 cached_at := integer(),
 ttl := pos_integer()}.

 handler_fn/0

 -type handler_fn() :: fun((map()) -> {ok, term()} | {error, term()}).

Handler function for local service implementations.

 local_service/0

 -type local_service() ::
 #{service_id := service_id(),
 handler := handler_fn(),
 metadata := map(),
 advertised_at := integer()}.

 node_id/0

 -type node_id() :: binary().

32-byte node identifier.

 provider_info/0

 -type provider_info() ::
 #{node_id := node_id(), endpoint := binary(), metadata := map(), advertised_at := integer()}.

 registry/0

 -type registry() ::
 #{local_services := #{service_id() => local_service()},
 cache := #{service_id() => cache_entry()},
 subscriber_cache := #{binary() => cache_entry()},
 default_ttl := pos_integer(),
 cache_ttl := pos_integer(),
 service_ttl := pos_integer()}.

 service_id/0

 -type service_id() :: binary().

Service identifier (procedure URI). Example: <<"energy.home.get">>.

 Functions

 advertise_local(Registry, ServiceId, Handler, Metadata)

 -spec advertise_local(registry(), service_id(), handler_fn(), map()) -> registry().

Advertise a service locally (stores handler for incoming calls).
This registers the service handler locally so this node can respond to incoming RPC calls. The actual DHT advertisement must be done separately (see publish_to_dht/4).

 cache_service(Registry, ServiceId, Providers, TTL)

 -spec cache_service(registry(), service_id(), [provider_info()], pos_integer()) -> registry().

Cache discovered service providers.
Stores providers in local cache with TTL. Subsequent discover_service calls will return cached results until TTL expires.

 cache_subscribers(Registry, Topic, Subscribers, TTL)

 -spec cache_subscribers(registry(), binary(), [provider_info()], pos_integer()) -> registry().

Cache discovered subscribers for a topic.
Stores subscribers in local cache with TTL. Subsequent discover_subscribers/2 calls will return cached results until TTL expires.

 clear_cache(Registry)

 -spec clear_cache(registry()) -> registry().

Clear the entire discovery cache.

 clear_subscriber_cache(Registry)

 -spec clear_subscriber_cache(registry()) -> registry().

Clear the entire subscriber cache.

 discover_service(Registry, ServiceId)

 -spec discover_service(registry(), service_id()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover service providers (checks cache first, returns cached if available).

 discover_service(Registry, ServiceId, Opts)

 -spec discover_service(registry(), service_id(), map()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover service providers with options.
Checks local cache first. If found and not expired, returns cached providers. If cache miss or expired, returns {cache_miss, Registry} so caller can query DHT.
Options: - force_refresh - Skip cache, force DHT lookup (default: false)

 discover_subscribers(Registry, Topic)

 -spec discover_subscribers(registry(), binary()) ->
 {ok, [provider_info()], registry()} | {cache_miss, registry()}.

Discover subscribers for a topic (checks cache first).
Similar to discover_service/2 but for pub/sub subscribers. Returns cached subscribers if found and not expired, otherwise cache_miss.

 get_local_handler(_, ServiceId)

 -spec get_local_handler(registry(), service_id()) -> {ok, handler_fn()} | not_found.

Get handler function for a locally advertised service.

 list_local_services(_)

 -spec list_local_services(registry()) -> [service_id()].

List all locally advertised services.

 new()

 -spec new() -> registry().

Create new empty service registry with default settings.

 new(Opts)

 -spec new(map()) -> registry().

Create new service registry with custom options.
Options: - default_ttl - Default TTL for DHT advertisements (default: 300s) - cache_ttl - How long to cache discovered services (default: 60s) - service_ttl - TTL for local services before cleanup (default: 300s, 5 minutes)

 prune_expired(Registry)

 -spec prune_expired(registry()) -> {registry(), non_neg_integer()}.

Remove expired entries from discovery cache.
Should be called periodically to prevent memory leaks. Returns updated registry and count of removed entries.

 prune_expired_local_services(Registry)

 -spec prune_expired_local_services(registry()) -> {registry(), non_neg_integer()}.

Remove expired local services.
Should be called periodically to prevent memory leaks from stale service registrations. Returns updated registry and count of removed services.

 prune_expired_subscribers(Registry)

 -spec prune_expired_subscribers(registry()) -> {registry(), non_neg_integer()}.

Remove expired subscriber cache entries.
Should be called periodically to prevent memory leaks. Returns updated registry and count of removed entries.

 publish_to_dht(DhtPid, ServiceId, ProviderInfo, TTL, K)

 -spec publish_to_dht(pid() | atom(), service_id(), provider_info(), pos_integer(), pos_integer()) ->
 ok | {error, term()}.

Publish a service advertisement to the DHT.
This function publishes a service's provider information to the DHT so other nodes can discover it. The service_id is hashed to create a DHT key, and the provider information is stored at that key.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier (procedure URI) - ProviderInfo: Information about this provider (node_id, endpoint, metadata) - TTL: Time-to-live in seconds for this advertisement - K: Number of nodes to store at (typically 20 for Kademlia)
Returns: - ok if successful - {error, Reason} if publication failed
Example:
 ProviderInfo = #{
 node_id => <<"my-node-123">>,
 endpoint => <<"https://localhost:9443">>,
 metadata => #{version => <<"1.0">>}
 },
 ok = publish_to_dht(DhtPid, <<"energy.home.get">>, ProviderInfo, 300, 20).

 query_dht_for_service(DhtPid, ServiceId, K)

 -spec query_dht_for_service(pid() | atom(), service_id(), pos_integer()) ->
 {ok, [provider_info()]} | {error, term()}.

Query the DHT for service providers.
This function queries the DHT to find nodes that provide a given service. It returns a list of provider_info() maps, each containing node_id, endpoint, and metadata for a provider.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier to query for - K: Number of closest nodes to query (typically 20 for Kademlia)
Returns: - {ok, [ProviderInfo]} if providers found - {ok, []} if no providers found - {error, Reason} if query failed
Example:
 {ok, Providers} = query_dht_for_service(DhtPid, <<"energy.home.get">>, 20),
 %% Returns: [{ok, [#{node_id => ..., endpoint => ..., metadata => ...}]}]

 remove_from_dht(DhtPid, ServiceId, NodeId)

 -spec remove_from_dht(pid() | atom(), service_id(), node_id()) -> ok | {error, term()}.

Remove a service advertisement from the DHT.
This function removes a service advertisement when unadvertising. Note: In practice, DHT entries expire naturally via TTL, so this is optional and mainly useful for immediate cleanup.
Parameters: - DhtPid: Process ID or registered name of macula_routing_server - ServiceId: The service identifier to remove - NodeId: This node's identifier (to remove only this provider)
Returns: - ok if successful or entry not found - {error, Reason} if removal failed

 unadvertise_local(Registry, ServiceId)

 -spec unadvertise_local(registry(), service_id()) -> registry().

Remove a local service advertisement.

macula_stream_acceptor

Dedicated process for accepting QUIC streams on a connection.
This process runs a blocking loop calling quicer:accept_stream/3, ensuring we're ready to accept streams before the client creates them.

 Summary

 Functions

 init(Conn, Gateway)

 Initialize the stream acceptor loop.

 start_link(Conn, Gateway)

 Start a stream acceptor for a connection. Gateway is the process that should receive stream data events.

 Functions

 init(Conn, Gateway)

Initialize the stream acceptor loop.

 start_link(Conn, Gateway)

Start a stream acceptor for a connection. Gateway is the process that should receive stream data events.

macula_time

Time utilities for Macula. Provides functions for timestamps, durations, and timeouts.

 Summary

 Functions

 duration_ms(StartTimestamp, EndTimestamp)

 Calculate duration in milliseconds between two timestamps.

 format_duration_ms(Ms)

 Format duration in milliseconds to human-readable string.

 format_timestamp(TimestampMs)

 Format timestamp to ISO 8601 string.

 is_expired(StartTimestamp, TimeoutMs)

 Check if timeout has expired.

 minutes_to_ms(Minutes)

 Convert minutes to milliseconds.

 ms_to_seconds(Ms)

 Convert milliseconds to seconds (truncates).

 seconds_to_ms(Seconds)

 Convert seconds to milliseconds.

 time_remaining(StartTimestamp, TimeoutMs)

 Calculate remaining time before timeout (in milliseconds). Returns 0 if already expired.

 timestamp()

 Get current timestamp in milliseconds since epoch.

 timestamp_microseconds()

 Get current timestamp in microseconds since epoch.

 Functions

 duration_ms(StartTimestamp, EndTimestamp)

 -spec duration_ms(integer(), integer()) -> non_neg_integer().

Calculate duration in milliseconds between two timestamps.

 format_duration_ms(Ms)

 -spec format_duration_ms(non_neg_integer()) -> binary().

Format duration in milliseconds to human-readable string.

 format_timestamp(TimestampMs)

 -spec format_timestamp(integer()) -> binary().

Format timestamp to ISO 8601 string.

 is_expired(StartTimestamp, TimeoutMs)

 -spec is_expired(integer(), pos_integer()) -> boolean().

Check if timeout has expired.

 minutes_to_ms(Minutes)

 -spec minutes_to_ms(non_neg_integer()) -> non_neg_integer().

Convert minutes to milliseconds.

 ms_to_seconds(Ms)

 -spec ms_to_seconds(non_neg_integer()) -> non_neg_integer().

Convert milliseconds to seconds (truncates).

 seconds_to_ms(Seconds)

 -spec seconds_to_ms(non_neg_integer()) -> non_neg_integer().

Convert seconds to milliseconds.

 time_remaining(StartTimestamp, TimeoutMs)

 -spec time_remaining(integer(), pos_integer()) -> non_neg_integer().

Calculate remaining time before timeout (in milliseconds). Returns 0 if already expired.

 timestamp()

 -spec timestamp() -> integer().

Get current timestamp in milliseconds since epoch.

 timestamp_microseconds()

 -spec timestamp_microseconds() -> integer().

Get current timestamp in microseconds since epoch.

macula_uri

Macula URI parsing and construction. Format: macula://realm/node_id Example: macula://org.example.mesh/0123456789abcdef...

 Summary

 Types

 node_id/0

 realm/0

 uri/0

 Functions

 equals(Uri1, Uri2)

 Check if two URIs are equal.

 get_node_id(Uri)

 Extract node ID from URI.

 get_realm(Uri)

 Extract realm from URI.

 is_valid(Uri)

 Check if URI is valid.

 new(Realm, NodeId)

 Construct Macula URI from realm and node ID.

 parse(Uri)

 Parse Macula URI to extract realm and node ID.

 Types

 node_id/0

 -type node_id() :: binary().

 realm/0

 -type realm() :: binary().

 uri/0

 -type uri() :: binary().

 Functions

 equals(Uri1, Uri2)

 -spec equals(uri(), uri()) -> boolean().

Check if two URIs are equal.

 get_node_id(Uri)

 -spec get_node_id(uri()) -> {ok, node_id()} | {error, invalid_uri}.

Extract node ID from URI.

 get_realm(Uri)

 -spec get_realm(uri()) -> {ok, realm()} | {error, invalid_uri}.

Extract realm from URI.

 is_valid(Uri)

 -spec is_valid(uri()) -> boolean().

Check if URI is valid.

 new(Realm, NodeId)

 -spec new(realm(), node_id()) -> uri().

Construct Macula URI from realm and node ID.

 parse(Uri)

 -spec parse(uri()) -> {ok, realm(), node_id()} | {error, invalid_uri}.

Parse Macula URI to extract realm and node ID.

macula_utils

Common utility functions for Macula.
This module contains pure utility functions used across the Macula codebase to improve testability and eliminate duplication.
All functions in this module are pure (no side effects) and can be tested independently.

 Summary

 Functions

 decode_json(Binary)

 Decode JSON binary to map/list.

 encode_json(Data)

 Encode map/list to JSON binary.

 ensure_binary(B)

 Ensure value is binary.

 generate_node_id()

 Generate a random node ID.

 next_message_id(Counter)

 Get next message ID from counter. Returns {MessageId, NewCounter}.

 normalize_provider(Provider)

 Normalize provider map from binary keys to atom keys.

 parse_host_port(HostPort, DefaultPort)

 Parse host:port string with default port.

 parse_url(Url)

 Parse URL to extract host and port.

 topic_matches(Pattern, Topic, Separator, WildcardSingle, WildcardMulti)

 Check if a published topic matches a subscription topic pattern. Supports configurable wildcards (defaults: dot-separated with * and **): - WildcardSingle (e.g., '*') matches a single segment - WildcardMulti (e.g., '**') matches multiple segments - Separator (e.g., '.') splits topic into segments - exact match otherwise

 Functions

 decode_json(Binary)

 -spec decode_json(binary()) -> map() | list().

Decode JSON binary to map/list.

 encode_json(Data)

 -spec encode_json(map() | list()) -> binary().

Encode map/list to JSON binary.

 ensure_binary(B)

 -spec ensure_binary(binary() | list() | atom()) -> binary().

Ensure value is binary.

 generate_node_id()

 -spec generate_node_id() -> binary().

Generate a random node ID.

 next_message_id(Counter)

 -spec next_message_id(non_neg_integer()) -> {binary(), non_neg_integer()}.

Get next message ID from counter. Returns {MessageId, NewCounter}.

 normalize_provider(Provider)

 -spec normalize_provider(map()) -> map().

Normalize provider map from binary keys to atom keys.

 parse_host_port(HostPort, DefaultPort)

 -spec parse_host_port(string(), inet:port_number()) -> {string(), inet:port_number()}.

Parse host:port string with default port.

 parse_url(Url)

 -spec parse_url(binary()) -> {string(), inet:port_number()}.

Parse URL to extract host and port.

 topic_matches(Pattern, Topic, Separator, WildcardSingle, WildcardMulti)

 -spec topic_matches(binary() | list(), binary() | list(), binary(), binary(), binary()) -> boolean().

Check if a published topic matches a subscription topic pattern. Supports configurable wildcards (defaults: dot-separated with * and **): - WildcardSingle (e.g., '*') matches a single segment - WildcardMulti (e.g., '**') matches multiple segments - Separator (e.g., '.') splits topic into segments - exact match otherwise

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/beam-cluster.jpg

OEBPS/assets/macula-logo-color.png
ﬁ@; macula.io

OEBPS/assets/elixir.png

