

 macula_neuroevolution

 v0.29.1

 Table of contents

 	Overview

 	Getting Started

 	Domain SDK

 	Domain Signals

 	Custom Evaluators

 	Evolution Strategies

 	Self-Play Training

 	LTC Meta-Controller

 	The Liquid Conglomerate

 	Cooperative Silos

 	Behavioral Events

 	Lineage Tracking

 	Topology Evolution Roadmap

 	Interoperability

 	Inference Scenarios

 	Swarm Robotics

 	LC Overview

 	Task Silo

 	Resource Silo

 	Distribution Silo

 	Temporal Silo

 	Morphological Silo

 	Economic Silo

 	Competitive Silo

 	Social Silo

 	Cultural Silo

 	Ecological Silo

 	Developmental Silo

 	Regulatory Silo

 	Communication Silo

 	README

 	
 Modules

 	agent_actuator

 	agent_bridge

 	agent_definition

 	agent_environment

 	agent_evaluator

 	agent_sensor

 	agent_species

 	agent_trainer

 	archive_crdt

 	bridge_evaluator

 	checkpoint_manager

 	coevolution_manager

 	coevolution_sup

 	coevolution_trainer

 	communication_silo

 	competitive_silo

 	controller_events

 	cultural_silo

 	developmental_silo

 	distributed_evaluator

 	distribution_l0_actuators

 	distribution_l0_morphology

 	distribution_l0_sensors

 	distribution_silo

 	domain_actuators

 	domain_rewards

 	domain_sensors

 	domain_signals

 	ecological_silo

 	economic_silo

 	elixir_evaluator_bridge

 	evaluator_pool_registry

 	evolution_strategy

 	generational_strategy

 	genome_factory

 	island_strategy

 	lc_chain

 	lc_communication_events

 	lc_competitive_events

 	lc_controller

 	lc_cross_silo

 	lc_cultural_events

 	lc_developmental_events

 	lc_distribution_events

 	lc_ecological_events

 	lc_economic_events

 	lc_ets_utils

 	lc_event_emitter

 	lc_l0_morphology

 	lc_l1_controller

 	lc_l1_morphology

 	lc_l2_controller

 	lc_l2_morphology

 	lc_morphological_events

 	lc_morphologies

 	lc_population

 	lc_regulatory_events

 	lc_reward

 	lc_sensor_publisher

 	lc_silo_behavior

 	lc_silo_chain

 	lc_social_events

 	lc_supervisor

 	lc_temporal_events

 	lc_tweann_morphology

 	macula_mesh

 	macula_neuroevolution_app

 	macula_neuroevolution_sup

 	map_elites_strategy

 	mesh_sup

 	meta_config

 	meta_controller

 	meta_reward

 	meta_trainer

 	morphological_silo

 	multispecies_environment

 	network_factory

 	neuro_config

 	neuroevolution_behavioral_events

 	neuroevolution_evaluator

 	neuroevolution_evaluator_worker

 	neuroevolution_events

 	neuroevolution_events_local

 	neuroevolution_genetic

 	neuroevolution_lineage_events

 	neuroevolution_selection

 	neuroevolution_server

 	neuroevolution_speciation

 	neuroevolution_stats

 	nif_network

 	novelty_strategy

 	red_team_archive

 	regulatory_silo

 	resource_l0_actuators

 	resource_l0_morphology

 	resource_l0_sensors

 	resource_monitor

 	resource_silo

 	signal_router

 	silo_events

 	social_silo

 	species_registry

 	steady_state_strategy

 	task_l0_actuators

 	task_l0_defaults

 	task_l0_morphology

 	task_l0_sensors

 	task_silo

 	temporal_silo

 Overview

macula_neuroevolution is an Erlang library that provides domain-agnostic population-based evolutionary training for neural networks. It works with macula_tweann to evolve network weights through selection, crossover, and mutation.
What is Neuroevolution?
Neuroevolution is a machine learning technique that uses evolutionary algorithms to train neural networks. Instead of gradient-based optimization (like backpropagation), neuroevolution:
	Maintains a population of neural networks
	Evaluates each network's fitness on a task
	Selects the best performers
	Creates new networks through crossover (combining parents) and mutation
	Repeats for many generations

This approach is particularly effective for:
	Reinforcement learning tasks where gradients are hard to compute
	Problems with sparse or delayed rewards
	Multi-objective optimization
	Evolving network topologies

Weight Evolution vs Topology Evolution
macula_neuroevolution currently provides weight evolution with fixed network topologies, while macula_tweann provides the full TWEANN (Topology and Weight Evolving) capabilities.
	Capability	macula_tweann	macula_neuroevolution
	Weight mutation	Yes	Yes
	Weight crossover	Yes	Yes
	Add neuron	Yes	Planned
	Add/remove connections	Yes	Planned
	Activation function mutation	Yes	Planned
	LTC parameter evolution	Yes	Planned

The topology evolution operators in macula_tweann include:
	add_neuron/1 - Insert neuron into existing connection
	add_outlink/1 - Add output connection from neuron
	add_inlink/1 - Add input connection to neuron
	outsplice/1 - Split output connection with new neuron
	add_sensorlink/1, add_actuatorlink/1 - Modify I/O connections

These operators follow the NEAT (NeuroEvolution of Augmenting Topologies) approach where networks start minimal and grow complexity over generations. The Liquid Conglomerate meta-controller could naturally extend to control topology evolution rates alongside weight mutation parameters.
See Topology Evolution Roadmap for future integration plans.
Architecture
[image: Architecture Overview]
Key Components
Individual Record
Each individual in the population is represented by an #individual{} record:
#individual{
 id :: term(), % Unique identifier
 network :: network(), % Neural network from macula_tweann
 parent1_id :: term() | undefined,% Lineage tracking
 parent2_id :: term() | undefined,
 fitness :: float(), % Calculated fitness
 metrics :: map(), % Domain-specific metrics
 generation_born :: pos_integer(),
 is_survivor :: boolean(), % Survived selection
 is_offspring :: boolean() % Created through breeding
}
Configuration
The #neuro_config{} record controls training behavior:
#neuro_config{
 population_size = 50, % Number of individuals
 evaluations_per_individual = 10,% Evaluations per generation
 selection_ratio = 0.20, % Top 20% survive
 mutation_rate = 0.10, % 10% of weights mutated
 mutation_strength = 0.3, % Mutation magnitude
 max_generations = infinity, % When to stop
 network_topology = {42, [16, 8], 6}, % Network structure
 evaluator_module = my_evaluator,% Your evaluator
 evaluator_options = #{}, % Options for evaluator
 event_handler = undefined % Optional event callback
}
Separation of Concerns
This library intentionally separates:
	Network operations (macula_tweann) - Creating, evaluating, and modifying neural networks
	Training orchestration (macula_neuroevolution) - Population management, selection, breeding
	Domain evaluation (your code) - Game/task-specific fitness calculation

This separation allows you to use the same training infrastructure for different domains by simply implementing the neuroevolution_evaluator behaviour.
Academic References
Evolutionary Algorithms
	Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.
Foundational text on genetic algorithms.

	Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
Comprehensive coverage of genetic algorithm theory.

Neuroevolution
	Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), 1423-1447.
Comprehensive survey of neuroevolution approaches.

	Stanley, K.O. & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2).
NEAT paper with speciation concepts applicable to weight evolution.

Selection Methods
	Miller, B.L. & Goldberg, D.E. (1995). Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems, 9(3), 193-212.
Tournament selection analysis.

Related Projects
Macula Ecosystem
	macula_tweann - Neural network library with topology evolution, LTC neurons, ONNX export
	macula - HTTP/3 mesh networking for distributed neuroevolution

External
	DXNN2 - Gene Sher's original Erlang implementation
	NEAT-Python - Python NEAT implementation
	OpenAI ES - Evolution strategies for reinforcement learning
	EvoTorch - Modern PyTorch-based evolutionary algorithms

The Liquid Conglomerate
This library includes an LTC Meta-Controller - part of a larger architecture called the Liquid Conglomerate. This hierarchical system of Liquid Time-Constant networks creates a self-optimizing training system that learns how to learn.
Key benefits:
	Self-tuning hyperparameters - No manual tuning required
	Automatic stagnation recovery - Escapes local optima automatically
	Phase-appropriate strategies - Adapts behavior throughout training
	Transfer of meta-knowledge - Training strategies can transfer across domains

The meta-controller observes training dynamics (fitness, diversity, improvement rate) and adapts hyperparameters (mutation rate, selection ratio) in real-time.
See The Liquid Conglomerate for a comprehensive explanation of the theory and effects, or LTC Meta-Controller for implementation details.
Next Steps
	See Getting Started for a quick setup guide
	Read Custom Evaluators to implement your own evaluator
	Explore The Liquid Conglomerate for the hierarchical meta-learning theory
	See LTC Meta-Controller for implementation details
	Check the module documentation for API details

 Getting Started

This guide will help you set up macula_neuroevolution and run your first evolutionary training session.
Installation
Add to your rebar.config:
{deps, [
 {macula_neuroevolution, "~> 0.12.0"}
]}.
Then fetch dependencies:
rebar3 get-deps
rebar3 compile

Quick Start
1. Define Your Evaluator
Create a module implementing the neuroevolution_evaluator behaviour. Each individual in the population has the following structure:
[image: Individual Record Structure]
-module(my_evaluator).
-behaviour(neuroevolution_evaluator).

-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

-export([evaluate/2, calculate_fitness/1]).

%% Required: Evaluate an individual
evaluate(Individual, _Options) ->
 Network = Individual#individual.network,

 %% Run your domain-specific evaluation
 %% This is where you test the network on your task
 Score = run_my_task(Network),

 %% Return updated individual with metrics
 UpdatedIndividual = Individual#individual{
 metrics = #{score => Score}
 },
 {ok, UpdatedIndividual}.

%% Required: Calculate fitness from metrics
calculate_fitness(Metrics) ->
 maps:get(score, Metrics, 0.0).

%% Your domain logic
run_my_task(Network) ->
 %% Example: Test network on 10 random inputs
 Inputs = [[rand:uniform() || _ <- lists:seq(1, 42)] || _ <- lists:seq(1, 10)],
 Outputs = [network_evaluator:propagate(Network, I) || I <- Inputs],

 %% Calculate a score based on outputs
 %% (Replace with your actual task evaluation)
 lists:sum([lists:sum(O) || O <- Outputs]).
2. Configure and Start Training
%% Include the records
-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

%% Create configuration
Config = #neuro_config{
 population_size = 50,
 selection_ratio = 0.20,
 mutation_rate = 0.10,
 mutation_strength = 0.3,
 network_topology = {42, [16, 8], 6}, % 42 inputs, 2 hidden layers, 6 outputs
 evaluator_module = my_evaluator,
 evaluator_options = #{}
},

%% Start the server
{ok, Pid} = neuroevolution_server:start_link(Config),

%% Begin training
{ok, started} = neuroevolution_server:start_training(Pid).
3. Monitor Progress
%% Get current statistics
{ok, Stats} = neuroevolution_server:get_stats(Pid),
io:format("Generation: ~p, Best: ~.2f, Avg: ~.2f~n", [
 maps:get(generation, Stats),
 maps:get(best_fitness, Stats),
 maps:get(avg_fitness, Stats)
]).

%% Get current population
{ok, Population} = neuroevolution_server:get_population(Pid),
BestIndividual = hd(lists:sort(
 fun(A, B) -> A#individual.fitness >= B#individual.fitness end,
 Population
)).
4. Stop Training
%% Stop training (keeps population)
ok = neuroevolution_server:stop_training(Pid),

%% Or stop the server entirely
gen_server:stop(Pid).
Using the Supervisor
For production use, start servers through the supervisor:
%% Ensure the application is started
application:ensure_all_started(macula_neuroevolution),

%% Start a server through the supervisor
{ok, Pid} = macula_neuroevolution_sup:start_server(Config),

%% Stop through supervisor
ok = macula_neuroevolution_sup:stop_server(Pid).
Event Handling
Subscribe to training events for real-time updates:
-module(my_event_handler).
-export([handle_event/2]).

handle_event({generation_started, Gen}, State) ->
 io:format("Generation ~p started~n", [Gen]),
 State;
handle_event({generation_complete, Stats}, State) ->
 io:format("Gen ~p: Best=~.2f, Avg=~.2f~n", [
 Stats#generation_stats.generation,
 Stats#generation_stats.best_fitness,
 Stats#generation_stats.avg_fitness
]),
 State;
handle_event({training_started, _Config}, State) ->
 io:format("Training started!~n"),
 State;
handle_event({training_stopped, Gen}, State) ->
 io:format("Training stopped at generation ~p~n", [Gen]),
 State;
handle_event(_Event, State) ->
 State.
Configure with:
Config = #neuro_config{
 %% ... other options ...
 event_handler = {my_event_handler, initial_state}
}.
Configuration Reference
	Parameter	Default	Description
	population_size	50	Number of individuals in population
	evaluations_per_individual	10	Evaluations per individual per generation
	selection_ratio	0.20	Fraction surviving selection (top 20%)
	mutation_rate	0.10	Probability of mutating each weight
	mutation_strength	0.3	Magnitude of weight perturbation
	max_generations	infinity	Maximum generations to run
	network_topology	-	{InputSize, HiddenLayers, OutputSize}
	evaluator_module	-	Module implementing neuroevolution_evaluator
	evaluator_options	#{}	Options passed to evaluator
	event_handler	undefined	{Module, InitArg} for event callbacks

Next Steps
	See Custom Evaluators for detailed evaluator implementation
	Check module documentation for API details
	Review neuroevolution_genetic for crossover/mutation algorithms
	Review neuroevolution_selection for selection strategies

 Domain SDK Guide

Build neuroevolution domains by implementing behaviour callbacks. The Domain SDK provides a clean abstraction between your domain logic and the neural network evolution engine.
A domain is the complete definition of:
	Agents - what the neural network controls (sensors, actuators)
	Environments - where agents are evaluated
	Evaluators - how performance becomes fitness

Overview
The Domain SDK consists of 8 modules:
	Module	Purpose	Type
	agent_definition	Agent identity and network topology	Behaviour
	agent_sensor	Read environment state	Behaviour
	agent_actuator	Apply actions to environment	Behaviour
	agent_environment	Episode lifecycle management	Behaviour
	agent_evaluator	Calculate fitness from metrics	Behaviour
	agent_bridge	Orchestrate sense-think-act cycle	API Module
	agent_trainer	Train agents via neuroevolution	API Module
	bridge_evaluator	Adapter for neuroevolution_server	Internal

[image: Domain SDK Architecture]
Quick Start
1. Define Your Agent
-module(my_agent).
-behaviour(agent_definition).

-export([name/0, version/0, network_topology/0]).

name() -> <<"my_game_agent">>.
version() -> {1, 0, 0}.

%% {Inputs, HiddenLayers, Outputs}
%% 8 sensors, two hidden layers (16, 8 neurons), 4 actions
network_topology() -> {8, [16, 8], 4}.
2. Implement Sensors
Sensors read environment state and produce neural network inputs.
-module(my_sensor).
-behaviour(agent_sensor).

-export([name/0, input_count/0, read/2]).

name() -> <<"game_state_sensor">>.

%% Number of values this sensor produces (NN inputs)
input_count() -> 8.

%% Read environment state, return normalized values [0.0-1.0]
read(EnvState, _AgentState) ->
 #{
 position := {X, Y},
 health := Health,
 energy := Energy,
 nearby_enemies := Enemies,
 nearby_food := Food
 } = EnvState,

 %% Normalize all values to [0.0, 1.0]
 {ok, [
 X / 100.0, %% X position (0-100 grid)
 Y / 100.0, %% Y position
 Health / 100.0, %% Health percentage
 Energy / 100.0, %% Energy percentage
 length(Enemies) / 10.0, %% Enemy count (max 10)
 closest_distance(Enemies) / 50.0,
 length(Food) / 10.0, %% Food count
 closest_distance(Food) / 50.0
]}.

closest_distance([]) -> 50.0; %% Max distance if none
closest_distance(Items) ->
 lists:min([distance(I) || I <- Items]).
3. Implement Actuators
Actuators receive neural network outputs and apply actions to the environment.
-module(my_actuator).
-behaviour(agent_actuator).

-export([name/0, output_count/0, act/3]).

name() -> <<"movement_actuator">>.

%% Number of NN outputs this actuator consumes
output_count() -> 4.

%% Convert NN outputs to environment actions
act(Outputs, EnvState, AgentState) ->
 [MoveX, MoveY, Attack, Eat] = Outputs,

 %% Interpret outputs as action probabilities
 Action = case max_index([MoveX, MoveY, Attack, Eat]) of
 0 -> {move, sign(MoveX - 0.5), 0};
 1 -> {move, 0, sign(MoveY - 0.5)};
 2 -> attack;
 3 -> eat
 end,

 {ok, Action, AgentState}.

max_index(List) ->
 {_, Index} = lists:max([{V, I} || {V, I} <- lists:zip(List, lists:seq(0, length(List)-1))]),
 Index.

sign(V) when V > 0 -> 1;
sign(V) when V < 0 -> -1;
sign(_) -> 0.
4. Implement Environment
The environment manages world state and episode lifecycle.
-module(my_environment).
-behaviour(agent_environment).

-export([name/0, init/1, spawn_agent/2, tick/2,
 apply_action/3, is_terminal/2, extract_metrics/2]).

name() -> <<"arena_environment">>.

%% Initialize world state
init(Config) ->
 Width = maps:get(width, Config, 100),
 Height = maps:get(height, Config, 100),
 MaxTicks = maps:get(max_ticks, Config, 1000),

 {ok, #{
 width => Width,
 height => Height,
 max_ticks => MaxTicks,
 tick => 0,
 food => spawn_food(10, Width, Height),
 enemies => spawn_enemies(3, Width, Height)
 }}.

%% Add an agent to the world
spawn_agent(AgentId, EnvState) ->
 #{width := W, height := H} = EnvState,
 AgentState = #{
 id => AgentId,
 position => {rand:uniform(W), rand:uniform(H)},
 health => 100.0,
 energy => 100.0,
 food_eaten => 0,
 kills => 0
 },
 {ok, AgentState, EnvState}.

%% Advance world by one timestep
tick(EnvState, _Agents) ->
 #{tick := T} = EnvState,
 %% Move enemies, respawn food, etc.
 NewEnvState = EnvState#{tick => T + 1},
 {ok, NewEnvState}.

%% Apply agent action to world
apply_action(Action, AgentState, EnvState) ->
 case Action of
 {move, DX, DY} ->
 #{position := {X, Y}} = AgentState,
 NewPos = {clamp(X + DX, 0, 100), clamp(Y + DY, 0, 100)},
 {ok, AgentState#{position => NewPos}, EnvState};
 eat ->
 %% Try to eat nearby food
 try_eat(AgentState, EnvState);
 attack ->
 %% Try to attack nearby enemy
 try_attack(AgentState, EnvState)
 end.

%% Check if episode should end
is_terminal(AgentState, EnvState) ->
 #{health := Health} = AgentState,
 #{tick := Tick, max_ticks := MaxTicks} = EnvState,
 Health =< 0 orelse Tick >= MaxTicks.

%% Extract metrics for fitness calculation
extract_metrics(AgentState, EnvState) ->
 #{tick := Ticks} = EnvState,
 #{food_eaten := Food, kills := Kills, health := Health} = AgentState,

 #{
 ticks_survived => Ticks,
 food_eaten => Food,
 kills => Kills,
 final_health => Health
 }.

%% Helper functions
clamp(V, Min, Max) -> max(Min, min(Max, V)).
spawn_food(N, W, H) -> [{rand:uniform(W), rand:uniform(H)} || _ <- lists:seq(1, N)].
spawn_enemies(N, W, H) -> [{rand:uniform(W), rand:uniform(H)} || _ <- lists:seq(1, N)].
try_eat(AgentState, EnvState) -> {ok, AgentState, EnvState}. %% Simplified
try_attack(AgentState, EnvState) -> {ok, AgentState, EnvState}. %% Simplified
5. Implement Evaluator
The evaluator calculates fitness from episode metrics.
-module(my_evaluator).
-behaviour(agent_evaluator).

-export([name/0, calculate_fitness/1, fitness_components/1]).

name() -> <<"survival_fitness">>.

calculate_fitness(Metrics) ->
 #{
 ticks_survived := Ticks,
 food_eaten := Food,
 kills := Kills,
 final_health := Health
 } = Metrics,

 %% Weighted fitness formula
 Ticks * 0.1 + %% Survival bonus
 Food * 150.0 + %% Food reward
 Kills * 100.0 + %% Combat reward
 Health * 0.5. %% Health bonus

%% Optional: breakdown for analysis
fitness_components(Metrics) ->
 #{
 ticks_survived := Ticks,
 food_eaten := Food,
 kills := Kills,
 final_health := Health
 } = Metrics,

 #{
 survival => Ticks * 0.1,
 foraging => Food * 150.0,
 combat => Kills * 100.0,
 health => Health * 0.5
 }.
6. Wire Everything Together
Use agent_bridge to orchestrate the components:
%% Create bridge configuration
Config = #{
 definition => my_agent,
 sensors => [my_sensor],
 actuators => [my_actuator],
 environment => my_environment,
 evaluator => my_evaluator
},

%% Validate configuration
{ok, Bridge} = agent_bridge:new(Config),

%% Run a single episode
EnvConfig = #{width => 100, height => 100, max_ticks => 500},
Network = get_network_from_population(), %% Your network

{ok, Fitness, Metrics} = agent_bridge:run_episode(Bridge, Network, EnvConfig).
Key Concepts
Neural Network Perspective
The naming follows the neural network's perspective:
	Sensors produce inputs TO the network - input_count/0 is how many values flow into the NN
	Actuators consume outputs FROM the network - output_count/0 is how many values the NN produces

Environment → [Sensor] → NN Inputs → [Neural Network] → NN Outputs → [Actuator] → Environment
 ↑ ↑
 input_count/0 output_count/0
Topology Validation
The bridge validates that your configuration matches:
%% If your definition says:
network_topology() -> {8, [16, 8], 4}.
 ↑ ↑
 8 inputs 4 outputs

%% Then your sensors must produce exactly 8 values total:
%% sensor1:input_count() + sensor2:input_count() + ... = 8

%% And your actuators must consume exactly 4 values total:
%% actuator1:output_count() + actuator2:output_count() + ... = 4
Multiple Sensors/Actuators
You can compose multiple sensors and actuators:
Config = #{
 definition => my_agent,
 sensors => [
 vision_sensor, %% input_count() -> 5
 audio_sensor, %% input_count() -> 2
 proprioception %% input_count() -> 1
], %% Total: 8 inputs
 actuators => [
 movement_actuator, %% output_count() -> 2
 attack_actuator %% output_count() -> 2
], %% Total: 4 outputs
 environment => arena,
 evaluator => survival_evaluator
}.
The bridge automatically slices inputs/outputs to the correct ranges for each sensor/actuator.
The Sense-Think-Act Cycle
Each tick of an episode follows this cycle:
%% 1. SENSE: Read environment through all sensors
{ok, Inputs} = agent_bridge:sense(Bridge, EnvState, AgentState),
%% Inputs = [0.5, 0.3, 0.8, 0.1, 0.9, 0.2, 0.7, 0.4] (8 values)

%% 2. THINK: Feed inputs through neural network
Outputs = nn:forward(Network, Inputs),
%% Outputs = [0.2, 0.8, 0.1, 0.6] (4 values)

%% 3. ACT: Apply outputs through all actuators
{ok, Actions, NewAgentState} = agent_bridge:act(Bridge, Outputs, EnvState, AgentState),
%% Actions = [{move, 0, 1}, attack]

%% Or do all three in one call:
{ok, Actions, NewAgentState} = agent_bridge:sense_think_act(
 Bridge, Network, EnvState, AgentState
).
Integration with Neuroevolution
Simple Training with agent_trainer
The agent_trainer module provides the simplest way to train agents:
%% 1. Create bridge with all components (evaluator required for training!)
{ok, Bridge} = agent_bridge:new(#{
 definition => my_agent,
 sensors => [my_sensor],
 actuators => [my_actuator],
 environment => my_environment,
 evaluator => my_evaluator
}),

%% 2. Train! Returns best network and stats
{ok, BestNetwork, Stats} = agent_trainer:train(Bridge, #{
 generations => 100,
 population_size => 50,
 env_config => #{max_ticks => 500}
}).
Training Options
Options = #{
 generations => 100, %% Number of generations (default: 100)
 population_size => 50, %% Population size (default: 100)
 env_config => #{}, %% Environment configuration
 episodes_per_eval => 3 %% Average over N episodes (default: 1)
}.
Evaluating a Trained Network
%% Run single episode
{ok, Fitness, Metrics} = agent_trainer:evaluate(Bridge, BestNetwork, EnvConfig).

%% Average over multiple episodes (for stochastic environments)
{ok, AvgFitness, AllMetrics} = agent_trainer:evaluate_many(Bridge, BestNetwork, EnvConfig, 10).
Advanced: Manual Configuration
For more control, create the neuro_config directly:
%% Create neuro_config from bridge
{ok, Config} = agent_trainer:to_neuro_config(Bridge, EnvConfig, #{
 population_size => 100,
 max_generations => 500
}),

%% Start and control evolution manually
{ok, Pid} = neuroevolution_server:start_link(Config),
neuroevolution_server:evolve(Pid, 100),
Stats = neuroevolution_server:get_stats(Pid),
Best = neuroevolution_server:get_best(Pid),
neuroevolution_server:stop(Pid).
Using Domain Signals
Your environment can emit signals to influence the Liquid Conglomerate silos:
%% In your environment's tick/2 or apply_action/3:
tick(EnvState, Agents) ->
 %% Emit ecological signals based on environment state
 FoodScarcity = calculate_food_scarcity(EnvState),
 signal_router:emit_from_domain(my_domain, [
 {ecological, resource_scarcity, FoodScarcity}
]),

 {ok, EnvState}.
See Domain Signals Guide for details.
Best Practices
Sensor Design
	Normalize all values to [0.0, 1.0] - Neural networks work best with normalized inputs
	Keep sensors focused - One sensor per conceptual input type (vision, audio, etc.)
	Consider relative vs absolute - Relative positions to agent often work better than absolute coordinates

Actuator Design
	Match output interpretation to activation - If using tanh (-1 to 1), interpret accordingly
	Consider discrete vs continuous - Use argmax for discrete actions, raw values for continuous
	Handle invalid actions gracefully - Clamp or ignore out-of-bounds actions

Environment Design
	Keep state minimal - Only track what's needed for decisions
	Make episodes finite - Always have terminal conditions (time limit, death, goal reached)
	Extract meaningful metrics - Metrics drive fitness, so capture what matters

Evaluator Design
	Reward intermediate progress - Don't only reward final goals
	Balance multiple objectives - Use weights to tune exploration vs exploitation
	Use fitness_components/1 - Helps debug and understand agent behavior

Example: XOR Problem
A minimal example showing all components:
%% xor_definition.erl
-module(xor_definition).
-behaviour(agent_definition).
-export([name/0, version/0, network_topology/0]).

name() -> <<"xor_solver">>.
version() -> {1, 0, 0}.
network_topology() -> {2, [4], 1}. %% 2 inputs, 4 hidden, 1 output

%% xor_sensor.erl
-module(xor_sensor).
-behaviour(agent_sensor).
-export([name/0, input_count/0, read/2]).

name() -> <<"xor_inputs">>.
input_count() -> 2.
read(#{inputs := {A, B}}, _) -> {ok, [float(A), float(B)]}.

%% xor_actuator.erl
-module(xor_actuator).
-behaviour(agent_actuator).
-export([name/0, output_count/0, act/3]).

name() -> <<"xor_output">>.
output_count() -> 1.
act([Output], Env, Agent) ->
 Prediction = if Output > 0.5 -> 1; true -> 0 end,
 {ok, Prediction, Agent#{prediction => Prediction}}.

%% xor_environment.erl
-module(xor_environment).
-behaviour(agent_environment).
-export([name/0, init/1, spawn_agent/2, tick/2,
 apply_action/3, is_terminal/2, extract_metrics/2]).

name() -> <<"xor_test">>.

init(_) ->
 Cases = [{0,0,0}, {0,1,1}, {1,0,1}, {1,1,0}],
 {ok, #{cases => Cases, current => 0, correct => 0}}.

spawn_agent(Id, Env) ->
 {ok, #{id => Id, prediction => 0}, Env}.

tick(#{cases := Cases, current := I} = Env, _) ->
 {A, B, _} = lists:nth(I + 1, Cases),
 {ok, Env#{inputs => {A, B}}}.

apply_action(Prediction, Agent, #{cases := Cases, current := I, correct := C} = Env) ->
 {_, _, Expected} = lists:nth(I + 1, Cases),
 NewCorrect = if Prediction == Expected -> C + 1; true -> C end,
 {ok, Agent, Env#{current => I + 1, correct => NewCorrect}}.

is_terminal(_, #{cases := Cases, current := I}) ->
 I >= length(Cases).

extract_metrics(_, #{correct := C, cases := Cases}) ->
 #{correct => C, total => length(Cases)}.

%% xor_evaluator.erl
-module(xor_evaluator).
-behaviour(agent_evaluator).
-export([name/0, calculate_fitness/1]).

name() -> <<"xor_fitness">>.
calculate_fitness(#{correct := C, total := T}) ->
 C / T * 100.0. %% 0-100 fitness
See Also
	Getting Started - Basic neuroevolution concepts
	Evolution Strategies - Different evolution approaches
	Domain Signals - Influencing silos from your domain
	Liquid Conglomerate - Self-tuning architecture

 Domain Signals Guide

Domain signals enable external applications to inform silo decision-making
by providing meta-level observations from the domain environment.
Architecture Overview
[image: Domain Signals Architecture]
Domain vs Sensor Signals
	Aspect	Domain Sensors	Domain Signals
	Target	L0 networks (agents)	Silos (meta-controllers)
	Purpose	Agent perception	Evolution tuning
	Example	"I see food at 45 degrees"	"Food is scarce in the world"
	Level	Individual agent	Population/environment
	Callback	read_sensors/1	emit_signals/2

Signal Categories
Each category maps to a silo that handles that type of meta-information:
	Category	Silo	Example Signals
	ecological	ecological_silo	food_scarcity, population_density, carrying_capacity
	competitive	competitive_silo	predator_ratio, conflict_rate, dominance_hierarchy
	cultural	cultural_silo	behavioral_diversity, meme_spread, innovation_rate
	social	social_silo	group_cohesion, cooperation_level, trust_network
	temporal	temporal_silo	seasonal_phase, time_pressure, episode_length
	task	task_silo	task_difficulty, learning_progress, stagnation_risk
	resource	resource_silo	compute_usage, memory_pressure, energy_cost
	distribution	distribution_silo	node_load, network_latency, migration_rate
	morphological	morphological_silo	topology_complexity, connection_density
	developmental	developmental_silo	maturation_stage, growth_rate
	regulatory	regulatory_silo	homeostatic_deviation, threshold_violations
	economic	economic_silo	resource_trading, market_conditions
	communication	communication_silo	signal_quality, message_rate

Implementing Domain Signals
1. Define Signal Spec
-module(my_domain_bridge).
-behaviour(domain_signals).

-export([signal_spec/0, emit_signals/2]).

signal_spec() ->
 [#{name => food_scarcity,
 category => ecological,
 level => l0,
 range => {0.0, 1.0},
 description => "Food availability (0=abundant, 1=scarce)"},

 #{name => predator_ratio,
 category => competitive,
 level => l0,
 range => {0.0, 1.0},
 description => "Predator to prey ratio"},

 #{name => behavioral_diversity,
 category => cultural,
 level => l0,
 range => {0.0, 1.0},
 description => "Diversity of behavioral strategies"}].
2. Emit Signals
emit_signals(DomainState, Metrics) ->
 %% Calculate food scarcity
 FoodCount = maps:get(food_count, DomainState, 0),
 MaxFood = maps:get(max_food, DomainState, 100),
 Scarcity = 1.0 - (FoodCount / max(1, MaxFood)),

 %% Calculate predator ratio
 Predators = maps:get(predator_count, Metrics, 0),
 Prey = maps:get(prey_count, Metrics, 1),
 Ratio = min(1.0, Predators / max(1, Prey)),

 %% Calculate behavioral diversity
 Behaviors = maps:get(unique_behaviors, Metrics, 1),
 PopSize = maps:get(population_size, Metrics, 1),
 Diversity = min(1.0, Behaviors / max(1, PopSize)),

 [{ecological, food_scarcity, Scarcity},
 {competitive, predator_ratio, Ratio},
 {cultural, behavioral_diversity, Diversity}].
3. Route Signals
Call from your evaluation loop:
%% After evaluation completes
Signals = my_domain_bridge:emit_signals(DomainState, Metrics),
signal_router:route(Signals).
Or register the module and use convenience function:
%% During application startup
signal_router:register_domain_module(my_domain_bridge).

%% During evaluation
signal_router:emit_from_domain(DomainState, Metrics).
Signal Levels
Signals can target different levels of the meta-hierarchy:
	L0: Individual agent level signals (most signals)
	L1: Population level signals (aggregates)
	L2: Meta-learning level signals (long-term trends)

The level field in signal_spec helps document intended granularity,
though currently all signals route to the same silo infrastructure.
How Silos Use Domain Signals
Domain signals arrive at silos with a domain_ prefix:
%% In ecological_silo
handle_cross_silo_signals(Signals, State) ->
 %% Domain signals appear as domain_food_scarcity, etc.
 FoodScarcity = maps:get(domain_food_scarcity, Signals, 0.5),

 %% Adjust carrying capacity based on food availability
 NewCarryingCapacity = case FoodScarcity > 0.7 of
 true -> reduce_carrying_capacity(State);
 false -> State
 end,

 {ok, NewCarryingCapacity}.
Best Practices
	Normalize values to [0.0, 1.0] - Silos expect normalized signals

	Use meaningful categories - Route to the silo best equipped to act on the signal

	Emit signals after each evaluation - Silos need fresh data to adapt

	Document signal semantics - Use the description field to explain what values mean

	Start simple - Begin with 2-3 key signals, add more as needed

Example: 2D World Domain (swai-node)
-module(swai_domain_bridge).
-behaviour(domain_signals).

signal_spec() ->
 [%% Ecological signals
 #{name => food_scarcity, category => ecological, level => l0,
 range => {0.0, 1.0}, description => "Food availability"},
 #{name => population_density, category => ecological, level => l0,
 range => {0.0, 1.0}, description => "Agents per unit area"},

 %% Competitive signals
 #{name => predator_ratio, category => competitive, level => l0,
 range => {0.0, 1.0}, description => "Predators vs prey"},
 #{name => conflict_rate, category => competitive, level => l0,
 range => {0.0, 1.0}, description => "Attack frequency"},

 %% Cultural signals (behavioral diversity)
 #{name => strategy_diversity, category => cultural, level => l0,
 range => {0.0, 1.0}, description => "Unique behavioral strategies"}].

emit_signals(WorldState, Metrics) ->
 %% Extract world data
 FoodCount = length(maps:get(food, WorldState, [])),
 MaxFood = maps:get(max_food, WorldState, 100),
 Agents = maps:get(agents, WorldState, []),
 WorldSize = maps:get(world_size, WorldState, {800, 600}),

 %% Calculate signals
 Scarcity = 1.0 - (FoodCount / max(1, MaxFood)),
 Density = length(Agents) / (element(1, WorldSize) * element(2, WorldSize) / 10000),
 PredRatio = calculate_predator_ratio(Agents),
 ConflictRate = maps:get(attacks_per_tick, Metrics, 0) / max(1, length(Agents)),
 StratDiv = calculate_strategy_diversity(Agents),

 [{ecological, food_scarcity, min(1.0, Scarcity)},
 {ecological, population_density, min(1.0, Density)},
 {competitive, predator_ratio, min(1.0, PredRatio)},
 {competitive, conflict_rate, min(1.0, ConflictRate)},
 {cultural, strategy_diversity, min(1.0, StratDiv)}].
See Also
	Domain SDK - Building neuroevolution domains
	Silo Overview - Understanding silos

 Custom Evaluators

The evaluator is where your domain-specific logic lives. This guide explains how to implement the neuroevolution_evaluator behaviour for different use cases.
The Behaviour
-callback evaluate(Individual, Options) -> {ok, UpdatedIndividual} | {error, Reason} when
 Individual :: individual(),
 Options :: map(),
 UpdatedIndividual :: individual(),
 Reason :: term().

-callback calculate_fitness(Metrics) -> Fitness when
 Metrics :: map(),
 Fitness :: float().
Basic Structure
-module(my_evaluator).
-behaviour(neuroevolution_evaluator).

-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

-export([evaluate/2, calculate_fitness/1]).

evaluate(Individual, Options) ->
 %% 1. Extract the network
 Network = Individual#individual.network,

 %% 2. Run your evaluation logic
 Results = run_evaluation(Network, Options),

 %% 3. Update individual with metrics
 UpdatedIndividual = Individual#individual{
 metrics = results_to_metrics(Results)
 },
 {ok, UpdatedIndividual}.

calculate_fitness(Metrics) ->
 %% Convert metrics to a single fitness score
 %% Higher is better
 compute_fitness(Metrics).
Example: Game AI Evaluator
Here's a complete example for a game-playing AI:
-module(game_evaluator).
-behaviour(neuroevolution_evaluator).

-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

-export([evaluate/2, calculate_fitness/1]).

%% Evaluate by playing multiple games
evaluate(Individual, Options) ->
 Network = Individual#individual.network,
 NumGames = maps:get(games_per_eval, Options, 10),

 %% Play multiple games to reduce variance
 GameResults = [play_game(Network) || _ <- lists:seq(1, NumGames)],

 %% Aggregate results
 TotalScore = lists:sum([R#game_result.score || R <- GameResults]),
 TotalMoves = lists:sum([R#game_result.moves || R <- GameResults]),
 Wins = length([R || R <- GameResults, R#game_result.won]),

 UpdatedIndividual = Individual#individual{
 metrics = #{
 total_score => TotalScore,
 total_moves => TotalMoves,
 wins => Wins,
 games_played => NumGames
 }
 },
 {ok, UpdatedIndividual}.

%% Multi-objective fitness
calculate_fitness(Metrics) ->
 Score = maps:get(total_score, Metrics, 0),
 Moves = maps:get(total_moves, Metrics, 0),
 Wins = maps:get(wins, Metrics, 0),

 %% Weighted combination
 Score * 10.0 + Moves * 0.1 + Wins * 100.0.

%% Internal: Play one game
play_game(Network) ->
 InitialState = game:new(),
 play_loop(Network, InitialState, 0, 0).

play_loop(Network, State, Score, Moves) ->
 case game:is_over(State) of
 true ->
 #game_result{
 score = Score,
 moves = Moves,
 won = game:is_won(State)
 };
 false ->
 %% Get game state as network input
 Input = game:to_input_vector(State),

 %% Get network decision
 Output = network_evaluator:propagate(Network, Input),
 Action = output_to_action(Output),

 %% Apply action
 {NewState, Reward} = game:step(State, Action),
 play_loop(Network, NewState, Score + Reward, Moves + 1)
 end.

output_to_action(Output) ->
 %% Convert network output to discrete action
 %% e.g., argmax for classification
 {MaxVal, MaxIdx} = lists:foldl(
 fun({Val, Idx}, {BestVal, BestIdx}) ->
 case Val > BestVal of
 true -> {Val, Idx};
 false -> {BestVal, BestIdx}
 end
 end,
 {hd(Output), 0},
 lists:zip(tl(Output), lists:seq(1, length(Output) - 1))
),
 MaxIdx.
Example: Function Approximation
For supervised learning / function approximation:
-module(regression_evaluator).
-behaviour(neuroevolution_evaluator).

-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

-export([evaluate/2, calculate_fitness/1]).

evaluate(Individual, Options) ->
 Network = Individual#individual.network,
 Dataset = maps:get(dataset, Options),

 %% Evaluate on all samples
 Errors = lists:map(
 fun({Input, Expected}) ->
 Output = network_evaluator:propagate(Network, Input),
 mean_squared_error(Output, Expected)
 end,
 Dataset
),

 MeanError = lists:sum(Errors) / length(Errors),

 UpdatedIndividual = Individual#individual{
 metrics = #{
 mean_error => MeanError,
 samples => length(Dataset)
 }
 },
 {ok, UpdatedIndividual}.

%% Lower error = higher fitness
calculate_fitness(Metrics) ->
 Error = maps:get(mean_error, Metrics, 1.0),
 %% Convert to fitness (higher is better)
 1.0 / (1.0 + Error).

mean_squared_error(Output, Expected) ->
 Diffs = lists:zipwith(fun(O, E) -> (O - E) * (O - E) end, Output, Expected),
 lists:sum(Diffs) / length(Diffs).
Example: Parallel Evaluation with Timeout
For expensive evaluations:
-module(parallel_evaluator).
-behaviour(neuroevolution_evaluator).

-include_lib("macula_neuroevolution/include/neuroevolution.hrl").

-export([evaluate/2, calculate_fitness/1]).

evaluate(Individual, Options) ->
 Network = Individual#individual.network,
 Timeout = maps:get(timeout_ms, Options, 5000),

 %% Spawn evaluation in separate process
 Self = self(),
 Ref = make_ref(),

 spawn_link(fun() ->
 Result = run_expensive_evaluation(Network),
 Self ! {eval_result, Ref, Result}
 end),

 %% Wait with timeout
 receive
 {eval_result, Ref, Result} ->
 UpdatedIndividual = Individual#individual{
 metrics = Result
 },
 {ok, UpdatedIndividual}
 after Timeout ->
 %% Timeout - return poor fitness
 UpdatedIndividual = Individual#individual{
 metrics = #{timeout => true, score => 0}
 },
 {ok, UpdatedIndividual}
 end.

calculate_fitness(Metrics) ->
 case maps:get(timeout, Metrics, false) of
 true -> 0.0; % Penalize timeouts
 false -> maps:get(score, Metrics, 0.0)
 end.

run_expensive_evaluation(Network) ->
 %% Your expensive computation here
 #{score => compute_score(Network)}.
Best Practices
1. Multiple Evaluations
Run each network multiple times to reduce variance:
NumTrials = maps:get(trials, Options, 10),
Results = [evaluate_once(Network) || _ <- lists:seq(1, NumTrials)],
AggregatedMetrics = aggregate(Results).
2. Normalize Fitness
Keep fitness values in a reasonable range:
calculate_fitness(Metrics) ->
 RawScore = maps:get(score, Metrics, 0),
 %% Normalize to [0, 1] or similar range
 math:tanh(RawScore / 1000.0).
3. Multi-Objective Fitness
Combine multiple objectives carefully:
calculate_fitness(Metrics) ->
 Score = maps:get(score, Metrics, 0),
 Efficiency = maps:get(efficiency, Metrics, 0),
 Safety = maps:get(safety, Metrics, 1),

 %% Weighted sum with constraints
 case Safety < 0.5 of
 true -> 0.0; % Safety constraint
 false -> Score * 0.7 + Efficiency * 0.3
 end.
4. Handle Errors Gracefully
evaluate(Individual, Options) ->
 try
 do_evaluation(Individual, Options)
 catch
 _:Reason ->
 error_logger:warning_msg("Evaluation failed: ~p~n", [Reason]),
 %% Return with zero fitness
 {ok, Individual#individual{metrics = #{error => true}}}
 end.
Fitness Function Design
The fitness function is critical to evolutionary success:
	Higher is better - The selection algorithms expect higher fitness = better performance
	Smooth gradients - Avoid cliff functions where small changes cause big fitness jumps
	Discriminating - Even poor solutions should have slightly different fitness
	Reward partial success - Don't only reward complete solutions

Example of incremental fitness:
calculate_fitness(Metrics) ->
 %% Reward any progress, not just winning
 DistanceTraveled = maps:get(distance, Metrics, 0),
 CollectedItems = maps:get(items, Metrics, 0),
 ReachedGoal = maps:get(goal_reached, Metrics, false),

 BaseFitness = DistanceTraveled * 0.1 + CollectedItems * 10.0,
 case ReachedGoal of
 true -> BaseFitness + 1000.0; % Big bonus for goal
 false -> BaseFitness
 end.

 Evolution Strategies Guide

This guide explains the pluggable evolution strategy system in macula_neuroevolution. The system supports multiple evolution algorithms through a common behaviour interface, allowing you to choose the best approach for your problem.
Overview
Evolution strategies determine how the population evolves over time. Different strategies have different characteristics:
[image: Evolution Lifecycle]
	Strategy	Description	Best For
	generational_strategy	Classic generational GA	Simple problems, benchmarking
	steady_state_strategy	Continuous replacement	Real-time adaptation, online learning
	island_strategy	Parallel subpopulations	Complex fitness landscapes, diversity preservation
	novelty_strategy	Novelty search	Deceptive problems, exploration
	map_elites_strategy	MAP-Elites quality-diversity	Diverse solution discovery, coverage

Quick Start
Using Generational Strategy (Default)
Config = #neuro_config{
 population_size = 50,
 evaluations_per_individual = 10,
 selection_ratio = 0.20,
 mutation_rate = 0.10,
 mutation_strength = 0.3,
 network_topology = {42, [16, 8], 6},
 evaluator_module = my_evaluator
 %% No strategy_config = uses generational_strategy by default
}.

{ok, Server} = neuroevolution_server:start_link(Config).
Using Steady-State Strategy
Config = #neuro_config{
 population_size = 50,
 network_topology = {42, [16, 8], 6},
 evaluator_module = my_evaluator,
 strategy_config = #strategy_config{
 strategy_module = steady_state_strategy,
 strategy_params = #{
 replacement_count => 2, %% Replace 2 individuals per cycle
 victim_selection => worst, %% Remove lowest fitness
 max_age => 100 %% Force replacement after 100 evals
 }
 }
}.
Using Island Strategy
Config = #neuro_config{
 population_size = 100, %% Overridden by island settings
 network_topology = {42, [16, 8], 6},
 evaluator_module = my_evaluator,
 strategy_config = #strategy_config{
 strategy_module = island_strategy,
 strategy_params = #{
 island_count => 4,
 population_per_island => 25,
 migration_interval => 50,
 migration_count => 2,
 migration_selection => best,
 topology => ring,
 island_strategy => generational_strategy,
 island_strategy_params => #{
 selection_ratio => 0.3
 }
 }
 }
}.
Using Novelty Strategy
Config = #neuro_config{
 population_size = 50,
 network_topology = {42, [16, 8], 6},
 evaluator_module = my_evaluator, %% Must return behavior descriptors
 strategy_config = #strategy_config{
 strategy_module = novelty_strategy,
 strategy_params = #{
 archive_size => 1000, %% Max archive size
 archive_probability => 0.10, %% Chance to add to archive
 k_nearest => 15, %% Neighbors for novelty calc
 include_fitness => false, %% Pure novelty (no fitness)
 fitness_weight => 0.0 %% Ignored if include_fitness=false
 }
 }
}.
Using MAP-Elites Strategy
Config = #neuro_config{
 population_size = 100, %% Not used - batch_size controls evaluation
 network_topology = {42, [16, 8], 6},
 evaluator_module = my_evaluator, %% Must return behavior descriptors
 strategy_config = #strategy_config{
 strategy_module = map_elites_strategy,
 strategy_params = #{
 behavior_dimensions => 2, %% 2D behavior space
 bins_per_dimension => 20, %% 20x20 = 400 cells
 behavior_bounds => [{0.0, 1.0}, {0.0, 1.0}],
 batch_size => 10, %% Evaluations per iteration
 random_probability => 0.10, %% 10% random, 90% from elites
 mutation_strength => 0.3
 }
 }
}.
Strategy Details
Generational Strategy
The classic genetic algorithm approach where the entire population is evaluated, then selection and breeding produce a new generation.
[image: Selection and Breeding Process]
Parameters (via #generational_params{} or map):
	Parameter	Default	Description
	selection_method	top_n	top_n, tournament, or roulette
	selection_ratio	0.20	Fraction that survives (for top_n)
	tournament_size	3	Size for tournament selection
	mutation_rate	0.10	Probability of mutating each weight
	mutation_strength	0.3	Magnitude of weight perturbation
	crossover_rate	0.75	Probability of crossover vs mutation-only
	elitism	true	Preserve best individual unchanged
	elite_count	1	Number of elites to preserve

Lifecycle Events:
	individual_born - When offspring are created
	individual_died - When individuals are eliminated
	individual_evaluated - After each fitness evaluation
	cohort_evaluated - When all individuals in generation are evaluated
	breeding_complete - After selection and breeding

Best Practices:
	Use for problems where you can evaluate all individuals in parallel
	Good baseline for comparing other strategies
	Elitism prevents losing the best solution

Steady-State Strategy
Continuous evolution where only 1-N individuals are replaced per cycle. No distinct generations - evolution is ongoing.
[image: Steady-State Flow]
Parameters (via #steady_state_params{} or map):
	Parameter	Default	Description
	replacement_count	1	Individuals replaced per cycle
	parent_selection	tournament	tournament, fitness_proportional, random
	victim_selection	worst	worst, oldest, random, tournament
	tournament_size	3	Size for tournament selection
	mutation_rate	0.10	Probability of mutating each weight
	mutation_strength	0.3	Magnitude of weight perturbation
	max_age	0	Force replacement after N evals (0 = disabled)

Lifecycle Events:
	individual_born - When offspring are created
	individual_died - When victims are replaced
	individual_evaluated - After each fitness evaluation
	steady_state_replacement - When replacement cycle occurs

Best Practices:
	Use for real-time or online learning scenarios
	Good when evaluations are expensive (don't wait for whole generation)
	max_age prevents stagnation from old individuals

Island Strategy
Meta-strategy that runs multiple isolated subpopulations with periodic migration. Maintains diversity and explores multiple fitness peaks.
[image: Island Migration Topologies]
Parameters (via #island_params{} or map):
	Parameter	Default	Description
	island_count	4	Number of islands
	population_per_island	25	Individuals per island
	migration_interval	50	Evaluations between migrations
	migration_count	2	Migrants per event
	migration_selection	best	best, random, diverse
	topology	ring	ring, full, random, custom
	custom_connections	[]	For custom topology
	island_strategy	generational_strategy	Sub-strategy module
	island_strategy_params	#{}	Sub-strategy parameters

Migration Topologies:
	ring - Each island sends to next (1→2→3→4→1)
	full - Every island can send to every other
	random - Random destination for each migration
	custom - User-specified connections

Lifecycle Events:
	All sub-strategy events (tagged with island_id in metadata)
	island_migration - When individuals migrate

Best Practices:
	Use for complex problems with multiple local optima
	Different islands can explore different regions of the fitness landscape
	Migration spreads good solutions while maintaining diversity

Novelty Strategy
Novelty Search replaces fitness-based selection with novelty-based selection. Instead of selecting the fittest individuals, it selects those with the most novel behaviors - behaviors different from the current population and an archive of past behaviors.
[image: Novelty Search]
Parameters (via #novelty_params{} or map):
	Parameter	Default	Description
	archive_size	1000	Maximum archive size
	archive_probability	0.10	Probability of adding to archive
	k_nearest	15	Neighbors for novelty calculation
	include_fitness	false	Enable hybrid mode
	fitness_weight	0.0	Fitness weight in hybrid mode (0-1)
	novelty_threshold	0.0	Minimum novelty for archive
	behavior_dimensions	undefined	Expected behavior vector size

Behavior Descriptors:
The evaluator must return a behavior descriptor in the metrics:
#{fitness => 100.0, metrics => #{behavior => [1.0, 2.5, 3.7]}}
The behavior vector characterizes what the individual did, not how well it did:
	For a maze robot: final (x, y) position
	For a game AI: action frequencies, states visited
	For neural networks: activation patterns

Lifecycle Events:
	individual_born - When offspring are created
	individual_died - When individuals are eliminated
	individual_evaluated - After each evaluation (includes novelty score)
	cohort_evaluated - When all individuals evaluated

Best Practices:
	Use for deceptive problems where fitness gradients lead to local optima
	Behavior descriptors should capture meaningful behavioral differences
	Archive preserves behavioral diversity over time
	Hybrid mode (fitness_weight > 0) balances novelty and performance

MAP-Elites Strategy
MAP-Elites is a quality-diversity algorithm that maintains a grid of elite solutions. Each cell corresponds to a region of behavior space and contains the highest-fitness individual whose behavior maps to that region.
[image: MAP-Elites Grid]
Parameters (via #map_elites_params{} or map):
	Parameter	Default	Description
	behavior_dimensions	2	Number of behavior dimensions
	bins_per_dimension	10	Discretization resolution
	behavior_bounds	[]	Min/max for each dimension
	batch_size	10	Evaluations per iteration
	random_probability	0.10	Chance of random vs elite mutation
	mutation_rate	0.10	Probability of weight mutation
	mutation_strength	0.3	Magnitude of weight perturbation

Behavior Space:
The grid divides behavior space into discrete cells:
	behavior_dimensions = 2 with bins_per_dimension = 10 creates 100 cells
	Each cell can hold one elite (the best individual for that behavior)
	Cells compete within their region, not globally

Key Metrics:
	Coverage: Fraction of cells occupied (diversity measure)
	QD-Score: Sum of all elite fitnesses (quality × diversity)

Lifecycle Events:
	individual_born - When new individuals are generated or elites placed
	individual_died - When individuals are rejected or replaced
	individual_evaluated - After each evaluation

Best Practices:
	Use when you want diverse, high-quality solutions
	Behavior bounds should be set based on expected behavioral range
	Higher bins = finer granularity but slower coverage
	Random probability helps escape local behavioral patterns

Lifecycle Events
All strategies emit lifecycle events that can be subscribed to via neuroevolution_events:
%% Subscribe to events
Realm = <<"my-realm">>,
Topic = neuroevolution_events:events_topic(Realm),
ok = neuroevolution_events:subscribe(Topic),

%% Receive events
receive
 {neuro_event, Topic, Event} ->
 handle_event(Event)
end.
Universal Events (all strategies)
#individual_born{
 id :: individual_id(),
 parent_ids :: [individual_id()],
 origin :: initial | crossover | mutation | migration,
 timestamp :: timestamp(),
 metadata :: map() %% May include island_id, generation, etc.
}.

#individual_died{
 id :: individual_id(),
 reason :: selection_pressure | age_limit | replacement | ...,
 final_fitness :: float(),
 timestamp :: timestamp(),
 metadata :: map()
}.

#individual_evaluated{
 id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()
}.
Strategy-Specific Events
%% Generational
#cohort_evaluated{generation, best_fitness, avg_fitness, ...}.
#breeding_complete{generation, survivor_count, offspring_count, ...}.

%% Steady-State
#steady_state_replacement{replaced_ids, offspring_ids, best_fitness, ...}.

%% Island
#island_migration{individual_id, from_island, to_island, fitness, ...}.
Meta-Controller Integration
All strategies support the meta-controller interface for adaptive hyperparameter tuning:
%% Get normalized inputs (0-1 range) for meta-controller
Inputs = evolution_strategy:get_meta_inputs(Module, State).
%% Returns: [diversity, improvement_gap, mutation_rate, ...]

%% Apply parameter adjustments
NewState = evolution_strategy:apply_meta_params(Module, #{
 mutation_rate => 0.15,
 mutation_strength => 0.25
}, State).
Creating Custom Strategies
Implement the evolution_strategy behaviour:
-module(my_strategy).
-behaviour(evolution_strategy).

-export([
 init/1,
 handle_evaluation_result/3,
 tick/1,
 get_population_snapshot/1,
 get_meta_inputs/1,
 apply_meta_params/2,
 terminate/2
]).

init(Config) ->
 %% Initialize population and state
 %% Returns: {ok, State, [lifecycle_event()]}
 ...

handle_evaluation_result(IndividualId, FitnessResult, State) ->
 %% Process evaluation, update state, maybe breed
 %% Returns: {[action()], [event()], NewState}
 ...

tick(State) ->
 %% Periodic maintenance (age culling, etc.)
 %% Returns: {[action()], [event()], NewState}
 ...

get_population_snapshot(State) ->
 %% Return population_snapshot() map
 ...

get_meta_inputs(State) ->
 %% Return [float()] normalized inputs for meta-controller
 ...

apply_meta_params(MetaParams, State) ->
 %% Apply parameter updates, return new state
 ...

terminate(Reason, State) ->
 %% Cleanup
 ok.
Testing with Mock Networks
For unit testing without the full macula_tweann dependency, use mock_network_factory:
TestConfig = #{
 neuro_config => #neuro_config{...},
 strategy_params => #{...},
 network_factory => mock_network_factory %% Use mock for testing
}.

{ok, State, Events} = generational_strategy:init(TestConfig).
The network_factory interface provides:
	create_feedforward/1 - Create new network
	mutate/2 - Mutate network weights
	crossover/2 - Crossover two networks

Performance Considerations
	Generational Strategy: Best when you can parallelize all evaluations
	Steady-State Strategy: Lower memory, better for expensive evaluations
	Island Strategy: Overhead from managing multiple sub-strategies, but better exploration
	Novelty Strategy: Archive operations add O(k*n) overhead per evaluation; good for exploration
	MAP-Elites Strategy: Memory scales with grid size (bins^dimensions); best for behavior space coverage

Further Reading
	guides/meta-controller.md - Adaptive hyperparameter tuning
	guides/custom-evaluator.md - Creating fitness evaluators
	include/evolution_strategy.hrl - Type definitions and parameter records
	include/lifecycle_events.hrl - Event record definitions

 Self-Play Training Mode

Self-play training enables neural networks to improve by competing against past versions of themselves, creating an "arms race" dynamic that drives continuous improvement without requiring hand-crafted opponents.
Overview
This implementation uses pure self-play (AlphaZero-style):
	No heuristic opponents - networks always play against real networks
	Population IS the opponent pool - individuals compete against each other
	Archive of champions - successful networks become future opponents

[image: Self-Play Architecture]
How It Works
First Generation (Archive Empty)
When training begins, the archive is empty. Networks compete against each other through intra-batch pairing:
[image: First Generation Pairing]
Subsequent Generations (Archive Populated)
After the first generation, top performers are added to the archive. Future networks compete against archived champions:
[image: Archive-Based Selection]
Configuration
Enable self-play in your training configuration:
Config = #{
 evaluator_module => my_game_evaluator,
 self_play => #{
 enabled => true,
 archive_size => 50, % Maximum champions to keep
 archive_threshold => auto, % Fitness threshold for archive entry
 min_fitness_percentile => 0.5 % Top 50% can enter archive
 }
}.

{ok, Pid} = neuroevolution_server:start_link(Config).
Configuration Options
	Option	Default	Description
	enabled	false	Enable self-play mode
	archive_size	50	Maximum opponents in archive
	archive_threshold	auto	Fitness threshold (auto = 50% of average)
	min_fitness_percentile	0.5	Minimum percentile to enter archive

Evaluator Integration
Your evaluator receives the opponent network in the options:
-module(my_game_evaluator).
-behaviour(network_evaluator).

evaluate(Network, Individual, Options) ->
 %% Get opponent from options
 case maps:get(self_play_manager, Options, undefined) of
 undefined ->
 %% No self-play - evaluate against environment
 evaluate_solo(Network);
 ManagerPid ->
 %% Get opponent network
 BatchNetworks = maps:get(batch_networks, Options, []),
 {ok, OpponentNetwork} = self_play_manager:get_opponent(
 ManagerPid,
 BatchNetworks
),
 %% Evaluate head-to-head
 evaluate_vs_opponent(Network, OpponentNetwork)
 end.

evaluate_vs_opponent(Network, Opponent) ->
 %% Run game simulation
 GameResult = my_game:play(Network, Opponent),

 %% Return fitness based on result
 case GameResult of
 {win, Score} -> Score * 1.0;
 {draw, _} -> 0.5;
 {loss, _} -> 0.0
 end.
Opponent Archive
The opponent archive stores successful networks with weighted sampling:
Sampling Strategy
Champions are selected based on:
	Fitness - Higher fitness = higher selection probability
	Recency - Newer champions slightly preferred (age decay)

%% Weight calculation
Weight = Fitness * exp(-Age / DecayMs)
Archive Operations
%% Get archive statistics
Stats = opponent_archive:stats(ArchiveId),
%% #{count => 42, max_size => 50, avg_fitness => 0.75, ...}

%% Manually add a champion (for importing)
Champion = #{
 network => NetworkMap,
 fitness => 0.95,
 generation => 100
},
opponent_archive:add(ArchiveId, Champion).

%% Prune to keep top N
opponent_archive:prune(ArchiveId, 25).
Arms Race Dynamics
Self-play creates emergent training dynamics:
	Generation 1: Random networks compete
	Best network archived: Becomes benchmark opponent
	Generation 2: New networks must beat Gen 1 champion
	Cycle continues: Each generation faces stronger opponents

This is how systems like AlphaZero and OpenAI Five achieve superhuman performance without hand-crafted training data.
Use Cases
Competitive Games
	Chess, Go, strategy games
	Fighting games, racing games
	Any zero-sum competition

Adversarial Training
	Predator-prey scenarios
	Security/intrusion detection
	Robustness testing

Multi-Agent Systems
	Negotiation agents
	Trading bots
	Cooperative-competitive hybrid scenarios

Future: Mesh-Native Distribution
The archive is designed for mesh-native distributed training:
	Phase	Status	Description
	Phase 1	Complete	Local ETS storage
	Phase 2	Planned	CRDT-based conflict resolution
	Phase 3	Planned	Macula PubSub for mesh sync

In Phase 3, archives will automatically sync across mesh nodes, enabling distributed self-play training where champions from one node become opponents on other nodes.
API Reference
self_play_manager
%% Get opponent for evaluation
-spec get_opponent(pid(), [map()]) -> {ok, map()}.
get_opponent(ManagerPid, BatchNetworks) -> {ok, Network}.

%% Report evaluation result (called automatically)
-spec report_result(pid(), map()) -> ok.
report_result(ManagerPid, #{
 individual => Individual,
 fitness => Fitness,
 generation => Gen
}).

%% Add champion directly
-spec add_champion(pid(), map()) -> ok | rejected.
add_champion(ManagerPid, Champion).

%% Get statistics
-spec get_stats(pid()) -> map().
get_stats(ManagerPid) -> #{
 total_evaluations => 1000,
 champions_added => 42,
 archive_size => 42,
 mode => pure_self_play
}.
opponent_archive
%% Sample opponent
-spec sample(archive_id()) -> {ok, opponent()} | empty.
sample(ArchiveId).

%% Add to archive
-spec add(archive_id(), opponent()) -> ok | rejected.
add(ArchiveId, Opponent).

%% Get statistics
-spec stats(archive_id()) -> map().
stats(ArchiveId) -> #{
 count => 42,
 max_size => 50,
 avg_fitness => 0.75,
 max_fitness => 0.95,
 min_fitness => 0.55
}.
See Also
	Evolution Strategies - Different evolution approaches
	Custom Evaluator - Writing evaluator modules
	Liquid Conglomerate - Adaptive hyperparameter tuning

 LTC Meta-Controller: Adaptive Hyperparameter Optimization

This guide explains the meta-controller system - LTC neural networks that dynamically control neuroevolution hyperparameters based on training dynamics, system resources, and mesh topology.
Liquid Conglomerate v2
The Liquid Conglomerate v2 architecture replaces the monolithic meta-controller with 3 specialized hierarchical silos, each focused on a single optimization objective:
[image: Liquid Conglomerate v2 Architecture]
Why 3 Silos?
	Separation of Concerns - Each silo optimizes one aspect of the system
	Different Time Constants - Resource reacts fast (τ=5), Task learns slow (τ=50)
	Graceful Degradation - L0 always works, even if L1/L2 fail
	Independent Tuning - Can enable/disable levels per silo
	Clearer Rewards - Task→fitness, Resource→stability, Distribution→throughput

The Three Silos
	Silo	Purpose	Time Constant (τ)	Optimization Target
	Task	Evolution optimization	50	Maximize fitness
	Resource	System stability	5	Maintain stability
	Distribution	Mesh optimization	1	Maximize throughput

Hierarchical Levels
Each silo operates with 3 hierarchical levels (L0 → L1 → L2):
[image: Hierarchical Learning]
L0: Emergency/Immediate Response
	Always active, cannot be disabled
	Provides safe defaults and hard limits
	Responds immediately to critical conditions
	Zero learning, pure reactive logic

L1: Reactive Control
	Responds to recent observations
	Per-evaluation (Resource) or per-generation (Task) adjustments
	Fast feedback loop with simple heuristics
	Can be disabled for baseline operation

L2: Predictive/Strategic Learning
	LTC neural network for pattern learning
	Multi-generation or session-scale optimization
	Learns problem-specific strategies
	Optional, requires training data

Task Silo (Evolution Optimization)
Time Constant: τ = 50 (slow adaptation)
Purpose: Optimize neuroevolution hyperparameters for maximum fitness improvement.
	Level	Name	Response Time	Function
	L0	Defaults	Immediate	Safe starting params, never disabled
	L1	Tactical	Per-generation	Adjust mutation/selection based on recent fitness
	L2	Strategic	Multi-generation	Learn long-term patterns, adapt to problem structure

Inputs
%% Task silo input features
-type task_input() :: #{
 best_fitness := float(), % Current best fitness
 mean_fitness := float(), % Population mean
 fitness_variance := float(), % Population variance
 improvement_rate := float(), % Fitness improvement rate
 stagnation_counter := integer(), % Generations without improvement
 diversity_index := float(), % Population diversity (0.0-1.0)
 entropy := float(), % Population entropy
 generation_progress := float() % Progress toward max_generations
}.
Outputs
%% Task silo controlled parameters
-type task_output() :: #{
 mutation_rate := float(), % 0.01 - 0.5
 mutation_strength := float(), % 0.05 - 1.0
 selection_ratio := float(), % 0.10 - 0.50
 add_node_rate := float(), % 0.0 - 0.10 (if topology control enabled)
 add_connection_rate := float() % 0.0 - 0.20 (if topology control enabled)
}.
Files
	task_silo.erl - Task silo gen_server
	task_l0_defaults.erl - Safe defaults
	task_l1_tactical.erl - Per-generation tuning
	task_l2_strategic.erl - Long-term learning (LTC network)

Resource Silo (System Stability)
Time Constant: τ = 5 (fast adaptation)
Purpose: Maintain system stability by controlling resource usage.
	Level	Name	Response Time	Function
	L0	Emergency	Immediate	Hard limits, GC triggers, pause if critical
	L1	Reactive	Per-evaluation	Adjust concurrency based on current pressure
	L2	Predictive	Per-generation	Learn resource patterns, anticipate needs

Implementation Status
L0: Emergency (IMPLEMENTED) - Active in neuroevolution_server.erl:
%% Emergency memory protection
check_memory_pressure() ->
 case resource_monitor:get_normalized_metrics() of
 #{memory_pressure := Pressure} when Pressure > 0.9 -> critical;
 #{memory_pressure := Pressure} when Pressure > 0.7 -> high;
 _ -> normal
 end.

handle_info(evaluate_generation, State) ->
 case check_memory_pressure() of
 critical ->
 %% CRITICAL: Pause evolution, force GC
 erlang:garbage_collect(),
 erlang:send_after(5000, self(), evaluate_generation),
 {noreply, State};
 high ->
 %% HIGH: Force GC, continue with reduced load
 erlang:garbage_collect(),
 do_evaluate_generation(State);
 normal ->
 do_evaluate_generation(State)
 end.
Inputs
%% Resource silo input features (from resource_monitor.erl)
-type resource_input() :: #{
 memory_pressure := float(), % 0.0 - 1.0 (% of system memory)
 cpu_pressure := float(), % 0.0 - 1.0 (scheduler utilization)
 process_pressure := float(), % 0.0 - 1.0 (% of max processes)
 message_queue_pressure := float(), % 0.0 - 1.0 (queue length ratio)
 binary_memory := integer(), % Binary heap size (often the culprit)
 gc_count := integer() % Recent GC operations
}.
Outputs
%% Resource silo controlled parameters
-type resource_output() :: #{
 evaluations_per_individual := pos_integer(), % 1 - 20
 max_concurrent_evaluations := pos_integer(), % 1 - 50
 population_size := pos_integer() % 10 - 200 (if enabled)
}.
Files
	resource_silo.erl - Resource silo gen_server
	resource_l0_emergency.erl - Hard limits, GC triggers (IMPLEMENTED)
	resource_l1_reactive.erl - Reactive concurrency control
	resource_l2_predictive.erl - Pattern learning (LTC network)

Distribution Silo (Mesh Optimization)
Time Constant: τ = 1 (instant adaptation)
Purpose: Optimize evaluation placement across the Macula mesh.
	Level	Name	Response Time	Function
	L0	Local-first	Immediate	Prefer local evaluation, fallback only
	L1	Load-aware	Per-batch	Route to least loaded available nodes
	L2	Topology-aware	Per-session	Optimize for network topology, locality

Inputs
%% Distribution silo input features
-type dist_input() :: #{
 node_count := integer(), % Available mesh nodes
 node_latencies := [float()], % RTT to each node (ms)
 node_loads := [float()], % Load per node (0.0-1.0)
 network_health := float(), % Overall mesh health
 evaluation_sizes := [integer()], % Batch sizes pending
 local_queue_depth := integer() % Local evaluation queue
}.
Outputs
%% Distribution silo controlled parameters
-type dist_output() :: #{
 evaluation_placement := local | distributed | hybrid,
 batch_routing := [{node_id(), weight()}],
 replication_factor := pos_integer()
}.
Files
	distribution_silo.erl - Distribution silo gen_server
	dist_l0_local.erl - Local-first evaluation
	dist_l1_load.erl - Load-balanced routing
	dist_l2_topology.erl - Topology-aware optimization

Why LTC for Meta-Learning?
LTC neurons are uniquely suited for hierarchical control:
Temporal Memory Without Recurrence
LTC neurons maintain internal state x(t) that evolves continuously:
dx/dt = -[1/tau + f(x,I)] * x + f(x,I) * A
This enables them to "remember" recent dynamics without explicit recurrence.
Adaptive Response Speed
The liquid time constant tau adapts to input magnitude:
	When system is stable (low signal), tau effectively increases -> cautious changes
	When system is changing rapidly (high signal), tau decreases -> fast adaptation

Smooth Transitions
Unlike discrete schedulers, LTC provides smooth, continuous parameter updates that prevent oscillation and instability.
File Structure
src/silos/
├── lc_supervisor.erl # Supervises all 3 silos
├── task_silo/
│ ├── task_silo.erl # Task silo gen_server
│ ├── task_l0_defaults.erl # Safe defaults
│ ├── task_l1_tactical.erl # Per-generation tuning
│ └── task_l2_strategic.erl # Long-term learning (LTC network)
├── resource_silo/
│ ├── resource_silo.erl # Resource silo gen_server
│ ├── resource_l0_emergency.erl # Hard limits, GC (IMPLEMENTED)
│ ├── resource_l1_reactive.erl # Reactive concurrency control
│ └── resource_l2_predictive.erl # Pattern learning (LTC network)
└── distribution_silo/
 ├── distribution_silo.erl # Distribution silo gen_server
 ├── dist_l0_local.erl # Local-first evaluation
 ├── dist_l1_load.erl # Load-balanced routing
 └── dist_l2_topology.erl # Topology-aware optimization
Usage
Basic Setup (Task Silo Only)
%% Configure neuroevolution with meta-controller
Config = neuro_config:from_map(#{
 network_topology => {8, [16], 4},
 evaluator_module => my_evaluator,
 meta_controller_config => #{
 network_topology => {8, [16, 8], 5},
 time_constant => 50.0,
 learning_rate => 0.001,
 enabled_levels => [l0, l1, l2] % Enable all task levels
 }
}),

{ok, Pid} = neuroevolution_server:start_link(Config).
Resource-Aware Configuration
%% Enable resource silo with emergency protection
Config = neuro_config:from_map(#{
 network_topology => {8, [16], 4},
 evaluator_module => my_evaluator,

 %% Resource silo configuration
 resource_silo_config => #{
 enabled_levels => [l0, l1], % L0 + L1, no learning yet
 memory_critical_pct => 0.9, % Pause at 90%
 memory_high_pct => 0.7, % GC at 70%
 max_concurrent_default => 10 % Default concurrency
 }
}).
Distributed Configuration
%% Enable distribution silo for mesh evaluation
Config = neuro_config:from_map(#{
 network_topology => {8, [16], 4},
 evaluator_module => my_evaluator,
 evaluation_mode => distributed,

 %% Distribution silo configuration
 distribution_silo_config => #{
 enabled_levels => [l0, l1], % Local-first + load-aware
 fallback_to_local => true, % Use local if mesh unavailable
 batch_size => 10 % Evaluation batch size
 }
}).
Reward Signals
Each silo has its own reward signal:
Task Silo Reward
%% Multi-objective fitness reward
task_reward(Stats) ->
 #{
 fitness_improvement => improvement_reward(Stats),
 convergence_speed => convergence_reward(Stats),
 diversity_maintenance => diversity_reward(Stats),
 efficiency => efficiency_reward(Stats)
 }.
Resource Silo Reward
%% Stability reward
resource_reward(Metrics) ->
 #{
 stability => 1.0 - variance(memory_history),
 throughput => evaluations_per_second,
 headroom => 1.0 - peak_memory_pressure
 }.
Distribution Silo Reward
%% Throughput reward
distribution_reward(Stats) ->
 #{
 throughput => total_evaluations / wall_clock_time,
 latency => 1.0 / mean_evaluation_latency,
 utilization => mean_node_utilization
 }.
Migration from v1
If you're using the monolithic meta-controller, migration is straightforward:
Before (v1)
MetaConfig = #meta_config{
 network_topology = {8, [16, 8], 4},
 time_constant = 50.0,
 %% ... all parameters in one config
}.
After (v2)
Config = neuro_config:from_map(#{
 %% Task silo (replaces meta_controller_config)
 meta_controller_config => #{
 network_topology => {8, [16, 8], 5},
 time_constant => 50.0
 },

 %% NEW: Resource silo
 resource_silo_config => #{
 enabled_levels => [l0, l1]
 },

 %% NEW: Distribution silo (when using mesh)
 distribution_silo_config => #{
 enabled_levels => [l0]
 }
}).
Theoretical Foundation
Multi-Timescale Separation
The 3-silo architecture exploits separation of timescales:
	Distribution (τ=1): React instantly to network conditions
	Resource (τ=5): Adapt quickly to system pressure
	Task (τ=50): Learn slowly for stable evolution

Each silo provides stability to faster systems while being regulated by slower ones.
Hierarchical Control Theory
The L0/L1/L2 hierarchy follows control theory principles:
	L0 (Safety): Guaranteed bounds, no learning required
	L1 (Feedback): Reactive control based on current state
	L2 (Feedforward): Predictive control based on learned models

Graceful Degradation
If L2 fails or produces bad outputs:
	L1 provides reasonable reactive behavior
	L0 guarantees safe operation

This is critical for production deployments.
Academic References
LTC Networks
	Hasani, R., Lechner, M., et al. (2021). "Liquid Time-constant Networks." AAAI 2021.
	Hasani, R., Lechner, M., et al. (2022). "Closed-form Continuous-time Neural Networks." Nature Machine Intelligence.

Hierarchical Control
	Sutton, R. S., Precup, D., Singh, S. (1999). "Between MDPs and semi-MDPs: A framework for temporal abstraction."
	Barto, A. G., Mahadevan, S. (2003). "Recent advances in hierarchical reinforcement learning."

Meta-Learning
	Finn, C., Abbeel, P., Levine, S. (2017). "Model-Agnostic Meta-Learning for Fast Adaptation." ICML.

Related Modules
Core
	neuroevolution_server.erl - Main evolution server
	resource_monitor.erl - System resource metrics
	neuro_config.erl - Configuration builder

Task Silo
	meta_controller.erl - Legacy/L2 implementation
	meta_trainer.erl - Gradient-based training
	meta_reward.erl - Multi-objective reward

Resource Silo
	resource_monitor.erl - Metrics collection
	resource_l0_emergency.erl - Emergency protection (inline in neuroevolution_server)

Distribution Silo
	neuroevolution_events.erl - Event publishing for distributed evaluation
	evaluator_worker.erl - Distributed evaluation worker

Implementation Roadmap
Phase 1: Foundation (COMPLETE)
	[x] neuro_config:from_map/1 for Elixir integration
	[x] meta_config:from_map/1 for Elixir integration
	[x] resource_monitor.erl for system metrics
	[x] Nil→undefined conversion

Phase 2: Resource Silo L0 (COMPLETE)
	[x] Emergency memory protection in neuroevolution_server
	[x] Memory pressure check before each generation
	[x] GC trigger at high pressure
	[x] Pause evolution at critical pressure

Phase 3: LC v2 Morphology & Sensors (COMPLETE)
	[x] resource_l0_morphology.erl - 13 sensors, 8 actuators
	[x] task_l0_morphology.erl - 16 sensors, 12 actuators
	[x] distribution_l0_morphology.erl - 14 sensors, 10 actuators
	[x] Sensor/actuator implementation for all silos
	[x] L0/L1 hyperparameter defaults and bounds

Phase 4: Cross-Silo Communication (COMPLETE)
	[x] lc_cross_silo.erl - Signal routing between silos
	[x] Signal validation and decay
	[x] Effective evals computation
	[x] lc_reward.erl - Cooperative reward signals

Phase 5: L1/L2 Controllers (COMPLETE)
	[x] lc_l1_controller.erl - Generic L1 hyperparameter tuning
	[x] lc_l2_controller.erl - Strategic meta-tuning
	[x] lc_supervisor.erl - Supervises all LC v2 children
	[x] Performance observation and trend analysis

Phase 6: Testing & Documentation (COMPLETE)
	[x] Unit tests for all morphology modules (43 tests)
	[x] Unit tests for reward computation (34 tests)
	[x] Unit tests for L1/L2 controllers (31 tests)
	[x] SVG architecture diagrams for hexdocs
	[x] Cooperative Silos guide

Phase 7: L0 TWEANN Evolution (FUTURE)
	[] Wire L0 TWEANN evolution into neuroevolution_server
	[] Integrate L1/L2 controllers into supervisor tree
	[] Add integration tests for cross-silo communication
	[] Benchmark hierarchical control performance

 The Liquid Conglomerate: Hierarchical Meta-Learning

Introduction
The Liquid Conglomerate is a novel architecture for adaptive neuroevolution that uses hierarchical Liquid Time-Constant (LTC) neural networks to create a self-optimizing training system. Instead of manually tuning hyperparameters, the system learns how to learn at multiple timescales.
This guide explains:
	What the Liquid Conglomerate is and why it matters
	How LTC dynamics enable multi-timescale learning
	The effects on neuroevolution training
	How to implement and use this architecture

The Problem: Hyperparameter Sensitivity
Neuroevolution is notoriously sensitive to hyperparameters:
	Hyperparameter	Too Low	Too High
	Mutation rate	Premature convergence	Genetic chaos
	Mutation strength	Slow exploration	Destructive changes
	Selection pressure	No progress	Loss of diversity
	Population size	Limited diversity	Wasted computation

Traditional solutions:
	Manual tuning - Time-consuming, domain-specific, often suboptimal
	Grid search - Exponentially expensive, static throughout training
	Bayesian optimization - Good but doesn't adapt during training
	Schedules - Pre-defined, can't respond to training dynamics

The Liquid Conglomerate offers a fourth way: learned, adaptive control.
The Liquid Conglomerate Vision
[image: Liquid Conglomerate Hierarchy]
The architecture consists of hierarchical LTC networks, each operating at a different timescale:
[image: Hierarchy Levels]
Each level provides stability to the level below while being regulated by the level above.
Why "Liquid"?
The name comes from Liquid Time-Constant (LTC) neurons, which have a key property: their time constant adapts to input magnitude.
Standard Neuron
output = activation(weights · inputs + bias)
No temporal memory - responds instantly to inputs.
LTC Neuron
dx/dt = -[1/tau + f(x,I)] · x + f(x,I) · A
output = g(x)
Where:
	x is internal state that persists across time
	tau is the base time constant
	f(x,I) modulates the effective time constant based on inputs
	A bounds the state

Key insight: When inputs are strong (rapid training progress), the effective tau decreases - the neuron responds quickly. When inputs are weak (stagnation), tau increases - the neuron is cautious.
This is exactly what you want for hyperparameter control.
Why "Conglomerate"?
The system is a conglomerate of interacting controllers at different timescales:
	Fast (tau ~ 1): Task networks react to immediate game/robot state
	Medium (tau ~ 100): Meta-controller adapts hyperparameters per generation
	Slow (tau ~ 1000): Meta-meta-controller adjusts the meta-controller itself
	Glacial (tau ~ 10000+): Highest levels learn meta-strategies across experiments

Like a biological organism with nervous system, endocrine system, and genetic adaptation - each operating at different speeds but forming a coherent whole.
Effects on Neuroevolution Training
1. Self-Tuning Hyperparameters
Without Liquid Conglomerate:
Generation 1-100: mutation_rate = 0.1 (too high? too low? who knows)
Generation 101-200: mutation_rate = 0.1 (still the same)
Generation 201+: mutation_rate = 0.1 (forever the same)
With Liquid Conglomerate:
Generation 1-10: mutation_rate adapts 0.3→0.15 (exploring)
Generation 11-50: mutation_rate adapts 0.15→0.08 (found promising region)
Generation 51-80: mutation_rate adapts 0.08→0.20 (stuck, increase exploration)
Generation 81-100: mutation_rate adapts 0.20→0.05 (converging on solution)
[image: Adaptive Hyperparameters]
2. Automatic Stagnation Recovery
When training stagnates, the meta-controller detects this through:
	Fitness plateau (low improvement rate)
	Decreasing population diversity
	High fitness variance with no progress

And responds by:
	Increasing mutation rate
	Reducing selection pressure
	Potentially changing network topology

%% Meta-controller observation
Inputs = [
 FitnessDelta / HistoricalAvg, % Is improvement slowing?
 PopulationDiversity / Threshold, % Is population homogeneous?
 StagnationCount / MaxStagnation, % How long stuck?
 GenerationProgress / TotalGen % Where in training?
],

%% Meta-controller outputs adaptive response
[MutationRate, MutationStrength, SelectionRatio] =
 meta_controller:get_params(MetaNetwork, Inputs),

%% When stagnating: MutationRate increases, SelectionRatio decreases
3. Phase-Appropriate Strategies
Different phases of training need different strategies:
	Phase	Strategy	Meta-Controller Learns
	Early	High exploration	Large mutation, low selection pressure
	Middle	Balanced	Moderate parameters, diversity maintenance
	Late	Exploitation	Low mutation, high selection pressure
	Stuck	Shock therapy	Sudden parameter changes to escape

The Liquid Conglomerate learns these phase transitions from training dynamics.
4. Transfer Learning of Training Strategies
A meta-controller trained on one domain carries learned "how to train" knowledge:
%% Train meta-controller on CartPole
{ok, MetaNetwork1} = train_meta_controller(cartpole_experiments),

%% Apply to new domain - starts much better than random
{ok, MetaNetwork2} = fine_tune_meta_controller(MetaNetwork1, new_domain_experiments).
The meta-controller has learned patterns like:
	"When diversity drops below X, increase mutation"
	"When improvement accelerates, reduce exploration"
	"Different network topologies need different mutation strengths"

These patterns often transfer across domains.
5. Emergent Training Behaviors
With sufficient training, meta-controllers can exhibit sophisticated emergent behaviors:
	Punctuated equilibrium: Long periods of stability interrupted by rapid adaptation
	Diversity cycling: Periodic expansion and contraction of population diversity
	Anticipatory adjustment: Changing parameters before stagnation based on learned patterns
	Coordinated control: Adjusting multiple parameters together (not independently)

Silo Training Velocity & Inference Impact
The Liquid Conglomerate can incorporate multiple specialized silos - each managing a distinct aspect of evolution. Understanding their performance impact helps decide which to enable:
	Silo	Training Velocity	Inference Overhead	Key Trade-off
	Task	Baseline (1.0x)	Minimal	Core fitness evaluation
	Resource	+20-40% faster	+1-2ms	Prevents wasted compute
	Distribution	Neutral	+2-5ms	Population structure control
	Temporal	+++ (2-4x faster)	Minimal	Eliminates wasted evaluation time
	Economic	++ (1.5-2x faster)	+5-10ms	Budget constraints force efficiency
	Cultural	+ (1.2-1.5x faster)	+1-3ms	Cultural ratchet accelerates learning
	Morphological	Neutral (0.9-1.0x)	Reduced (smaller networks)	Size constraints → faster inference
	Regulatory	+ (1.1-1.2x)	+2-5ms	Context switching enables multi-task
	Social	Neutral (0.9-1.0x)	+2-5ms	Better selection targets offset overhead
	Ecological	Variable (0.7-1.3x)	+3-8ms	Dynamic pressure → robust solutions
	Competitive	Neutral	+10-20ms (matchmaking)	Arms race maintains pressure
	Developmental	− (0.8-0.9x)	+5-10ms	Lifetime learning adds evaluation time
	Communication	Slight overhead (0.85-0.95x)	+5-15ms	Language evolution overhead

Recommended Enablement Order
Based on training velocity impact:
	Fastest to enable: Temporal, Economic, Cultural (immediate velocity gains)
	Neutral to enable: Morphological, Social, Competitive, Regulatory, Task, Resource
	Slower but more robust: Ecological (variable), Developmental, Communication

Silo Selection Strategy
%% Example: Configure LC with velocity-optimized silo selection
SiloConfig = #{
 %% Always enable (core functionality)
 task => enabled,
 resource => enabled,

 %% Enable for training velocity
 temporal => enabled, % +++ velocity
 economic => enabled, % ++ velocity
 cultural => enabled, % + velocity

 %% Enable based on domain requirements
 competitive => case Domain of
 adversarial -> enabled;
 _ -> disabled
 end,

 communication => case Domain of
 multi_agent -> enabled;
 _ -> disabled
 end,

 %% Enable for robustness (accept slower training)
 ecological => case Priority of
 robustness -> enabled;
 speed -> disabled
 end
}.
For detailed information on each silo, see the individual silo guides:
	Task Silo Guide - Core fitness evaluation and learning
	Resource Silo Guide - Computational resource management
	Temporal Silo Guide - Time and episode management
	Competitive Silo Guide - Adversarial dynamics
	Cultural Silo Guide - Knowledge transfer and traditions
	Social Silo Guide - Reputation and cooperation
	Ecological Silo Guide - Environmental pressures
	Morphological Silo Guide - Network structure control
	Developmental Silo Guide - Lifetime learning
	Regulatory Silo Guide - Gene expression control
	Economic Silo Guide - Resource economics
	Communication Silo Guide - Signal evolution

Implementation
Level 1: Meta-Controller (Current)
%% Start meta-controller
MetaConfig = #meta_config{
 network_topology = {8, [16, 8], 4},
 time_constant = 50.0, % Medium tau for generation-scale adaptation
 learning_rate = 0.001,
 reward_weights = #{
 convergence => 0.25,
 fitness => 0.25,
 efficiency => 0.20,
 diversity => 0.15,
 structure => 0.15
 }
},

{ok, MetaPid} = meta_controller:start_link(MetaConfig).

%% In evolution loop, after each generation:
handle_generation_complete(Stats, State) ->
 %% Get adapted hyperparameters
 NewParams = meta_controller:update(MetaPid, Stats),

 %% Apply to next generation
 NewConfig = State#state.config#neuro_config{
 mutation_rate = maps:get(mutation_rate, NewParams),
 mutation_strength = maps:get(mutation_strength, NewParams),
 selection_ratio = maps:get(selection_ratio, NewParams)
 },

 State#state{config = NewConfig}.
Reward Signal Design
The meta-controller's reward balances multiple objectives:
%% meta_reward.erl computes:
Reward = #{
 %% Did training improve?
 convergence_speed => FitnessDelta / TimeTaken,

 %% How good is the result?
 final_fitness => BestFitness / HistoricalBest,

 %% Was computation efficient?
 efficiency_ratio => FitnessGain / ComputeCost,

 %% Is population healthy?
 diversity_aware => DiversityScore * EntropyScore,

 %% Can population still adapt?
 normative_structure => AdaptationReadiness * BreakthroughPotential
}.

TotalReward = weighted_sum(Reward, Config#meta_config.reward_weights).
The "Normative Structure" Component
A novel reward component that rewards the meta-controller for maintaining capacity to improve, not just current performance:
%% Measures population's potential, not just current fitness
normative_structure_score(Population, History) ->
 #{
 %% Are there distinct strategy clusters?
 diversity_corridors => count_strategy_clusters(Population),

 %% Is there variance in fitness-adjacent traits?
 adaptation_readiness => measure_trait_variance(Population),

 %% How far from explored fitness regions?
 breakthrough_potential => distance_to_frontier(Population, History),

 %% Information content of population strategies
 strategy_entropy => calculate_entropy(Population)
 }.
This prevents the meta-controller from "squeezing" the population too aggressively.
Visualization
Training Dashboard
[image: Training Dashboard]
A typical Liquid Conglomerate training dashboard shows:
	Fitness curves - Best, average, worst fitness over generations
	Hyperparameter trajectories - How mutation rate, selection ratio evolve
	Meta-controller state - Internal LTC neuron states
	Diversity metrics - Population health indicators
	Reward components - What the meta-controller is optimizing

Meta-Controller Internals
%% Get meta-controller state for visualization
{ok, MetaState} = meta_controller:get_state(MetaPid),

%% MetaState contains:
#{
 inputs => [...], % Current observations
 internal_state => [...], % LTC neuron states (temporal memory)
 outputs => [...], % Current hyperparameter values
 reward_history => [...], % Recent rewards
 generation => N
}.
Theoretical Foundation
Multi-Timescale Learning
The Liquid Conglomerate exploits separation of timescales:
Fast dynamics: Agent actions (milliseconds)
 ↑ controlled by
Medium dynamics: Hyperparameters (per generation)
 ↑ controlled by
Slow dynamics: Meta-strategies (across experiments)
 ↑ controlled by
Glacial dynamics: Fundamental patterns (across domains)
Each level operates independently but couples to adjacent levels through:
	Upward: Performance metrics (feedback)
	Downward: Parameter settings (control)

Self-Organizing Criticality
With LTC meta-control, the system naturally finds the "edge of chaos":
	Too much exploitation (low mutation) → Stagnation → Meta-controller increases mutation
	Too much exploration (high mutation) → Chaos → Meta-controller decreases mutation

The liquid dynamics provide smooth transitions, preventing oscillation.
Temporal Cognition
The system develops an intuition about when to change parameters:
	LTC's adaptive tau means timescales self-organize based on signal dynamics
	A meta-controller facing rapid improvement speeds up (lower effective tau)
	A meta-controller facing stagnation slows down (higher effective tau)

This is not just optimization - it's a form of temporal cognition.
Comparison to Other Approaches
	Approach	Adapts During Training	Learns Meta-Knowledge	Multi-Timescale
	Manual tuning	No	No	No
	Grid search	No	No	No
	Random search	No	No	No
	Bayesian optimization	Limited	No	No
	Population-based training	Yes	Limited	No
	Liquid Conglomerate	Yes	Yes	Yes

Future Directions
Topology Evolution Integration
The current implementation controls weight evolution parameters. A natural extension is controlling topology evolution - structural changes to the neural networks themselves.
The macula_tweann library already provides topology mutation operators:
	add_neuron/1 - Insert neurons into existing connections
	add_outlink/1, add_inlink/1 - Add connections between neurons
	outsplice/1 - Split connections with new neurons

The meta-controller could extend to control:
	New Output	Effect on Evolution
	topology_mutation_rate	How often structural changes occur
	add_neuron_rate	Bias toward growing complexity
	add_connection_rate	Network density control
	complexity_penalty	Fitness penalty per structural element

This enables the Liquid Conglomerate to learn when to complexify networks, not just how to tune weights. Early in training, it might encourage exploration of different topologies. Later, it might focus on weight optimization of proven structures.
See Topology Evolution Roadmap for detailed integration plans.
Level 2+: Recursive Hierarchy
The current implementation is Level 1. Future work includes:
Level 2 meta-meta-controller could control:
- Level 1's tau values
- Level 1's network topology
- Level 1's reward weights
- When to reset Level 1

Level 3 could control:
- Problem decomposition strategies
- Domain transfer decisions
- Architecture search
Distributed Liquid Conglomerate
With Macula mesh, different levels can run on different nodes:
[image: Distributed Mesh]
Co-Evolution
Co-evolving meta-controllers alongside task networks could discover novel training strategies that human researchers haven't conceived.
Summary
The Liquid Conglomerate is:
	A hierarchical architecture of LTC neural networks at different timescales
	Self-tuning - learns optimal hyperparameters from training dynamics
	Adaptive - responds to stagnation, diversity loss, and phase changes
	Transferable - meta-knowledge can transfer across domains
	Emergent - develops sophisticated training strategies through learning

By embedding "how to train" knowledge into LTC networks, we move from static optimization to dynamic meta-optimization - systems that learn how to learn.
Related Guides
	LTC Meta-Controller - Implementation details
	Overview - Neuroevolution fundamentals
	Custom Evaluators - Domain-specific training
	Inference Scenarios - Deploying evolved networks

References
LTC Networks
	Hasani, R., Lechner, M., et al. (2021). "Liquid Time-constant Networks." AAAI 2021.
	Hasani, R., Lechner, M., et al. (2022). "Closed-form Continuous-time Neural Networks." Nature Machine Intelligence.

Meta-Learning
	Finn, C., Abbeel, P., Levine, S. (2017). "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks." ICML.
	Xu, Z., et al. (2018). "Meta-Gradient Reinforcement Learning." NeurIPS.

Evolved Plasticity
	Soltoggio, A., et al. (2008). "Evolutionary advantages of neuromodulated plasticity."
	Clune, J., et al. (2013). "The evolutionary origins of modularity."

Multi-Timescale Systems
	Hopfield, J.J. (1982). "Neural networks and physical systems with emergent collective computational abilities."
	Izhikevich, E.M. (2007). "Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting."

 Cooperative Silos: Cross-Silo Communication in LC v2

This guide explains how the three silos in the Liquid Conglomerate v2 architecture cooperate through signal routing, shared resources, and cooperative reward signals.
The Core Goal: Optimal Training with Resource Stability
The fundamental purpose of LC v2 is to train Task TWEANNs as fast as possible while keeping the system stable. This is achieved through a feedback loop between the Resource Silo (the governor) and the Task Silo (the training engine):
[image: Feedback Loop]
Key insight: Resource Silo acts as a feedback controller that modulates Task Silo's aggressiveness based on system health. When resources are stressed, Task Silo backs off; when resources are healthy, Task Silo can explore more aggressively.
Overview
The LC v2 architecture separates concerns into three specialized silos, each with its own hierarchical L0/L1/L2 controller:
[image: LC v2 Architecture]
Each silo optimizes a different aspect of the system:
	Silo	Focus	Time Scale	Optimization Target
	Resource	System stability	Fast (ms)	Maximize throughput, minimize GC
	Task	Evolution quality	Medium (evals)	Maximize fitness improvement
	Distribution	Network efficiency	Variable	Balance load, maintain diversity

L0 TWEANN Sensors and Actuators
Each silo's L0 controller is a TWEANN that maps environment sensors to control actuators:
[image: Silo TWEANN I/O]
Sensor/Actuator Summary:
	Silo	Sensors	Actuators	Total I/O
	Resource	13	8	21
	Task	16	12	28
	Distribution	14	10	24
	Total	43	30	73

Hierarchical Learning
Each silo implements a 3-level hierarchical controller:
[image: Hierarchical Learning]
L0: Reactive Layer
	Always active, cannot be disabled
	Responds immediately to current sensor readings
	TWEANN that maps sensors to actuators
	Time constant: 5s (Resource), 1K evals (Task), 1s (Distribution)

L1: Tactical Layer
	Observes L0 performance over a sliding window
	Adjusts L0's hyperparameters based on performance trends
	Time constant: 30s (Resource), 5K evals (Task), 10s (Distribution)

L2: Strategic Layer
	Observes L1 performance over a long-term window
	Adjusts L1's hyperparameters through slow exploration
	Time constant: 5min (Resource), 10K evals (Task), 1min (Distribution)

Cross-Silo Signal Routing
The silos communicate through lc_cross_silo, which routes signals between silos with validation and decay:
[image: Cross-Silo Signals]
Detailed Interaction Flow
Each pair of silos exchanges specific signals that enable cooperative optimization:
[image: Silo Interactions]
Signal Types
%% Resource Silo → Others
#{
 pressure_signal => 0.0-1.0, % 0=healthy, 1=critical
 max_evals_per_individual => 1-20, % Resource-constrained max
 recommended_batch_size => 1-50, % Suggested batch size
 should_simplify => 0.0-1.0, % Hint to reduce complexity
 offload_preference => 0.0-1.0, % How much to prefer remote
 local_capacity => 0.0-1.0 % Available local resources
}

%% Task Silo → Others
#{
 exploration_boost => 0.0-1.0, % How aggressively exploring
 desired_evals_per_individual => 1-50,% Fitness-based request
 expected_complexity_growth => 0.0-1.0,% Anticipated memory needs
 evaluation_urgency => 0.0-1.0, % How important speed is
 diversity_need => 0.0-1.0, % How much migration helps
 speciation_pressure => 0.0-1.0 % Species splitting tendency
}

%% Distribution Silo → Others
#{
 network_load_contribution => 0.0-1.0,% Load from distribution
 remote_capacity_available => 0.0-1.0,% Peers can help
 island_diversity_score => 0.0-1.0, % How diverse across islands
 migration_activity => 0.0-1.0 % Recent migration level
}
Signal Routing Example
%% Send a signal from Resource to Task silo
ok = lc_cross_silo:send_signal(
 resource, % Source silo
 task, % Destination silo
 #{pressure_signal => 0.8, max_evals_per_individual => 5}
),

%% Task silo receives the signal
{ok, Signals} = lc_cross_silo:get_signals(task),
%% Signals = #{pressure_signal => 0.8, max_evals_per_individual => 5}

%% Signals decay over time if not refreshed
timer:sleep(60000),
{ok, DecayedSignals} = lc_cross_silo:get_signals(task),
%% DecayedSignals values are lower due to decay
Signal Decay
Cross-silo signals decay over time to prevent stale information from affecting decisions. The decay rate is configurable per signal route:
%% Default decay configuration
decay_config() ->
 #{
 {resource, task} => #{decay_rate => 0.1, decay_interval => 5000},
 {task, resource} => #{decay_rate => 0.1, decay_interval => 5000},
 {resource, distribution} => #{decay_rate => 0.2, decay_interval => 10000},
 {distribution, resource} => #{decay_rate => 0.2, decay_interval => 10000},
 {task, distribution} => #{decay_rate => 0.15, decay_interval => 8000},
 {distribution, task} => #{decay_rate => 0.15, decay_interval => 8000}
 }.
Shared Resource Resolution
Some resources are contested between silos. The lc_cross_silo module provides resolution functions:
Evaluations Per Individual
Both Resource and Task silos have opinions on evaluations_per_individual:
	Resource sets max_evals_per_individual based on memory/CPU pressure
	Task requests desired_evals_per_individual based on fitness variance

%% Resource silo signals its constraint
ResourceSignals = #{max_evals_per_individual => 5},

%% Task silo signals its preference
TaskSignals = #{desired_evals_per_individual => 20},

%% Effective value is the minimum
EffectiveEvals = lc_cross_silo:compute_effective_evals(ResourceSignals, TaskSignals),
%% EffectiveEvals = 5 (resource-constrained)
This ensures Resource constraints are always respected while allowing Task to optimize within those constraints.
Cooperative Reward Signals
Each silo's L0 controller receives a reward signal that includes both local objectives and cross-silo cooperation penalties.
Resource Silo Reward
%% From lc_reward.erl
resource_reward(Metrics) ->
 Throughput = throughput_score(Metrics),
 Stability = stability_score(Metrics),
 Efficiency = efficiency_score(Metrics),
 TaskBlocked = task_blocked_penalty(Metrics),
 DistBlocked = distribution_blocked_penalty(Metrics),

 0.35 * Throughput +
 0.25 * Stability +
 0.15 * Efficiency -
 0.15 * TaskBlocked -
 0.10 * DistBlocked.
Task Silo Reward
task_reward(Metrics) ->
 Improvement = improvement_velocity(Metrics),
 Diversity = diversity_maintenance(Metrics),
 Complexity = complexity_growth_penalty(Metrics),
 ResourcePressure = resource_pressure_caused(Metrics),
 DistBonus = distribution_diversity_bonus(Metrics),

 0.40 * Improvement +
 0.20 * Diversity -
 0.15 * Complexity -
 0.15 * ResourcePressure +
 0.10 * DistBonus.
Distribution Silo Reward
distribution_reward(Metrics) ->
 LoadBalance = load_balance_score(Metrics),
 Migration = migration_effectiveness(Metrics),
 NetworkEff = network_efficiency(Metrics),
 ResourcePressure = resource_pressure_caused(Metrics),
 TaskDiversity = task_diversity_contribution(Metrics),

 0.30 * LoadBalance +
 0.25 * Migration +
 0.20 * NetworkEff -
 0.15 * ResourcePressure +
 0.10 * TaskDiversity.
Global Cooperation Metric
In addition to individual rewards, each silo receives a bonus based on global system health:
global_health(Metrics) ->
 ResourceHealth = maps:get(resource_throughput, Metrics, 0.5),
 TaskHealth = maps:get(task_improvement, Metrics, 0.5),
 DistHealth = maps:get(distribution_efficiency, Metrics, 0.5),
 AnyBlocked = maps:get(any_silo_blocked, Metrics, 0),

 (0.4 * ResourceHealth + 0.4 * TaskHealth + 0.2 * DistHealth) -
 (0.5 * AnyBlocked).

cooperation_bonus(Metrics) ->
 HealthImprovement = global_health(Metrics) - previous_global_health(),
 max(0.0, 0.1 * HealthImprovement).
Usage Example
Starting the LC Supervisor
%% Full LC v2 configuration
Config = #{
 %% Resource silo config
 resource_config => #{
 morphology_module => resource_l0_morphology,
 tau_l0 => 5000, % 5 second L0 cycle
 tau_l1 => 30000, % 30 second L1 cycle
 tau_l2 => 300000 % 5 minute L2 cycle
 },

 %% Task silo config
 task_config => #{
 morphology_module => task_l0_morphology,
 tau_l0 => 1000, % 1K evaluations for L0
 tau_l1 => 5000, % 5K evaluations for L1
 tau_l2 => 10000 % 10K evaluations for L2
 },

 %% Distribution silo config
 distribution_config => #{
 morphology_module => distribution_l0_morphology,
 tau_l0 => 1000, % 1 second L0 cycle
 tau_l1 => 10000, % 10 second L1 cycle
 tau_l2 => 60000 % 1 minute L2 cycle
 },

 %% Cross-silo config
 cross_silo_config => #{
 enable_decay => true,
 log_signals => false
 }
},

{ok, SupPid} = lc_supervisor:start_link(Config).
Querying Silo State
%% Get L1 hyperparameters from each silo
{ok, ResourceL1} = lc_l1_controller:get_current_hyperparameters(ResourceL1Pid),
{ok, TaskL1} = lc_l1_controller:get_current_hyperparameters(TaskL1Pid),

%% Get L2 performance summary
{ok, L2Summary} = lc_l2_controller:get_performance_summary(L2Pid),
%% #{
%% silo_type => resource,
%% cycles_observed => 42,
%% current_hyperparameters => #{...},
%% best_hyperparameters => #{...},
%% best_cumulative_reward => 0.85,
%% exploration_rate => 0.1
%% }
Monitoring Cross-Silo Communication
%% Get all pending signals for a silo
{ok, Signals} = lc_cross_silo:get_signals(task),

%% Get signal history
{ok, History} = lc_cross_silo:get_signal_history(task, 10),
%% Returns last 10 signal updates
Module Reference
Core Modules
	Module	Purpose
	lc_supervisor.erl	Supervises all LC v2 child processes
	lc_cross_silo.erl	Signal routing between silos
	lc_reward.erl	Cooperative reward computation
	lc_l1_controller.erl	Generic L1 hyperparameter tuning
	lc_l2_controller.erl	Strategic meta-tuning
	lc_chain.erl	Cascades L2→L1→L0 hyperparameters

Silo-Specific Modules
	Module	Purpose
	resource_l0_morphology.erl	Resource silo TWEANN morphology (13→8)
	resource_l0_sensors.erl	Resource sensor data collection
	resource_l0_actuators.erl	Resource actuator application
	task_l0_morphology.erl	Task silo TWEANN morphology (16→12)
	task_l0_sensors.erl	Task sensor data collection
	task_l0_actuators.erl	Task actuator application
	distribution_l0_morphology.erl	Distribution silo TWEANN morphology (14→10)
	distribution_l0_sensors.erl	Distribution sensor data collection
	distribution_l0_actuators.erl	Distribution actuator application

Design Principles
Separation of Concerns
Each silo focuses on one optimization objective:
	Resource: System stability
	Task: Evolution quality
	Distribution: Network efficiency

This separation allows independent tuning and debugging.
Graceful Degradation
If L2 fails or produces bad outputs:
	L1 provides reasonable reactive behavior
	L0 guarantees safe operation through hard limits

Each level provides a safety net for the level above.
Time Scale Separation
The silos operate at different time scales to prevent oscillation:
	Fast silos (Resource, Distribution) respond to immediate conditions
	Slow silos (Task) learn stable evolutionary strategies
	Cross-silo signals bridge the time scales with appropriate decay

Cooperative Optimization
Silos are not purely selfish - their reward signals include:
	Penalties for blocking other silos
	Bonuses for contributing to global health
	Shared resource resolution mechanisms

Related Guides
	LTC Meta-Controller - Detailed LC v2 architecture
	The Liquid Conglomerate - Theory and rationale
	Evolution Strategies - Pluggable evolution algorithms

References
Hierarchical Control
	Sutton, R. S., Precup, D., Singh, S. (1999). "Between MDPs and semi-MDPs: A framework for temporal abstraction."
	Barto, A. G., Mahadevan, S. (2003). "Recent advances in hierarchical reinforcement learning."

Multi-Agent Cooperation
	Tan, M. (1993). "Multi-Agent Reinforcement Learning: Independent vs. Cooperative Agents."
	Lowe, R. et al. (2017). "Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments."

 Behavioral Events Guide

This guide explains how to use the behavioral event system in macula-neuroevolution. Events capture domain-specific actions using evolutionary biology terminology, enabling event sourcing, auditing, and inter-component communication.
Design Principles
Behavioral, Not CRUD
Events describe what happened in domain language:
	Good (Behavioral)	Bad (CRUD)
	offspring_born	individual_created
	individual_culled	individual_deleted
	lineage_diverged	species_created
	knowledge_transferred	knowledge_updated

Past Tense
Events are immutable facts that already happened:
	Good	Bad
	mutation_applied	apply_mutation
	episode_completed	complete_episode

Quick Start
Emitting Events
%% Include the event definitions
-include_lib("macula_neuroevolution/include/lc_temporal_events.hrl").

%% Emit an episode completion event
lc_temporal_events:emit_episode_completed(
 IndividualId,
 EpisodeNumber,
 DurationMs,
 success, % outcome
 0.15, % fitness_delta
 1000 % steps_taken
).
Subscribing to Events
%% Subscribe to temporal events
neuroevolution_behavioral_events:subscribe(temporal, self()),

%% Handle events in your process
handle_info({lc_event, temporal, #episode_completed{} = Event}, State) ->
 Duration = Event#episode_completed.duration_ms,
 %% Process the event...
 {noreply, State}.
Querying Event History
%% Get recent events for a silo
Events = neuroevolution_behavioral_events:get_events(temporal, #{
 since => erlang:system_time(millisecond) - 60000, % Last minute
 limit => 100
}).
Event Categories by Silo
Temporal Silo (9 events)
Episode and timing management.
	Event	Description
	episode_started	New evaluation episode begins
	episode_completed	Episode finished with outcome
	timing_adjusted	Evaluation timeout changed
	learning_rate_adapted	Learning rate modified
	patience_exhausted	Stagnation limit reached
	early_termination_triggered	Episode stopped early
	convergence_detected	Fitness improvement slowed
	checkpoint_reached	Training milestone achieved
	cohort_completed	Population cohort finished

%% Example: Episode completion
#episode_completed{
 meta = #lc_event_meta{...},
 individual_id = <<"ind_123">>,
 episode_number = 42,
 duration_ms = 1500,
 outcome = success, % success | failure | timeout | early_termination
 fitness_delta = 0.05,
 steps_taken = 1000
}
Economic Silo (10 events)
Resource allocation and budgeting.
	Event	Description
	budget_allocated	Compute budget assigned
	budget_exhausted	Budget fully consumed
	energy_consumed	Energy used for operation
	energy_replenished	Energy restored
	trade_executed	Resource exchange completed
	wealth_redistributed	Resources rebalanced
	bankruptcy_declared	Individual out of resources
	investment_made	Resources allocated for future
	efficiency_rewarded	Bonus for efficient use
	waste_penalized	Penalty for inefficiency

Morphological Silo (9 events)
Network structure changes.
	Event	Description
	network_grown	Neurons/connections added
	network_pruned	Unused structures removed
	complexity_increased	Network became more complex
	complexity_reduced	Network simplified
	efficiency_improved	Better performance/size ratio
	modularity_detected	Functional modules found
	symmetry_broken	Asymmetric structure emerged
	bottleneck_identified	Structural limitation found
	capacity_reached	Maximum size hit

Competitive Silo (10 events)
Adversarial dynamics.
	Event	Description
	match_played	Competition completed
	elo_updated	Rating changed
	champion_crowned	New best individual
	champion_dethroned	Previous champion beaten
	archive_updated	Opponent archive changed
	strategy_emerged	New behavior pattern
	counter_strategy_found	Exploit discovered
	arms_race_detected	Escalating competition
	diversity_collapsed	Strategies converging
	equilibrium_reached	Stable competition state

Social Silo (9 events)
Cooperation and reputation.
	Event	Description
	reputation_gained	Standing improved
	reputation_lost	Standing decreased
	coalition_formed	Group created
	coalition_dissolved	Group disbanded
	cooperation_offered	Help extended
	cooperation_accepted	Help received
	defection_detected	Trust broken
	mentoring_provided	Knowledge shared
	social_rank_changed	Hierarchy position moved

Cultural Silo (9 events)
Innovation and tradition.
	Event	Description
	innovation_discovered	New behavior found
	innovation_spread	Behavior adopted by others
	tradition_established	Pattern became standard
	tradition_abandoned	Pattern fell out of use
	imitation_attempted	Copy of behavior tried
	imitation_succeeded	Copy was successful
	meme_created	Transmissible unit formed
	cultural_drift_detected	Gradual change observed
	conformity_pressure_applied	Norm enforcement

Developmental Silo (9 events)
Ontogeny and plasticity.
	Event	Description
	development_started	Growth phase begun
	milestone_reached	Development checkpoint
	critical_period_opened	Learning window active
	critical_period_closed	Learning window ended
	plasticity_changed	Adaptability modified
	maturation_advanced	Development progressed
	metamorphosis_triggered	Major restructuring
	canalization_detected	Development constrained
	heterochrony_observed	Timing variation

Regulatory Silo (9 events)
Gene expression control.
	Event	Description
	gene_activated	Gene turned on
	gene_silenced	Gene turned off
	module_enabled	Functional unit active
	module_disabled	Functional unit inactive
	context_switched	Environmental response
	expression_pattern_changed	Regulation modified
	epigenetic_mark_set	Heritable marker added
	regulatory_cascade_triggered	Chain reaction started
	dormant_capability_awakened	Hidden feature activated

Ecological Silo (9 events)
Environmental dynamics.
	Event	Description
	niche_occupied	Ecological role filled
	niche_vacated	Role abandoned
	resource_discovered	New resource found
	resource_depleted	Resource exhausted
	stress_applied	Environmental pressure
	adaptation_successful	Stress response worked
	carrying_capacity_reached	Population limit hit
	extinction_risk_elevated	Danger level increased
	ecosystem_stabilized	Balance achieved

Communication Silo (6 events)
Signaling and coordination.
	Event	Description
	signal_sent	Message transmitted
	signal_received	Message received
	vocabulary_expanded	New signal learned
	coordination_achieved	Group synchronization
	deception_attempted	False signal sent
	deception_detected	False signal identified

Distribution Silo (4 events)
Population structure.
	Event	Description
	migration_completed	Individual moved islands
	island_formed	New subpopulation created
	island_merged	Subpopulations combined
	load_rebalanced	Work redistributed

Event Metadata
All events include standard metadata:
-record(lc_event_meta, {
 event_id :: binary(), % Unique event identifier
 timestamp :: integer(), % Unix milliseconds
 realm :: binary(), % Multi-tenancy realm
 population_id :: binary(), % Population context
 generation :: non_neg_integer(),% Generation number
 source_silo :: atom() % Emitting silo type
}).
Event Storage
Events can be stored for replay and analysis:
%% Configure event storage
neuroevolution_behavioral_events:configure(#{
 storage => ets, % ets | dets | custom
 max_events => 100000, % Ring buffer size
 persistence => false % Write to disk
}).
Integration with Silos
Each silo's event module provides typed emission functions:
%% Temporal silo
lc_temporal_events:emit_episode_started(IndId, EpisodeNum, ExpectedDuration, Gen).
lc_temporal_events:emit_learning_rate_adapted(PopId, OldRate, NewRate, Reason, Gen).

%% Economic silo
lc_economic_events:emit_budget_allocated(IndId, Amount, Source, Gen).
lc_economic_events:emit_trade_executed(FromId, ToId, ResourceType, Amount, Gen).

%% Competitive silo
lc_competitive_events:emit_match_played(Player1, Player2, Result, EloDelta, Gen).
lc_competitive_events:emit_champion_crowned(IndId, Fitness, PreviousChampion, Gen).
Best Practices
	Subscribe Early: Set up subscriptions before evolution starts
	Handle Async: Events may arrive out of order
	Batch Processing: Process events in batches for efficiency
	Selective Subscription: Only subscribe to events you need
	Idempotent Handlers: Design handlers to handle duplicates

See Also
	Liquid Conglomerate Overview
	Cross-Silo Communication

 Lineage Tracking

This guide explains the lineage event system for persistent genealogy tracking in neuroevolution.
Overview
Lineage tracking captures the complete evolutionary history of individuals, species, and populations. It enables:
	Ancestry Analysis: Trace any individual back through generations
	Breeding Trees: Visualize parent-offspring relationships
	Mutation History: Track all genetic modifications over time
	Fitness Trajectories: Analyze performance evolution
	Knowledge Transfer: Record learning and mentorship events

[image: Lineage Architecture]
Architecture
Lineage tracking follows CQRS (Command Query Responsibility Segregation) principles:
[image: CQRS Architecture]
Key Principles
	Event Store = Write Only: The neuroevolution_lineage_events behaviour handles persisting events and reading raw event streams
	Projections = Read Models: Breeding trees, fitness trajectories, and mutation histories are built by projection modules
	Subscriptions for Real-time: Projections subscribe to event streams to update read models in real-time
	No Derived Queries in Store: The event store never joins, calculates, or aggregates - it only stores and retrieves raw events

Behaviour Definition
The neuroevolution_lineage_events behaviour defines a minimal, performance-focused API:
-module(neuroevolution_lineage_events).

-callback init(Config :: map()) ->
 {ok, State :: term()} | {error, Reason :: term()}.

%% Fire-and-forget: MUST return immediately, use async I/O internally
-callback persist_event(Event :: event(), State :: term()) -> ok.

%% Fire-and-forget: MUST return immediately, use async I/O internally
-callback persist_batch(Events :: [event()], State :: term()) -> ok.

%% May block - only use for recovery/replay, not during evolution
-callback read_stream(StreamId :: stream_id(), Opts :: read_opts(), State :: term()) ->
 {ok, Events :: [event()]} | {error, Reason :: term()}.

-callback subscribe(StreamId :: stream_id(), Pid :: pid(), State :: term()) ->
 ok | {error, Reason :: term()}.

-callback unsubscribe(StreamId :: stream_id(), Pid :: pid(), State :: term()) ->
 ok | {error, Reason :: term()}.
Performance Design: Lineage tracking MUST NEVER block the evolution loop:
	persist_event/2 and persist_batch/2 return ok immediately
	I/O happens asynchronously in spawned processes
	Errors are logged, not propagated (fire-and-forget)
	Under extreme load, events may be lost (acceptable trade-off)

Architecture Note: The behaviour handles raw event store operations only. Derived queries (breeding trees, fitness trajectories, mutation history) should be implemented as projections that subscribe to event streams and maintain their own read models.
Stream Design
Events are routed to streams based on entity type:
	Stream Pattern	Events
	individual-{id}	Birth, death, fitness, mutations, knowledge transfer
	species-{id}	Speciation, lineage divergence/merge
	population-{id}	Generation, capacity, catastrophe
	coalition-{id}	Coalition lifecycle

Event Categories
Birth Events
Record how individuals come into existence:
-include_lib("macula_neuroevolution/include/lineage_events.hrl").

%% Sexual reproduction
BirthEvent = #offspring_born{
 individual_id = <<"ind-001">>,
 parent_ids = [<<"parent-1">>, <<"parent-2">>],
 species_id = <<"species-alpha">>,
 generation = 42,
 inherited_marks = [<<"stress_adaptation">>]
}.

%% First generation
PioneerEvent = #pioneer_spawned{
 individual_id = <<"ind-pioneer">>,
 species_id = <<"species-alpha">>,
 generation = 0
}.

%% Asexual reproduction
CloneEvent = #clone_produced{
 individual_id = <<"ind-clone">>,
 parent_id = <<"ind-001">>,
 mutation_applied = true
}.
Death Events
Track how individuals exit the population:
%% Selection pressure
CulledEvent = #individual_culled{
 individual_id = <<"ind-weak">>,
 final_fitness = 0.23,
 culling_reason = selection,
 age_at_death = 15
}.

%% Natural lifespan
ExpiredEvent = #lifespan_expired{
 individual_id = <<"ind-elder">>,
 final_age = 100,
 max_lifespan = 100,
 offspring_produced = 12
}.
Fitness Events
Record fitness evaluations and changes:
%% Evaluation result
FitnessEvent = #fitness_evaluated{
 individual_id = <<"ind-001">>,
 fitness = 0.847,
 evaluation_count = 5,
 metrics = #{accuracy => 0.92, speed => 0.78}
}.

%% Improvement
ImprovedEvent = #fitness_improved{
 individual_id = <<"ind-001">>,
 previous_fitness = 0.75,
 new_fitness = 0.847,
 improvement = 0.097
}.
Mutation Events
Track structural and weight modifications:
%% General mutation
MutationEvent = #mutation_applied{
 individual_id = <<"ind-001">>,
 mutation_type = add_neuron,
 mutation_details = #{layer => 2, neuron_id => <<"n-42">>}
}.

%% Topology change
NeuronAddedEvent = #neuron_added{
 individual_id = <<"ind-001">>,
 neuron_id = <<"n-42">>,
 neuron_type = ltc,
 layer = 2
}.

%% Weight perturbation
WeightEvent = #weight_perturbed{
 individual_id = <<"ind-001">>,
 from_neuron = <<"n-10">>,
 to_neuron = <<"n-42">>,
 old_weight = 0.5,
 new_weight = 0.62,
 delta = 0.12
}.
Species Events
Track speciation and lineage divergence:
%% New species emerged
SpeciesEvent = #species_emerged{
 species_id = <<"species-beta">>,
 founder_individual_id = <<"ind-divergent">>,
 initial_size = 1
}.

%% Lineage split
DivergenceEvent = #lineage_diverged{
 parent_species_id = <<"species-alpha">>,
 new_species_id = <<"species-beta">>,
 founder_individual_id = <<"ind-divergent">>,
 genetic_distance = 0.35
}.

%% Extinction
ExtinctionEvent = #lineage_ended{
 species_id = <<"species-gamma">>,
 extinction_reason = stagnation,
 lifespan_generations = 50
}.
Knowledge Transfer Events
Record learning and mentorship:
%% Knowledge transfer
TransferEvent = #knowledge_transferred{
 student_id = <<"ind-student">>,
 mentor_id = <<"ind-mentor">>,
 transfer_type = weight_grafting,
 transfer_fidelity = 0.85
}.

%% Mentorship
MentorshipEvent = #mentor_assigned{
 student_id = <<"ind-student">>,
 mentor_id = <<"ind-mentor">>,
 mentorship_type = active,
 expected_duration = 10
}.
Implementing a Backend
To persist lineage events, implement the neuroevolution_lineage_events behaviour:
-module(my_lineage_backend).
-behaviour(neuroevolution_lineage_events).

-export([init/1, persist_event/2, persist_batch/2,
 read_stream/3, subscribe/3, unsubscribe/3]).

init(Config) ->
 %% Initialize your storage (database, event store, etc.)
 {ok, #state{connection = connect(Config)}}.

persist_event(Event, State) ->
 StreamId = route_event(Event),
 %% Store event with metadata
 EventWithMeta = Event#{
 stream_id => StreamId,
 position => get_next_position(StreamId),
 stored_at => erlang:system_time(millisecond)
 },
 store_event(StreamId, EventWithMeta, State),
 notify_subscribers(StreamId, EventWithMeta, State),
 ok.

persist_batch(Events, State) ->
 lists:foreach(fun(E) -> persist_event(E, State) end, Events),
 ok.

read_stream(StreamId, Opts, State) ->
 FromPos = maps:get(from, Opts, 0),
 Limit = maps:get(limit, Opts, 10000),
 Direction = maps:get(direction, Opts, forward),
 %% Read events from storage
 Events = fetch_events(StreamId, FromPos, Limit, Direction, State),
 {ok, Events}.

subscribe(StreamId, Pid, State) ->
 %% Register subscriber for real-time events
 register_subscriber(StreamId, Pid, State),
 ok.

unsubscribe(StreamId, Pid, State) ->
 %% Remove subscriber
 remove_subscriber(StreamId, Pid, State),
 ok.
Using erl-esdb-gater via macula-neuroevolution-esdb
For production use, the macula-neuroevolution-esdb bridge library provides:
	Event Store Backend: Implements neuroevolution_lineage_events using erl-esdb-gater
	Fire-and-Forget Persistence: Non-blocking async writes via spawned processes
	Stream Routing: Automatic routing to entity-based streams

%% In your rebar.config
{deps, [
 {macula_neuroevolution_esdb, "~> 0.1.0"}
]}.

%% Initialize the backend
Config = #{store_id => my_lineage_store},
{ok, State} = esdb_lineage_backend:init(Config).

%% Persist events (returns immediately)
Event = #{event_type => offspring_born, individual_id => <<"ind-001">>},
ok = esdb_lineage_backend:persist_event(Event, State).
Projections (Read Models)
Projections subscribe to event streams and build optimized read models. They are implemented in the bridge library, NOT in the event store.
Lineage Tree Projection
Builds ancestry trees from birth events:
-module(lineage_tree_projection).

%% Subscribe to individual streams
handle_event(#{event_type := offspring_born} = Event, State) ->
 IndividualId = maps:get(individual_id, Event),
 ParentIds = maps:get(parent_ids, Event),
 %% Update the lineage tree read model
 update_tree(IndividualId, ParentIds, State);

handle_event(#{event_type := pioneer_spawned} = Event, State) ->
 IndividualId = maps:get(individual_id, Event),
 %% Create root node in tree
 create_root(IndividualId, State).
Fitness Trajectory Projection
Tracks fitness over time:
-module(fitness_trajectory_projection).

handle_event(#{event_type := fitness_evaluated} = Event, State) ->
 IndividualId = maps:get(individual_id, Event),
 Fitness = maps:get(fitness, Event),
 Timestamp = maps:get(stored_at, Event),
 %% Append to trajectory read model
 append_trajectory(IndividualId, {Timestamp, Fitness}, State).
Mutation History Projection
Aggregates mutations per individual:
-module(mutation_history_projection).

handle_event(#{event_type := Type} = Event, State) when
 Type =:= mutation_applied;
 Type =:= neuron_added;
 Type =:= neuron_removed;
 Type =:= connection_added;
 Type =:= connection_removed;
 Type =:= weight_perturbed ->
 IndividualId = maps:get(individual_id, Event),
 %% Append to mutation history read model
 append_mutation(IndividualId, Event, State).
Querying Lineage Data
Query lineage data through projections, not the event store backend directly. Projections maintain optimized read models:
%% Query the lineage tree projection
{ok, Tree} = lineage_tree_projection:get_ancestors(<<"ind-001">>, 5).
%% Tree = #{
%% individual_id => <<"ind-001">>,
%% parents => [#{individual_id => <<"parent-1">>, ...}, ...],
%% birth_event => #{event_type => offspring_born, ...}
%% }

%% Query fitness trajectory from projection
{ok, Trajectory} = fitness_trajectory_projection:get_trajectory(<<"ind-001">>).
%% Trajectory = [{Timestamp1, 0.5}, {Timestamp2, 0.6}, {Timestamp3, 0.75}]

%% Query mutation history from projection
{ok, Mutations} = mutation_history_projection:get_history(<<"ind-001">>).
%% Returns list of mutation events in chronological order

%% Read raw events from stream (for recovery/replay only)
StreamId = <<"individual-ind-001">>,
{ok, Events} = esdb_lineage_backend:read_stream(StreamId, #{from => 0}, State).
Important: The event store backend (read_stream/3) returns raw events and may block. Use projections for application queries - they maintain pre-computed read models for fast access.
Event Metadata
All events include metadata for traceability:
Metadata = #{
 causation_id => <<"eval-batch-123">>, % What caused this event
 correlation_id => <<"training-session">>, % Related events group
 timestamp => erlang:system_time(millisecond),
 source_node => node()
}.

Event = #{
 event_type => fitness_evaluated,
 individual_id => <<"ind-001">>,
 fitness => 0.85,
 metadata => Metadata
}.
Best Practices
	Batch Events: Use persist_batch/2 for multiple events to reduce I/O
	Include Causation: Always set causation_id for event correlation
	Use Records: Include lineage_events.hrl for type safety
	Projections for Queries: Never query the event store for derived data
	Stream Routing: Ensure events route to correct streams for efficient replay
	Subscribe Early: Start projections before evolution to catch all events

Related Documentation
	erl-esdb Documentation - Event store core
	erl-esdb-gater Documentation - Gateway and channels
	macula-neuroevolution-esdb - Bridge library

 Topology Evolution Roadmap

This document outlines the planned integration of full TWEANN (Topology and Weight Evolving Artificial Neural Networks) capabilities into macula_neuroevolution, and how the Liquid Conglomerate meta-learning architecture will control topology evolution.
Current State
Currently, macula_neuroevolution uses fixed-topology networks where:
	Network structure is defined at initialization: {InputSize, HiddenLayers, OutputSize}
	Only weights are evolved through crossover and mutation
	All individuals in the population have identical topology

The underlying macula_tweann library already supports full topology evolution operators:
	Operator	Description
	add_neuron/1	Insert neuron into existing connection
	add_outlink/1	Add output connection from neuron
	add_inlink/1	Add input connection to neuron
	outsplice/1	Split output connection with new neuron
	add_sensorlink/1	Connect sensor to neuron
	add_actuatorlink/1	Connect neuron to actuator
	add_bias/1	Add bias connection to neuron
	add_sensor/1	Add new sensor (planned)
	add_actuator/1	Add new actuator (planned)

NEAT-Inspired Topology Evolution
The planned topology evolution follows the NEAT (NeuroEvolution of Augmenting Topologies) approach by Stanley and Miikkulainen (2002):
Core Principles
	Start Minimal - Networks begin with minimal structure (direct input-output connections)
	Complexify Gradually - Structure grows through mutations over generations
	Protect Innovation - New structures need time to optimize their weights
	Speciation - Similar topologies compete primarily with each other

Innovation Numbers
Each structural change (new connection, new node) receives a unique innovation number:
Connection Gene: {from: 1, to: 4, weight: 0.5, enabled: true, innovation: 42}
Innovation numbers enable:
	Alignment during crossover (match genes by innovation)
	Distance calculation for speciation
	Historical tracking of structural changes

Liquid Conglomerate Integration
The Liquid Conglomerate meta-controller will extend to control topology evolution parameters dynamically.
Extended Meta-Controller Outputs
Current outputs (weight evolution):
	mutation_rate - Probability of weight mutation
	mutation_strength - Magnitude of weight perturbation
	selection_ratio - Survival ratio per generation

New outputs (topology evolution):
	topology_mutation_rate - Probability of structural mutation
	add_neuron_rate - Relative probability of adding neurons
	add_connection_rate - Relative probability of adding connections
	remove_connection_rate - Relative probability of removing connections
	complexity_penalty - Fitness penalty per structural element

Extended Meta-Controller Inputs
Current inputs (population metrics):
	Best/average/worst fitness
	Fitness improvement rate
	Population diversity
	Stagnation count

New inputs (topology metrics):
	Average network complexity (neuron count, connection count)
	Complexity variance across population
	Topology diversity (unique structures)
	Innovation frequency
	Species count and health

Adaptive Topology Control
The meta-controller learns when to:
	Encourage Complexification
	Fitness plateaus but hasn't peaked
	High diversity in weights but not structure
	Problem appears to need more representational capacity

	Discourage Complexification
	Networks growing without fitness improvement
	Over-fitting indicators (train/test divergence)
	Computational budget concerns

	Encourage Simplification
	Prune unused connections
	Remove redundant neurons
	Regularize toward minimal effective complexity

Speciation with Liquid Conglomerate
Species as Sub-Populations
Each species maintains its own population dynamics:
[image: Species Population]
Meta-Controller Per Species
The Liquid Conglomerate hierarchy could extend to species-level control:
[image: Species Hierarchy]
This enables different evolutionary strategies for different topological niches.
Crossover with Variable Topology
When crossing individuals with different topologies:
Gene Alignment
[image: NEAT Gene Alignment]
Compatibility Distance
compatibility_distance(Genome1, Genome2, Config) ->
 {Excess, Disjoint, WeightDiff} = compare_genomes(Genome1, Genome2),
 N = max(genome_size(Genome1), genome_size(Genome2)),

 Config#compat_config.c1 * Excess / N +
 Config#compat_config.c2 * Disjoint / N +
 Config#compat_config.c3 * WeightDiff.
Implementation Phases
Phase 1: Foundation
	Add innovation number tracking to networks
	Implement gene-based genome representation
	Add compatibility distance calculation
	Basic speciation without meta-control

Phase 2: Topology Operators
	Integrate add_neuron, add_outlink, add_inlink operators
	Implement connection enable/disable
	Add crossover for variable topologies
	Implement speciation dynamics

Phase 3: Meta-Controller Extension
	Extend meta-controller inputs (complexity metrics)
	Add topology evolution outputs
	Train meta-controller on topology-aware reward signal
	Implement adaptive complexity penalties

Phase 4: Species-Level Meta-Control
	Per-species meta-controllers
	Inter-species resource allocation
	Hierarchical Liquid Conglomerate for species

Expected Benefits
From Topology Evolution
	Automatic Architecture Discovery - No manual network design needed
	Minimal Complexity Bias - Solutions grow only as complex as needed
	Diverse Strategies - Different topologies for different sub-problems
	Incremental Building - Complex solutions built on simpler precursors

From Liquid Conglomerate Control
	Adaptive Complexification - Grow structure when needed, not randomly
	Phase-Appropriate Strategies - Explore structure early, refine late
	Automatic Regularization - Meta-learned complexity penalties
	Transfer of Meta-Knowledge - Learn "how to evolve topology" across domains

Relation to DXNN2
This roadmap draws heavily from Gene Sher's DXNN2 architecture (described in "Handbook of Neuroevolution Through Erlang"). Key concepts from DXNN2:
	Morphology-based sensor/actuator specification
	Constraint records for controlling mutation operators
	Substrate encoding for hypercube geometry
	Exoself architecture for agent lifecycle

The Liquid Conglomerate extends DXNN2's concepts by adding:
	Hierarchical meta-learning at multiple timescales
	LTC neurons for continuous temporal dynamics
	Adaptive tau for timescale self-organization
	Species-level meta-control

References
	Stanley, K.O. & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2), 99-127.

	Sher, G.I. (2013). Handbook of Neuroevolution Through Erlang. Springer.

	Hasani, R. et al. (2021). Liquid Time-constant Networks. AAAI.

Next Steps
See The Liquid Conglomerate for the full meta-learning theory, or LTC Meta-Controller for current implementation details.

 Interoperability and Serialization

This guide covers how to export trained neural networks for deployment in production systems, including cross-language interoperability and serialization formats.
Overview
After training with macula_neuroevolution, you'll have evolved networks that need to be deployed. Key considerations:
	Serialization - Save/load networks for persistence
	Export formats - ONNX, JSON, binary for cross-platform deployment
	Language interop - Use trained networks in Python, Rust, C++, JavaScript
	Embedded systems - Deploy to resource-constrained devices

Serialization Options
Erlang Term Format (Native)
The simplest option for Erlang/Elixir deployments:
%% Save network to file
Network = Individual#individual.network,
ok = file:write_file("trained_network.etf", term_to_binary(Network)).

%% Load network from file
{ok, Binary} = file:read_file("trained_network.etf"),
Network = binary_to_term(Binary).

%% Use for inference
Inputs = [0.5, -0.3, 0.8, ...],
Outputs = network_evaluator:evaluate(Network, Inputs).
Pros: Fast, preserves all Erlang types, no conversion needed
Cons: Not portable to other languages
JSON Export
For cross-language portability:
%% Export network structure and weights to JSON
NetworkJson = macula_tweann:to_json(Network),
file:write_file("trained_network.json", NetworkJson).
JSON structure:
{
 "topology": {
 "inputs": 42,
 "hidden_layers": [16, 8],
 "outputs": 6
 },
 "neurons": [
 {
 "id": 1,
 "type": "ltc",
 "bias": 0.234,
 "time_constant": 50.0,
 "state_bound": 1.0
 }
],
 "connections": [
 {
 "from": 1,
 "to": 10,
 "weight": 0.567
 }
]
}
ONNX Export
For deployment with standard ML frameworks (PyTorch, TensorFlow, ONNX Runtime):
%% Export to ONNX format
OnnxBinary = macula_tweann:to_onnx(Network),
file:write_file("trained_network.onnx", OnnxBinary).
Use in Python:
import onnxruntime as ort

Load the exported model
session = ort.InferenceSession("trained_network.onnx")

Run inference
inputs = {"input": np.array([[0.5, -0.3, 0.8, ...]])}
outputs = session.run(None, inputs)
Note: ONNX export requires networks to use standard activation functions. LTC neurons are exported as approximations using RNN operators.
Protocol Buffers
For high-performance RPC and streaming:
%% Define in network.proto
%% message Network {
%% repeated Neuron neurons = 1;
%% repeated Connection connections = 2;
%% }

%% Export
ProtoBinary = network_to_protobuf(Network),
file:write_file("trained_network.pb", ProtoBinary).
Cross-Language Deployment
Python Integration
Using the JSON format:
import json
import numpy as np

class EvolvedNetwork:
 def __init__(self, json_path):
 with open(json_path) as f:
 data = json.load(f)

 self.topology = data["topology"]
 self.neurons = {n["id"]: n for n in data["neurons"]}
 self.connections = data["connections"]
 self.weights = self._build_weight_matrix()

 def _build_weight_matrix(self):
 # Build weight matrices from connections
 ...

 def forward(self, inputs):
 # Feed-forward through network
 activations = inputs
 for layer_weights in self.weights:
 activations = np.tanh(np.dot(activations, layer_weights))
 return activations

Usage
network = EvolvedNetwork("trained_network.json")
outputs = network.forward(sensor_data)
Rust Integration
Using the JSON format with serde:
use serde::{Deserialize, Serialize};
use ndarray::Array1;

#[derive(Deserialize)]
struct Network {
 topology: Topology,
 neurons: Vec<Neuron>,
 connections: Vec<Connection>,
}

impl Network {
 pub fn from_json(path: &str) -> Self {
 let data = std::fs::read_to_string(path).unwrap();
 serde_json::from_str(&data).unwrap()
 }

 pub fn forward(&self, inputs: &Array1<f32>) -> Array1<f32> {
 // Implement forward pass
 ...
 }
}
JavaScript/WebAssembly
For browser-based inference:
class EvolvedNetwork {
 constructor(networkData) {
 this.topology = networkData.topology;
 this.weights = this.buildWeights(networkData);
 }

 forward(inputs) {
 let activations = inputs;
 for (const layerWeights of this.weights) {
 activations = this.tanh(this.matmul(activations, layerWeights));
 }
 return activations;
 }

 // For real-time applications, compile to WebAssembly
 static async loadWasm(wasmPath) {
 const module = await WebAssembly.instantiateStreaming(fetch(wasmPath));
 return module.instance.exports;
 }
}
Embedded Deployment
Nerves (Elixir on Embedded Linux)
For Raspberry Pi, BeagleBone, and similar devices:
defmodule MyRobot.Brain do
 @network_path "/data/trained_network.etf"

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 network = load_network(@network_path)
 {:ok, %{network: network}}
 end

 def infer(sensor_data) do
 GenServer.call(__MODULE__, {:infer, sensor_data})
 end

 def handle_call({:infer, inputs}, _from, %{network: network} = state) do
 outputs = :network_evaluator.evaluate(network, inputs)
 {:reply, outputs, state}
 end

 defp load_network(path) do
 path
 |> File.read!()
 |> :erlang.binary_to_term()
 end
end
Microcontrollers (C/C++)
For Arduino, ESP32, STM32:
	Export weights to C header:

%% Generate C header with network weights
generate_c_header(Network, "network_weights.h").
Output:
// network_weights.h - Auto-generated from evolved network
#ifndef NETWORK_WEIGHTS_H
#define NETWORK_WEIGHTS_H

#define INPUT_SIZE 42
#define HIDDEN1_SIZE 16
#define HIDDEN2_SIZE 8
#define OUTPUT_SIZE 6

const float weights_input_hidden1[INPUT_SIZE][HIDDEN1_SIZE] = {
 {0.234, -0.567, ...},
 ...
};

const float weights_hidden1_hidden2[HIDDEN1_SIZE][HIDDEN2_SIZE] = {
 ...
};

const float weights_hidden2_output[HIDDEN2_SIZE][OUTPUT_SIZE] = {
 ...
};

#endif
	Use in embedded code:

#include "network_weights.h"
#include <math.h>

float hidden1[HIDDEN1_SIZE];
float hidden2[HIDDEN2_SIZE];
float outputs[OUTPUT_SIZE];

void network_forward(float* inputs) {
 // Layer 1
 for (int j = 0; j < HIDDEN1_SIZE; j++) {
 float sum = 0;
 for (int i = 0; i < INPUT_SIZE; i++) {
 sum += inputs[i] * weights_input_hidden1[i][j];
 }
 hidden1[j] = tanh(sum);
 }

 // Layer 2
 for (int j = 0; j < HIDDEN2_SIZE; j++) {
 float sum = 0;
 for (int i = 0; i < HIDDEN1_SIZE; i++) {
 sum += hidden1[i] * weights_hidden1_hidden2[i][j];
 }
 hidden2[j] = tanh(sum);
 }

 // Output layer
 for (int j = 0; j < OUTPUT_SIZE; j++) {
 float sum = 0;
 for (int i = 0; i < HIDDEN2_SIZE; i++) {
 sum += hidden2[i] * weights_hidden2_output[i][j];
 }
 outputs[j] = tanh(sum);
 }
}
Streaming Inference with Macula Mesh
For distributed inference across multiple nodes:
%% On the inference node, register as an inference service
macula_rpc:register_method(<<"brain.infer">>, fun handle_inference/1).

handle_inference(#{<<"inputs">> := Inputs}) ->
 Outputs = network_evaluator:evaluate(Network, Inputs),
 #{<<"outputs">> => Outputs}.

%% On the robot/client, call the inference service
Outputs = macula_rpc:call(InferenceNode, <<"brain.infer">>, #{
 <<"inputs">> => SensorData
}).
Best Practices
Versioning
Always version your exported networks:
export_network(Network, Version) ->
 #{
 version => Version,
 exported_at => calendar:universal_time(),
 network => Network,
 training_config => get_training_config(),
 fitness => Network#individual.fitness
 }.
Validation
Validate exported networks before deployment:
validate_export(Network, TestCases) ->
 lists:all(fun({Input, ExpectedOutput}) ->
 Output = network_evaluator:evaluate(Network, Input),
 max_error(Output, ExpectedOutput) < 0.01
 end, TestCases).
Compression
For bandwidth-constrained deployments:
%% Compress before sending over network
CompressedNetwork = zlib:compress(term_to_binary(Network)),

%% Decompress on receiving end
Network = binary_to_term(zlib:uncompress(CompressedNetwork)).
Related Guides
	Inference Scenarios - Production deployment patterns
	Swarm Robotics - Distributed autonomous systems
	Custom Evaluators - Domain-specific training

 Inference Scenarios

This guide covers production deployment patterns for evolved neural networks, from simple single-node inference to complex distributed systems.
Scenario 1: Real-Time Game AI
Deploy evolved agents for real-time game decisions.
Architecture
[image: Game AI Architecture]
Implementation
-module(game_ai_pool).
-behaviour(gen_server).

-export([start_link/1, get_action/2]).

-record(state, {
 networks :: #{agent_id() => network()},
 config :: map()
}).

start_link(Config) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, Config, []).

init(Config) ->
 Networks = load_evolved_networks(Config),
 {ok, #state{networks = Networks, config = Config}}.

%% Called every game tick for each AI agent
get_action(AgentId, GameState) ->
 gen_server:call(?MODULE, {get_action, AgentId, GameState}).

handle_call({get_action, AgentId, GameState}, _From, State) ->
 Network = maps:get(AgentId, State#state.networks),
 Inputs = game_state_to_inputs(GameState),

 %% Neural network inference
 Outputs = network_evaluator:evaluate(Network, Inputs),
 Action = outputs_to_action(Outputs),

 {reply, Action, State}.

%% Convert game state to network inputs
game_state_to_inputs(GameState) ->
 [
 GameState#game_state.player_x / 800.0, % Normalized position
 GameState#game_state.player_y / 600.0,
 GameState#game_state.velocity_x / 100.0,
 GameState#game_state.velocity_y / 100.0,
 % ... more sensor inputs
].

%% Convert network outputs to game action
outputs_to_action(Outputs) ->
 [MoveX, MoveY, Action1, Action2, Jump, Attack] = Outputs,
 #{
 move => {MoveX, MoveY},
 jump => Jump > 0.5,
 attack => Attack > 0.5,
 action => select_action(Action1, Action2)
 }.
Optimization Tips
	Batch inference: Process multiple agents together
	Network caching: Keep hot networks in ETS
	Async updates: Update networks without blocking inference

%% Batch inference for multiple agents
batch_get_actions(AgentStates) ->
 Inputs = [game_state_to_inputs(S) || S <- AgentStates],
 %% Process all networks in parallel
 Outputs = pmap(fun({Id, Input}) ->
 Network = get_network(Id),
 network_evaluator:evaluate(Network, Input)
 end, lists:zip(AgentIds, Inputs)),
 lists:map(fun outputs_to_action/1, Outputs).
Scenario 2: Autonomous Robot Control
Deploy evolved controllers to physical robots.
Architecture
[image: Robot Architecture]
Implementation (Elixir/Nerves)
defmodule Robot.Brain do
 use GenServer
 require Logger

 @control_loop_ms 10 # 100Hz control loop
 @network_path "/data/evolved_controller.etf"

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(_opts) do
 network = load_network(@network_path)

 # Start the control loop
 schedule_tick()

 {:ok, %{
 network: network,
 last_outputs: [0.0, 0.0, 0.0, 0.0], # Initial motor values
 sensor_history: []
 }}
 end

 def handle_info(:tick, state) do
 # 1. Read sensors
 sensors = read_all_sensors()

 # 2. Preprocess inputs (normalize, add history)
 inputs = preprocess_inputs(sensors, state.sensor_history)

 # 3. Neural network inference
 outputs = :network_evaluator.evaluate(state.network, inputs)

 # 4. Apply outputs to actuators (with safety limits)
 safe_outputs = apply_safety_limits(outputs)
 apply_to_actuators(safe_outputs)

 # 5. Schedule next tick
 schedule_tick()

 {:noreply, %{state |
 last_outputs: safe_outputs,
 sensor_history: update_history(state.sensor_history, sensors)
 }}
 end

 defp schedule_tick do
 Process.send_after(self(), :tick, @control_loop_ms)
 end

 defp read_all_sensors do
 %{
 imu: IMU.read_accel_gyro(),
 distance: [
 DistanceSensor.read(:front),
 DistanceSensor.read(:left),
 DistanceSensor.read(:right)
],
 encoders: [
 Encoder.read(:left_wheel),
 Encoder.read(:right_wheel)
]
 }
 end

 defp preprocess_inputs(sensors, history) do
 # Combine current readings with recent history for temporal context
 current = [
 # IMU (6 values)
 sensors.imu.accel_x / 16.0,
 sensors.imu.accel_y / 16.0,
 sensors.imu.accel_z / 16.0,
 sensors.imu.gyro_x / 2000.0,
 sensors.imu.gyro_y / 2000.0,
 sensors.imu.gyro_z / 2000.0,
 # Distance sensors (3 values)
 min(sensors.distance.front / 200.0, 1.0),
 min(sensors.distance.left / 200.0, 1.0),
 min(sensors.distance.right / 200.0, 1.0),
 # Wheel encoders (2 values)
 sensors.encoders.left / 1000.0,
 sensors.encoders.right / 1000.0
]

 # Add temporal context from history
 history_inputs = flatten_history(history, 3) # Last 3 readings

 current ++ history_inputs
 end

 defp apply_safety_limits(outputs) do
 [left_motor, right_motor, arm_angle, gripper] = outputs

 [
 clamp(left_motor, -1.0, 1.0),
 clamp(right_motor, -1.0, 1.0),
 clamp(arm_angle, 0.0, 1.0),
 if(gripper > 0.5, do: 1.0, else: 0.0) # Binary gripper
]
 end

 defp apply_to_actuators([left, right, arm, gripper]) do
 Motor.set_speed(:left, left)
 Motor.set_speed(:right, right)
 Servo.set_angle(:arm, arm * 180.0)
 Gripper.set(if gripper > 0.5, do: :closed, else: :open)
 end
end
Hot-Loading Updated Networks
defmodule Robot.NetworkUpdater do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 # Called when a new trained network is available
 def update_network(network_binary) do
 GenServer.cast(__MODULE__, {:update, network_binary})
 end

 def handle_cast({:update, binary}, state) do
 # Validate new network first
 network = :erlang.binary_to_term(binary)

 case validate_network(network) do
 :ok ->
 # Atomically swap the network
 Robot.Brain.swap_network(network)
 Logger.info("Network updated successfully")
 {:noreply, state}

 {:error, reason} ->
 Logger.warning("Network validation failed: #{reason}")
 {:noreply, state}
 end
 end

 defp validate_network(network) do
 # Check topology matches expected
 # Run test inputs and verify reasonable outputs
 # etc.
 end
end
Scenario 3: Trading Strategy Execution
Deploy evolved trading strategies with risk management.
Architecture
[image: Trading Architecture]
Implementation
-module(trading_strategy).
-behaviour(gen_server).

-record(state, {
 network :: network(),
 position :: float(),
 equity :: float(),
 max_drawdown :: float(),
 trade_history :: [trade()]
}).

start_link(Config) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, Config, []).

init(Config) ->
 Network = load_evolved_strategy(Config),
 {ok, #state{
 network = Network,
 position = 0.0,
 equity = maps:get(initial_equity, Config, 100000.0),
 max_drawdown = maps:get(max_drawdown, Config, 0.10)
 }}.

%% Called on each market tick
handle_info({market_tick, MarketData}, State) ->
 %% 1. Prepare network inputs from market data
 Inputs = market_data_to_inputs(MarketData, State),

 %% 2. Get trading signal from evolved network
 Outputs = network_evaluator:evaluate(State#state.network, Inputs),
 Signal = interpret_trading_signal(Outputs),

 %% 3. Apply risk management (CRITICAL - never skip!)
 SafeSignal = apply_risk_limits(Signal, State),

 %% 4. Execute trade if needed
 NewState = maybe_execute_trade(SafeSignal, MarketData, State),

 {noreply, NewState};

%% Emergency stop - close all positions
handle_cast(emergency_stop, State) ->
 close_all_positions(State),
 {noreply, State#state{position = 0.0}}.

market_data_to_inputs(MarketData, State) ->
 #market_data{
 price = Price,
 volume = Volume,
 bid_ask_spread = Spread,
 returns = Returns, % Last N returns
 volatility = Volatility
 } = MarketData,

 [
 %% Price features
 normalize_price(Price),
 normalize_volume(Volume),
 Spread / Price,

 %% Technical indicators (pre-computed)
 lists:nth(1, Returns), % Return t-1
 lists:nth(2, Returns), % Return t-2
 lists:nth(3, Returns), % Return t-3
 Volatility,

 %% Position context
 State#state.position / max_position(),
 (State#state.equity - initial_equity()) / initial_equity()
].

interpret_trading_signal([PositionTarget, Confidence]) ->
 #{
 target_position => (PositionTarget * 2.0) - 1.0, % Map [0,1] to [-1,1]
 confidence => Confidence
 }.

%% CRITICAL: Risk management rules (never evolved, always enforced)
apply_risk_limits(Signal, State) ->
 #{target_position := Target, confidence := Conf} = Signal,

 %% Rule 1: Max position size
 LimitedTarget = max(-1.0, min(1.0, Target)),

 %% Rule 2: Drawdown limit
 CurrentDrawdown = calculate_drawdown(State),
 case CurrentDrawdown > State#state.max_drawdown of
 true ->
 %% Reduce position proportionally
 Reduction = 1.0 - (CurrentDrawdown / State#state.max_drawdown),
 Signal#{target_position := LimitedTarget * Reduction};
 false ->
 Signal#{target_position := LimitedTarget}
 end;

 %% Rule 3: Minimum confidence threshold
 case Conf < 0.3 of
 true -> Signal#{target_position := State#state.position}; % No change
 false -> Signal
 end.
Scenario 4: Edge AI with Macula Mesh
Distribute inference across a mesh of edge devices.
Architecture
[image: Edge AI Mesh]
Implementation
-module(edge_inference_node).
-behaviour(gen_server).

%% Subscribe to inference requests, publish results
-define(INFERENCE_TOPIC, <<"ai.inference.requests">>).
-define(RESULTS_TOPIC, <<"ai.inference.results">>).

start_link(Config) ->
 gen_server:start_link({local, ?MODULE}, ?MODULE, Config, []).

init(Config) ->
 %% Load evolved network
 Network = load_network(Config),

 %% Subscribe to inference requests via Macula PubSub
 macula_pubsub:subscribe(?INFERENCE_TOPIC),

 %% Register as inference provider
 macula_dht:register_service(#{
 type => <<"inference">>,
 model => maps:get(model_name, Config),
 node => node()
 }),

 {ok, #{network => Network, stats => #{inferences => 0}}}.

%% Handle inference request from mesh
handle_info({macula_event, ?INFERENCE_TOPIC, Request}, State) ->
 #{
 request_id := RequestId,
 inputs := Inputs,
 reply_to := ReplyNode
 } = Request,

 %% Run inference
 StartTime = erlang:monotonic_time(microsecond),
 Outputs = network_evaluator:evaluate(maps:get(network, State), Inputs),
 InferenceTime = erlang:monotonic_time(microsecond) - StartTime,

 %% Publish result
 Result = #{
 request_id => RequestId,
 outputs => Outputs,
 inference_time_us => InferenceTime,
 node => node()
 },

 case ReplyNode of
 broadcast ->
 macula_pubsub:publish(?RESULTS_TOPIC, Result);
 Node ->
 macula_rpc:call(Node, <<"inference.result">>, Result)
 end,

 %% Update stats
 NewStats = increment_stat(inferences, maps:get(stats, State)),
 {noreply, State#{stats := NewStats}};

%% Handle network update pushed from training cluster
handle_info({network_update, NewNetwork}, State) ->
 %% Validate before accepting
 case validate_network(NewNetwork) of
 ok ->
 {noreply, State#{network := NewNetwork}};
 {error, _Reason} ->
 {noreply, State}
 end.

%% Coordinator: distribute inference across nodes
-module(inference_coordinator).

distribute_inference(Inputs, Opts) ->
 %% Find available inference nodes
 Nodes = macula_dht:find_services(#{type => <<"inference">>}),

 %% Select best node (lowest latency, lowest load)
 BestNode = select_best_node(Nodes),

 %% Send request
 RequestId = make_ref(),
 macula_rpc:call(BestNode, <<"inference.run">>, #{
 request_id => RequestId,
 inputs => Inputs
 }),

 %% Wait for result with timeout
 receive
 {inference_result, RequestId, Result} ->
 {ok, Result}
 after maps:get(timeout, Opts, 1000) ->
 {error, timeout}
 end.

%% Load balancing: round-robin with health checks
select_best_node(Nodes) ->
 HealthyNodes = [N || N <- Nodes, is_healthy(N)],
 case HealthyNodes of
 [] -> error(no_healthy_nodes);
 _ -> lists:nth(rand:uniform(length(HealthyNodes)), HealthyNodes)
 end.
Scenario 5: Multi-Model Ensemble
Combine multiple evolved networks for robust decisions.
-module(ensemble_inference).

%% Run multiple evolved networks and combine results
ensemble_predict(Inputs, Networks, CombineStrategy) ->
 %% Run all networks in parallel
 Predictions = pmap(fun(Network) ->
 network_evaluator:evaluate(Network, Inputs)
 end, Networks),

 %% Combine predictions
 case CombineStrategy of
 average ->
 average_predictions(Predictions);
 voting ->
 majority_vote(Predictions);
 weighted ->
 weighted_average(Predictions, get_weights(Networks));
 stacking ->
 %% Meta-network combines predictions
 MetaInputs = lists:flatten(Predictions),
 MetaNetwork = get_meta_network(),
 network_evaluator:evaluate(MetaNetwork, MetaInputs)
 end.

average_predictions(Predictions) ->
 NumPreds = length(Predictions),
 NumOutputs = length(hd(Predictions)),

 [lists:sum([lists:nth(I, P) || P <- Predictions]) / NumPreds
 || I <- lists:seq(1, NumOutputs)].

majority_vote(Predictions) ->
 %% For classification: each network votes for a class
 Votes = [argmax(P) || P <- Predictions],
 Counts = count_votes(Votes),
 argmax_map(Counts).
Performance Optimization
Inference Latency Targets
	Scenario	Target Latency	Strategy
	Game AI	< 1ms	Pre-compiled, batched
	Robot Control	< 10ms	Native code, no GC
	Trading	< 100us	FPGA/GPU, co-location
	Edge IoT	< 50ms	Quantized, edge TPU

Tips
	Profile first: Use fprof or eflame to find bottlenecks
	Avoid allocations: Reuse buffers in hot paths
	Batch when possible: Amortize overhead across multiple inferences
	Consider NIFs: For ultra-low-latency, use Rust NIFs
	Quantize: Use INT8 weights for embedded deployment

Related Guides
	Interoperability - Export formats and cross-language deployment
	Swarm Robotics - Coordinated autonomous systems
	LTC Meta-Controller - Adaptive training

 Swarm Robotics with Evolved Neural Networks

This guide explores how to build cooperative autonomous robotic systems using evolved neural networks and the Macula mesh networking platform.
Vision: The Liquid Swarm
Imagine a swarm of autonomous robots that:
	Self-organize without central control
	Adapt to changing environments in real-time
	Communicate through a decentralized mesh network
	Learn collectively through distributed neuroevolution
	Scale from a handful to thousands of agents

This is achievable by combining:
	macula_neuroevolution - Evolve swarm behaviors
	macula_tweann - LTC neural controllers
	macula - Decentralized mesh networking
	Nerves - Embedded Elixir for robots

Architecture Overview
[image: Swarm Architecture]
[image: Swarm Mesh]
Swarm Intelligence Patterns
1. Stigmergic Communication
Robots leave "digital pheromones" in the DHT that influence swarm behavior:
-module(stigmergy).

%% Deposit a pheromone at current location
deposit_pheromone(Type, Intensity, Position) ->
 Key = position_to_key(Position),
 Pheromone = #{
 type => Type, % food, danger, path, etc.
 intensity => Intensity,
 deposited_by => node(),
 timestamp => erlang:system_time(millisecond)
 },
 macula_dht:put(Key, Pheromone, #{ttl => 60000}). % Evaporates in 60s

%% Sense pheromones in area
sense_pheromones(Position, Radius) ->
 Keys = positions_in_radius(Position, Radius),
 Pheromones = lists:filtermap(fun(Key) ->
 case macula_dht:get(Key) of
 {ok, P} -> {true, P};
 _ -> false
 end
 end, Keys),

 %% Decay by time
 Now = erlang:system_time(millisecond),
 [{P, decay_intensity(P, Now)} || P <- Pheromones].

%% Network inputs from pheromones
pheromone_inputs(Position, SensorDirections) ->
 %% For each sensor direction, sum pheromone intensities
 [sum_pheromones_in_direction(Position, Dir) || Dir <- SensorDirections].
2. Flocking Behavior (Boids)
Classic swarm rules encoded in network inputs:
-module(flocking).

%% Calculate flocking inputs for neural network
flocking_inputs(MyPosition, MyVelocity, Neighbors) ->
 %% Rule 1: Separation - avoid crowding
 Separation = calculate_separation(MyPosition, Neighbors),

 %% Rule 2: Alignment - match velocity of neighbors
 Alignment = calculate_alignment(MyVelocity, Neighbors),

 %% Rule 3: Cohesion - steer toward center of mass
 Cohesion = calculate_cohesion(MyPosition, Neighbors),

 %% Normalize to network inputs
 [
 Separation#vec.x, Separation#vec.y,
 Alignment#vec.x, Alignment#vec.y,
 Cohesion#vec.x, Cohesion#vec.y,
 length(Neighbors) / max_neighbors() % Crowd density
].

calculate_separation(MyPos, Neighbors) ->
 Repulsions = [
 vec_scale(
 vec_normalize(vec_sub(MyPos, N#neighbor.position)),
 1.0 / max(0.1, vec_distance(MyPos, N#neighbor.position))
)
 || N <- Neighbors
],
 vec_normalize(vec_sum(Repulsions)).

calculate_alignment(MyVel, Neighbors) ->
 AvgVelocity = vec_avg([N#neighbor.velocity || N <- Neighbors]),
 vec_normalize(vec_sub(AvgVelocity, MyVel)).

calculate_cohesion(MyPos, Neighbors) ->
 CenterOfMass = vec_avg([N#neighbor.position || N <- Neighbors]),
 vec_normalize(vec_sub(CenterOfMass, MyPos)).
3. Task Allocation (Market-Based)
Robots bid on tasks using evolved valuation networks:
-module(task_allocation).

%% Robot evaluates and bids on available tasks
evaluate_and_bid(Robot, AvailableTasks) ->
 Bids = lists:map(fun(Task) ->
 %% Network evaluates task value given robot's state
 Inputs = task_evaluation_inputs(Robot, Task),
 [Value, Confidence] = network_evaluator:evaluate(
 Robot#robot.valuation_network,
 Inputs
),

 #{
 task_id => Task#task.id,
 bid => Value * Confidence,
 robot_id => Robot#robot.id,
 estimated_completion => estimate_completion(Robot, Task)
 }
 end, AvailableTasks),

 %% Submit bids to task coordinator
 lists:foreach(fun(Bid) ->
 macula_pubsub:publish(<<"swarm.bids">>, Bid)
 end, Bids).

task_evaluation_inputs(Robot, Task) ->
 [
 %% Distance to task
 distance(Robot#robot.position, Task#task.location) / max_range(),

 %% Robot's energy level
 Robot#robot.battery / 100.0,

 %% Robot's current load
 Robot#robot.cargo / Robot#robot.max_cargo,

 %% Task urgency
 Task#task.priority / 10.0,

 %% Task reward
 Task#task.reward / max_reward(),

 %% Specialization match (if robot is specialized)
 specialization_match(Robot#robot.type, Task#task.type)
].

%% Coordinator assigns tasks based on bids
assign_tasks(Bids, Tasks) ->
 %% Group bids by task
 BidsByTask = group_by(task_id, Bids),

 %% For each task, assign to highest bidder
 lists:map(fun(Task) ->
 TaskBids = maps:get(Task#task.id, BidsByTask, []),
 case TaskBids of
 [] ->
 {Task#task.id, unassigned};
 _ ->
 Winner = lists:max_by(fun(B) -> maps:get(bid, B) end, TaskBids),
 {Task#task.id, maps:get(robot_id, Winner)}
 end
 end, Tasks).
Distributed Neuroevolution for Swarms
Evolution Architecture
[image: Distributed Training]
Implementation
-module(swarm_evolution).

%% Start distributed evolution for swarm
start_distributed_evolution(Config) ->
 %% Subscribe to fitness reports
 macula_pubsub:subscribe(<<"swarm.fitness">>),

 %% Initialize population
 Population = initialize_swarm_population(Config),

 %% Broadcast initial networks to all robots
 broadcast_networks(Population),

 %% Start evolution loop
 evolution_loop(#{
 population => Population,
 generation => 0,
 config => Config,
 pending_evaluations => #{},
 fitness_reports => []
 }).

evolution_loop(State) ->
 receive
 {macula_event, <<"swarm.fitness">>, Report} ->
 %% Collect fitness report from robot
 NewReports = [Report | maps:get(fitness_reports, State)],

 case length(NewReports) >= expected_reports(State) of
 true ->
 %% All robots reported - evolve next generation
 evolve_generation(State#{fitness_reports := NewReports});
 false ->
 evolution_loop(State#{fitness_reports := NewReports})
 end;

 {timeout, generation} ->
 %% Force evolution with available reports
 evolve_generation(State)
 end.

evolve_generation(State) ->
 Reports = maps:get(fitness_reports, State),

 %% Aggregate fitness from multiple robots running same network
 AggregatedFitness = aggregate_swarm_fitness(Reports),

 %% Update population fitness
 Population = update_population_fitness(
 maps:get(population, State),
 AggregatedFitness
),

 %% Standard neuroevolution: select, breed, mutate
 Survivors = neuroevolution_selection:top_n(Population, 0.2),
 Offspring = neuroevolution_genetic:create_offspring(Survivors),
 NewPopulation = Survivors ++ Offspring,

 %% Broadcast new networks to swarm
 broadcast_networks(NewPopulation),

 %% Continue evolution
 evolution_loop(State#{
 population := NewPopulation,
 generation := maps:get(generation, State) + 1,
 fitness_reports := []
 }).

%% Fitness aggregation strategies for swarm evaluation
aggregate_swarm_fitness(Reports) ->
 %% Group reports by network ID
 ByNetwork = group_by(network_id, Reports),

 maps:map(fun(_NetworkId, NetworkReports) ->
 %% Extract metrics from all robots running this network
 Metrics = [R#report.metrics || R <- NetworkReports],

 #{
 %% Individual performance
 avg_task_completion => avg([M#m.tasks_completed || M <- Metrics]),
 avg_energy_efficiency => avg([M#m.energy_efficiency || M <- Metrics]),

 %% Swarm-level emergent metrics
 swarm_coverage => calculate_coverage(Metrics),
 coordination_score => calculate_coordination(Metrics),
 collision_avoidance => 1.0 - avg([M#m.collisions || M <- Metrics]),

 %% Robustness
 variance => std_dev([fitness(M) || M <- Metrics])
 }
 end, ByNetwork).

%% Combined fitness function for swarm behavior
fitness(Metrics) ->
 0.3 * maps:get(avg_task_completion, Metrics) +
 0.2 * maps:get(avg_energy_efficiency, Metrics) +
 0.2 * maps:get(swarm_coverage, Metrics) +
 0.2 * maps:get(coordination_score, Metrics) +
 0.1 * maps:get(collision_avoidance, Metrics).
Robot-Side Implementation
defmodule SwarmRobot do
 use GenServer

 def start_link(opts) do
 GenServer.start_link(__MODULE__, opts, name: __MODULE__)
 end

 def init(opts) do
 # Subscribe to network updates
 :macula_pubsub.subscribe("swarm.networks")

 # Join the swarm
 :macula_dht.register_service(%{
 type: "swarm_robot",
 id: robot_id(),
 position: initial_position(),
 capabilities: capabilities()
 })

 schedule_control_loop()
 schedule_fitness_report()

 {:ok, %{
 network: nil,
 network_id: nil,
 metrics: initial_metrics(),
 neighbors: []
 }}
 end

 # Receive new network from evolution coordinator
 def handle_info({:macula_event, "swarm.networks", %{networks: networks}}, state) do
 # Each robot gets assigned a network (round-robin or random)
 my_network = select_network_for_robot(networks, robot_id())

 {:noreply, %{state |
 network: my_network.network,
 network_id: my_network.id,
 metrics: initial_metrics() # Reset metrics for new generation
 }}
 end

 # Main control loop
 def handle_info(:control_tick, state) do
 # 1. Sense environment
 sensors = read_sensors()
 neighbors = discover_neighbors()

 # 2. Get swarm inputs (flocking, pheromones, etc.)
 swarm_inputs = SwarmInputs.compute(
 sensors,
 neighbors,
 state.metrics
)

 # 3. Neural network inference
 inputs = sensors.raw ++ swarm_inputs
 outputs = :network_evaluator.evaluate(state.network, inputs)

 # 4. Execute actions
 execute_actions(outputs)

 # 5. Update metrics
 new_metrics = update_metrics(state.metrics, sensors, outputs)

 schedule_control_loop()
 {:noreply, %{state | metrics: new_metrics, neighbors: neighbors}}
 end

 # Report fitness periodically
 def handle_info(:fitness_report, state) do
 report = %{
 robot_id: robot_id(),
 network_id: state.network_id,
 metrics: state.metrics,
 timestamp: :erlang.system_time(:millisecond)
 }

 :macula_pubsub.publish("swarm.fitness", report)

 schedule_fitness_report()
 {:noreply, state}
 end

 defp discover_neighbors do
 # Query DHT for nearby robots
 {:ok, services} = :macula_dht.find_services(%{
 type: "swarm_robot",
 within: 10.0, # meters
 of: current_position()
 })

 # Filter to actual neighbors
 Enum.filter(services, fn s ->
 distance(s.position, current_position()) < communication_range()
 end)
 end

 defp execute_actions([left_motor, right_motor, arm, gripper, communicate]) do
 # Motor control
 Motor.set(:left, left_motor)
 Motor.set(:right, right_motor)

 # Arm control
 Servo.set(:arm, arm * 180.0)

 # Gripper
 if gripper > 0.5, do: Gripper.close(), else: Gripper.open()

 # Communication action (deposit pheromone, signal, etc.)
 if communicate > 0.5 do
 :stigmergy.deposit_pheromone(:signal, communicate, current_position())
 end
 end
end
Evolved Behaviors
Emergent Swarm Behaviors
Through evolution, swarms can develop sophisticated emergent behaviors:
	Behavior	Description	Evolution Target
	Foraging	Find and collect resources	Task completion rate
	Formation	Maintain geometric patterns	Formation error
	Coverage	Spread to cover area	Area coverage %
	Aggregation	Gather at locations	Gathering speed
	Pursuit	Coordinate to catch target	Capture success
	Construction	Build structures together	Structure quality

Example: Evolved Foraging
%% Fitness function for foraging behavior
foraging_fitness(Metrics) ->
 #{
 food_collected := FoodCollected,
 energy_spent := EnergySpent,
 collisions := Collisions,
 time_to_depot := TimeToDepot
 } = Metrics,

 %% Multi-objective fitness
 Efficiency = FoodCollected / max(1, EnergySpent),
 Safety = 1.0 - (Collisions / max_collisions()),
 Speed = 1.0 - (TimeToDepot / max_time()),

 0.5 * Efficiency + 0.3 * Safety + 0.2 * Speed.

%% Network inputs for foraging robot
foraging_inputs(Robot, Environment) ->
 [
 %% Local sensors
 Robot#robot.food_sensor_left,
 Robot#robot.food_sensor_center,
 Robot#robot.food_sensor_right,
 Robot#robot.obstacle_sensor_left,
 Robot#robot.obstacle_sensor_right,
 Robot#robot.carrying_food,

 %% Swarm communication
 pheromone_gradient(food, Robot#robot.position),
 pheromone_gradient(path, Robot#robot.position),
 nearest_depot_direction(Robot#robot.position),

 %% Internal state
 Robot#robot.energy / 100.0,
 Robot#robot.time_since_found_food / 1000.0
].
Simulation Before Deployment
Always evolve in simulation before deploying to physical robots:
-module(swarm_simulator).

%% Run swarm simulation for evaluation
simulate_swarm(Networks, Config) ->
 %% Initialize simulated environment
 Environment = create_environment(Config),

 %% Create simulated robots with evolved networks
 Robots = [create_simulated_robot(N, I, Environment)
 || {N, I} <- lists:zip(Networks, lists:seq(1, length(Networks)))],

 %% Run simulation
 FinalState = run_simulation_loop(
 #{
 robots => Robots,
 environment => Environment,
 tick => 0,
 max_ticks => maps:get(max_ticks, Config, 10000)
 }
),

 %% Calculate swarm-level metrics
 calculate_swarm_metrics(FinalState).

run_simulation_loop(State = #{tick := Tick, max_ticks := MaxTicks})
 when Tick >= MaxTicks ->
 State;
run_simulation_loop(State) ->
 %% 1. Each robot senses and decides
 Robots = [simulate_robot_tick(R, State) || R <- maps:get(robots, State)],

 %% 2. Resolve collisions and interactions
 ResolvedRobots = resolve_interactions(Robots),

 %% 3. Update environment (resources, pheromones decay, etc.)
 Environment = update_environment(maps:get(environment, State)),

 %% 4. Continue
 run_simulation_loop(State#{
 robots := ResolvedRobots,
 environment := Environment,
 tick := maps:get(tick, State) + 1
 }).

simulate_robot_tick(Robot, State) ->
 %% Simulate sensors
 Sensors = simulate_sensors(Robot, State),

 %% Get network decision
 Inputs = robot_inputs(Robot, Sensors, State),
 Outputs = network_evaluator:evaluate(Robot#sim_robot.network, Inputs),

 %% Apply outputs to simulated physics
 apply_simulated_actions(Robot, Outputs).
Fault Tolerance
Graceful Degradation
%% Robot handles neighbor failures gracefully
handle_neighbor_failure(FailedRobotId, State) ->
 %% Remove from known neighbors
 NewNeighbors = lists:filter(
 fun(N) -> N#neighbor.id =/= FailedRobotId end,
 State#state.neighbors
),

 %% If was coordinating on task, reassign
 case State#state.current_task of
 #{coordinator := FailedRobotId} = Task ->
 %% Become new coordinator or release task
 handle_coordinator_failure(Task, NewNeighbors);
 _ ->
 ok
 end,

 State#state{neighbors = NewNeighbors}.

%% Swarm continues functioning with fewer robots
handle_coordinator_failure(Task, Neighbors) ->
 case Neighbors of
 [] ->
 %% No neighbors, take over coordination
 become_coordinator(Task);
 _ ->
 %% Elect new coordinator (highest ID wins)
 MaxNeighbor = lists:max_by(fun(N) -> N#neighbor.id end, Neighbors),
 case node() > MaxNeighbor#neighbor.id of
 true -> become_coordinator(Task);
 false -> wait_for_new_coordinator(Task)
 end
 end.
Network Redundancy
%% Each robot carries multiple evolved networks
-record(robot_state, {
 primary_network,
 backup_networks, % List of alternative networks
 network_health % Performance monitoring
}).

%% Switch to backup if primary is performing poorly
maybe_switch_network(State) ->
 Health = State#robot_state.network_health,
 case Health#health.recent_fitness < Health#health.threshold of
 true ->
 %% Primary is struggling, try backup
 [Backup | Rest] = State#robot_state.backup_networks,
 State#robot_state{
 primary_network = Backup,
 backup_networks = Rest ++ [State#robot_state.primary_network]
 };
 false ->
 State
 end.
Deployment Checklist
Before deploying evolved swarm controllers to physical robots:
	[] Simulation validation: 1000+ successful simulation runs
	[] Safety bounds: All actuator outputs have hard limits
	[] Emergency stop: Hardware kill switch on each robot
	[] Communication fallback: Robots function independently if network fails
	[] Battery management: Low battery triggers safe behavior
	[] Collision avoidance: Works even if evolved behavior fails
	[] Gradual rollout: Start with 2-3 robots, scale up
	[] Monitoring: Real-time telemetry to operator station
	[] Rollback plan: Can revert to previous network version

Related Guides
	Interoperability - Export networks for deployment
	Inference Scenarios - Production deployment patterns
	LTC Meta-Controller - Adaptive hyperparameter control
	Custom Evaluators - Domain-specific fitness functions

 Liquid Conglomerate (LC) Overview

The Liquid Conglomerate is the meta-controller architecture that supervises, coordinates, and configures all silos. It provides unified management of 13 specialized silos through OTP supervision, cross-silo signal routing, and hierarchical L0/L1/L2 TWEANN controllers.
Overview
The LC architecture implements "learning to learn" - TWEANNs that adapt hyperparameters based on training dynamics, enabling neuroevolution to self-optimize without manual tuning.
Key Components:
	lc_supervisor - OTP supervisor managing all silo processes
	lc_cross_silo - Signal router coordinating inter-silo communication
	Hierarchical Controllers - L2 (strategic) -> L1 (tactical) -> L0 (reactive)
	lc_reward - Cooperative reward computation encouraging silo alignment

[image: LC Supervisor Architecture]
Why a Meta-Controller?
	Traditional Approach	Liquid Conglomerate
	Fixed hyperparameters	Adaptive hyperparameters
	Manual tuning required	Self-tuning via TWEANNs
	Isolated subsystems	Coordinated silos
	Static resource allocation	Dynamic resource negotiation
	Single timescale control	Hierarchical timescales (L0/L1/L2)

Architecture
OTP Supervision Tree
The lc_supervisor manages the LC as an OTP application with one-for-one restart strategy:
%% Supervisor configuration
SupFlags = #{
 strategy => one_for_one,
 intensity => 5, % Max 5 restarts
 period => 10 % Per 10 seconds
}.
Child Start Order (dependencies require this order):
	lc_cross_silo - Signal router (must start first)
	resource_l0_sensors / task_l0_sensors - Metric collectors
	resource_l0_actuators / task_l0_actuators - Hyperparameter appliers
	meta_controller (optional) - L2 strategic layer
	resource_silo / task_silo - Main controllers
	distribution_silo (optional) - Mesh optimization

Core Silos
	Silo	Purpose	Time Constant
	Resource Silo	System stability (memory, CPU, GC)	tau = 5 (fast)
	Task Silo	Evolution optimization (mutation, selection)	tau = 50 (medium)
	Distribution Silo	Mesh networking (optional)	tau = 1 (very fast)

Cross-Silo Coordination
The lc_cross_silo module manages signal exchange between silos, enabling cooperative control.
[image: Cross-Silo Signal Flow]
Signal Routes
18 named signals are valid between silos:
	From	To	Signals
	Resource	Task	pressure_signal, max_evals_per_individual, should_simplify
	Resource	Distribution	offload_preference, local_capacity
	Task	Resource	exploration_boost, desired_evals_per_individual, expected_complexity_growth
	Task	Distribution	diversity_need, speciation_pressure
	Distribution	Resource	network_load_contribution, remote_capacity_available
	Distribution	Task	island_diversity_score, migration_activity

Signal Negotiation
Silos negotiate shared resources via signals:
%% Example: Evaluations per individual
ResourceMax = 15, % Resource Silo sets budget limit
TaskDesired = 20, % Task Silo requests based on fitness needs
Effective = min(15, 20) = 15 % Negotiated result
Signal Decay
Signals not updated within decay_ms (default 30s) decay toward neutral values:
%% Decay formula (10% per decay period)
decayed_value = current + (neutral - current) * 0.1

%% Neutral values by signal type
pressure_signal -> 0.0
should_simplify -> 0.0
max_evals_per_individual -> 10
diversity ratios -> 0.5
Signal API
%% Emit a signal from one silo to another
lc_cross_silo:emit(resource, task, pressure_signal, 0.7)

%% Emit multiple signals at once
lc_cross_silo:emit_batch(task, resource, #{
 exploration_boost => 0.5,
 desired_evals_per_individual => 15
})

%% Get all signals destined for a silo
Signals = lc_cross_silo:get_signals_for(task)
%% Returns: #{pressure_signal => 0.7, max_evals_per_individual => 15, ...}

%% Subscribe to signal changes
lc_cross_silo:subscribe(task, fun(Signals) -> handle_signals(Signals) end)

%% Get negotiated effective evals
Effective = lc_cross_silo:get_effective_evals_per_individual()
Hierarchical Control (L0/L1/L2)
The LC uses cascaded TWEANN controllers operating at different timescales.
[image: Hierarchical Control]
Time Constants
	Level	Name	Time Constant	Timescale	Controls
	L2	Strategic	tau = 100	Many runs	How L1 should adjust
	L1	Tactical	tau = 50	Per generation	How L0 should behave
	L0	Reactive	tau = 10	Per operation	Direct hyperparameters

L2 Strategic Layer
L2 learns optimal policies across entire training runs:
Inputs (evolution_metrics):
	best_fitness, avg_fitness
	fitness_improvement, fitness_variance
	stagnation_counter, generation_progress
	population_diversity, species_count

Outputs (l2_guidance record):
	Parameter	Range	Effect
	aggression_factor	[0.0, 2.0]	How strongly L1 responds to stagnation
	exploration_step	[0.05, 0.5]	Speed of exploration boost increase
	stagnation_sensitivity	[0.0001, 0.01]	What counts as "improvement"
	topology_aggression	[1.0, 3.0]	Structural mutation boost
	exploitation_weight	[0.2, 0.8]	Exploration vs exploitation balance
	adaptation_momentum	[0.0, 0.95]	Smoothness of transitions

L1 Tactical Layer
L1 adapts L0 hyperparameters based on L2 guidance and current metrics:
Inputs:
	L2 guidance parameters
	L0 performance metrics
	velocity_state (improvement rate)
	Cross-silo signals

Outputs:
	exploration_boost [0-1]
	exploitation_boost [0-1]
	topology_mutations_boost
	concurrency_scale
	intervention_level (warning/intervention/critical)

L0 Reactive Layer
L0 directly controls evolution hyperparameters in real-time:
Inputs (21 sensors):
	Fitness metrics
	Stagnation severity
	emergent_metrics (convergence, complexity, innovation)
	L1 outputs

Outputs (lc_hyperparams record):
	Parameter	Range	Default	Effect
	mutation_rate	[0.01, 0.5]	0.1	Probability of mutation
	mutation_strength	[0.05, 1.0]	0.3	Magnitude of mutations
	selection_ratio	[0.1, 0.5]	0.2	Fraction selected
	add_node_rate	[0.0, 0.1]	0.03	Structural mutation rate
	add_connection_rate	[0.0, 0.2]	0.05	Connection mutation rate

Reward Computation
The lc_reward module computes cooperative reward signals encouraging silo alignment.
Task Silo Reward
%% Weighted components
reward = 0.40 * velocity_score % Fitness improvement rate
 + 0.20 * efficiency_score % Progress vs evaluations used
 + 0.20 * convergence_score % Avoiding premature convergence
 + 0.20 * resource_score % Memory/CPU efficiency
Resource Silo Reward
reward = 0.35 * throughput_score % Evaluations per second
 + 0.25 * stability_score % GC triggers, pauses avoided
 + 0.15 * efficiency_score % Optimal utilization
 - 0.15 * task_blocked_penalty
 - 0.10 * distribution_blocked_penalty
Global Health Bonus
All silos receive a cooperative bonus based on overall system improvement:
global_health = (resource_reward + task_reward + distribution_reward) / 3
bonus = 0.1 * (current_global_health - previous_global_health)
This encourages silos to help each other rather than compete.
Configuration
Supervisor Configuration
Config = #{
 %% Enable optional components
 enable_meta_controller => true, % L2 strategic layer
 enable_l0_tweann => true, % Neural network control (vs rule-based)
 enable_distribution_silo => false, % Mesh networking

 %% Cross-silo settings
 cross_silo => #{
 signal_decay_ms => 30000
 },

 %% Meta-controller settings
 meta_controller => #{
 network_topology => {11, [24, 16, 8], 5},
 neuron_type => cfc, % cfc (fast) or ltc (accurate)
 time_constant => 50.0,
 learning_rate => 0.001
 },

 %% Per-silo configuration
 resource_silo => #{...},
 task_silo => #{...}
}.
Chain Configuration (lc_chain_config)
#lc_chain_config{
 %% Time constants (override defaults)
 l2_tau = 100.0, % Strategic: very slow
 l1_tau = 50.0, % Tactical: medium
 l0_tau = 10.0, % Reactive: fast

 %% Learning
 learning_rate = 0.001,
 gamma = 0.95, % Reward discount

 %% Architecture
 evolve_topology = true,
 l2_hidden_layers = [8, 4],
 l1_hidden_layers = [6, 4],
 l0_hidden_layers = [10, 6],
 activation = tanh
}.
Starting the LC
Basic Start
%% Start with defaults
{ok, Pid} = lc_supervisor:start_link()

%% Start with custom configuration
{ok, Pid} = lc_supervisor:start_link(#{
 enable_meta_controller => true,
 enable_l0_tweann => true
})
Checking Status
%% Get all cross-silo signals
AllSignals = lc_cross_silo:get_all_signals()

%% Get signals for a specific silo
TaskSignals = lc_cross_silo:get_signals_for(task)

%% Get negotiated effective evals
EffectiveEvals = lc_cross_silo:get_effective_evals_per_individual()
Runtime Silo Control
The LC supervisor supports dynamic enabling/disabling of extension silos at runtime. This allows applications to activate specialized silos only when needed, reducing resource usage.
Core vs Extension Silos
	Type	Silos	Behavior
	Core	task, resource	Always enabled, cannot be disabled
	Extension	temporal, competitive, social, cultural, ecological, morphological, developmental, regulatory, economic, communication, distribution	Disabled by default, enable on demand

Enabling/Disabling Silos
%% Enable an extension silo
ok = lc_supervisor:enable_silo(temporal)
ok = lc_supervisor:enable_silo(competitive, #{realm => <<"game">>})

%% Disable an extension silo
ok = lc_supervisor:disable_silo(temporal)

%% Attempting to disable core silos returns error
{error, cannot_disable_core_silo} = lc_supervisor:disable_silo(task)

%% Enabling already-enabled silo returns error
{error, already_enabled} = lc_supervisor:enable_silo(temporal)

%% Disabling not-enabled silo returns error
{error, not_enabled} = lc_supervisor:disable_silo(social)

%% Unknown silo returns error
{error, unknown_silo} = lc_supervisor:enable_silo(unknown)
Querying Silo Status
%% Check if a silo is currently enabled
true = lc_supervisor:is_silo_enabled(task)
false = lc_supervisor:is_silo_enabled(temporal)

%% List all currently enabled silos
[task, resource] = lc_supervisor:list_enabled_silos()

%% List all available silo types (13 total)
AllTypes = lc_supervisor:list_available_silos()
%% [task, resource, temporal, competitive, social, cultural,
%% ecological, morphological, developmental, regulatory,
%% economic, communication, distribution]
Silo Type to Module Mapping
%% Get the module name for a silo type
task_silo = lc_supervisor:silo_module(task)
temporal_silo = lc_supervisor:silo_module(temporal)
{error, unknown_silo} = lc_supervisor:silo_module(unknown)

%% All 13 silo types
AllTypes = lc_supervisor:all_silo_types()
Silo Dependencies
Some silos require other silos to be enabled first:
	Silo	Requires	Reason
	social	competitive	Coalition competition signals
	cultural	social	Norm transmission via social network
	communication	social	Trust network for signaling
	developmental	temporal	Critical period timing
	regulatory	developmental	Expression stage coordination

%% Query dependencies for a silo
[competitive] = lc_supervisor:silo_dependencies(social)
[social] = lc_supervisor:silo_dependencies(cultural)
[] = lc_supervisor:silo_dependencies(temporal) %% No dependencies

%% Enable fails if dependencies not met
{error, {missing_dependency, competitive}} = lc_supervisor:enable_silo(social)

%% Disable fails if other silos depend on it
{error, {has_dependents, [social]}} = lc_supervisor:disable_silo(competitive)
Configuration Management
Get Silo Configuration
%% Get the config used to start a silo
{ok, #{realm := <<"game">>}} = lc_supervisor:get_silo_config(competitive)
{ok, #{}} = lc_supervisor:get_silo_config(task) %% Core silos return empty map
{error, not_enabled} = lc_supervisor:get_silo_config(temporal)
Reconfigure Running Silo
%% Hot-reload configuration (restarts silo with new config)
ok = lc_supervisor:reconfigure_silo(temporal, #{realm => <<"new_realm">>})

%% Core silos cannot be reconfigured
{error, cannot_reconfigure_core_silo} = lc_supervisor:reconfigure_silo(task, #{})
Validate Configuration
%% Validate config before enabling
ok = lc_supervisor:validate_silo_config(temporal, #{realm => <<"test">>})
{error, unknown_silo} = lc_supervisor:validate_silo_config(unknown, #{})
Configuration from Application Environment
Silos can be pre-configured in sys.config:
%% sys.config
[
 {macula_neuroevolution, [
 {lc_supervisor, #{
 silos => #{
 temporal => #{enabled => true, realm => <<"default">>},
 competitive => #{enabled => true, archive_max_size => 200},
 social => #{enabled => true} %% Will auto-enable competitive first
 }
 }}
]}
].
The silos map uses the format #{silo_type => #{enabled => true/false, ...config...}}.
Use Cases
	Scenario	Silos to Enable
	Basic neuroevolution	task, resource (core only)
	Time-constrained training	+ temporal
	Competitive game AI	+ competitive, social
	Open-ended evolution	+ cultural, ecological, developmental
	Distributed training	+ distribution
	Full LC exploration	All 13 silos

Control Loop
The LC executes the following loop per generation:
	Collect metrics - L0 sensors gather fitness, diversity, resource usage
	Process L2 - Strategic controller outputs L1 guidance (every tau_L2)
	Process L1 - Tactical controller outputs L0 hyperparameters (every tau_L1)
	Process L0 - Reactive controller computes hyperparameters (every operation)
	Apply actuators - L0 actuators apply hyperparameters to evolution
	Exchange signals - Cross-silo signals update between silos
	Compute rewards - lc_reward computes feedback for learning
	Update controllers - TWEANNs learn from reward signals

Tuning Guide
Common Issues
	Problem	Likely Cause	Fix
	Slow adaptation	High time constants	Decrease tau values
	Oscillating hyperparameters	Low momentum	Increase adaptation_momentum
	Stuck at local optima	Low aggression	Increase aggression_factor
	Resource pressure ignored	Low cross-silo penalty	Increase penalty weights
	Premature convergence	Low diversity pressure	Increase diversity bonuses

Recommended Defaults
The LC defaults are designed to be aggressive (responsive) for initial deployment:
%% L2 Guidance Defaults (aggressive for rule-based L1)
#l2_guidance{
 aggression_factor = 1.5, % 3x default response
 exploration_step = 0.5, % 5x default ramp speed
 stagnation_sensitivity = 0.001, % Sensitive to stagnation
 topology_aggression = 2.5, % Strong structural mutations
 exploitation_weight = 0.3, % Favor exploration
 adaptation_momentum = 0.3, % Fast response (30% old)
 warning_threshold = 0.2, % Warn early
 intervention_threshold = 0.4, % Intervene early
 critical_threshold = 0.7 % Critical earlier
}.
Source Code Reference
	File	Purpose
	src/silos/lc_supervisor.erl	OTP supervisor, runtime silo control
	src/silos/lc_cross_silo.erl	Signal routing
	src/silos/lc_controller.erl	L0 TWEANN controller
	src/silos/lc_l1_controller.erl	L1 tactical controller
	src/silos/lc_l2_controller.erl	L2 strategic controller
	src/silos/lc_chain.erl	Chained L2->L1->L0
	src/silos/lc_reward.erl	Reward computation
	src/silos/lc_population.erl	Population of LC controllers
	include/lc_chain.hrl	Chain records
	include/meta_controller.hrl	Meta-controller records

References
	PLAN_L2_L1_HIERARCHICAL_INTERFACE.md - Hierarchical control design
	PLAN_CHAINED_LTC_CONTROLLER.md - LTC cascade architecture
	"Meta-Learning in Neural Networks: A Survey" - Hospedales et al.
	"Liquid Time-constant Networks" - Hasani et al.

See Also
	Task Silo Guide - Evolution optimization
	Resource Silo Guide - System stability
	Distribution Silo Guide - Mesh networking

 Task Silo Guide

What is the Task Silo?
The Task Silo is the core controller in the Liquid Conglomerate architecture responsible for optimizing the evolution process itself. While the neuroevolution engine evolves neural networks to solve problems, the Task Silo evolves how that evolution happens - adjusting hyperparameters like mutation rates, selection pressure, and topology mutation probabilities in real-time.
Think of the Task Silo as a coach watching a team practice. The coach doesn't play the game directly, but observes performance, identifies when the team is struggling (stagnation), and adjusts the training regimen accordingly. When progress is good, the coach might focus on refinement (exploitation). When the team is stuck, the coach might try something completely new (exploration).
The Task Silo solves a fundamental problem in neuroevolution: hyperparameter sensitivity. Traditional approaches use fixed hyperparameters, which may be optimal for one phase of training but suboptimal for others. The Task Silo learns to adapt these parameters dynamically based on training dynamics.
Architecture Overview
[image: Task Silo Architecture]
The Task Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Hard limits, bounds enforcement, TWEANN output	10 updates
	L1	Tactical	Stagnation detection, exploration/exploitation boosts	1K evaluations
	L2	Strategic	Cross-experiment learning, guidance to L1	10K evaluations

Key Principle: Graceful Degradation
Each level provides a safety net for the level above:
	If L2 fails or produces bad guidance → L1 uses defaults
	If L1 produces extreme values → L0 clamps to safe bounds
	L0 always enforces hard limits, ensuring stability

How It Works
Sensors (Inputs)
The Task Silo observes 16 sensors that describe the current state of evolution:
	Sensor	Range	Description
	best_fitness	[0, 1]	Normalized best fitness in population
	avg_fitness	[0, 1]	Average population fitness
	fitness_variance	[0, 1]	Variance in fitness (diversity indicator)
	improvement_velocity	[-1, 1]	Rate of fitness improvement
	stagnation_severity	[0, 1]	How stuck the evolution is
	diversity_index	[0, 1]	Genetic diversity measure
	species_count_ratio	[0, 1]	Number of species / max
	avg_network_complexity	[0, 1]	Average neurons + connections
	complexity_velocity	[-1, 1]	Rate of complexity change
	elite_dominance	[0, 1]	How much elites dominate
	crossover_success_rate	[0, 1]	Proportion of successful crosses
	mutation_impact	[0, 1]	Effect of recent mutations
	resource_pressure_signal	[0, 1]	From Resource Silo
	evaluation_progress	[0, 1]	Total evals / budget
	entropy	[0, 1]	Information entropy
	convergence_trend	[-1, 1]	Direction of convergence

Actuators (Outputs)
The Task Silo controls 12 hyperparameters that govern evolution:
	Actuator	Range	Default	Description
	mutation_rate	[0.01, 0.5]	0.10	Probability of mutation
	mutation_strength	[0.05, 1.0]	0.30	Magnitude of weight changes
	selection_ratio	[0.05, 0.5]	0.20	Fraction surviving selection
	add_node_rate	[0.001, 0.1]	0.03	Probability of adding neuron
	add_link_rate	[0.01, 0.3]	0.10	Probability of adding connection
	crossover_rate	[0.1, 0.9]	0.50	Probability of crossover
	species_threshold	[0.1, 5.0]	1.0	Distance for speciation
	elitism_ratio	[0.0, 0.3]	0.10	Fraction preserved as elites
	tournament_size	[2, 10]	3	Selection tournament size
	weight_mutation_power	[0.1, 2.0]	0.5	Weight perturbation magnitude
	compatibility_weight	[0.1, 2.0]	1.0	Weight in distance calculation
	complexity_penalty	[0.0, 0.5]	0.05	Fitness penalty per parameter

Velocity-Based Stagnation Detection
[image: Stagnation Detection]
The Task Silo uses a velocity-based approach to detect stagnation, rather than simple generation counters. This provides continuous severity measurement rather than binary thresholds.
Improvement Velocity:
velocity = (delta_fitness / delta_evaluations) * 1000
The velocity measures fitness improvement per 1000 evaluations, calculated as a rolling average over a configurable window (default: 10 checkpoints).
Stagnation Severity:
severity = clamp((threshold - velocity) / threshold, 0, 1)
When velocity drops below the threshold, severity increases proportionally. This continuous signal enables graduated responses rather than sudden interventions.
The Control Loop
	Collect Stats: Engine sends generation statistics to Task Silo
	Update Velocity: Compute improvement velocity from fitness checkpoints
	Calculate Severity: Derive stagnation_severity from velocity
	Apply L1 Boosts: Compute exploration/exploitation boosts
	Receive L2 Guidance: Query meta_controller for strategic guidance
	Compute Recommendations: Generate hyperparameter recommendations
	Return to Engine: Engine applies recommendations to next generation

%% Typical usage in evolution loop
handle_generation_complete(Stats, State) ->
 %% Get recommendations from Task Silo
 Params = task_silo:get_recommendations(TaskSiloPid, Stats),

 %% Apply to evolution config
 NewConfig = apply_hyperparameters(State#state.config, Params),

 %% Continue evolution with new parameters
 State#state{config = NewConfig}.
Integration with the Neuroevolution Engine
[image: Task Silo Dataflow]
Wiring Diagram
The Task Silo integrates with the neuroevolution engine at generation boundaries:
Incoming Data:
	Generation statistics from neuroevolution_engine
	Resource pressure signals from resource_silo
	Diversity signals from distribution_silo

Outgoing Data:
	Hyperparameter recommendations to neuroevolution_engine
	Cross-silo signals via lc_cross_silo
	Events to neuroevolution_events bus

Cross-Silo Interactions
The Task Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
exploration_boost	Resource	Current exploration level
desired_evals_per_individual	Resource	How many evaluations wanted
expected_complexity_growth	Resource	Anticipated memory needs
diversity_need	Distribution	How much migration helps
speciation_pressure	Distribution	Species splitting tendency
Signals Received:		
Signal	From	Effect
--------	------	--------
pressure_signal	Resource	Reduces exploration when resources stressed
max_evals_per_individual	Resource	Caps evaluation budget
should_simplify	Resource	Increases complexity_penalty
island_diversity_score	Distribution	Informs diversity_need
Engine Integration Points
%% Start Task Silo with configuration
{ok, TaskPid} = task_silo:start_link(#{
 enabled_levels => [l0, l1], % L2 optional
 velocity_threshold => 0.001, % Stagnation sensitivity
 velocity_window_size => 10, % Rolling average window
 l2_enabled => false, % Enable meta_controller
 l0_tweann_enabled => false % Use TWEANN vs rule-based
}),

%% In evolution loop
on_generation_complete(GenStats) ->
 %% Update Task Silo with stats
 ok = task_silo:update_stats(TaskPid, GenStats),

 %% Get adapted hyperparameters
 Params = task_silo:get_recommendations(TaskPid, GenStats),

 %% Params contains mutation_rate, selection_ratio, etc.
 apply_params_to_next_generation(Params).
Training Velocity Impact
	Metric	Without Task Silo	With Task Silo
	Hyperparameter tuning	Manual, static	Automatic, adaptive
	Stagnation recovery	None (stuck forever)	Automatic intervention
	Phase transitions	Manual schedules	Learned from dynamics
	Training velocity	Baseline (1.0x)	Baseline (defines 1.0x)

The Task Silo defines the baseline training velocity because it controls the core evolution parameters. Other silos build on top of this foundation.
Practical Examples
Example 1: Detecting and Recovering from Stagnation
%% Scenario: Evolution has been stuck for many evaluations
Stats = #{
 best_fitness => 0.65,
 total_evaluations => 50000,
 improvement => 0.0001 % Very slow improvement
},

%% Task Silo detects stagnation
Params = task_silo:get_recommendations(TaskPid, Stats),

%% With high stagnation_severity, expect:
%% - mutation_rate: 0.10 → 0.18 (increased exploration)
%% - add_node_rate: 0.03 → 0.06 (try new topologies)
%% - selection_ratio: 0.20 → 0.25 (less pressure)

%% Event emitted:
%% {task_silo_intervention_started, #{
%% stagnation_severity => 0.72,
%% improvement_velocity => 0.0001,
%% ...
%% }}
Example 2: Exploiting Good Progress
%% Scenario: Evolution is improving rapidly
Stats = #{
 best_fitness => 0.85,
 total_evaluations => 30000,
 improvement => 0.05 % Strong improvement
},

%% Task Silo detects good progress
Params = task_silo:get_recommendations(TaskPid, Stats),

%% With low stagnation_severity and high improvement:
%% - mutation_rate: 0.10 → 0.08 (refine, don't disrupt)
%% - mutation_strength: 0.30 → 0.25 (smaller steps)
%% - selection_ratio: 0.20 → 0.15 (higher pressure)
Example 3: Resource-Constrained Training
%% Resource Silo signals high pressure
ok = lc_cross_silo:send_signal(resource, task, #{
 pressure_signal => 0.8,
 max_evals_per_individual => 5,
 should_simplify => 0.6
}),

%% Task Silo adapts to resource constraints
Stats = #{best_fitness => 0.70, total_evaluations => 40000},
Params = task_silo:get_recommendations(TaskPid, Stats),

%% Response to resource pressure:
%% - complexity_penalty: 0.05 → 0.15 (prefer smaller networks)
%% - add_node_rate: reduced (less topology growth)
%% - evaluations_per_individual: capped at 5
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	velocity_threshold	Evolution too aggressive	Missing subtle improvements
	velocity_window_size	Noisy fitness, need smoothing	Need faster response
	L2 aggression_factor	Interventions too weak	Oscillating parameters
	L2 exploration_step	Stagnation recovery slow	Disrupting good progress

Common Pitfalls
	Velocity threshold too high: Everything looks like stagnation
	Symptom: Constant intervention, parameters always maxed
	Fix: Lower velocity_threshold (e.g., 0.0005)

	Velocity threshold too low: Never detects stagnation
	Symptom: Evolution stuck but no intervention
	Fix: Raise velocity_threshold (e.g., 0.002)

	Window size too small: Noisy stagnation detection
	Symptom: Parameters oscillate rapidly
	Fix: Increase velocity_window_size (e.g., 20)

	L2 not enabled: Missing strategic adaptation
	Symptom: Same response patterns regardless of domain
	Fix: Enable L2 with l2_enabled => true

Debugging Tips
%% Get full Task Silo state
State = task_silo:get_state(TaskPid),
io:format("Stagnation severity: ~.3f~n", [maps:get(stagnation_severity, State)]),
io:format("Velocity: ~.5f~n", [maps:get(improvement_velocity, State)]),
io:format("Exploration boost: ~.3f~n", [maps:get(exploration_boost, State)]),

%% Check L2 guidance
L2Guidance = maps:get(l2_guidance, State),
io:format("L2 aggression: ~.2f~n", [maps:get(aggression_factor, L2Guidance)]).
Events Reference
The Task Silo emits events on threshold crossings:
	Event	Trigger	Key Payload
	task_silo_stagnation_warning	Severity crosses warning threshold (0.3)	stagnation_severity, improvement_velocity
	task_silo_intervention_started	Severity crosses intervention threshold (0.5)	Same + threshold
	task_silo_intervention_critical	Severity crosses critical threshold (0.7)	Same
	task_silo_intervention_ended	Severity drops below warning	Same

Example Event Payload:
{task_silo_intervention_started, #{
 realm => <<"default">>,
 source => task_silo,
 timestamp => 1703318400000,
 total_evaluations => 45000,
 cohort => 90,
 stagnation_severity => 0.65,
 improvement_velocity => 0.0003,
 threshold => 0.5,
 message => <<"Stagnation detected, boosting exploration">>
}}
L2 Guidance Parameters
When L2 is enabled, the meta_controller provides strategic guidance:
	Parameter	Range	Default	Effect
	aggression_factor	[0.0, 2.0]	1.0	Multiplier for L1 adjustments
	exploration_step	[0.05, 0.5]	0.1	Intensity of exploration boost
	topology_aggression	[1.0, 3.0]	1.5	Multiplier for add_node_rate
	exploitation_weight	[0.2, 0.8]	0.5	Balance explore/exploit
	stagnation_sensitivity	[0.5, 2.0]	1.0	Velocity threshold multiplier
	adaptation_momentum	[0.0, 0.9]	0.5	EMA smoothing factor

Source Code Reference
	Module	Purpose	Location
	task_silo.erl	Main gen_server	src/silos/task_silo/
	task_l0_defaults.erl	L0 bounds and defaults	Same
	task_l0_morphology.erl	TWEANN topology definition	Same
	task_l0_sensors.erl	Sensor collection	Same
	task_l0_actuators.erl	Actuator application	Same
	lc_reward.erl	Reward computation	src/silos/
	lc_cross_silo.erl	Cross-silo signals	Same

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Cooperative Silos - Cross-silo communication
	Resource Silo - Computational resource management
	Distribution Silo - Population structure control
	Meta-Controller Guide - L2 strategic layer

References
Adaptive Hyperparameters
	Jaderberg, M., et al. (2017). "Population Based Training of Neural Networks." arXiv:1711.09846
	Schmidhuber, J. (1987). "Evolutionary principles in self-referential learning."

Stagnation Detection
	Stanley, K.O., Miikkulainen, R. (2002). "Evolving Neural Networks through Augmenting Topologies." Evolutionary Computation.
	Lehman, J., Stanley, K.O. (2011). "Abandoning Objectives: Evolution through the Search for Novelty Alone."

Multi-Timescale Learning
	Sutton, R.S., et al. (1999). "Between MDPs and semi-MDPs: A framework for temporal abstraction."

 Resource Silo Guide

What is the Resource Silo?
The Resource Silo is the system stability controller in the Liquid Conglomerate architecture. It monitors computational resources (memory, CPU, processes) and dynamically adjusts the evolution engine's concurrency to prevent system crashes while maximizing throughput.
Think of the Resource Silo as a traffic controller for a busy highway. When traffic is light (low resource pressure), it allows full speed (high concurrency). As congestion builds, it slows traffic down (throttles). In emergencies, it can stop traffic entirely (pause) until conditions improve.
The Resource Silo solves a fundamental problem in neuroevolution: resource exhaustion. Evaluating thousands of neural networks concurrently can quickly exhaust system memory or saturate CPU. Without active management, the system crashes. The Resource Silo prevents this by continuously monitoring system state and adapting evaluation intensity.
Architecture Overview
[image: Resource Silo Architecture]
The Resource Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Emergency	Hard limits, GC triggers, pause if critical	Always active
	L1	Reactive	Adjust concurrency based on current pressure	5 updates
	L2	Predictive	Learn resource patterns, anticipate needs	Future

Key Principle: Safety First
The levels are designed for fail-safe operation:
	L0 is always active - it cannot be disabled and enforces absolute limits
	If L2 produces bad predictions → L1 ignores them and uses defaults
	If L1 computes extreme values → L0 clamps to safe bounds
	Even if all higher layers fail, L0 will trigger GC and pause to protect the system

How It Works
Sensors (Inputs)
The Resource Silo observes 15 sensors that describe current system state:
	Sensor	Range	Description
	memory_pressure	[0, 1]	Used memory / total memory
	memory_velocity	[-1, 1]	Rate of memory change
	cpu_pressure	[0, 1]	CPU utilization (scheduler-based)
	cpu_velocity	[-1, 1]	Rate of CPU change
	run_queue_pressure	[0, 1]	Run queue / (schedulers * 2)
	process_pressure	[0, 1]	Process count / process limit
	message_queue_pressure	[0, 1]	Aggregate message queue depth
	binary_memory_ratio	[0, 1]	Binary heap / total memory
	gc_frequency	[0, 1]	GC rate (normalized)
	current_concurrency_ratio	[0, 1]	Current / max concurrency
	task_silo_exploration	[0, 1]	Signal from Task Silo
	evaluation_throughput	[0, 1]	Evaluations per second
	time_since_last_gc	[0, 1]	Time since last forced GC
	archive_memory_ratio	[0, 1]	Self-play archive memory usage
	crdt_state_size_ratio	[0, 1]	CRDT sync overhead

Actuators (Outputs)
The Resource Silo controls 10 parameters that govern system behavior:
	Actuator	Range	Default	Description
	max_concurrent_evaluations	[1, base*2]	base_concurrency	Max parallel evals
	evaluation_batch_size	[1, 50]	10	Evals per batch
	gc_trigger_threshold	[0.5, 0.95]	0.85	Memory % to trigger GC
	pause_threshold	[0.7, 0.99]	0.95	Memory % to pause
	throttle_intensity	[0, 1]	0.0	How aggressively to throttle
	max_evals_per_individual	[1, 20]	5	Evaluation cap per agent
	task_silo_pressure_signal	[0, 1]	0.0	Cross-silo signal to Task
	gc_aggressiveness	[0, 1]	0.5	GC intensity
	archive_gc_pressure	[0, 1]	0.0	Force archive cleanup
	evaluation_timeout	[1000, 10000]	3000	Worker timeout (ms)

Adaptive Throttling
[image: Adaptive Throttling]
The Resource Silo uses a three-state machine to manage system load:
State: CONTINUE
	Memory pressure below memory_high_threshold (default: 0.7)
	Full concurrency allowed
	Normal operation

State: THROTTLE
	Memory pressure between memory_high_threshold and memory_critical_threshold
	Concurrency reduced proportionally
	May trigger GC if pressure is rising

State: PAUSE
	Memory pressure at or above memory_critical_threshold (default: 0.9)
	Minimum concurrency (or full stop)
	Force GC on all processes
	Wait for pressure to decrease

The L1 Concurrency Formula
%% Compute pressure factor (0.0 to 1.0)
PressureFactor = max(MemFactor, CpuFactor),

%% Scale concurrency using L2-controlled factors
ScaleFactor = max(MinScale, 1.0 - (PressureFactor * PressureScale)),
NewConcurrency = max(1, round(Base * ScaleFactor))
Where:
	PressureScale (L2-controlled): How aggressively to reduce (default: 0.9)
	MinScale (L2-controlled): Minimum concurrency fraction (default: 0.1)

The Control Loop
	Sample Metrics: Every 1 second, collect VM metrics via resource_monitor
	Update History: Add pressure to rolling window for velocity calculation
	Query L2: If enabled, get strategic guidance from meta_controller
	Compute L1 Concurrency: Calculate adaptive concurrency based on pressure
	Check L0 Emergency: If critical, trigger GC and increment pause count
	Emit Events: On state change, publish resource_alert event
	Return Recommendations: Engine queries for max_concurrent and action

%% Typical usage in evolution loop
run_evaluations(Population, State) ->
 %% Get recommendations from Resource Silo
 #{action := Action, max_concurrent := MaxConc} = resource_silo:get_recommendations(),

 case Action of
 pause ->
 %% Wait for resources to recover
 timer:sleep(1000),
 run_evaluations(Population, State);
 throttle ->
 %% Proceed with reduced concurrency
 evaluate_batch(Population, MaxConc, State);
 continue ->
 %% Full speed ahead
 evaluate_batch(Population, MaxConc, State)
 end.
Integration with the Neuroevolution Engine
[image: Resource Silo Dataflow]
Wiring Diagram
The Resource Silo integrates with the system at the lowest level:
Data Sources:
	resource_monitor - Raw BEAM VM metrics (memory, CPU, processes)
	neuroevolution_server - Evaluation throughput, current concurrency
	opponent_archive - Self-play archive memory statistics (optional)

Data Consumers:
	neuroevolution_server - Applies concurrency limits, timeout settings
	task_silo - Receives pressure signals for hyperparameter adaptation
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Resource Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
pressure_signal	Task	Current resource pressure (0-1)
max_evals_per_individual	Task	Caps evaluation budget
should_simplify	Task	Suggests simpler networks when resources stressed
local_capacity	Distribution	Available local compute capacity
Signals Received:		
Signal	From	Effect
--------	------	--------
exploration_boost	Task	High exploration = expect more evaluations
desired_evals_per_individual	Task	Requested evaluation budget
expected_complexity_growth	Task	Anticipated memory needs
Engine Integration Points
%% Start Resource Silo with configuration
{ok, _} = resource_silo:start_link(#{
 enabled_levels => [l0, l1], % L2 not yet implemented
 base_concurrency => 100000, % Erlang can handle it
 memory_high_threshold => 0.7, % Start throttling at 70%
 memory_critical_threshold => 0.9, % Pause at 90%
 cpu_high_threshold => 0.9, % Throttle at 90% CPU
 sample_interval => 1000 % Sample every 1 second
}),

%% In evaluation loop
before_evaluation_batch() ->
 case resource_silo:should_pause() of
 true ->
 %% Wait for resources
 timer:sleep(500),
 before_evaluation_batch();
 false ->
 #{max_concurrent := N} = resource_silo:get_recommendations(),
 {ok, N}
 end.
Training Velocity Impact
	Metric	Without Resource Silo	With Resource Silo
	System stability	Crashes under load	Graceful degradation
	Concurrency management	Fixed (guess)	Adaptive to pressure
	Memory safety	None (OOM kills)	Proactive GC, pause
	Training velocity	0.0x (crashes)	1.0x (baseline)

The Resource Silo establishes the baseline training velocity by keeping the system alive. Without it, aggressive neuroevolution experiments would crash, yielding 0x velocity.
Practical Examples
Example 1: Handling Memory Pressure
%% Scenario: Memory pressure climbing during evolution
%% resource_monitor reports memory_pressure = 0.75

%% Resource Silo detects THROTTLE condition
Recommendations = resource_silo:get_recommendations(),

%% With pressure at 0.75 (above 0.7 threshold):
%% - action => throttle
%% - max_concurrent => 65000 (reduced from 100000)
%% - reason => <<"High resource pressure - reducing concurrency">>

%% Event emitted:
%% {resource_alert, #{
%% previous_action => continue,
%% action => throttle,
%% memory_pressure => 0.75,
%% cpu_pressure => 0.45,
%% message => <<"Resource pressure detected, reducing concurrency">>
%% }}
Example 2: Critical Pressure Response
%% Scenario: Memory pressure hits critical level
%% resource_monitor reports memory_pressure = 0.92

%% Resource Silo L0 triggers emergency response
%% 1. Forces garbage collection on all processes
%% 2. Increments pause_count
%% 3. Returns pause action

Recommendations = resource_silo:get_recommendations(),
%% #{
%% action => pause,
%% max_concurrent => 1,
%% memory_pressure => 0.92,
%% reason => <<"Memory critical - evolution should pause">>,
%% gc_triggered_count => 5,
%% pause_count => 3
%% }
Example 3: Pressure Rising Detection
%% Resource Silo tracks pressure history for velocity calculation
%% If pressure is rising rapidly, it preemptively triggers GC

%% Pressure history: [0.68, 0.65, 0.60, 0.55, 0.50]
%% Current pressure: 0.72
%% Velocity: (0.72 - 0.68) = 0.04 per sample

%% Even though 0.72 < 0.9 (critical),
%% pressure is rising above pressure_change_threshold (0.05)
%% L0 triggers preemptive GC to prevent reaching critical
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	base_concurrency	Underutilizing resources	OOM errors
	memory_high_threshold	Throttling too early	System sluggish
	memory_critical_threshold	Pausing unnecessarily	Crashes before pause
	sample_interval	Too much monitoring overhead	Slow response to spikes
	L2 pressure_scale_factor	Throttling too weak	Oscillating concurrency
	L2 min_scale_factor	Concurrency drops too low	Not enough throttling

Common Pitfalls
	Base concurrency too low: Underutilizing Erlang's massive concurrency
	Symptom: Low CPU utilization, slow training
	Fix: Increase base_concurrency (Erlang handles 100K+ processes easily)

	Thresholds too aggressive: Constant throttling/pausing
	Symptom: pause_count climbing rapidly, low throughput
	Fix: Raise memory_high_threshold to 0.8

	Thresholds too permissive: System crashes before intervention
	Symptom: OOM kills, VM crashes
	Fix: Lower memory_critical_threshold to 0.85

	Sample interval too long: Slow reaction to pressure spikes
	Symptom: Memory spikes cause crashes before silo reacts
	Fix: Reduce sample_interval to 500ms

Debugging Tips
%% Get full Resource Silo state
State = resource_silo:get_state(),
io:format("Memory pressure: ~.1f%~n", [maps:get(memory_pressure, maps:get(current_metrics, State)) * 100]),
io:format("Current concurrency: ~p~n", [maps:get(current_concurrency, State)]),
io:format("GC triggered count: ~p~n", [maps:get(gc_triggered_count, State)]),
io:format("Pause count: ~p~n", [maps:get(pause_count, State)]),

%% Get sensor details
Sensors = maps:get(sensors, State),
io:format("Run queue pressure: ~.3f~n", [maps:get(run_queue_pressure, Sensors, 0.0)]),
io:format("Process pressure: ~.3f~n", [maps:get(process_pressure, Sensors, 0.0)]),

%% Check thresholds
Thresholds = maps:get(thresholds, State),
io:format("Memory high threshold: ~.2f~n", [maps:get(memory_high, Thresholds)]).
Events Reference
The Resource Silo emits events on state transitions:
	Event	Trigger	Key Payload
	resource_alert	Action state changes	previous_action, action, memory_pressure, cpu_pressure
	resource_sensors_updated	Sensors change significantly	sensors (full map)
	gc_triggered	L0 forces garbage collection	memory_pressure, reason

Example Event Payload:
{resource_alert, #{
 realm => <<"default">>,
 source => resource_silo,
 previous_action => continue,
 action => throttle,
 memory_pressure => 0.75,
 cpu_pressure => 0.45,
 message => <<"Resource pressure detected, reducing concurrency">>,
 timestamp => 1703318400000
}}
L2 Guidance Parameters
When L2 is enabled (future), the meta_controller provides strategic guidance:
	Parameter	Range	Default	Effect
	memory_high_threshold	[0.5, 0.9]	0.7	When to start throttling
	memory_critical_threshold	[0.7, 0.99]	0.9	When to pause
	cpu_high_threshold	[0.7, 0.99]	0.9	CPU throttle threshold
	pressure_scale_factor	[0.5, 0.99]	0.9	Throttling intensity
	min_scale_factor	[0.1, 0.5]	0.1	Minimum concurrency
	pressure_change_threshold	[0.01, 0.1]	0.05	Sensitivity to pressure changes

Source Code Reference
	Module	Purpose	Location
	resource_silo.erl	Main gen_server	src/silos/resource_silo/
	resource_monitor.erl	BEAM VM metrics collection	Same
	resource_l0_sensors.erl	Sensor normalization	Same
	resource_l0_actuators.erl	Actuator application	Same
	resource_l0_morphology.erl	TWEANN topology definition	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Cooperative Silos - Cross-silo communication
	Task Silo - Hyperparameter adaptation
	Distribution Silo - Population structure control
	Meta-Controller Guide - L2 strategic layer

References
Resource Management in BEAM
	Armstrong, J. (2007). "Programming Erlang: Software for a Concurrent World." Pragmatic Bookshelf.
	Cesarini, F., Thompson, S. (2009). "Erlang Programming." O'Reilly Media.

Adaptive Systems
	Hellerstein, J.L., et al. (2004). "Feedback Control of Computing Systems." Wiley.
	Diao, Y., et al. (2005). "Control of Computing Systems." IEEE Computer.

Garbage Collection
	Jones, R., Hosking, A., Moss, E. (2011). "The Garbage Collection Handbook." CRC Press.

 Distribution Silo Guide

What is the Distribution Silo?
The Distribution Silo is the network efficiency controller in the Liquid Conglomerate architecture. It manages how populations are distributed across islands, how individuals migrate between them, and how evaluations are balanced across peer nodes in a mesh network.
Think of the Distribution Silo as an air traffic controller for a network of airports (islands). It decides which flights (migrations) to schedule, routes passengers (individuals) to appropriate destinations, and balances load across terminals (peer nodes) to prevent congestion while maximizing throughput.
The Distribution Silo solves two fundamental problems in distributed neuroevolution:
	Load Balancing: How to efficiently distribute evaluation work across available compute nodes
	Diversity Maintenance: How to manage population structure through islands and migration to maintain genetic diversity while enabling specialization

Architecture Overview
[image: Distribution Silo Architecture]
The Distribution Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Real-time routing decisions, trigger migrations	1 second
	L1	Tactical	Adapt migration rates based on diversity/load	10 seconds
	L2	Strategic	Learn optimal island topologies (future)	1 minute

Key Principle: Network Awareness
The Distribution Silo uniquely operates on wall-clock time rather than evaluation counts because it manages real-time network conditions:
	Peer availability changes in real-time
	Network latency affects routing decisions
	Load imbalances require immediate response
	Migration windows are time-sensitive

How It Works
Sensors (Inputs)
The Distribution Silo observes 14 sensors describing network and population state:
	Sensor	Range	Description
	local_load	[0, 1]	Combined CPU/memory pressure locally
	local_queue_depth	[0, 1]	Pending evaluations / max queue
	peer_count	[0, 1]	Connected peers / max peers
	avg_peer_load	[0, 1]	Average load across all peers
	min_peer_load	[0, 1]	Load of least loaded peer
	network_latency_avg	[0, 1]	Average RTT to peers (normalized)
	network_bandwidth_ratio	[0, 1]	Available / max bandwidth
	island_count	[0, 1]	Current islands / max islands
	migration_success_rate	[0, 1]	Successful / attempted migrations
	species_distribution_entropy	[0, 1]	Species diversity across islands
	resource_silo_pressure	[0, 1]	Cross-silo from Resource Silo
	task_silo_exploration	[0, 1]	Cross-silo from Task Silo
	evaluation_batch_pending	[0, 1]	Queued batches (normalized)
	time_since_last_migration	[0, 1]	Time / cooldown period

Actuators (Outputs)
The Distribution Silo controls 10 parameters governing distribution behavior:
	Actuator	Range	Default	Description
	local_vs_remote_ratio	[0, 1]	0.8	0=all remote, 1=all local
	migration_rate	[0, 0.2]	0.05	Fraction to migrate per cycle
	migration_selection_pressure	[0, 1]	0.5	0=random, 1=best only
	target_island_selection	[0, 1]	0.5	0=random, 1=most different
	island_split_threshold	[0.5, 0.95]	0.8	When to split island
	island_merge_threshold	[0.1, 0.5]	0.3	When to merge islands
	load_balance_aggressiveness	[0, 1]	0.5	Eagerness to offload work
	peer_selection_strategy	[0, 1]	0.5	0=nearest, 1=least loaded
	batch_size_for_remote	[1, 20]	5	Remote evaluation batch size
	topology_change_rate	[0, 0.1]	0.02	Island connection evolution

Island Model & Migration
[image: Island Model]
The Distribution Silo implements an island model for population structure:
Islands are semi-isolated subpopulations that:
	Evolve independently most of the time
	Exchange individuals through controlled migration
	Can specialize on different solution strategies
	Maintain diversity through geographic isolation

Migration connects islands:
	migration_rate: How many individuals migrate per cycle (0-20% of population)
	migration_selection_pressure: Who migrates (random vs. best individuals)
	target_island_selection: Where to migrate (random vs. most genetically different island)

Island Topology Evolution:
	island_split_threshold: When speciation is high, split an island into two
	island_merge_threshold: When islands become too similar, merge them
	topology_change_rate: How frequently topology changes are allowed

The Control Loop
	Sample Network: Every 1 second, collect peer metrics (load, latency, bandwidth)
	Update Sensors: Compute normalized sensor values from network state
	Compute Routing: Determine local_vs_remote_ratio for evaluation routing
	Check Migration: If cooldown expired, compute migration parameters
	Select Migrants: Choose individuals based on migration_selection_pressure
	Select Targets: Choose destination islands based on target_island_selection
	Execute Migration: Transfer individuals via mesh network
	Check Topology: Evaluate split/merge conditions, apply changes
	Emit Events: Publish migration and topology events

%% Typical usage in evaluation loop
route_evaluation(Individual, State) ->
 %% Get distribution parameters
 #{local_vs_remote_ratio := Ratio} = distribution_l0_actuators:get_distribution_params(),

 case rand:uniform() < Ratio of
 true ->
 %% Evaluate locally
 evaluate_local(Individual);
 false ->
 %% Route to peer
 Peer = select_peer(State),
 evaluate_remote(Individual, Peer)
 end.
Integration with the Neuroevolution Engine
[image: Distribution Silo Dataflow]
Wiring Diagram
The Distribution Silo integrates with mesh networking and population management:
Data Sources:
	mesh_network - Peer discovery, load heartbeats, latency measurements
	island_manager - Population structure, species distribution
	migration_tracker - Success/failure of recent migrations

Data Consumers:
	evaluation_router - Routing decisions for where to evaluate
	island_manager - Migration triggers, topology changes
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Distribution Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
network_load_contribution	Resource	Load from distribution activities
remote_capacity_available	Resource	Peers can help with evaluations
island_diversity_score	Task	Diversity level across islands
migration_activity	Task	Recent migration level
Signals Received:		
Signal	From	Effect
--------	------	--------
pressure_signal	Resource	High pressure = prefer local, less migration
local_capacity	Resource	Available compute for remote requests
exploration_boost	Task	High exploration = more migration for diversity
diversity_need	Task	How much diversity helps current evolution
Engine Integration Points
%% Start Distribution Silo sensors/actuators
{ok, _} = distribution_l0_sensors:start_link(#{
 max_peers => 100,
 max_islands => 8,
 migration_cooldown_ms => 5000,
 max_queue_depth => 1000
}),

{ok, _} = distribution_l0_actuators:start_link(#{
 hyperparameters => #{
 local_preference_base => 0.8,
 topology_stability_weight => 0.5
 }
}),

%% Query for routing decisions
get_routing() ->
 Params = distribution_l0_actuators:get_distribution_params(),
 #{
 local_ratio => maps:get(local_vs_remote_ratio, Params),
 peer_strategy => maps:get(peer_selection_strategy, Params),
 batch_size => maps:get(batch_size_for_remote, Params)
 }.

%% Update with peer metrics from mesh
on_peer_heartbeat(PeerMetrics) ->
 distribution_l0_sensors:update_peer_metrics(PeerMetrics).

%% Record migration results
on_migration_complete(Success) ->
 distribution_l0_sensors:update_migration_result(Success),
 distribution_l0_sensors:record_migration_time().
Training Velocity Impact
	Metric	Without Distribution Silo	With Distribution Silo
	Multi-node scaling	Manual configuration	Automatic adaptation
	Load balancing	None (hotspots)	Dynamic rebalancing
	Diversity maintenance	Species threshold only	Island model + migration
	Training velocity	1.0x (single node)	1.5-3.0x (multi-node)

The Distribution Silo enables horizontal scaling by automatically managing work distribution and population structure across nodes.
Practical Examples
Example 1: Load-Based Routing
%% Scenario: Local node is overloaded
%% Sensors show:
%% - local_load = 0.85 (high pressure)
%% - min_peer_load = 0.30 (peer available)
%% - network_latency_avg = 0.15 (low latency)

Params = distribution_l0_actuators:get_distribution_params(),
%% With high local load and available peers:
%% - local_vs_remote_ratio => 0.45 (shifted toward remote)
%% - peer_selection_strategy => 0.8 (prefer least loaded)
%% - batch_size_for_remote => 10 (larger batches for efficiency)
Example 2: Diversity-Driven Migration
%% Scenario: Task Silo reports low diversity
%% Cross-silo signal: diversity_need = 0.8

%% Distribution Silo responds:
%% - migration_rate => 0.12 (increased from 0.05)
%% - target_island_selection => 0.9 (target most different islands)
%% - migration_selection_pressure => 0.3 (include some random individuals)

%% Event emitted when migration occurs:
{migration_completed, #{
 source_island => 1,
 target_island => 3,
 individuals_migrated => 5,
 selection_method => diversity_driven,
 success => true
}}
Example 3: Island Topology Change
%% Scenario: Species distribution highly skewed on Island 2
%% species_distribution_entropy on Island 2 = 0.2 (low - dominated by one species)

%% Distribution Silo detects split condition:
%% - speciation_threshold crossed
%% - island_split_threshold = 0.8 (met)

%% Action: Split Island 2 into Islands 2a and 2b

{island_split_occurred, #{
 original_island => 2,
 new_islands => [<<"2a">>, <<"2b">>],
 reason => species_divergence,
 dominant_species => species_x,
 split_ratio => 0.55
}}
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	local_preference_base	Network unreliable	Underutilizing peers
	migration_rate	Diversity too low	Disrupting island specialization
	migration_cooldown_ms	Migration overhead high	Slow diversity spread
	topology_stability_weight	Oscillating topology	Stuck in suboptimal structure
	L1 load_sensitivity	Slow response to imbalance	Oscillating routing
	L1 migration_adaptation_rate	Slow diversity recovery	Unstable migration

Common Pitfalls
	Local preference too high: Underutilizing available peers
	Symptom: Local load high while peers idle
	Fix: Reduce local_preference_base to 0.6-0.7

	Migration rate too high: Disrupting island specialization
	Symptom: All islands converge to same strategy
	Fix: Reduce migration_rate to 0.02-0.03

	Migration selection too elitist: Reducing diversity
	Symptom: Only best individuals migrate, islands become homogeneous
	Fix: Lower migration_selection_pressure to 0.3-0.5

	Topology changes too frequent: Unstable population structure
	Symptom: Islands constantly splitting/merging
	Fix: Increase topology_stability_weight to 0.7+

Debugging Tips
%% Get current sensor values
Sensors = distribution_l0_sensors:get_sensors(),
io:format("Local load: ~.2f~n", [maps:get(local_load, Sensors)]),
io:format("Avg peer load: ~.2f~n", [maps:get(avg_peer_load, Sensors)]),
io:format("Migration success: ~.2f~n", [maps:get(migration_success_rate, Sensors)]),
io:format("Species entropy: ~.2f~n", [maps:get(species_distribution_entropy, Sensors)]),

%% Get current actuator values
Actuators = distribution_l0_actuators:get_actuator_values(),
io:format("Local/remote ratio: ~.2f~n", [maps:get(local_vs_remote_ratio, Actuators)]),
io:format("Migration rate: ~.3f~n", [maps:get(migration_rate, Actuators)]),
io:format("Split threshold: ~.2f~n", [maps:get(island_split_threshold, Actuators)]).
Events Reference
The Distribution Silo emits events on significant actions:
	Event	Trigger	Key Payload
	migration_completed	Individuals migrated	source_island, target_island, count, success
	island_split_occurred	Island divided	original_island, new_islands, reason
	island_merge_occurred	Islands combined	merged_islands, result_island, reason
	load_rebalanced	Work redistributed	from_node, to_node, batch_size
	peer_discovered	New peer joined	peer_id, load, latency
	peer_lost	Peer disconnected	peer_id, reason

Example Event Payload:
{migration_completed, #{
 realm => <<"default">>,
 source => distribution_silo,
 source_island => 1,
 target_island => 4,
 individuals_migrated => 3,
 selection_method => fitness_proportional,
 target_selection => most_different,
 success => true,
 timestamp => 1703318400000
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	max_islands	[2, 32]	8	Maximum island count
	min_island_size	[5, 50]	10	Minimum individuals per island
	migration_cooldown_ms	[1000, 30000]	5000	Between migrations
	load_imbalance_threshold	[0.1, 0.6]	0.3	When to rebalance
	network_timeout_ms	[100, 5000]	1000	Communication timeout
	local_preference_base	[0.5, 1.0]	0.8	Default local bias
	diversity_migration_boost	[1.0, 3.0]	1.5	Migration boost for diversity
	topology_stability_weight	[0.0, 1.0]	0.5	Resist topology changes

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	load_sensitivity	[0.5, 2.0]	1.0	Response to load changes
	migration_adaptation_rate	[0.01, 0.3]	0.1	How fast to adjust migration
	topology_learning_rate	[0.01, 0.2]	0.05	Island structure adaptation
	cross_silo_responsiveness	[0.0, 1.0]	0.5	React to other silos
	exploration_diversity_coupling	[0.0, 1.0]	0.5	Link exploration to distribution

Source Code Reference
	Module	Purpose	Location
	distribution_l0_morphology.erl	TWEANN topology (14→10)	src/silos/distribution_silo/
	distribution_l0_sensors.erl	Sensor collection	Same
	distribution_l0_actuators.erl	Actuator application	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Cooperative Silos - Cross-silo communication
	Task Silo - Hyperparameter adaptation
	Resource Silo - Computational resource management
	Meta-Controller Guide - L2 strategic layer

References
Island Models
	Whitley, D., Rana, S., Heckendorn, R.B. (1999). "The Island Model Genetic Algorithm: On Separability, Population Size and Convergence." Journal of Computing and Information Technology.
	Skolicki, Z., De Jong, K. (2005). "The Influence of Migration Sizes and Intervals on Island Models." GECCO '05.

Load Balancing in Distributed Systems
	Eager, D.L., Lazowska, E.D., Zahorjan, J. (1986). "Adaptive Load Sharing in Homogeneous Distributed Systems." IEEE Transactions on Software Engineering.

Speciation and Diversity
	Stanley, K.O., Miikkulainen, R. (2002). "Evolving Neural Networks through Augmenting Topologies." Evolutionary Computation.
	Mahfoud, S.W. (1995). "Niching Methods for Genetic Algorithms." PhD Thesis, University of Illinois.

 Temporal Silo Guide

What is the Temporal Silo?
The Temporal Silo is the time management controller in the Liquid Conglomerate architecture. It manages how long to evaluate individuals, episode durations, reaction time budgets, and early termination decisions. Poor time management wastes 30-70% of evaluation compute on hopeless individuals or cuts off promising ones too early.
Think of the Temporal Silo as a project manager with a stopwatch. It decides how long each individual gets to prove itself, terminates hopeless cases early to save resources, and extends evaluation time when task complexity demands it. Without it, every individual - good or bad - receives the same fixed evaluation time.
The Temporal Silo solves two fundamental problems in neuroevolution:
	Wasted Compute: Stopping hopeless individuals early saves 2-5x compute
	Adaptive Difficulty: Matching episode length to task complexity improves results

Architecture Overview
[image: Temporal Silo Architecture]
The Temporal Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Real-time timeout/termination decisions	Per evaluation
	L1	Tactical	Adapt episode length based on performance	Per generation
	L2	Strategic	Learn optimal temporal profiles (future)	Across runs

Key Principle: Time is Money
The Temporal Silo operates on the principle that evaluation time is the primary cost in neuroevolution:
	Bad individuals waste time if evaluated fully
	Good individuals may need more time to show potential
	Different tasks require different episode lengths
	Real-time applications have strict timing constraints

How It Works
Sensors (Inputs)
The Temporal Silo observes 12 sensors describing time-related dynamics:
	Sensor	Range	Description
	learning_rate_current	[0, 1]	Current network learning rate (normalized)
	learning_rate_trend	[-1, 1]	Direction of learning rate change
	episode_length_mean	[0, 1]	Average episode duration / max duration
	episode_length_variance	[0, 1]	Variance in episode lengths
	reaction_time_budget	[0, 1]	Allowed reaction time per step
	reaction_time_used	[0, 1]	Actual reaction time / budget
	discount_factor	[0, 1]	Temporal discount for credit assignment
	credit_horizon	[0, 1]	How far back credit propagates
	convergence_rate	[0, 1]	Speed of fitness convergence
	oscillation_frequency	[0, 1]	Fitness oscillation (instability indicator)
	patience_remaining	[0, 1]	Generations until early stopping
	evaluation_efficiency	[0, 1]	Fitness gained per evaluation time

Actuators (Outputs)
The Temporal Silo controls 10 parameters governing time management:
	Actuator	Range	Default	Description
	learning_rate_multiplier	[0.1, 10.0]	1.0	Scale factor for learning rates
	learning_rate_decay	[0.9, 1.0]	0.99	Per-generation decay rate
	episode_length_target	[10, 10000]	1000	Target episode steps
	episode_variance_allowed	[0.0, 1.0]	0.3	Acceptable variance in episode length
	evaluation_timeout_ms	[100, 60000]	5000	Maximum evaluation time
	reaction_time_limit_ms	[1, 1000]	100	Max per-step thinking time
	discount_factor	[0.9, 0.999]	0.99	Gamma for credit assignment
	patience_threshold	[5, 100]	20	Generations without improvement tolerance
	early_termination_fitness	[0.0, 1.0]	0.1	Fitness below which to terminate early
	eligibility_trace_decay	[0.0, 1.0]	0.9	Lambda for eligibility traces

Early Termination
[image: Early Termination Decision Flow]
Early termination is the primary mechanism for saving compute:
Decision Logic:
	Wait for min_steps_before_termination to gather data
	Check if fitness < early_termination_fitness threshold
	Also consider fitness trend (is it improving?)
	If hopeless, terminate and emit early_termination event

Benefits:
	30-70% compute savings by stopping bad individuals
	False termination rate can be tuned via threshold
	Frees resources for promising individuals

The Control Loop
	Per Step: Check reaction time limits (for real-time applications)
	Per Evaluation: Track elapsed time, check timeout, check early termination
	Per Episode: Record episode length, update efficiency metrics
	Per Generation: Adapt episode targets based on performance
	Emit Events: Publish timeout/termination/convergence events

%% Typical usage in evaluation
evaluate_individual(Individual, State) ->
 %% Get temporal parameters
 Params = temporal_silo:get_temporal_params(TempPid),
 #{evaluation_timeout_ms := Timeout,
 early_termination_fitness := TermThreshold} = Params,

 StartTime = erlang:monotonic_time(millisecond),
 evaluate_loop(Individual, StartTime, Timeout, TermThreshold, State).

evaluate_loop(Individual, StartTime, Timeout, TermThreshold, State) ->
 Elapsed = erlang:monotonic_time(millisecond) - StartTime,

 %% Check timeout
 case temporal_silo:check_timeout(TempPid, Elapsed) of
 true ->
 {timeout, current_fitness(Individual)};
 false ->
 %% Check early termination
 Fitness = current_fitness(Individual),
 case temporal_silo:should_terminate_early(TempPid, Fitness) of
 true ->
 {early_termination, Fitness};
 false ->
 %% Continue evaluation
 step_evaluation(Individual, State)
 end
 end.
Integration with the Neuroevolution Engine
[image: Temporal Silo Dataflow]
Wiring Diagram
The Temporal Silo integrates with evaluation and other silos:
Data Sources:
	evaluation_engine - Episode lengths, reaction times, fitness history
	task_silo - Stagnation severity (triggers longer episodes)
	economic_silo - Computation budget (constrains timeouts)

Data Consumers:
	evaluation_engine - Timeout limits, episode targets
	individuals - Reaction time limits, termination thresholds
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Temporal Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
time_pressure	Task	High pressure = need simpler solutions
convergence_status	Resource	Near convergence = can reduce compute
episode_efficiency	Economic	Compute spent per fitness gained
eval_time_constraint	Competitive	Available time for evaluation matches
Signals Received:		
Signal	From	Effect
--------	------	--------
computation_budget	Economic	Constrains evaluation timeout
stagnation_severity	Task	Stagnation = try longer episodes
population_diversity	Distribution	Low diversity = earlier termination
resource_pressure	Resource	Pressure reduces available time
Engine Integration Points
%% Start Temporal Silo
{ok, _} = temporal_silo:start_link(#temporal_config{
 enabled = true,
 min_episode_length = 100,
 max_episode_length = 10000,
 min_timeout_ms = 500,
 max_timeout_ms = 30000,
 enable_early_termination = true,
 min_steps_before_termination = 20,
 enforce_reaction_time = false,
 emit_events = true
}),

%% Query for temporal parameters
get_evaluation_params() ->
 Params = temporal_silo:get_temporal_params(?MODULE),
 #{
 timeout => maps:get(evaluation_timeout_ms, Params),
 episode_target => maps:get(episode_length_target, Params),
 early_term_threshold => maps:get(early_termination_fitness, Params)
 }.

%% Record completed episode
on_episode_complete(IndividualId, Length, Fitness) ->
 temporal_silo:record_episode(TempPid, IndividualId, Length),
 %% Temporal silo tracks for efficiency analysis.
Training Velocity Impact
	Metric	Without Temporal Silo	With Temporal Silo
	Wasted evaluation time	40-60%	10-20%
	Time to convergence	Baseline	0.4-0.6x (faster)
	Compute efficiency	1.0x	2-4x
	Real-time compliance	No guarantees	Enforced limits

The Temporal Silo provides the largest training velocity improvement of all silos by eliminating wasted compute on hopeless individuals.
Practical Examples
Example 1: Early Termination Saves Compute
%% Scenario: Individual showing poor performance early
%% After 50 steps, fitness = 0.05 (very low)

%% Temporal Silo parameters:
%% - early_termination_fitness = 0.1
%% - min_steps_before_termination = 20

%% Decision: Terminate early
%% Without early termination: 1000 steps wasted
%% With early termination: Only 50 steps used
%% Savings: 950 steps = 95% compute saved for this individual
Example 2: Stagnation Triggers Longer Episodes
%% Scenario: Task Silo reports stagnation
%% Cross-silo signal: stagnation_severity = 0.8

%% Temporal Silo responds:
%% - episode_length_target increased from 1000 to 1500
%% - evaluation_timeout increased proportionally

%% Rationale: Complex problems may need more time
%% The stuck population might benefit from longer evaluation

{episode_extended, #{
 old_length => 1000,
 new_length => 1500,
 reason => stagnation
}}
Example 3: Budget Constrains Timeouts
%% Scenario: Economic Silo signals budget pressure
%% Cross-silo signal: computation_budget = 0.3 (low)

%% Temporal Silo responds:
%% - evaluation_timeout_ms reduced from 5000 to 2000
%% - early_termination_fitness raised to 0.15 (more aggressive)

%% Rationale: Limited budget = faster decisions
%% Accept lower accuracy for speed

{temporal_params_updated, #{
 old_timeout => 5000,
 new_timeout => 2000,
 trigger => budget_pressure
}}
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	evaluation_timeout_ms	Complex tasks, slow evaluation	Simple tasks, speed needed
	episode_length_target	Long-horizon tasks	Fast feedback loops
	early_termination_fitness	Too many bad individuals	False terminations
	patience_threshold	Noisy fitness, slow progress	Clear improvements
	reaction_time_limit_ms	Complex decisions	Real-time requirements
	min_steps_before_termination	High fitness variance	Clear early signals

Common Pitfalls
	Termination threshold too aggressive: Good individuals killed early
	Symptom: Best fitness drops unexpectedly
	Fix: Lower early_termination_fitness to 0.05

	Episodes too short: Not enough time to show potential
	Symptom: All individuals seem equally bad
	Fix: Increase episode_length_target 2-4x

	No early termination: Wasting compute on hopeless cases
	Symptom: Evaluation takes forever, most individuals are bad
	Fix: Enable early termination, start with threshold 0.1

	Patience too high: Stuck on local optima
	Symptom: No improvement but keeps running
	Fix: Lower patience_threshold to 10-15 generations

Debugging Tips
%% Get current sensor values
Context = build_temporal_context(State),
Sensors = temporal_silo_sensors:collect_sensors(Context),
io:format("Convergence rate: ~.2f~n", [lists:nth(9, Sensors)]),
io:format("Oscillation freq: ~.2f~n", [lists:nth(10, Sensors)]),
io:format("Eval efficiency: ~.2f~n", [lists:nth(12, Sensors)]),

%% Get current actuator values
Params = temporal_silo:get_temporal_params(TempPid),
io:format("Timeout: ~p ms~n", [maps:get(evaluation_timeout_ms, Params)]),
io:format("Episode target: ~p~n", [maps:get(episode_length_target, Params)]),
io:format("Term threshold: ~.2f~n", [maps:get(early_termination_fitness, Params)]).
Events Reference
The Temporal Silo emits events on significant actions:
	Event	Trigger	Key Payload
	evaluation_timeout	Hit time limit	individual_id, elapsed_ms, timeout_ms
	early_termination	Terminated early	individual_id, reason, fitness, steps_completed
	episode_extended	Episode length increased	old_length, new_length, reason
	episode_shortened	Episode length decreased	old_length, new_length, reason
	reaction_time_exceeded	Over time budget	individual_id, budget_ms, actual_ms
	convergence_detected	Fitness stabilized	convergence_rate, final_fitness
	patience_exhausted	No improvement	generations_waited, action_taken
	episode_completed	Episode finished	individual_id, length, target, fitness

Example Event Payload:
{early_termination, #{
 silo => temporal,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 individual_id => <<"agent_123">>,
 reason => low_fitness,
 fitness => 0.03,
 steps_completed => 75
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	min_episode_length	[10, 1000]	100	Absolute minimum episode
	max_episode_length	[100, 100000]	10000	Maximum allowed episode
	min_timeout_ms	[100, 5000]	500	Minimum timeout
	max_timeout_ms	[1000, 600000]	60000	Maximum timeout (10 min)
	enable_early_termination	bool	true	Allow early stopping
	min_steps_before_termination	[1, 100]	20	Min steps before deciding
	enforce_reaction_time	bool	false	Strict reaction limits
	max_history_size	[10, 1000]	100	History for analysis

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	time_pressure_factor	[0.5, 2.0]	1.0	Urgency multiplier
	episode_length_factor	[0.5, 2.0]	1.0	Episode length scaling
	termination_aggression	[0.0, 1.0]	0.5	How aggressive to terminate
	patience_factor	[0.5, 2.0]	1.0	Patience scaling
	convergence_sensitivity	[0.5, 2.0]	1.0	How quickly to detect convergence

Configuration Examples
Real-time Application Config
#temporal_config{
 enabled = true,
 min_episode_length = 100,
 max_episode_length = 1000,
 min_timeout_ms = 500,
 max_timeout_ms = 5000,
 enable_early_termination = true,
 min_steps_before_termination = 50,
 enforce_reaction_time = true, % Critical for real-time
 emit_events = true
}.
Exploratory Research Config
#temporal_config{
 enabled = true,
 min_episode_length = 1000,
 max_episode_length = 100000,
 min_timeout_ms = 10000,
 max_timeout_ms = 600000, % 10 minutes
 enable_early_termination = false, % Let everything run
 enforce_reaction_time = false,
 emit_events = true
}.
Cost-Optimized Config
#temporal_config{
 enabled = true,
 min_episode_length = 50,
 max_episode_length = 500,
 min_timeout_ms = 100,
 max_timeout_ms = 2000,
 enable_early_termination = true,
 min_steps_before_termination = 10, % Aggressive
 emit_events = true
}.
Source Code Reference
	Module	Purpose	Location
	temporal_silo.erl	Main gen_server	src/silos/temporal_silo/
	temporal_silo_sensors.erl	Sensor collection (12)	Same
	temporal_silo_actuators.erl	Actuator application (10)	Same
	temporal_silo.hrl	Record definitions	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Economic Silo - Budget and cost management
	Task Silo - Hyperparameter adaptation
	Resource Silo - Computational resource management
	Meta-Controller Guide - L2 strategic layer

References
Early Termination and Adaptive Evaluation
	Jaderberg, M., et al. (2017). "Population Based Training of Neural Networks." arXiv preprint arXiv:1711.09846.
	Li, L., et al. (2018). "Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization." JMLR.

Credit Assignment and Temporal Difference Learning
	Sutton, R.S. (1988). "Learning to Predict by the Methods of Temporal Differences." Machine Learning.
	Williams, R.J. (1992). "Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning." Machine Learning.

Convergence Detection
	Henderson, P., et al. (2018). "Deep Reinforcement Learning that Matters." AAAI.

 Morphological Silo Guide

What is the Morphological Silo?
The Morphological Silo is the network structure controller in the Liquid Conglomerate architecture. It manages the "body plan" of neural networks - not just weights and topology, but fundamental structural constraints: neuron budgets, connection limits, complexity penalties, and automatic pruning.
Think of the Morphological Silo as a building code inspector for neural networks. It sets size limits, enforces efficiency standards, removes unused structure, and ensures networks stay within deployment constraints. Without it, networks can grow without bound, wasting resources and becoming impossible to deploy on target hardware.
The Morphological Silo solves two fundamental problems in neuroevolution:
	Unbounded Growth: Prevent networks from bloating beyond usable size
	Efficiency Pressure: Reward networks that achieve fitness with fewer parameters

Architecture Overview
[image: Morphological Silo Architecture]
The Morphological Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Check size limits, apply penalties, trigger pruning	Per mutation
	L1	Tactical	Adjust limits based on efficiency trends	Per generation
	L2	Strategic	Learn optimal size profiles for task classes	Across runs

Key Principle: Efficiency Over Size
The Morphological Silo operates on the principle that fitness alone isn't enough:
	Smaller networks are preferred over larger ones with equal fitness
	Complexity penalties create selection pressure for efficiency
	Automatic pruning removes unused structure
	Size budgets ensure deployment feasibility

How It Works
Sensors (Inputs)
The Morphological Silo observes 10 sensors describing network structure:
	Sensor	Range	Description
	neuron_count_norm	[0, 1]	Current neurons / max allowed
	connection_count_norm	[0, 1]	Current connections / max allowed
	sensor_count_norm	[0, 1]	Input neurons / max input budget
	actuator_count_norm	[0, 1]	Output neurons / max output budget
	fitness_per_parameter	[0, 1]	Efficiency: fitness / parameters
	parameter_efficiency_trend	[-1, 1]	Efficiency change over generations
	modularity_score	[0, 1]	Clustering coefficient (modular structure)
	symmetry_index	[0, 1]	Structural symmetry (bilateral, radial)
	growth_rate	[-1, 1]	Rate of size increase per generation
	pruning_pressure	[0, 1]	Amount of unused structure

Actuators (Outputs)
The Morphological Silo controls 8 parameters governing network structure:
	Actuator	Range	Default	Description
	max_neurons	[10, 1000]	100	Maximum hidden neurons allowed
	max_connections	[20, 10000]	500	Maximum synaptic connections
	min_neurons	[1, 50]	5	Minimum hidden neurons required
	sensor_addition_rate	[0.0, 0.1]	0.01	Probability of adding input
	actuator_addition_rate	[0.0, 0.1]	0.01	Probability of adding output
	pruning_threshold	[0.0, 0.5]	0.1	Weight magnitude below which to prune
	complexity_penalty	[0.0, 0.1]	0.01	Fitness penalty per parameter
	size_penalty_exponent	[1.0, 3.0]	1.5	How aggressively to penalize size

Network Structure Control
[image: Network Structure Control]
The morphological control flow operates as follows:
1. Size Limit Enforcement
%% Before any mutation, check limits
case morphological_silo:check_mutation(MorphPid, add_neuron, NetworkId) of
 allow -> apply_mutation(Mutation, Network);
 deny -> skip_mutation() % Network at size limit
end
2. Complexity Penalty
%% Apply penalty to fitness
AdjustedFitness = morphological_silo:apply_penalty(MorphPid, NetworkId, RawFitness),
%% Example: fitness=0.80, params=500, penalty=0.01, exp=1.5
%% adjusted = 0.80 - (0.01 * 500^1.5 / 1000) = 0.69
3. Automatic Pruning
%% Trigger pruning when network is oversized or inefficient
Result = morphological_silo:trigger_pruning(MorphPid, NetworkId),
%% Returns: #{connections_removed => 4, neurons_removed => 2}
The Control Loop
	Per Mutation: Check size limits before allowing structural changes
	Per Evaluation: Apply complexity penalty to fitness
	Per Generation: Collect sensors, adjust actuators via TWEANN, prune if needed
	Emit Events: Publish morphology events to event bus

Integration with the Neuroevolution Engine
[image: Morphological Silo Dataflow]
Wiring Diagram
The Morphological Silo integrates with mutation operators and other silos:
Data Sources:
	mutation_operators - Mutation requests for size checking
	evaluation_engine - Fitness for efficiency calculation
	Network topology - Neuron/connection counts

Data Consumers:
	mutation_operators - Allow/deny mutation decisions
	evaluation_engine - Adjusted fitness with complexity penalty
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Morphological Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
network_complexity	Task	Complex networks need different mutation rates
size_budget_remaining	Resource	Available growth room
efficiency_score	Economic	Cost-effectiveness of morphology
Signals Received:		
Signal	From	Effect
--------	------	--------
resource_pressure	Resource	High pressure = tighter size limits
stagnation_severity	Task	Stagnation may warrant structural expansion
computation_budget	Economic	Budget constrains max size
Engine Integration Points
%% Start Morphological Silo
{ok, _} = morphological_silo:start_link(#morphological_config{
 enabled = true,
 max_neurons = 100,
 max_connections = 500,
 pruning_threshold = 0.1,
 complexity_penalty = 0.01
}),

%% Before mutation: check limits
case morphological_silo:check_mutation(MorphPid, add_neuron, NetworkId) of
 allow -> apply_mutation();
 deny -> skip_mutation()
end,

%% After evaluation: apply penalty
AdjustedFitness = morphological_silo:apply_penalty(MorphPid, NetworkId, Fitness),

%% Periodic: trigger pruning
morphological_silo:trigger_pruning(MorphPid, NetworkId).
Training Velocity Impact
	Metric	Without Morphological Silo	With Morphological Silo
	Network bloat	Unbounded growth	Constrained by budgets
	Inference latency	Variable, often high	Predictable, optimized
	Training velocity	1.0x	0.9-1.0x (neutral)
	Memory footprint	Unpredictable	Bounded by limits
	Deployment success	~60% fit hardware	~95% fit hardware

The Morphological Silo provides significant deployment benefits while having minimal impact on training speed.
Practical Examples
Example 1: Mutation Blocked by Size Limit
%% Scenario: Network already at max_neurons = 100
%% Mutation operator wants to add another neuron

case morphological_silo:check_mutation(MorphPid, add_neuron, NetworkId) of
 allow -> should_not_reach_here();
 deny ->
 %% Mutation blocked, emit event
 io:format("add_neuron denied: at max_neurons limit~n")
end

%% Event emitted:
{size_limit_reached, #{
 individual_id => NetworkId,
 limit_type => neurons,
 current_value => 100,
 max_value => 100
}}
Example 2: Complexity Penalty Favors Efficiency
%% Scenario: Two networks with similar raw fitness
%% Network A: fitness=0.80, params=500 (bloated)
%% Network B: fitness=0.75, params=100 (efficient)

%% With complexity_penalty=0.01, size_penalty_exponent=1.5:

%% Network A adjusted = 0.80 - (0.01 * 500^1.5 / 1000) = 0.69
%% Network B adjusted = 0.75 - (0.01 * 100^1.5 / 1000) = 0.74

%% Result: Efficient Network B wins selection despite lower raw fitness
Example 3: Pruning Removes Unused Structure
%% Scenario: Network has 13 neurons, 4 orphan, 14 connections, 4 weak
%% pruning_threshold = 0.1

Result = morphological_silo:trigger_pruning(MorphPid, NetworkId),
%% Result = #{connections_removed => 4, neurons_removed => 4}

%% Event emitted:
{network_pruned, #{
 individual_id => NetworkId,
 neurons_removed => 4,
 connections_removed => 4,
 old_efficiency => 0.42,
 new_efficiency => 0.78
}}

%% Result: Network is 31% smaller, 86% more efficient
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	max_neurons	Task needs capacity	Targeting small devices
	max_connections	Complex mappings	Memory constrained
	pruning_threshold	Many weak connections	Over-pruning
	complexity_penalty	Networks too large	Fitness suffering
	size_penalty_exponent	Need aggressive pruning	Want gradual control

Common Pitfalls
	Size limits too tight: Good solutions can't emerge
	Symptom: Fitness plateaus early
	Fix: Increase max_neurons to 200+

	No pruning: Dead connections accumulate
	Symptom: Networks grow but efficiency drops
	Fix: Increase pruning_threshold to 0.15+

	Excessive penalty: Underfitting
	Symptom: Networks too small for task
	Fix: Reduce complexity_penalty to 0.005

	Aggressive exponent: Kills all growth
	Symptom: No network exceeds minimal size
	Fix: Reduce size_penalty_exponent to 1.2

Debugging Tips
%% Get network morphology
Morphology = morphological_silo:get_morphology(MorphPid, NetworkId),
io:format("Neurons: ~p (max: ~p)~n", [
 Morphology#network_morphology.neuron_count,
 Config#morphological_config.max_neurons
]),
io:format("Connections: ~p~n", [Morphology#network_morphology.connection_count]),
io:format("Efficiency: ~.3f~n", [Morphology#network_morphology.modularity_coefficient]),

%% Get overall state
State = morphological_silo:get_state(MorphPid),
io:format("Growth rate: ~.2f~n", [State#morphological_state.growth_rate]),
io:format("Pruning pressure: ~.2f~n", [State#morphological_state.pruning_pressure]).
Events Reference
The Morphological Silo emits events on significant actions:
	Event	Trigger	Key Payload
	morphology_constrained	Size limits changed	max_neurons, max_connections
	network_pruned	Pruning occurred	neurons_removed, connections_removed
	complexity_penalized	Penalty applied	individual_id, penalty_amount
	efficiency_improved	Better fitness/param	old_efficiency, new_efficiency
	size_limit_reached	Hit max	limit_type, current_value
	morphology_expanded	Significant growth	old_count, new_count, growth_rate

Example Event Payload:
{network_pruned, #{
 silo => morphological,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 individual_id => <<"net_12345">>,
 neurons_removed => 4,
 connections_removed => 6,
 pruning_threshold => 0.1,
 new_efficiency => 0.78
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	max_neurons	[10, 1000]	100	Maximum hidden neurons
	max_connections	[20, 10000]	500	Maximum synaptic connections
	min_neurons	[1, 50]	5	Minimum hidden neurons
	pruning_threshold	[0.0, 0.5]	0.1	Weight below which to prune
	complexity_penalty	[0.0, 0.1]	0.01	Fitness penalty rate

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	size_aggression	[0.0, 2.0]	0.5	How aggressively to control size
	pruning_sensitivity	[0.0, 1.0]	0.5	How easily pruning triggers
	efficiency_weight	[0.0, 1.0]	0.5	Weight on efficiency vs capacity
	growth_tolerance	[0.0, 1.0]	0.5	Allowance for network growth

Configuration Examples
Edge Device Deployment
#morphological_config{
 enabled = true,
 max_neurons = 50, % Strict limit
 max_connections = 200, % Minimal
 min_neurons = 3,
 pruning_threshold = 0.15, % Aggressive pruning
 complexity_penalty = 0.02, % Strong penalty
 size_penalty_exponent = 2.0 % Aggressive scaling
}.

%% Evolves minimal networks for microcontrollers
Research Exploration Mode
#morphological_config{
 enabled = true,
 max_neurons = 500, % Generous
 max_connections = 5000, % Lots of room
 min_neurons = 10,
 pruning_threshold = 0.05, % Light pruning
 complexity_penalty = 0.005, % Mild penalty
 size_penalty_exponent = 1.2 % Gentle scaling
}.

%% Allows exploration of larger architectures
Balanced Production
#morphological_config{
 enabled = true,
 max_neurons = 100,
 max_connections = 500,
 min_neurons = 5,
 pruning_threshold = 0.1,
 complexity_penalty = 0.01,
 size_penalty_exponent = 1.5
}.

%% Default balanced configuration
Source Code Reference
	Module	Purpose	Location
	morphological_silo.erl	Main gen_server	src/silos/morphological_silo/
	morphological_silo_sensors.erl	Sensor collection (10)	Same
	morphological_silo_actuators.erl	Actuator application (8)	Same
	morphological_size.erl	Size limit enforcement	Same
	morphological_efficiency.erl	Efficiency calculation	Same
	morphological_pruning.erl	Pruning operations	Same
	morphological_modularity.erl	Modularity metrics	Same
	morphological_silo.hrl	Record definitions	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Economic Silo - Resource allocation and efficiency
	Temporal Silo - Time management and early termination
	Task Silo - Hyperparameter adaptation
	Meta-Controller Guide - L2 strategic layer

References
Neuroevolution and Topology
	Stanley, K.O. & Miikkulainen, R. (2002). "Evolving Neural Networks through Augmenting Topologies." Evolutionary Computation.

Network Pruning
	Han, S., Pool, J., Tran, J., & Dally, W. (2015). "Learning both Weights and Connections for Efficient Neural Networks." NeurIPS.
	Frankle, J. & Carlin, M. (2019). "The Lottery Ticket Hypothesis." ICLR.

Modularity in Networks
	Newman, M.E.J. (2006). "Modularity and Community Structure in Networks." PNAS.
	Clune, J., Mouret, J.B., & Lipson, H. (2013). "The evolutionary origins of modularity." Proceedings of the Royal Society B.

 Economic Silo Guide

What is the Economic Silo?
The Economic Silo is the resource allocation controller in the Liquid Conglomerate architecture. It manages computation budgets, energy economics, trade between individuals, and creates efficiency pressure so that networks must be cost-effective - not just fit.
Think of the Economic Silo as a central bank and marketplace combined. It allocates computational budgets, tracks energy consumption, facilitates trade between individuals, collects taxes, and redistributes wealth. Without it, all individuals receive equal resources regardless of promise, leading to massive waste.
The Economic Silo solves two fundamental problems in neuroevolution:
	Cost Awareness: Training should respect real-world budget constraints
	Efficiency Pressure: Better fitness/cost ratio should be rewarded

Architecture Overview
[image: Economic Silo Architecture]
The Economic Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Allocate budgets, charge energy, execute trades	Per operation
	L1	Tactical	Adjust allocations based on efficiency	Per generation
	L2	Strategic	Learn optimal economic policies (future)	Across runs

Key Principle: Efficiency Matters
The Economic Silo operates on the principle that fitness alone isn't enough:
	Cost-effective solutions are better than expensive ones
	Budget pressure drives innovation in efficiency
	Trade enables specialization (networks can share capabilities)
	Redistribution prevents wealth concentration

How It Works
Sensors (Inputs)
The Economic Silo observes 12 sensors describing economic dynamics:
	Sensor	Range	Description
	computation_budget_remaining	[0, 1]	Available compute / total budget
	budget_trend	[-1, 1]	Direction of budget change
	energy_level	[0, 1]	Current energy reserves
	energy_income	[0, 1]	Energy gain rate
	energy_expenditure	[0, 1]	Energy spend rate
	trade_volume	[0, 1]	Amount of trading activity
	market_price_fitness	[0, 1]	Cost of fitness improvement
	trade_balance	[-1, 1]	Net trade position
	wealth_gini_coefficient	[0, 1]	Wealth inequality
	debt_level	[0, 1]	Population debt
	fitness_per_cost	[0, 1]	Efficiency ratio
	scarcity_index	[0, 1]	Resource scarcity level

Actuators (Outputs)
The Economic Silo controls 10 parameters governing economic behavior:
	Actuator	Range	Default	Description
	computation_allocation_strategy	[0.0, 1.0]	0.5	Equal vs fitness-proportional
	budget_per_individual	[0.1, 10.0]	1.0	Compute units per individual
	energy_tax_rate	[0.0, 0.3]	0.1	Tax on energy income
	wealth_redistribution_rate	[0.0, 0.5]	0.1	Redistribution from rich to poor
	trade_incentive	[0.0, 0.5]	0.2	Bonus for trading
	bankruptcy_threshold	[0.0, 0.3]	0.05	When to declare bankruptcy
	investment_horizon	[1, 20]	5	Generations for ROI calculation
	resource_discovery_bonus	[0.0, 0.5]	0.1	Bonus for finding resources
	inflation_control	[0.0, 0.1]	0.02	Control fitness inflation
	debt_penalty	[0.0, 0.2]	0.05	Fitness penalty for debt

Budget Flow & Economic Cycle
[image: Budget Flow]
The economic cycle operates as follows:
1. Budget Allocation
%% Each individual receives budget based on strategy
{ok, Budget} = economic_silo:allocate_budget(EconPid, IndividualId),
%% Strategy 0.0 = equal allocation
%% Strategy 1.0 = fitness-proportional allocation
2. Energy Consumption
%% Charge energy during evaluation
ok = economic_silo:charge_energy(EconPid, IndividualId, EvaluationCost),
%% Tracks cost_incurred for efficiency calculation
3. Trade Execution
%% Individuals can trade resources
ok = economic_silo:execute_trade(EconPid, BuyerId, SellerId, Amount),
%% Enables specialization and comparative advantage
4. Taxation
%% Collect taxes on energy income
ok = economic_silo:collect_taxes(EconPid),
%% Funds redistribution pool
5. Redistribution
%% Redistribute from wealthy to poor
ok = economic_silo:redistribute_wealth(EconPid),
%% Reduces inequality, prevents runaway concentration
The Control Loop
	Per Operation: Allocate budgets, charge energy, execute trades
	Per Generation: Collect taxes, redistribute wealth, update prices
	Per Update Cycle: Collect sensors, adjust actuators via TWEANN
	Emit Events: Publish economic events to event bus

Integration with the Neuroevolution Engine
[image: Economic Silo Dataflow]
Wiring Diagram
The Economic Silo integrates with evaluation and other silos:
Data Sources:
	evaluation_engine - Fitness per cost, resource usage
	morphological_silo - Network complexity costs
	temporal_silo - Evaluation time (affects cost)

Data Consumers:
	evaluation_engine - Budget allocations, efficiency requirements
	temporal_silo - Budget constraints on evaluation time
	morphological_silo - Efficiency requirements for network size
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Economic Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
economic_pressure	Task	High pressure = need simpler solutions
budget_available	Temporal	Budget constrains evaluation time
efficiency_requirement	Morphological	Efficiency targets for network size
Signals Received:		
Signal	From	Effect
--------	------	--------
resource_level	Ecological	Resources affect available budget
complexity_cost	Morphological	Network size affects energy cost
episode_efficiency	Temporal	Efficiency information for pricing
Engine Integration Points
%% Start Economic Silo
{ok, _} = economic_silo:start_link(#economic_config{
 enabled = true,
 initial_energy = 100.0,
 initial_budget = 1.0,
 enable_trade = true,
 enable_taxation = true,
 emit_events = true
}),

%% Before evaluation: allocate budget
{ok, Budget} = economic_silo:allocate_budget(EconPid, IndividualId),

%% During evaluation: track costs
economic_silo:charge_energy(EconPid, IndividualId, StepCost),

%% End of generation: economic cycle
economic_silo:collect_taxes(EconPid),
economic_silo:redistribute_wealth(EconPid).
Training Velocity Impact
	Metric	Without Economic Silo	With Economic Silo
	Compute efficiency	1.0x	2-4x
	Cost per fitness	Untracked	Optimized
	Resource waste	High	Low
	Deployment readiness	Variable	Cost-aware

The Economic Silo provides significant cost optimization by creating selection pressure for efficient solutions.
Practical Examples
Example 1: Budget-Proportional Allocation
%% Scenario: Some individuals are more promising
%% allocation_strategy = 0.8 (fitness-proportional)

%% High-fitness individual gets more budget:
%% fitness=0.9 -> budget=1.8x average

%% Low-fitness individual gets less:
%% fitness=0.1 -> budget=0.2x average

%% Result: Promising individuals get more evaluation time
Example 2: Trade Enables Specialization
%% Scenario: Agent A is good at exploration, Agent B at exploitation
%% They can trade capabilities

ok = economic_silo:execute_trade(EconPid, AgentA, AgentB, 50.0),

%% Trade event emitted:
{trade_completed, #{
 buyer_id => AgentA,
 seller_id => AgentB,
 amount => 50.0,
 price => 500.0
}}

%% Result: Both benefit from comparative advantage
Example 3: Wealth Redistribution Reduces Inequality
%% Scenario: High Gini coefficient (0.8 = very unequal)
%% wealth_redistribution_rate = 0.1

%% Before: Agent A wealth=1000, Agent B wealth=10
%% After: Agent A wealth=901, Agent B wealth=109

%% Event:
{wealth_redistributed, #{
 rate => 0.1,
 total_transferred => 99.0
}}

%% Result: Poor agents can still compete
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	budget_per_individual	Rich compute environment	Cost-constrained
	computation_allocation_strategy	Want to focus on promising	Want exploration
	energy_tax_rate	High inequality	Low activity
	wealth_redistribution_rate	Extreme inequality	Need competition
	trade_incentive	Want specialization	Prefer independence
	debt_penalty	Runaway debt	Too conservative

Common Pitfalls
	Budget too low: Good individuals don't have time to show potential
	Symptom: All fitnesses converge to same low value
	Fix: Increase budget_per_individual to 2.0+

	No trade: Missing specialization benefits
	Symptom: All individuals evolve same strategies
	Fix: Increase trade_incentive to 0.3+

	High inequality: Poor individuals can't compete
	Symptom: Same few individuals always win
	Fix: Increase wealth_redistribution_rate to 0.2+

	No cost pressure: Bloated, inefficient networks
	Symptom: Networks grow without bound
	Fix: Lower budget_per_individual, increase debt_penalty

Debugging Tips
%% Get individual account
Account = economic_silo:get_account(EconPid, IndividualId),
io:format("Energy: ~.2f~n", [Account#individual_account.energy]),
io:format("Debt: ~.2f~n", [Account#individual_account.debt]),
io:format("Efficiency: ~.3f~n", [
 Account#individual_account.fitness_earned /
 max(1.0, Account#individual_account.cost_incurred)
]),

%% Get overall economic state
State = economic_silo:get_state(EconPid),
io:format("Market price: ~.2f~n", [State#economic_state.market_price]),
io:format("Total tax collected: ~.2f~n", [State#economic_state.total_tax_collected]),
io:format("Bankruptcies: ~p~n", [State#economic_state.bankruptcies]).
Events Reference
The Economic Silo emits events on significant actions:
	Event	Trigger	Key Payload
	budget_allocated	Compute assigned	individual_id, amount
	budget_exhausted	Ran out of compute	individual_id, needed, available
	trade_completed	Exchange occurred	buyer_id, seller_id, amount, price
	bankruptcy_declared	Out of resources	individual_id, debt, assets
	wealth_redistributed	Transfer occurred	rate, total_transferred
	energy_taxed	Tax collected	rate, total_collected
	investment_matured	ROI realized	investor_id, investment, return
	resource_discovered	New resource found	individual_id, resource_type, amount

Example Event Payload:
{trade_completed, #{
 silo => economic,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 trade_id => <<"trade_12345">>,
 buyer_id => <<"agent_a">>,
 seller_id => <<"agent_b">>,
 quantity => 50.0,
 price => 500.0
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	initial_energy	[10, 1000]	100	Starting energy per individual
	initial_budget	[0.1, 10.0]	1.0	Starting compute budget
	enable_trade	bool	true	Allow trade between individuals
	enable_taxation	bool	true	Collect energy taxes
	max_debt	[0, 1000]	100	Maximum allowed debt
	market_price_base	[1, 100]	10	Base market price

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	budget_pressure	[0.0, 1.0]	0.5	Urgency of budget constraints
	efficiency_emphasis	[0.0, 1.0]	0.5	Weight on efficiency vs fitness
	trade_encouragement	[0.0, 1.0]	0.5	How much to encourage trade
	redistribution_level	[0.0, 1.0]	0.5	Degree of wealth redistribution

Configuration Examples
Cost-Constrained Cloud Training
#economic_config{
 enabled = true,
 initial_energy = 50.0, % Limited
 initial_budget = 0.5, % Tight
 enable_trade = true,
 enable_taxation = true,
 emit_events = true
}.

%% With actuators:
%% budget_per_individual = 0.3
%% debt_penalty = 0.15 (aggressive)
%% efficiency emphasized
Research/Exploration Mode
#economic_config{
 enabled = true,
 initial_energy = 1000.0, % Abundant
 initial_budget = 5.0, % Generous
 enable_trade = false, % Independent evolution
 enable_taxation = false, % No redistribution
 emit_events = true
}.

%% Let evolution explore freely without cost pressure
Multi-Agent Marketplace
#economic_config{
 enabled = true,
 initial_energy = 200.0,
 initial_budget = 2.0,
 enable_trade = true, % Critical
 enable_taxation = true,
 emit_events = true
}.

%% With actuators:
%% trade_incentive = 0.4 (high)
%% wealth_redistribution_rate = 0.15
%% Enable specialization through trade
Source Code Reference
	Module	Purpose	Location
	economic_silo.erl	Main gen_server	src/silos/economic_silo/
	economic_silo_sensors.erl	Sensor collection (12)	Same
	economic_silo_actuators.erl	Actuator application (10)	Same
	economic_silo.hrl	Record definitions	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Temporal Silo - Time and episode management
	Task Silo - Hyperparameter adaptation
	Morphological Silo - Network structure optimization
	Meta-Controller Guide - L2 strategic layer

References
Evolutionary Economics
	Potts, J. (2000). "The New Evolutionary Microeconomics: Complexity, Competence and Adaptive Behaviour." Edward Elgar Publishing.

Resource Allocation in Distributed Systems
	Buyya, R., et al. (2002). "Economic Models for Resource Management and Scheduling in Grid Computing." Concurrency and Computation: Practice and Experience.

Multi-Agent Economies
	Varian, H.R. (2014). "Intermediate Microeconomics: A Modern Approach." W.W. Norton.
	Arthur, W.B. (1994). "Increasing Returns and Path Dependence in the Economy." University of Michigan Press.

 Competitive Silo Guide

What is the Competitive Silo?
The Competitive Silo is the adversarial dynamics controller in the Liquid Conglomerate architecture. It manages opponent archives, skill ratings (Elo), matchmaking, arms race detection, and strategic diversity. Without it, populations overfit to current opponents and fail against novel strategies.
Think of the Competitive Silo as a tournament director for neural network evolution. It maintains a hall of fame of past champions, rates skill levels, arranges fair matches, detects cycling meta-games, and rewards strategic innovation. This creates robust agents that succeed against diverse opponents.
The Competitive Silo solves several fundamental problems in adversarial neuroevolution:
	Overfitting: Prevent specialization against only current opponents
	Skill Measurement: Calibrated ratings for comparing agent capability
	Matchmaking: Arrange informative matches that drive learning
	Arms Race Cycling: Detect and break unproductive strategy cycles

Architecture Overview
[image: Competitive Silo Architecture]
The Competitive Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Execute matches, update Elo, manage archive	Per match
	L1	Tactical	Adjust matchmaking based on performance	Per generation
	L2	Strategic	Learn optimal competitive pressure	Across runs

Key Principle: Diversity Through Competition
The Competitive Silo operates on the principle that strategic diversity matters:
	Archive preserves diverse historical strategies
	Matchmaking ensures skill-appropriate challenges
	Counter-strategy rewards drive innovation
	Cycle detection prevents unproductive arms races

How It Works
Sensors (Inputs)
The Competitive Silo observes 12 sensors describing adversarial dynamics:
	Sensor	Range	Description
	elo_rating	[0, 1]	Population average Elo (normalized 0-3000)
	elo_variance	[0, 1]	Variance in population Elo ratings
	elo_trend	[-1, 1]	Direction of Elo change over generations
	win_rate_vs_archive	[0, 1]	Win rate against archived opponents
	win_rate_vs_current	[0, 1]	Win rate against current population
	draw_rate	[0, 1]	Proportion of draws (stalemate indicator)
	strategy_diversity_index	[0, 1]	Diversity of strategies in population
	exploitability_score	[0, 1]	How exploitable by counter-strategies
	arms_race_velocity	[0, 1]	Rate of counter-adaptation
	cycle_strength	[0, 1]	Rock-paper-scissors cycling intensity
	archive_coverage	[0, 1]	How well archive covers strategy space
	match_quality	[0, 1]	Quality of recent matchups (close games)

Actuators (Outputs)
The Competitive Silo controls 10 parameters governing competitive dynamics:
	Actuator	Range	Default	Description
	archive_addition_threshold	[0.5, 0.95]	0.7	Win rate to qualify for archive
	archive_max_size	[10, 1000]	100	Maximum archived opponents
	matchmaking_elo_range	[50, 500]	200	Elo difference for fair matches
	self_play_ratio	[0.0, 1.0]	0.3	Fraction of games vs self
	archive_play_ratio	[0.0, 1.0]	0.5	Fraction of games vs archive
	exploit_reward	[0.0, 1.0]	0.1	Fitness bonus for exploiting weakness
	counter_strategy_reward	[0.0, 1.0]	0.2	Bonus for beating counters
	novelty_bonus	[0.0, 0.5]	0.1	Bonus for novel strategies
	diversity_bonus	[0.0, 0.5]	0.1	Bonus for diverse population
	anti_cycle_penalty	[0.0, 0.3]	0.05	Penalty for cycling without progress

Elo Rating & Matchmaking
[image: Elo Rating & Matchmaking]
The Elo system provides calibrated skill measurement:
1. Match Selection
%% Get opponent for an individual
{ok, Opponent} = competitive_silo:get_opponent(CompPid, PlayerId),
%% Opponent can be:
%% self_play - play against self
%% archived_opponent - from archive
%% current_population - from active population
2. Elo Update
%% After match completion
{DeltaWinner, DeltaLoser} = competitive_silo:update_elo(
 CompPid, WinnerId, LoserId, win),
%% Elo changes based on expected vs actual outcome
%% K-factor = 32 for standard play
3. Archive Qualification
%% Check if agent qualifies for archive
case WinRateVsPopulation >= ArchiveThreshold of
 true ->
 competitive_silo:add_to_archive(CompPid, Opponent);
 false ->
 skip
end
The Control Loop
	Per Match: Select opponent, execute match, update Elo
	Per Generation: Prune archive, detect cycles, adjust matchmaking
	Per Update Cycle: Collect sensors, adjust actuators via TWEANN
	Emit Events: Publish competitive events to event bus

Integration with the Neuroevolution Engine
[image: Competitive Silo Dataflow]
Wiring Diagram
The Competitive Silo integrates with match execution and other silos:
Data Sources:
	match_engine - Match results, outcomes
	strategy_analyzer - Strategy fingerprints
	Elo rating system - Skill measurements

Data Consumers:
	match_engine - Opponent selection, fitness bonuses
	selection - Elo-based selection pressure
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Competitive Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
competitive_pressure	Task	High pressure = faster adaptation needed
strategy_diversity	Cultural	Low diversity = encourage innovation
arms_race_active	Resource	Arms race = more compute needed
Signals Received:		
Signal	From	Effect
--------	------	--------
innovation_rate	Cultural	High innovation = add to archive faster
resource_abundance	Ecological	Abundance = larger archive affordable
social_structure	Social	Coalitions may compete as groups
Engine Integration Points
%% Start Competitive Silo
{ok, _} = competitive_silo:start_link(#competitive_config{
 enabled = true,
 initial_elo = 1500,
 k_factor = 32,
 max_archive_size = 100,
 emit_events = true
}),

%% Before match: select opponent
{ok, Opponent} = competitive_silo:get_opponent(CompPid, PlayerId),

%% After match: record result and get bonus
competitive_silo:record_match(CompPid, MatchResult),
Bonus = competitive_silo:calculate_fitness_bonus(CompPid, PlayerId, MatchResult),

%% Check for archive qualification
competitive_silo:add_to_archive(CompPid, WinningAgent).
Training Velocity Impact
	Metric	Without Competitive Silo	With Competitive Silo
	Strategy diversity	Low (convergent)	High (maintained)
	Exploit vulnerability	High	Low
	Match quality	Random	Skill-matched
	Skill measurement	None	Calibrated Elo
	Meta-game cycling	Undetected	Detected and penalized

The Competitive Silo provides significant robustness benefits for adversarial domains.
Practical Examples
Example 1: Elo Update After Match
%% Scenario: Player A (1600) beats Player B (1400)
%% Expected score for A: 1 / (1 + 10^((1400-1600)/400)) = 0.76

MatchResult = #match_result{
 player_a_id = <<"agent_a">>,
 player_b_id = <<"agent_b">>,
 player_a_elo = 1600,
 player_b_elo = 1400,
 outcome = win,
 winner_id = <<"agent_a">>
},

{DeltaA, DeltaB} = competitive_silo:update_elo(CompPid,
 <<"agent_a">>, <<"agent_b">>, win),
%% DeltaA = 32 * (1.0 - 0.76) = +8
%% DeltaB = 32 * (0.0 - 0.24) = -8

%% New Elos: A=1608, B=1392
Example 2: Archive Qualification
%% Scenario: Agent achieves 75% win rate vs population
%% archive_addition_threshold = 0.7

Agent = #archived_opponent{
 opponent_id = <<"champion_42">>,
 elo = 1850,
 strategy_fingerprint = [0.8, 0.2, 0.5, ...],
 win_rate_vs_population = 0.75,
 diversity_contribution = 0.6
},

ok = competitive_silo:add_to_archive(CompPid, Agent),

%% Event emitted:
{opponent_archived, #{
 opponent_id => <<"champion_42">>,
 elo => 1850,
 strategy_type => aggressive
}}
Example 3: Counter-Strategy Detection
%% Scenario: Agent B defeats Agent A who dominated for 5 generations

%% Event emitted:
{counter_strategy_emerged, #{
 counter_id => <<"agent_b">>,
 target_id => <<"agent_a">>,
 win_margin => 0.7,
 strategy_shift => [0.3, -0.5, 0.2, ...]
}}

%% Result: Agent B gets counter_strategy_reward bonus
%% Result: Arms race velocity sensor increases
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	archive_addition_threshold	Archive has low-quality opponents	Not enough diversity
	archive_max_size	Need more strategy coverage	Memory constrained
	matchmaking_elo_range	Matches too imbalanced	Not enough challenge
	self_play_ratio	Want self-improvement focus	Overfit to self
	counter_strategy_reward	Want more innovation	Unstable meta-game
	anti_cycle_penalty	Strong cycling observed	Killing exploration

Common Pitfalls
	Empty archive: No historical opponents to test against
	Symptom: Agents specialize against current population only
	Fix: Lower archive_addition_threshold to 0.6

	Elo convergence: All agents at similar rating
	Symptom: No skill differentiation
	Fix: Increase k_factor to 48+

	Unproductive cycling: Rock-paper-scissors without progress
	Symptom: cycle_strength > 0.5, Elo not improving
	Fix: Increase anti_cycle_penalty to 0.15+

	Stale archive: Archive opponents outdated
	Symptom: High win_rate_vs_archive but poor vs current
	Fix: Enable archive pruning, lower archive_max_size

Debugging Tips
%% Get opponent Elo
Elo = competitive_silo:get_elo(CompPid, IndividualId),
io:format("Elo: ~p~n", [Elo]),

%% Get archive status
Archive = competitive_silo:get_archive(CompPid),
io:format("Archive size: ~p~n", [length(Archive)]),
io:format("Elo range: ~p to ~p~n", [
 lists:min([O#archived_opponent.elo || O <- Archive]),
 lists:max([O#archived_opponent.elo || O <- Archive])
]),

%% Check competitive pressure
Pressure = competitive_silo:signal_competitive_pressure(CompPid),
io:format("Competitive pressure: ~.2f~n", [Pressure]).
Events Reference
The Competitive Silo emits events on significant actions:
	Event	Trigger	Key Payload
	opponent_archived	Added to archive	opponent_id, elo, strategy_type
	opponent_retired	Removed from archive	opponent_id, reason
	elo_updated	Rating changed	winner_id, loser_id, delta
	match_completed	Game finished	players, outcome, elo_changes
	counter_strategy_emerged	Beat champion	counter_id, target_id, win_margin
	arms_race_detected	Cycling strategies	cycle_participants, cycle_length
	exploitable_strategy_found	Weakness discovered	strategy_id, exploit_id

Example Event Payload:
{match_completed, #{
 silo => competitive,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 player_a => <<"agent_a">>,
 player_b => <<"agent_b">>,
 outcome => win,
 margin => 0.65,
 elo_change_a => 12,
 elo_change_b => -12
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	initial_elo	[1000, 2000]	1500	Starting Elo for new agents
	k_factor	[16, 64]	32	Elo update magnitude
	min_archive_size	[10, 50]	10	Minimum archived opponents
	max_archive_size	[50, 1000]	100	Maximum archived opponents
	min_games_per_generation	[3, 20]	5	Minimum matches per agent

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	competitive_pressure	[0.0, 1.0]	0.5	How aggressive competition is
	archive_aggressiveness	[0.0, 1.0]	0.5	Archive management strictness
	diversity_pressure	[0.0, 1.0]	0.5	Pressure for strategic diversity
	counter_incentive	[0.0, 1.0]	0.5	Counter-strategy reward level

Configuration Examples
Tournament Mode
#competitive_config{
 enabled = true,
 initial_elo = 1500,
 k_factor = 32,
 min_archive_size = 50,
 max_archive_size = 500,
 archive_diversity_weight = 0.3,
 min_games_per_generation = 20,
 emit_events = true
}.

%% Many games, large archive, standard K-factor
Exploration Mode
#competitive_config{
 enabled = true,
 initial_elo = 1500,
 k_factor = 16, % Slower Elo changes
 min_archive_size = 100,
 max_archive_size = 1000,
 archive_diversity_weight = 0.7, % Prioritize diversity
 min_games_per_generation = 5,
 emit_events = true
}.

%% Large diverse archive, slow skill tracking
Rapid Development
#competitive_config{
 enabled = true,
 initial_elo = 1500,
 k_factor = 64, % Fast Elo updates
 min_archive_size = 10,
 max_archive_size = 50, % Small archive
 archive_diversity_weight = 0.5,
 min_games_per_generation = 3,
 emit_events = true
}.

%% Quick iteration, fast skill changes
Source Code Reference
	Module	Purpose	Location
	competitive_silo.erl	Main gen_server	src/silos/competitive_silo/
	competitive_silo_sensors.erl	Sensor collection (12)	Same
	competitive_silo_actuators.erl	Actuator application (10)	Same
	competitive_silo.hrl	Record definitions	Same
	competitive_elo.erl	Elo rating system	Same
	competitive_archive.erl	Archive management	Same
	competitive_matchmaking.erl	Opponent selection	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Cultural Silo - Innovation and meme propagation
	Social Silo - Coalition and cooperation
	Task Silo - Hyperparameter adaptation
	Meta-Controller Guide - L2 strategic layer

References
Elo Rating System
	Elo, A.E. (1978). "The Rating of Chessplayers, Past and Present." Arco Publishing.
	Glickman, M.E. (1999). "Parameter Estimation in Large Dynamic Paired Comparison Experiments." Applied Statistics.

Coevolutionary Dynamics
	Rosin, C.D. & Belew, R.K. (1997). "New Methods for Competitive Coevolution." Evolutionary Computation.
	Ficici, S.G. & Pollack, J.B. (2003). "A Game-Theoretic Approach to Coevolution." GECCO.

Archive Methods
	De Jong, E.D. (2004). "The Incremental Pareto-Coevolution Archive." GECCO.
	Stanley, K.O. & Lehman, J. (2015). "Why Greatness Cannot Be Planned." Springer.

 Social Silo Guide

What is the Social Silo?
The Social Silo is the social dynamics controller in the Liquid Conglomerate architecture. It manages reputation tracking, coalition formation, kin selection, cooperation/defection dynamics, and social network structure. Without it, populations lack the social pressures that drive cooperation, group formation, and altruistic behavior.
Think of the Social Silo as a social ecosystem manager for neural network evolution. It tracks reputations, facilitates coalition formation, implements Hamilton's rule for kin selection, and manages the payoff structure for social interactions. This creates populations that exhibit emergent social behavior rather than purely individualistic optimization.
The Social Silo solves several fundamental problems in neuroevolution:
	Cooperation Collapse: Without incentives, defection dominates
	No Group Formation: Individuals can't form beneficial alliances
	Kin Blindness: Related individuals don't recognize or help each other
	Reputation Blindness: No memory of past interactions

Architecture Overview
[image: Social Silo Architecture]
The Social Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Track reputation, process interactions	Per interaction
	L1	Tactical	Manage coalitions, adjust cooperation incentives	Per generation
	L2	Strategic	Learn optimal cooperation/competition balance	Across runs

Key Principle: Social Selection
The Social Silo operates on the principle that social structure affects evolution:
	Reputation affects partner selection
	Coalitions provide collective benefits
	Kin selection favors relatives (Hamilton's rule)
	Cooperation can be evolutionarily stable

How It Works
Sensors (Inputs)
The Social Silo observes 12 sensors describing social dynamics:
	Sensor	Range	Description
	mean_reputation	[-1, 1]	Average reputation across population
	reputation_variance	[0, 1]	Variance in reputation scores
	reputation_trend	[-1, 1]	Direction of reputation change
	coalition_count	[0, 1]	Number of coalitions (normalized)
	avg_coalition_size	[0, 1]	Average coalition size (normalized)
	mean_relatedness	[0, 1]	Average relatedness in population
	relatedness_variance	[0, 1]	Variance in relatedness
	kin_help_rate	[0, 1]	Rate of kin-directed helping
	cooperation_rate	[0, 1]	Proportion of cooperative interactions
	defection_rate	[0, 1]	Proportion of defection interactions
	hierarchy_steepness	[0, 1]	Steepness of dominance hierarchy
	social_network_density	[0, 1]	Density of interaction network

Actuators (Outputs)
The Social Silo controls 8 parameters governing social dynamics:
	Actuator	Range	Default	Description
	reputation_decay_rate	[0.0, 0.5]	0.1	How fast reputation decays
	reputation_boost_factor	[1.0, 3.0]	1.5	Multiplier for positive reputation events
	coalition_formation_incentive	[0.0, 1.0]	0.3	Fitness bonus for coalition membership
	kin_selection_bonus	[0.0, 2.0]	0.5	Fitness multiplier for helping relatives
	kin_recognition_threshold	[0.0, 0.5]	0.125	Minimum relatedness for kin treatment
	cooperation_reward	[0.0, 1.0]	0.2	Fitness bonus for mutual cooperation
	defection_penalty	[0.0, 1.0]	0.3	Fitness penalty for defecting
	sucker_penalty	[0.0, 0.5]	0.1	Penalty for being defected against

Cooperation Dynamics
[image: Cooperation Dynamics]
The Social Silo implements a Prisoner's Dilemma payoff structure:
Payoff Matrix:
 B: Cooperate B: Defect
A: Cooperate (R, R) (S, T)
A: Defect (T, S) (P, P)

Where: T > R > P > S
(Temptation > Reward > Punishment > Sucker)
1. Interaction Processing
%% Get actions from individuals
ActionA = get_social_action(IndA, IndB, Context),
ActionB = get_social_action(IndB, IndA, Context),

%% Calculate payoffs
{PayoffA, PayoffB} = calculate_payoffs(ActionA, ActionB, Config),

%% Apply to fitness
apply_fitness_delta(IndA#individual.id, PayoffA),
apply_fitness_delta(IndB#individual.id, PayoffB).
2. Reputation Update
%% Update reputation based on observed action
Delta = case Action of
 cooperation -> +0.1;
 defection -> -0.15;
 helping -> +0.2;
 aggression -> -0.1
end,

NewScore = clamp(CurrentScore + (Delta * BoostFactor), -1.0, 1.0).
3. Coalition Formation
%% Form coalition if beneficial
case {all_available(Members), length(Members) >= 2} of
 {true, true} ->
 Coalition = create_coalition(Members, Reason),
 %% Apply fitness bonus to all members
 apply_coalition_bonus(Members, Config);
 _ ->
 {error, cannot_form}
end.
The Control Loop
	Per Interaction: Pair individuals, resolve cooperation/defection, update reputations
	Per Generation: Maintain/dissolve coalitions, apply decay
	Per Update Cycle: Collect sensors, adjust actuators via TWEANN
	Emit Events: Publish social events to event bus

Integration with the Neuroevolution Engine
[image: Social Silo Dataflow]
Wiring Diagram
The Social Silo integrates with population and other silos:
Data Sources:
	population - Interaction pairs, pedigree data, fitness values
	Cross-silo signals from Cultural and Resource silos

Data Consumers:
	population - Reputation scores, coalition bonuses
	selection - Social fitness adjustments
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Social Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
social_cohesion	Task	High cooperation = stable evolution
conflict_level	Resource	High conflict = resource competition
network_density	Cultural	Dense network = faster cultural spread
Signals Received:		
Signal	From	Effect
--------	------	--------
resource_scarcity	Resource	Increases competition, coalition formation
stagnation_severity	Task	Triggers social restructuring
innovation_rate	Cultural	High innovation = social prestige bonus
Engine Integration Points
%% Start Social Silo
{ok, _} = social_silo:start_link(#social_config{
 enabled = true,
 cooperation_reward = 0.2,
 defection_penalty = 0.3,
 kin_selection_bonus = 0.5,
 emit_events = true
}),

%% Process interactions for generation
Interactions = social_silo:process_generation_interactions(
 SocPid, Population, Config),

%% Get reputation for selection
Rep = social_silo:get_reputation(SocPid, IndividualId),

%% Check coalition membership
{ok, CoalitionId} = social_silo:get_coalition(SocPid, IndividualId).
Training Velocity Impact
	Metric	Without Social Silo	With Social Silo
	Selection fairness	Random/fitness-only	Socially-informed
	Training velocity	Baseline (1.0x)	Slight overhead (0.9-1.0x)
	Cooperative task success	~30%	~65%
	Population stability	High variance	More stable coalitions
	Inference latency	No overhead	+2-5ms for reputation lookup

The Social Silo is essential for cooperative tasks but has neutral-to-slight overhead for purely competitive ones.
Practical Examples
Example 1: Cooperation Interaction
%% Scenario: Two agents interact in Prisoner's Dilemma
%% Agent A cooperates, Agent B defects

ActionA = cooperate,
ActionB = defect,

%% Payoffs: A=S(-0.1), B=T(+0.3)
{PayoffA, PayoffB} = calculate_payoffs(ActionA, ActionB, Config),
%% PayoffA = -0.1 (sucker's payoff)
%% PayoffB = +0.3 (temptation payoff)

%% Reputation updates observed by nearby agents
Observers = [<<"agent_c">>, <<"agent_d">>],
social_reputation:update_reputation(
 <<"agent_a">>, cooperation, Observers, Config), % +0.1
social_reputation:update_reputation(
 <<"agent_b">>, defection, Observers, Config), % -0.15

%% Event emitted:
{defection_occurred, #{
 defector_ids => [<<"agent_b">>],
 victim_id => <<"agent_a">>,
 occurred_at => 1703318400000
}}.
Example 2: Coalition Formation
%% Scenario: Three high-reputation agents form coalition

Founders = [<<"agent_x">>, <<"agent_y">>, <<"agent_z">>],

case social_coalitions:form_coalition(Founders, resource, Config) of
 {ok, CoalitionId} ->
 %% Coalition formed successfully
 %% Each member gets +30% fitness bonus

 %% Event emitted:
 {coalition_formed, #{
 coalition_id => CoalitionId,
 founder_ids => Founders,
 formation_reason => resource,
 initial_strength => 2.4
 }};
 {error, Reason} ->
 %% Formation failed (members unavailable, etc.)
 skip
end.
Example 3: Kin Selection (Hamilton's Rule)
%% Scenario: Should Agent A help sibling Agent B?
%% Cost to A = 0.3, Benefit to B = 0.8
%% Relatedness = 0.5 (siblings)

Helper = get_individual(<<"agent_a">>),
Recipient = get_individual(<<"agent_b">>),
Cost = 0.3,
Benefit = 0.8,

Relatedness = social_kin:calculate_relatedness(Helper, Recipient),
%% Relatedness = 0.5 (siblings share 50% genes)

%% Hamilton's rule: rB > C
%% 0.5 * 0.8 = 0.4 > 0.3 = Cost
%% Should help!

case social_kin:should_help_kin(Helper, Recipient, Cost, Benefit, Config) of
 true ->
 %% Help kin
 social_kin:record_kin_help(
 <<"agent_a">>, <<"agent_b">>, resource_sharing, Cost, Benefit),

 %% Event emitted:
 {kin_favored, #{
 helper_id => <<"agent_a">>,
 recipient_id => <<"agent_b">>,
 relatedness => 0.5,
 cost_to_helper => 0.3,
 benefit_to_recipient => 0.8
 }};
 false ->
 %% Don't help (rB < C)
 skip
end.
Example 4: Reputation-Based Partner Selection
%% Scenario: Agent selecting partner for cooperation task
%% Prefers high-reputation individuals

Candidates = get_population_members(Population),

%% Rank by reputation
RankedCandidates = lists:sort(fun(A, B) ->
 RepA = social_silo:get_reputation(SocPid, A#individual.id),
 RepB = social_silo:get_reputation(SocPid, B#individual.id),
 RepA#reputation.score > RepB#reputation.score
end, Candidates),

%% Select top candidate (highest reputation)
[BestPartner | _Rest] = RankedCandidates,

io:format("Selected ~p with reputation ~.2f~n",
 [BestPartner#individual.id,
 social_silo:get_reputation(SocPid, BestPartner#individual.id)#reputation.score]).
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	cooperation_reward	Want more cooperation	Too little defection
	defection_penalty	Too much defection	Cooperation too enforced
	coalition_formation_incentive	Want more coalitions	Too many coalitions
	kin_selection_bonus	Want stronger kin effects	Kin dominating selection
	reputation_decay_rate	Reputation too sticky	Changes too fast
	kin_recognition_threshold	Only close kin helped	Want distant kin help

Common Pitfalls
	Cooperation collapse: Everyone defects
	Symptom: cooperation_rate < 0.2
	Fix: Increase defection_penalty to 0.4+, decrease sucker_penalty

	Coalition explosion: Too many small coalitions
	Symptom: coalition_count > 0.5, avg_coalition_size < 0.1
	Fix: Decrease coalition_formation_incentive, add minimum size

	Kin domination: Only relatives survive
	Symptom: mean_relatedness > 0.5, low diversity
	Fix: Decrease kin_selection_bonus, increase kin_recognition_threshold

	Reputation stagnation: Scores don't change
	Symptom: reputation_variance ≈ 0, reputation_trend ≈ 0
	Fix: Increase reputation_boost_factor, decrease reputation_decay_rate

Debugging Tips
%% Get current social state
State = social_silo:get_state(SocPid),
io:format("Cooperation rate: ~.2f~n", [State#social_state.cooperation_rate]),
io:format("Coalition count: ~p~n", [State#social_state.coalition_count]),
io:format("Mean reputation: ~.2f~n", [State#social_state.mean_reputation]),

%% Get individual reputation
Rep = social_silo:get_reputation(SocPid, IndividualId),
io:format("~p reputation: ~.2f~n", [IndividualId, Rep#reputation.score]),

%% List active coalitions
Coalitions = social_silo:get_coalitions(SocPid),
lists:foreach(fun(C) ->
 io:format("Coalition ~p: ~p members, strength ~.2f~n",
 [C#coalition.id, length(C#coalition.members), C#coalition.strength])
end, Coalitions).
Events Reference
The Social Silo emits events on significant actions:
	Event	Trigger	Key Payload
	reputation_updated	Score changed	individual_id, previous, new, cause
	coalition_formed	New coalition	coalition_id, founders, reason
	coalition_dissolved	Coalition ended	coalition_id, reason, lifespan
	coalition_joined	Member added	coalition_id, individual_id
	coalition_expelled	Member removed	coalition_id, individual_id, reason
	cooperation_occurred	Mutual cooperation	participant_ids, payoffs
	defection_occurred	Defection	defector_ids, victim_id
	kin_recognized	Kin identified	individual_a, individual_b, relatedness
	kin_favored	Kin helped	helper_id, recipient_id, cost, benefit

Example Event Payload:
{coalition_formed, #{
 silo => social,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 coalition_id => <<"coal_abc123">>,
 founder_ids => [<<"agent_x">>, <<"agent_y">>, <<"agent_z">>],
 formation_reason => defense,
 initial_strength => 2.4,
 formed_at => 1703318400000
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	cooperation_reward	[0.0, 1.0]	0.2	Reward for mutual cooperation
	defection_penalty	[0.0, 1.0]	0.3	Penalty for mutual defection
	min_coalition_size	[2, 10]	2	Minimum members for coalition
	max_coalition_size	[5, 50]	20	Maximum members per coalition
	interaction_radius	[1, 10]	3	How far agents can interact

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	cooperation_emphasis	[0.0, 1.0]	0.5	How much to reward cooperation
	coalition_stability	[0.0, 1.0]	0.5	How stable coalitions should be
	kin_recognition_level	[0.0, 1.0]	0.5	How much kin affects behavior
	reputation_sensitivity	[0.0, 1.0]	0.5	How much reputation matters

Configuration Examples
Cooperation-Focused Mode
#social_config{
 enabled = true,
 cooperation_reward = 0.4, % Higher cooperation reward
 defection_penalty = 0.5, % Strong defection penalty
 sucker_penalty = 0.05, % Low sucker penalty
 coalition_formation_incentive = 0.4, % Encourage coalitions
 reputation_boost_factor = 2.0, % Fast reputation gain
 emit_events = true
}.

%% For cooperative tasks, team-based evolution
Competition-Focused Mode
#social_config{
 enabled = true,
 cooperation_reward = 0.1, % Low cooperation reward
 defection_penalty = 0.1, % Low defection penalty
 sucker_penalty = 0.3, % High sucker penalty
 coalition_formation_incentive = 0.1, % Discourage coalitions
 reputation_decay_rate = 0.2, % Fast reputation decay
 emit_events = true
}.

%% For competitive/adversarial domains
Kin-Selection Mode
#social_config{
 enabled = true,
 kin_selection_bonus = 1.5, % Strong kin bonus
 kin_recognition_threshold = 0.1, % Recognize distant kin
 cooperation_reward = 0.2,
 defection_penalty = 0.3,
 reputation_boost_factor = 1.5,
 emit_events = true
}.

%% For populations with genetic structure
Source Code Reference
	Module	Purpose	Location
	social_silo.erl	Main gen_server	src/silos/social_silo/
	social_silo_sensors.erl	Sensor collection (12)	Same
	social_silo_actuators.erl	Actuator application (8)	Same
	social_silo.hrl	Record definitions	Same
	social_reputation.erl	Reputation management	Same
	social_coalitions.erl	Coalition management	Same
	social_kin.erl	Kin selection	Same
	social_cooperation.erl	Cooperation dynamics	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Cultural Silo - Knowledge transmission
	Ecological Silo - Resource dynamics
	Competitive Silo - Adversarial dynamics
	Meta-Controller Guide - L2 strategic layer

References
Cooperation & Game Theory
	Axelrod, R. (1984). "The Evolution of Cooperation." Basic Books.
	Nowak, M.A. (2006). "Five Rules for the Evolution of Cooperation." Science.

Kin Selection
	Hamilton, W.D. (1964). "The Genetical Evolution of Social Behaviour." Journal of Theoretical Biology.
	West, S.A. et al. (2007). "Social Semantics: Altruism, Cooperation, Mutualism." Journal of Evolutionary Biology.

Reputation & Social Networks
	Ohtsuki, H. et al. (2006). "A Simple Rule for the Evolution of Cooperation on Graphs." Nature.
	Nowak, M.A. & Sigmund, K. (2005). "Evolution of Indirect Reciprocity." Nature.

 Cultural Silo Guide

What is the Cultural Silo?
The Cultural Silo is the knowledge transmission controller in the Liquid Conglomerate architecture. It manages innovation detection, imitation learning, tradition formation, and cumulative culture. Without it, populations can only evolve through slow genetic selection, missing the rapid adaptation enabled by cultural learning.
Think of the Cultural Silo as a knowledge curator for neural network evolution. It tracks novel behaviors, facilitates imitation between individuals, establishes traditions from successful patterns, and maintains chains of cumulative innovation. This creates populations that learn and adapt faster than genetics alone could achieve.
The Cultural Silo solves several fundamental problems in neuroevolution:
	Knowledge Loss: Beneficial behaviors die with individuals
	Slow Adaptation: Genetic evolution alone is too slow for changing environments
	Reinvention: Populations repeatedly discover the same solutions
	Innovation Tracking: No visibility into how behaviors emerge and spread

Architecture Overview
[image: Cultural Silo Architecture]
The Cultural Silo operates as a three-level hierarchical controller:
	Level	Name	Role	Time Constant
	L0	Reactive	Detect innovations, process imitation, manage traditions	Per evaluation
	L1	Tactical	Track trait prevalence, adjust thresholds	Per generation
	L2	Strategic	Learn optimal innovation/tradition balance	Across runs

Key Principle: Cultural Ratchet
The Cultural Silo operates on the principle that cumulative culture accelerates evolution:
	Innovations build on previous innovations (ratchet effect)
	Horizontal transmission spreads knowledge quickly
	Traditions preserve successful patterns
	Imitation enables rapid skill acquisition

Distinction from Genetic Evolution
	Aspect	Genetic	Cultural
	Inheritance	Parent → Offspring	Any → Any (horizontal)
	Timescale	Generations	Within generations
	Mechanism	DNA replication	Observation/teaching
	Fidelity	High (mutations rare)	Variable (imperfect copying)
	Accumulation	Slow	Rapid (ratchet effect)

How It Works
Sensors (Inputs)
The Cultural Silo observes 10 sensors describing cultural dynamics:
	Sensor	Range	Description
	innovation_rate	[0, 1]	Rate of new innovations per generation
	innovation_spread_rate	[0, 1]	How fast innovations spread through population
	tradition_count	[0, 1]	Number of active traditions (normalized)
	tradition_strength	[0, 1]	Average strength of traditions
	imitation_rate	[0, 1]	Rate of successful imitation events
	teaching_success_rate	[0, 1]	Success rate of teaching attempts
	cultural_diversity	[0, 1]	Diversity of behaviors in population
	behavior_cluster_count	[0, 1]	Number of distinct behavioral clusters
	innovation_chain_depth	[0, 1]	Max depth of cumulative innovation chains
	fad_velocity	[0, 1]	Speed of fad rise and fall

Actuators (Outputs)
The Cultural Silo controls 8 parameters governing cultural dynamics:
	Actuator	Range	Default	Description
	innovation_threshold	[0.1, 0.9]	0.5	Novelty required to count as innovation
	innovation_fitness_bonus	[0.0, 0.5]	0.2	Fitness bonus for innovators
	tradition_decay_rate	[0.0, 0.3]	0.05	Rate at which traditions weaken
	tradition_establishment_boost	[1.0, 2.0]	1.2	Fitness multiplier for practitioners
	imitation_fidelity	[0.5, 1.0]	0.8	Accuracy of behavior copying
	learning_rate_multiplier	[0.5, 2.0]	1.0	Speed of cultural learning
	conformity_pressure	[0.0, 1.0]	0.3	Pressure to adopt common behaviors
	deviance_tolerance	[0.0, 1.0]	0.5	Tolerance for non-conforming behaviors

Innovation & Tradition Flow
[image: Innovation & Tradition Flow]
The cultural lifecycle follows three stages:
1. Innovation Discovery
%% Novel behavior detected
case NoveltyScore >= Config#cultural_config.innovation_threshold of
 true when FitnessAdvantage > 0 ->
 %% Create innovation record
 {innovation, create_innovation(Individual, Behavior)};
 _ ->
 not_innovative
end
2. Imitation & Spread
%% Behavior spreads through population
SuccessProbability = Fidelity * ObserverCapacity * TargetClarity,
case rand:uniform() < SuccessProbability of
 true ->
 %% Successful imitation, add to adopters
 {success, add_practitioner(TraitId, ObserverId)};
 false ->
 {failure, imitation_failed}
end
3. Tradition Formation
%% High prevalence becomes tradition
case Trait#cultural_trait.current_prevalence >= 0.5 of
 true ->
 %% Trait becomes established tradition
 {tradition, create_tradition(Trait)};
 false ->
 not_yet
end
The Control Loop
	Per Evaluation: Detect innovations, process imitation events
	Per Generation: Update tradition strength/decay, check formation
	Per Update Cycle: Collect sensors, adjust actuators via TWEANN
	Emit Events: Publish cultural events to event bus

Integration with the Neuroevolution Engine
[image: Cultural Silo Dataflow]
Wiring Diagram
The Cultural Silo integrates with population and other silos:
Data Sources:
	population - Behavioral signatures, fitness values, learning capacity
	behavioral_archive - Historical behavior patterns
	Cross-silo signals from Social and Ecological silos

Data Consumers:
	population - Tradition boosts, innovation bonuses
	selection - Cultural fitness adjustments
	neuroevolution_events - Event bus for monitoring

Cross-Silo Interactions
The Cultural Silo exchanges signals with other silos:
Signals Sent:
Signal	To	Description
innovation_rate	Task	High innovation = try new strategies
tradition_strength	Social	Strong traditions = social stability
cultural_diversity	Ecological	Diverse cultures = adaptive capacity
Signals Received:		
Signal	From	Effect
--------	------	--------
social_network_density	Social	Dense networks = faster spread
resource_abundance	Ecological	Abundance = more innovation time
stagnation_severity	Task	Stagnation = increase innovation bonus
Engine Integration Points
%% Start Cultural Silo
{ok, _} = cultural_silo:start_link(#cultural_config{
 enabled = true,
 innovation_threshold = 0.5,
 imitation_fidelity = 0.8,
 tradition_decay_rate = 0.05,
 emit_events = true
}),

%% After fitness evaluation: detect innovations
Innovations = cultural_silo:detect_innovations(CultPid, Population),

%% Process imitation between individuals
cultural_silo:process_imitations(CultPid, ObserverTargetPairs),

%% Get cultural bonuses for selection
Bonuses = cultural_silo:get_cultural_bonuses(CultPid, PopulationIds).
Training Velocity Impact
	Metric	Without Cultural Silo	With Cultural Silo
	Knowledge transfer	Genetic only (slow)	Horizontal + vertical (fast)
	Training velocity	Baseline (1.0x)	Improved (1.2-1.5x)
	Inference latency	No overhead	+1-3ms for tradition lookup
	Convergence speed	Slow (genetic only)	Fast (cultural ratchet)
	Innovation preservation	Lost on death	Persists in traditions

The Cultural Silo provides significant velocity benefits through cumulative culture.
Practical Examples
Example 1: Innovation Detection
%% Scenario: Individual discovers novel navigation behavior
%% novelty_score = 0.7, fitness_advantage = +0.15

Behavior = extract_behavioral_signature(Individual),
PopulationBehaviors = get_all_behaviors(Population),

case cultural_innovation:detect_innovation(
 Individual, Behavior, PopulationBehaviors, Config) of
 {innovation, Innovation} ->
 %% Innovation recorded
 io:format("Innovation ~p emerged from ~p~n",
 [Innovation#innovation.id, Individual#individual.id]),

 %% Event emitted:
 {innovation_emerged, #{
 innovator_id => <<"agent_42">>,
 novelty_score => 0.7,
 fitness_advantage => 0.15,
 innovation_type => navigation
 }};
 not_innovative ->
 %% Below threshold or no fitness advantage
 skip
end.
Example 2: Imitation Success
%% Scenario: Agent B observes and copies Agent A's foraging behavior

Observer = get_individual(<<"agent_b">>),
Target = get_individual(<<"agent_a">>),

%% Calculate success probability
%% fidelity=0.8, observer_capacity=0.9, target_clarity=0.85
%% success_prob = 0.8 * 0.9 * 0.85 = 0.612

case cultural_imitation:imitate(Observer, Target, Config) of
 {success, Trait} ->
 %% Event emitted:
 {skill_imitated, #{
 observer_id => <<"agent_b">>,
 target_id => <<"agent_a">>,
 trait_id => Trait#cultural_trait.id,
 fidelity => 0.612
 }};
 {failure, Reason} ->
 %% Imitation failed (probability check)
 {learning_failed, #{reason => Reason}}
end.
Example 3: Tradition Formation
%% Scenario: Tool-use behavior reaches 55% prevalence

Trait = get_cultural_trait(<<"tool_use_trait">>),
%% current_prevalence = 0.55, threshold = 0.50

case cultural_traditions:check_tradition_formation(Trait, Config) of
 {tradition, Tradition} ->
 %% New tradition established
 %% Event emitted:
 {tradition_established, #{
 tradition_id => Tradition#tradition.id,
 trait_id => <<"tool_use_trait">>,
 prevalence => 0.55,
 practitioner_count => 110
 }};
 not_yet ->
 %% Below threshold, keep tracking
 skip
end.
Example 4: Cumulative Culture Chain
%% Scenario: Innovation builds on two previous innovations
%% Base → Tool → Improved Tool → Complex Tool (depth=3)

NewInnovation = #innovation{
 id = <<"complex_tool">>,
 trait_id = <<"complex_tool_trait">>,
 novelty_score = 0.6
},

ParentInnovations = [
 get_innovation(<<"improved_tool">>), % depth=2
 get_innovation(<<"basic_material">>) % depth=1
],

cultural_innovation:register_innovation_dependency(
 NewInnovation, ParentInnovations),

%% Event emitted:
{cumulative_innovation, #{
 innovation_id => <<"complex_tool">>,
 parent_innovations => [<<"improved_tool">>, <<"basic_material">>],
 chain_depth => 3
}}.
Tuning Guide
Key Parameters
	Parameter	When to Increase	When to Decrease
	innovation_threshold	Too many trivial innovations	Missing real innovations
	innovation_fitness_bonus	Want more exploration	Over-rewarding novelty
	tradition_decay_rate	Stale traditions persist	Traditions die too fast
	imitation_fidelity	Behaviors not spreading	Want more variation
	conformity_pressure	Population too scattered	Killing diversity
	deviance_tolerance	Innovations suppressed	Too much noise

Common Pitfalls
	Innovation explosion: Too many innovations tracked
	Symptom: innovation_rate > 0.5, memory growing
	Fix: Increase innovation_threshold to 0.6+

	Cultural stagnation: No new innovations detected
	Symptom: innovation_rate ≈ 0, traditions dominate
	Fix: Decrease innovation_threshold, increase deviance_tolerance

	Failed imitation: Low spread despite innovations
	Symptom: innovation_spread_rate < 0.1
	Fix: Increase imitation_fidelity, check social_network_density

	Tradition churn: Traditions form and die rapidly
	Symptom: High tradition_count variance, low stability
	Fix: Decrease tradition_decay_rate to 0.02

Debugging Tips
%% Get current cultural state
State = cultural_silo:get_state(CultPid),
io:format("Innovation rate: ~.2f~n", [State#cultural_state.innovation_rate]),
io:format("Active traditions: ~p~n", [State#cultural_state.tradition_count]),
io:format("Max chain depth: ~p~n", [State#cultural_state.max_chain_depth]),

%% List active traditions
Traditions = cultural_silo:get_traditions(CultPid),
lists:foreach(fun(T) ->
 io:format("Tradition ~p: strength=~.2f, practitioners=~p~n",
 [T#tradition.id, T#tradition.strength, T#tradition.practitioner_count])
end, Traditions),

%% Check innovation chains
Innovations = cultural_silo:get_innovations(CultPid),
DeepInnovations = [I || I <- Innovations,
 get_trait(I#innovation.trait_id)#cultural_trait.innovation_depth > 2],
io:format("Deep innovations (depth>2): ~p~n", [length(DeepInnovations)]).
Events Reference
The Cultural Silo emits events on significant actions:
	Event	Trigger	Key Payload
	innovation_emerged	Novel beneficial behavior	innovator_id, novelty_score, fitness_advantage
	innovation_spread	Adoption by others	innovation_id, adopter_id, adopter_count
	tradition_established	Trait became tradition	tradition_id, prevalence, practitioner_count
	tradition_abandoned	Tradition died out	tradition_id, final_strength, lifespan
	skill_imitated	Successful imitation	observer_id, target_id, fidelity
	learning_failed	Failed knowledge transfer	observer_id, target_id, reason
	cumulative_innovation	Built on prior innovations	innovation_id, parent_ids, chain_depth
	cultural_drift	Population behavior shift	drift_magnitude, drift_direction

Example Event Payload:
{innovation_emerged, #{
 silo => cultural,
 timestamp => 1703318400000,
 generation => 42,
 payload => #{
 innovator_id => <<"agent_42">>,
 innovation_id => <<"innov_abc123">>,
 innovation_type => navigation,
 novelty_score => 0.72,
 fitness_advantage => 0.15,
 emerged_at => 1703318400000
 }
}}
L0 Hyperparameters (L1-Tuned)
	Parameter	Range	Default	Description
	innovation_threshold	[0.1, 0.9]	0.5	Novelty to count as innovation
	tradition_establishment_threshold	[0.3, 0.7]	0.5	Prevalence to form tradition
	max_traditions	[5, 50]	20	Maximum tracked traditions
	max_innovations	[10, 100]	50	Maximum tracked innovations
	behavioral_archive_size	[50, 500]	100	Historical behavior storage

L1 Hyperparameters (L2-Tuned)
	Parameter	Range	Default	Description
	innovation_emphasis	[0.0, 1.0]	0.5	How much to reward innovation
	tradition_stability	[0.0, 1.0]	0.5	How stable traditions should be
	learning_investment	[0.0, 1.0]	0.5	Resources for imitation
	conformity_level	[0.0, 1.0]	0.5	Balance innovation vs conformity

Configuration Examples
Innovation-Focused Mode
#cultural_config{
 enabled = true,
 innovation_threshold = 0.4, % Lower bar for innovations
 innovation_fitness_bonus = 0.3, % Higher innovator reward
 tradition_decay_rate = 0.1, % Traditions fade faster
 imitation_fidelity = 0.7, % Some copying variation
 conformity_pressure = 0.2, % Low conformity
 deviance_tolerance = 0.8, % High tolerance for difference
 emit_events = true
}.

%% For exploration-heavy phases, early evolution
Tradition-Focused Mode
#cultural_config{
 enabled = true,
 innovation_threshold = 0.7, % Higher bar for innovations
 innovation_fitness_bonus = 0.1, % Lower innovator reward
 tradition_decay_rate = 0.02, % Traditions persist longer
 tradition_establishment_boost = 1.5, % Strong tradition bonus
 imitation_fidelity = 0.95, % High-fidelity copying
 conformity_pressure = 0.6, % Higher conformity
 deviance_tolerance = 0.3, % Less tolerance
 emit_events = true
}.

%% For exploitation phases, stable populations
Balanced Mode
#cultural_config{
 enabled = true,
 innovation_threshold = 0.5,
 innovation_fitness_bonus = 0.2,
 tradition_decay_rate = 0.05,
 tradition_establishment_boost = 1.2,
 imitation_fidelity = 0.8,
 learning_rate_multiplier = 1.0,
 conformity_pressure = 0.3,
 deviance_tolerance = 0.5,
 emit_events = true
}.

%% Default balanced configuration
Source Code Reference
	Module	Purpose	Location
	cultural_silo.erl	Main gen_server	src/silos/cultural_silo/
	cultural_silo_sensors.erl	Sensor collection (10)	Same
	cultural_silo_actuators.erl	Actuator application (8)	Same
	cultural_silo.hrl	Record definitions	Same
	cultural_innovation.erl	Innovation detection	Same
	cultural_traditions.erl	Tradition management	Same
	cultural_imitation.erl	Imitation mechanics	Same
	cultural_drift.erl	Population drift	Same
	lc_cross_silo.erl	Cross-silo signals	src/silos/

Further Reading
	Liquid Conglomerate Overview - Full LC architecture
	Social Silo - Network structure and cooperation
	Ecological Silo - Resource dynamics
	Competitive Silo - Adversarial dynamics
	Meta-Controller Guide - L2 strategic layer

References
Cultural Evolution
	Henrich, J. (2015). "The Secret of Our Success." Princeton University Press.
	Boyd, R. & Richerson, P.J. (1985). "Culture and the Evolutionary Process." University of Chicago Press.
	Mesoudi, A. (2011). "Cultural Evolution." University of Chicago Press.

Cumulative Culture
	Tomasello, M. (1999). "The Cultural Origins of Human Cognition." Harvard University Press.
	Dean, L.G. et al. (2012). "Identification of the Social and Cognitive Processes Underlying Human Cumulative Culture." Science.

Imitation & Learning
	Rendell, L. et al. (2010). "Why Copy Others? Insights from the Social Learning Strategies Tournament." Science.
	Laland, K.N. (2004). "Social Learning Strategies." Learning & Behavior.

 Ecological Silo Guide

The Ecological Silo manages environmental dynamics that shape evolution: resources, carrying capacity, diseases, catastrophes, and environmental cycles. It simulates the selective pressures of nature.
Overview
The Ecological Silo creates a dynamic environment that prevents populations from merely optimizing for a static fitness landscape. Instead, populations must adapt to:
	Resource scarcity and abundance - Boom and bust cycles
	Carrying capacity pressure - Population size limits
	Disease outbreaks - Pathogen spread and immunity evolution
	Catastrophic events - Mass extinctions and recovery
	Environmental cycles - Seasonal and periodic changes
	Niche competition - Specialization pressure

[image: Ecological Silo Architecture]
Why Ecological Pressure?
Without environmental pressure, evolution finds solutions that work only in idealized conditions. Real-world deployment faces:
	Static Environment	Dynamic Ecology
	Overfits to conditions	Stress-tested robustness
	Brittle under change	Adapts to variation
	Single-niche specialists	Multi-niche generalists
	Poor generalization	Strong transfer learning

The Ecological Silo ensures evolved solutions can handle real-world variability.
Architecture
The Ecological Silo uses TWEANN controllers at three levels:
	Level	Time Constant	Controls
	L2 Strategic	Many runs	Environmental pressure philosophy
	L1 Tactical	Per generation	Adapt parameters to population state
	L0 Reactive	Per operation	Process resources, diseases, catastrophes

Sensors (14 inputs)
The L0 controller receives 14 environmental measurements:
	Sensor	Range	Description
	resource_level	[0.0, 1.0]	Current resource availability
	resource_trend	[-1.0, 1.0]	Resource change direction
	resource_variance	[0.0, 1.0]	Resource distribution variance
	population_density	[0.0, 2.0]	Population relative to carrying capacity
	carrying_pressure	[0.0, 1.0]	Proximity to capacity limit
	growth_rate	[-1.0, 1.0]	Population growth rate
	disease_prevalence	[0.0, 1.0]	Proportion infected
	immunity_level	[0.0, 1.0]	Average population immunity
	outbreak_risk	[0.0, 1.0]	Risk of new disease outbreak
	environmental_stability	[0.0, 1.0]	How stable conditions are
	cycle_phase	[0.0, 1.0]	Position in environmental cycle
	stress_level	[0.0, 1.0]	Environmental stress on population
	niche_overlap	[0.0, 1.0]	Degree of niche competition
	catastrophe_risk	[0.0, 1.0]	Risk of catastrophic event

Actuators (10 outputs)
The controller adjusts 10 environmental parameters:
	Actuator	Range	Default	Effect
	resource_regeneration_multiplier	[0.5, 2.0]	1.0	Resource replenishment speed
	resource_decay_rate	[0.0, 0.2]	0.05	Resource consumption rate
	capacity_softness	[0.0, 1.0]	0.3	How hard the capacity limit is
	overflow_penalty	[0.0, 0.5]	0.1	Fitness penalty for overcrowding
	disease_virulence_cap	[0.0, 1.0]	0.8	Maximum disease lethality
	transmission_rate_modifier	[0.5, 2.0]	1.0	Disease spread rate multiplier
	catastrophe_frequency	[0.0, 0.1]	0.01	Base catastrophe probability
	catastrophe_severity_cap	[0.3, 1.0]	0.7	Maximum catastrophe severity
	cycle_amplitude	[0.0, 1.0]	0.3	Strength of environmental cycles
	stress_threshold	[0.3, 0.9]	0.6	Stress level triggering epigenetic marks

Ecological Dynamics
[image: Ecological Dynamics]
Resource Dynamics
Resources regenerate and decay according to environmental parameters:
resource_level(t+1) = resource_level(t)
 * (1 + regeneration_multiplier * cycle_modifier)
 * (1 - decay_rate * population_density)
When resources are scarce:
	Competition intensifies (→ Social Silo)
	Stress levels rise (→ triggers epigenetic marks)
	Innovation pressure increases (→ Cultural Silo)

Carrying Capacity
The carrying capacity enforces population size limits:
%% Fitness penalty when over capacity
penalty = overflow_penalty * (1 - exp(-(density - 1.0) / capacity_softness))
	Softness	Effect
	0.0	Hard limit - immediate death above capacity
	0.5	Moderate - gradual penalty increase
	1.0	Soft - slow penalty accumulation

Disease System
Diseases emerge, spread, and drive immunity evolution:
Spread probability:
P(infection) = density * transmissibility * (1 - immunity)
Disease status progression:
	Emerging - Patient zero infected
	Epidemic - Rapid spread (>5% infected)
	Endemic - Stable prevalence
	Declining - Immunity rising
	Eradicated - No active cases

Immunity acquisition:
	Recovery grants +30% immunity
	Immunity decays slowly over generations
	Creates immune diversity under selection

Catastrophe System
Catastrophic events create punctuated equilibrium:
	Type	Weight	Effect
	mass_extinction	10%	Up to 80% mortality
	environmental_shift	30%	Niche disruption
	resource_crash	30%	Resource depletion
	epidemic	20%	Disease outbreak
	cosmic_event	10%	Random destruction

Risk calculation:
risk = base_frequency * (1 + generations_since_last/100) * (1 + stress_level)
Catastrophe severity is capped by catastrophe_severity_cap to prevent total extinction.
Recovery period:
recovery_generations ≈ severity * 50
Environmental Cycles
Sinusoidal cycles create seasonal variation:
resource_modifier = 1.0 + amplitude * sin(2π * phase)
Cycle phases:
	Spring (0.0-0.25): Rising resources, growth opportunity
	Summer (0.25-0.5): Peak resources, population boom
	Autumn (0.5-0.75): Declining resources, competition rises
	Winter (0.75-1.0): Scarcity, stress, selection pressure

Niche Competition
Multiple niches create specialization pressure:
	Overlap	Effect
	High (>0.7)	Intense competition, generalist disadvantage
	Medium (0.3-0.7)	Balanced competition
	Low (<0.3)	Niche specialization favored

Symbiosis
Inter-individual relationships emerge:
	Type	Partner A	Partner B	Example
	Mutualism	+benefit	+benefit	Both gain fitness
	Commensalism	neutral	+benefit	One gains, other unaffected
	Parasitism	+benefit	-cost	One exploits other

Symbiotic relationships affect fitness calculations and can spread through the population.
Integration with Other Silos
[image: Ecological Dataflow]
Outgoing Signals
	Signal	To Silo	Trigger
	resource_scarcity	Social	Resources below 30%
	stress_level	All (Epigenetics)	Stress above threshold
	catastrophe_recovery	Task	Post-catastrophe phase
	carrying_pressure	Distribution	Near capacity limit

Incoming Signals
	Signal	From Silo	Effect
	conflict_level	Social	Conflict depletes resources faster
	innovation_rate	Cultural	Innovation improves resource efficiency
	population_growth	Task	Updates carrying pressure

Signal Examples
%% Receiving social conflict
handle_cross_silo_signal({conflict_level, Level}, State) ->
 %% High conflict depletes resources
 ResourceMultiplier = 1.0 - (Level * 0.2),
 UpdatedEnv = State#state.environment#environment{
 resource_level = State#state.environment#environment.resource_level * ResourceMultiplier
 },
 {ok, State#state{environment = UpdatedEnv}};

%% Sending scarcity signal
maybe_emit_scarcity_signal(#environment{resource_level = Level} = Env)
 when Level < 0.3 ->
 lc_cross_silo:send_signal(resource_scarcity, #{
 level => 1.0 - (Level / 0.3),
 trend => calculate_resource_trend(Env)
 });
maybe_emit_scarcity_signal(_) -> ok.
Events Emitted
	Event	Payload	Trigger
	carrying_capacity_exceeded	{population_id, capacity, actual, deaths}	Population over capacity
	resource_depleted	{resource_type, level}	Resources exhausted
	resource_replenished	{resource_type, new_level}	Resources restored
	disease_emerged	{disease_id, patient_zero, virulence}	New disease appears
	disease_spread	{disease_id, new_infections, prevalence}	Infection spread
	epidemic_started	{disease_id, infection_rate}	Outbreak threshold crossed
	epidemic_ended	{disease_id, duration, peak}	Outbreak concluded
	immunity_developed	{individual_id, disease_id, level}	Resistance evolved
	catastrophe_occurred	{type, severity, mortality, recovery_est}	Major event
	recovery_began	{catastrophe_id, generation}	Post-catastrophe recovery
	environmental_cycle_shifted	{phase_name, phase_value}	Seasonal transition
	symbiosis_formed	{partners, type, benefits}	Relationship established

Practical Examples
Example 1: Resource-Scarce Environment
Configure a harsh environment with limited resources:
Config = #{
 resource_regeneration_multiplier => 0.7, % Slow regeneration
 resource_decay_rate => 0.15, % Fast consumption
 capacity_softness => 0.2, % Hard capacity limit
 overflow_penalty => 0.3, % Severe overcrowding penalty
 catastrophe_frequency => 0.02, % More frequent disasters
 cycle_amplitude => 0.5 % Strong seasonal variation
}.
Expected outcomes:
	Smaller, more efficient networks
	Competition-driven innovation
	Robust stress tolerance

Example 2: Disease Pressure
Configure high disease pressure:
Config = #{
 disease_virulence_cap => 0.9, % Deadly diseases possible
 transmission_rate_modifier => 1.5, % Fast spread
 catastrophe_frequency => 0.005 % Lower base catastrophe
}.
Expected outcomes:
	Immune diversity in population
	Avoidance behaviors evolve
	Recovery speed becomes selected trait

Example 3: Stable Environment
For baseline comparison without ecological pressure:
Config = #{
 resource_regeneration_multiplier => 1.5,
 resource_decay_rate => 0.02,
 capacity_softness => 0.9,
 overflow_penalty => 0.02,
 disease_virulence_cap => 0.3,
 catastrophe_frequency => 0.001,
 cycle_amplitude => 0.1
}.
Note: Stable environments produce solutions that may not generalize well.
Tuning Guide
Training Velocity vs. Robustness
	Goal	Settings
	Fast convergence	Low pressure (abundance)
	Robust solutions	High pressure (scarcity, disease)
	Generalization	High cycle amplitude, variable pressure

Common Issues
	Problem	Likely Cause	Fix
	Population extinction	Pressure too high	Lower catastrophe_severity_cap, increase capacity_softness
	Stagnation	Environment too stable	Increase cycle_amplitude, catastrophe_frequency
	Poor generalization	Static conditions	Enable cycles, increase variability
	Disease wipes out population	Virulence too high	Lower disease_virulence_cap

Recommended Starting Point
%% Balanced ecological pressure
DefaultConfig = #{
 resource_regeneration_multiplier => 1.0,
 resource_decay_rate => 0.05,
 capacity_softness => 0.3,
 overflow_penalty => 0.1,
 disease_virulence_cap => 0.8,
 transmission_rate_modifier => 1.0,
 catastrophe_frequency => 0.01,
 catastrophe_severity_cap => 0.7,
 cycle_amplitude => 0.3,
 stress_threshold => 0.6
}.
Control Loop
The Ecological Silo executes per generation:
	Advance environmental cycle - Update phase, calculate modifiers
	Process resource regeneration/decay - Update resource levels
	Check catastrophe risk - Probability increases over time
	Execute catastrophe (if triggered) - Apply mortality, resource impact
	Spread diseases - Process each active disease
	Check disease emergence - New pathogens may appear
	Enforce carrying capacity - Apply overcrowding deaths
	Trigger stress marks - Epigenetic effects if threshold exceeded
	Emit ecological events - Notify other systems

Configuration Reference
Full Configuration Record
-record(ecological_config, {
 %% Resource dynamics
 resource_regeneration_multiplier = 1.0 :: float(),
 resource_decay_rate = 0.05 :: float(),
 resource_capacity = 1.0 :: float(),

 %% Carrying capacity
 carrying_capacity = 1000 :: non_neg_integer(),
 capacity_softness = 0.3 :: float(),
 overflow_penalty = 0.1 :: float(),

 %% Disease
 disease_virulence_cap = 0.8 :: float(),
 transmission_rate_modifier = 1.0 :: float(),
 immunity_decay_rate = 0.01 :: float(),

 %% Catastrophe
 catastrophe_frequency = 0.01 :: float(),
 catastrophe_severity_cap = 0.7 :: float(),

 %% Environment
 cycle_period = 100 :: non_neg_integer(),
 cycle_amplitude = 0.3 :: float(),
 stress_threshold = 0.6 :: float(),

 %% Symbiosis
 symbiosis_formation_rate = 0.05 :: float(),
 symbiosis_decay_rate = 0.1 :: float(),

 %% Enable/disable
 enabled = true :: boolean()
}).
API Functions
%% Start the ecological silo
ecological_silo:start_link(#{population_id => PopId})

%% Read current environment state
{ok, Environment} = ecological_silo:get_environment(PopId)

%% Manually trigger a catastrophe (for testing)
ecological_silo:trigger_catastrophe(PopId, #{type => resource_crash, severity => 0.5})

%% Introduce a disease (for testing)
ecological_silo:introduce_disease(PopId, #{virulence => 0.6, transmissibility => 0.8})

%% Get full silo state
{ok, State} = ecological_silo:get_state(PopId)
Source Code Reference
Core implementation files:
	File	Purpose
	src/lc_silos/ecological_silo.erl	Main silo gen_server
	src/lc_silos/ecological_silo_sensors.erl	L0 sensor implementation
	src/lc_silos/ecological_silo_actuators.erl	L0 actuator implementation
	src/lc_silos/ecological_carrying.erl	Carrying capacity system
	src/lc_silos/ecological_disease.erl	Disease spread and immunity
	src/lc_silos/ecological_cycles.erl	Environmental cycles
	src/lc_silos/ecological_catastrophe.erl	Catastrophe system
	src/lc_silos/ecological_symbiosis.erl	Symbiotic relationships

References
	PLAN_ECOLOGICAL_SILO.md - Full specification
	"Ecology: Concepts and Applications" - Molles
	"The Theory of Island Biogeography" - MacArthur & Wilson
	"Epidemiology" - Rothman

See Also
	Task Silo Guide - Population fitness management
	Social Silo Guide - Competition and cooperation
	Cultural Silo Guide - Innovation and learning
	Distribution Silo Guide - Population diversity

 Developmental Silo Guide

The Developmental Silo manages ontogeny - how individuals develop over their lifetime. Instead of networks being born fully formed, they grow through stages, experience critical periods, and can undergo metamorphosis. This mirrors biological development.
Overview
Traditional neuroevolution treats networks as static entities. The Developmental Silo introduces lifetime dynamics:
	Developmental stages - Progress from embryonic to adult to senescent
	Plasticity decay - Learning capacity decreases with age
	Critical periods - Time-limited windows for specific learning
	Metamorphosis - Radical structural reorganization
	Canalization - Traits become increasingly stable

[image: Developmental Silo Architecture]
Why Developmental Dynamics?
	Static Networks	Developmental Networks
	Fixed at birth	Grow and mature
	Uniform learning rate	Age-appropriate plasticity
	No critical periods	Focused learning windows
	Cannot radically adapt	Metamorphosis enables transformation
	Brittle to deployment change	Lifetime adaptation

Architecture
The Developmental Silo uses TWEANN controllers at three levels:
	Level	Time Constant	Controls
	L2 Strategic	Many runs	Optimal developmental programs for task classes
	L1 Tactical	Per generation	Adapt parameters to individual progress
	L0 Reactive	Per operation	Process aging, plasticity, stages

Sensors (10 inputs)
The L0 controller receives 10 developmental measurements:
	Sensor	Range	Description
	developmental_stage	[0.0, 1.0]	Progress through development (0=birth, 1=mature)
	maturation_level	[0.0, 1.0]	Physiological maturity
	plasticity_level	[0.0, 1.0]	Current learning capacity
	plasticity_trend	[-1.0, 1.0]	Direction of plasticity change
	critical_period_active	[0.0, 1.0]	Intensity of active critical period
	canalization_strength	[0.0, 1.0]	Resistance to perturbation
	heterochrony_index	[0.0, 1.0]	Timing variation from population mean
	metamorphosis_proximity	[0.0, 1.0]	Distance to metamorphosis threshold
	developmental_noise	[0.0, 1.0]	Random variation in development
	developmental_fitness	[0.0, 1.0]	Fitness relative to developmental stage

Actuators (8 outputs)
The controller adjusts 8 developmental parameters:
	Actuator	Range	Default	Effect
	growth_rate	[0.0, 0.2]	0.05	Speed of structural growth
	maturation_speed	[0.0, 0.1]	0.02	Speed of physiological maturation
	critical_period_duration	[1, 20]	5	Generations critical period lasts
	plasticity_decay_rate	[0.0, 0.2]	0.05	How fast plasticity decreases
	initial_plasticity	[0.5, 1.0]	0.9	Plasticity at birth
	developmental_noise_level	[0.0, 0.3]	0.1	Stochasticity in development
	metamorphosis_trigger	[0.5, 0.95]	0.8	Threshold for metamorphosis
	metamorphosis_severity	[0.0, 1.0]	0.5	How drastic metamorphosis is

Developmental Dynamics
[image: Developmental Dynamics]
Developmental Stages
Individuals progress through five life stages:
	Stage	Duration	Plasticity	Characteristics
	Embryonic	5 gen	0.9-1.0	High growth, sensory critical periods
	Juvenile	15 gen	0.7-0.9	Sensory/motor critical periods
	Adolescent	20 gen	0.4-0.7	Cognitive/social critical periods
	Adult	40 gen	0.2-0.4	Stable, low plasticity
	Senescent	20 gen	0.1-0.2	Minimal plasticity, reduced mutation

Each stage has:
	Different mutation rate modifiers
	Available critical period types
	Appropriate plasticity ranges

Plasticity Decay
Plasticity decreases with age, following exponential decay:
plasticity(t+1) = plasticity(t) * (1 - decay_rate)
	Young Networks	Old Networks
	High plasticity (0.9)	Low plasticity (0.1)
	Fast learning	Slow learning
	Unstable behavior	Stable behavior
	High variability	Canalized traits

The min_plasticity floor (typically 0.1) prevents complete rigidity.
Critical Periods
Critical periods are time-limited windows where learning is enhanced:
	Period Type	Stage	Effect
	Sensory	Embryonic, Juvenile	2x learning rate for sensory processing
	Motor	Juvenile	2x learning rate for motor control
	Cognitive	Adolescent	2x learning rate for reasoning
	Social	Adolescent	2x learning rate for social behavior

During critical period:
effective_learning_rate = base_learning_rate * 2.0
Critical periods:
	Open automatically based on stage
	Close after critical_period_duration generations
	Cannot be reopened once closed
	Record what learning was acquired

Metamorphosis
Metamorphosis allows radical transformation:
%% Metamorphosis resets plasticity and reduces canalization
new_plasticity = initial_plasticity * severity + old_plasticity * (1 - severity)
new_canalization = old_canalization * (1 - severity)
	Before Metamorphosis	After Metamorphosis
	Low plasticity (0.2)	High plasticity (0.7)
	High canalization (0.8)	Low canalization (0.2)
	Stable but rigid	Flexible and adaptable

Metamorphosis triggers:
	Maturation progress exceeds metamorphosis_trigger threshold
	Maximum 3 metamorphoses per lifetime (max_metamorphoses)
	20% probability when conditions met

Canalization
Canalization measures resistance to perturbation:
	Low Canalization	High Canalization
	High variability	Stable traits
	Easy to modify	Difficult to change
	Exploratory behavior	Exploitative behavior

Canalization increases with age and successful behavior, but metamorphosis resets it.
Heterochrony
Heterochrony measures developmental timing relative to population:
	Precocious (early developers) - Mature faster, reach adult stage sooner
	Delayed (late developers) - Extended juvenile/adolescent periods

The heterochrony_index sensor tracks this:
z_score = abs(individual_age - population_mean_age) / population_std_age
heterochrony_index = clamp(z_score / 4.0 + 0.5, 0.0, 1.0)
Integration with Other Silos
[image: Developmental Dataflow]
Outgoing Signals
	Signal	To Silo	Trigger
	maturity_distribution	Task	Average population maturity
	plasticity_available	Cultural	Average plasticity level
	metamorphosis_rate	Ecological	Metamorphoses per generation
	growth_stage	Morphological	Current developmental stage
	critical_timing	Temporal	Critical period activity

Incoming Signals
	Signal	From Silo	Effect
	stress_level	Ecological	Stress > 0.7 accelerates maturation
	learning_opportunity	Cultural	Opportunity > 0.5 extends critical periods
	resource_scarcity	Resource	Scarcity > 0.6 accelerates growth
	social_mentoring	Social	Mentoring affects critical period learning

Signal Examples
%% Receive stress from ecological silo
handle_cast({cross_silo, stress_level, Stress}, State) when Stress > 0.7 ->
 %% High stress accelerates maturation
 NewSpeed = State#developmental_state.maturation_speed * 1.5,
 {noreply, State#developmental_state{maturation_speed = min(0.1, NewSpeed)}};

%% Send plasticity signal to cultural silo
signal_plasticity_available(Pid) ->
 IndStates = maps:values(State#developmental_state.individual_states),
 Plasticities = [I#individual_dev_state.plasticity || I <- IndStates],
 AvgPlasticity = lists:sum(Plasticities) / length(Plasticities),
 clamp(AvgPlasticity, 0.0, 1.0).
Events Emitted
	Event	Payload	Trigger
	development_stage_changed	{individual_id, old_stage, new_stage}	Stage transition
	critical_period_opened	{individual_id, period_type, duration}	Period began
	critical_period_closed	{individual_id, period_type, learning_acquired}	Period ended
	plasticity_decreased	{individual_id, old_level, new_level}	Plasticity decayed
	maturation_completed	{individual_id, final_structure, age}	Fully mature
	metamorphosis_triggered	{individual_id, severity, new_plasticity}	Radical change
	developmental_milestone	{individual_id, milestone, age}	Key achievement
	canalization_established	{individual_id, trait, stability}	Trait fixed

Practical Examples
Example 1: Fast-Maturing Population
Configure for rapid development and short critical periods:
Config = #{
 growth_rate => 0.15, % Fast structural growth
 maturation_speed => 0.08, % Fast physiological maturation
 critical_period_duration => 3, % Short learning windows
 plasticity_decay_rate => 0.12, % Fast plasticity loss
 initial_plasticity => 0.95 % High starting plasticity
}.
Expected outcomes:
	Quick convergence to adult behavior
	Less lifetime adaptation
	Efficient for stable deployment environments

Example 2: Extended Learning
Configure for prolonged development and extended learning:
Config = #{
 growth_rate => 0.03, % Slow structural growth
 maturation_speed => 0.01, % Slow maturation
 critical_period_duration => 15, % Long learning windows
 plasticity_decay_rate => 0.02, % Slow plasticity loss
 initial_plasticity => 0.9,
 metamorphosis_trigger => 0.9, % High metamorphosis threshold
 metamorphosis_severity => 0.7 % Strong metamorphosis effect
}.
Expected outcomes:
	Extended learning periods
	High lifetime adaptation
	Better for changing deployment environments

Example 3: Deployment Adaptation
For networks that need to adapt in deployment:
Config = #{
 plasticity_decay_rate => 0.01, % Very slow decay
 initial_plasticity => 0.8,
 metamorphosis_trigger => 0.5, % Easy to trigger metamorphosis
 metamorphosis_severity => 0.4, % Moderate reset
 developmental_noise_level => 0.15 % Some stochasticity
}.
Expected outcomes:
	Networks retain learning capacity in deployment
	Can adapt to environment-specific conditions
	Metamorphosis available for major adaptation

Tuning Guide
Trade-offs
	Goal	Settings
	Fast training	High decay rate, short critical periods
	Robustness	Low decay rate, extended critical periods
	Stability	High canalization, low metamorphosis
	Flexibility	Low canalization, high metamorphosis

Common Issues
	Problem	Likely Cause	Fix
	Networks don't mature	Low maturation speed	Increase maturation_speed
	No learning after juvenile	Plasticity too low	Lower plasticity_decay_rate
	Critical periods ineffective	Too short	Increase critical_period_duration
	Stuck in local optima	High canalization	Enable metamorphosis, reduce trigger threshold
	Too much variation	High developmental noise	Lower developmental_noise_level

Recommended Starting Point
DefaultConfig = #{
 growth_rate => 0.05,
 maturation_speed => 0.02,
 critical_period_duration => 5,
 plasticity_decay_rate => 0.05,
 initial_plasticity => 0.9,
 developmental_noise_level => 0.1,
 metamorphosis_trigger => 0.8,
 metamorphosis_severity => 0.5
}.
Control Loop
The Developmental Silo executes per generation:
	Advance individual ages - Increment age counter
	Apply plasticity decay - Reduce plasticity based on decay rate
	Check stage transitions - Move to next stage if conditions met
	Open/close critical periods - Manage time-limited learning windows
	Check metamorphosis triggers - Initiate radical transformation if threshold met
	Update canalization levels - Track trait stability
	Emit developmental events - Notify other systems
	Send cross-silo signals - Update dependent silos

Configuration Reference
Full Configuration Record
-record(developmental_config, {
 %% Enable/disable
 enabled = true :: boolean(),

 %% Stage configuration
 num_stages = 5 :: pos_integer(),
 stage_definitions :: [developmental_stage()],

 %% Plasticity
 min_plasticity = 0.1 :: float(),
 max_plasticity = 1.0 :: float(),

 %% Critical periods
 enable_critical_periods = true :: boolean(),
 available_period_types = [sensory, motor, cognitive, social] :: [atom()],

 %% Metamorphosis
 enable_metamorphosis = true :: boolean(),
 max_metamorphoses = 3 :: pos_integer(),

 %% Event emission
 emit_events = true :: boolean()
}).
API Functions
%% Start the developmental silo
developmental_silo:start_link(Config)

%% Register a new individual
developmental_silo:register_individual(Pid, IndividualId)

%% Advance an individual's age
{ok, NewAge} = developmental_silo:advance_age(Pid, IndividualId)

%% Get plasticity level
Plasticity = developmental_silo:get_plasticity(Pid, IndividualId)

%% Open a critical period
ok = developmental_silo:open_critical_period(Pid, IndividualId, sensory)

%% Close a critical period
ok = developmental_silo:close_critical_period(Pid, IndividualId, sensory)

%% Trigger metamorphosis
ok = developmental_silo:trigger_metamorphosis(Pid, IndividualId)

%% Get individual developmental state
IndState = developmental_silo:get_individual_state(Pid, IndividualId)

%% Enable/disable silo
developmental_silo:enable(Pid)
developmental_silo:disable(Pid)
Source Code Reference
Core implementation files:
	File	Purpose
	src/lc_silos/developmental_silo.erl	Main silo gen_server
	src/lc_silos/developmental_silo_sensors.erl	L0 sensor implementation
	src/lc_silos/developmental_silo_actuators.erl	L0 actuator implementation
	src/lc_silos/developmental_silo.hrl	Record definitions

References
	PLAN_DEVELOPMENTAL_SILO.md - Full specification
	"Developmental Plasticity and Evolution" - West-Eberhard
	"Critical Periods in Development" - Knudsen
	"Metamorphosis: Postembryonic Reprogramming" - Shi

See Also
	Cultural Silo Guide - Learning and imitation
	Ecological Silo Guide - Environmental stress effects
	Morphological Silo Guide - Network structure growth
	Temporal Silo Guide - Time management in development

 Regulatory Silo Guide

The Regulatory Silo manages gene expression and network activation - which parts of the genome are expressed in which contexts. Like biological gene regulation, this enables the same genotype to produce different phenotypes based on environmental conditions, supporting multi-modal behavior and graceful degradation.
Overview
Traditional neuroevolution treats networks as static expressions of genotype. The Regulatory Silo introduces dynamic control:
	Context-dependent expression - Different genes active in different contexts
	Module activation - Functional gene groups switch on/off together
	Dormant capabilities - Hidden genes available for future activation
	Epigenetic inheritance - Expression patterns passed across generations
	Transcription factors - Regulatory signals controlling gene expression

[image: Regulatory Silo Architecture]
Why Gene Regulation?
	Static Networks	Regulated Networks
	All genes always expressed	Context-appropriate expression
	Single behavioral mode	Multi-modal behavior
	No hidden capabilities	Dormant genes for adaptation
	Wasteful resources	Energy-efficient operation
	Fixed phenotype	Dynamic phenotype switching

Architecture
The Regulatory Silo uses TWEANN controllers at three levels:
	Level	Time Constant	Controls
	L2 Strategic	Many runs	Optimal expression programs for task classes
	L1 Tactical	Per generation	Adapt parameters based on context history
	L0 Reactive	Per operation	Process expression, switching, epigenetics

Sensors (10 inputs)
The L0 controller receives 10 regulatory measurements:
	Sensor	Range	Description
	active_gene_ratio	[0.0, 1.0]	Expressed genes / total genes
	dormant_capability_count	[0.0, 1.0]	Unexpressed but available capabilities
	module_activation_pattern	[0.0, 1.0]	Entropy of module activation
	context_switch_frequency	[0.0, 1.0]	How often context changes
	regulatory_network_complexity	[0.0, 1.0]	Complexity of regulation logic
	expression_noise	[0.0, 1.0]	Stochasticity in expression
	epigenetic_mark_density	[0.0, 1.0]	Epigenetic marks per gene
	transcription_factor_diversity	[0.0, 1.0]	Variety of regulatory signals
	conditional_expression_ratio	[0.0, 1.0]	Context-dependent vs constitutive
	regulatory_fitness_contribution	[0.0, 1.0]	How much regulation helps fitness

Actuators (8 outputs)
The controller adjusts 8 regulatory parameters:
	Actuator	Range	Default	Effect
	expression_threshold	[0.0, 1.0]	0.5	Signal needed for gene expression
	regulatory_mutation_rate	[0.0, 0.1]	0.02	Rate of regulation changes
	context_sensitivity	[0.0, 1.0]	0.5	How responsive to context changes
	module_switching_cost	[0.0, 0.5]	0.1	Fitness cost of switching modules
	dormancy_maintenance_cost	[0.0, 0.1]	0.01	Cost per dormant gene
	epigenetic_inheritance_strength	[0.0, 1.0]	0.5	How much marks inherit
	constitutive_expression_bonus	[0.0, 0.2]	0.05	Bonus for always-on genes
	regulatory_complexity_penalty	[0.0, 0.1]	0.02	Cost of complex regulation

Regulatory Dynamics
[image: Regulatory Dynamics]
Gene Expression States
Each gene in the genome exists in one of several states:
	State	Description	Example
	Expressed	Gene is active, contributing to phenotype	Sensory processing gene
	Silenced	Gene is off, not contributing	Motor gene during sensing
	Dormant	Gene is off but can be activated later	Defense capability
	Constitutive	Gene is always expressed	Core metabolism gene
	Conditional	Gene expression depends on context	Context-specific behavior

Expression threshold:
%% Gene is expressed if signal exceeds threshold
expressed = signal >= expression_threshold
Module Activation
Modules group related genes for coordinated activation:
	Module Type	Description	Genes
	Sensory	Input processing	G1, G2, G4
	Motor	Output generation	G3, G5
	Cognitive	Internal processing	G7, G8
	Defense	Stress response	G6 (dormant)

Module switching:
	Modules activate/deactivate as a unit
	Switching incurs fitness cost (module_switching_cost)
	Context preference determines activation

Context Switching
Networks change behavior based on environmental context:
	Context	Active Modules	Expression Pattern
	High Resource	Sensory + Cognitive	Exploration mode
	Under Attack	Motor + Defense	Response mode
	Learning	All modules	Full capability
	Low Energy	Core only	Conservation mode

Context history:
	Last 10 contexts tracked
	Switch frequency measured
	High switching = volatile environment

Epigenetic Inheritance
Expression patterns can be inherited across generations:
%% Epigenetic inheritance
inherited_marks = parent_marks * inheritance_strength
%% With inheritance_strength = 0.5, half of marks pass to offspring
	Mark Type	Effect	Inheritance
	Methylation	Silences genes	50% (default)
	Acetylation	Activates genes	50% (default)
	Phosphorylation	Temporary activation	30%

Transcription Factors
Regulatory signals that control gene expression:
	Factor Type	Effect	Target
	Activator	Increases expression	Specific genes
	Repressor	Decreases expression	Specific genes
	Context-dependent	Varies by context	Gene groups

Network complexity:
	Simple: few factors, direct control
	Complex: many factors, cascading effects
	Complexity penalized (regulatory_complexity_penalty)

Integration with Other Silos
[image: Regulatory Dataflow]
Outgoing Signals
	Signal	To Silo	Trigger
	expression_flexibility	Cultural	Conditional gene ratio
	dormant_potential	Competitive	Dormant gene count
	context_awareness	Task	Sensitivity + switch rate
	expression_cost	Morphological	Active gene energy
	energy_requirement	Economic	Total expression load

Incoming Signals
	Signal	From Silo	Effect
	environmental_context	Ecological	Sets current context
	stress_level	Ecological	Stress > 0.7 activates dormant genes
	task_complexity	Task	Complexity > 0.7 lowers threshold
	developmental_stage	Developmental	Stage affects expression patterns
	energy_available	Economic	Low energy limits expression

Signal Examples
%% Receive stress from ecological silo
handle_cast({cross_silo, stress_level, Stress}, State) when Stress > 0.7 ->
 %% High stress activates dormant genes
 NewGenes = activate_dormant_genes(State#regulatory_state.genes, Stress),
 {noreply, State#regulatory_state{genes = NewGenes}};

%% Send flexibility signal to cultural silo
signal_expression_flexibility(Pid) ->
 Genes = maps:values(State#regulatory_state.genes),
 Conditional = length([G || G <- Genes, not G#gene.is_constitutive]),
 Flexibility = Conditional / length(Genes),
 clamp(Flexibility, 0.0, 1.0).
Events Emitted
	Event	Payload	Trigger
	gene_expressed	{gene_id, trigger}	Gene turned on
	gene_silenced	{gene_id, reason}	Gene turned off
	module_activated	{module_id, context}	Module switched on
	module_deactivated	{module_id}	Module switched off
	context_switch_occurred	{old_context, new_context}	Context changed
	dormant_capability_awakened	{gene_id, trigger}	Hidden gene expressed
	epigenetic_mark_acquired	{gene_id, mark_type}	Mark added
	regulatory_mutation	{gene_id, old_regulation, new_regulation}	Regulation changed

Practical Examples
Example 1: Multi-Task Agent
Configure for context-switching multi-task behavior:
Config = #{
 expression_threshold => 0.4, % Easy expression
 context_sensitivity => 0.8, % High sensitivity
 module_switching_cost => 0.05, % Low switching cost
 dormancy_maintenance_cost => 0.005, % Low dormancy cost
 epigenetic_inheritance_strength => 0.3
}.
Expected outcomes:
	Quick mode switching between tasks
	Multiple behavioral modes
	Low overhead for maintaining capabilities

Example 2: Specialist Agent
Configure for deep specialization in one context:
Config = #{
 expression_threshold => 0.7, % High threshold
 context_sensitivity => 0.2, % Low sensitivity
 module_switching_cost => 0.3, % High switching cost
 constitutive_expression_bonus => 0.15,% Reward always-on
 regulatory_complexity_penalty => 0.05
}.
Expected outcomes:
	Stable, specialized behavior
	Few modules active
	High efficiency in primary context

Example 3: Adaptive Agent
Configure for stress-responsive adaptation:
Config = #{
 expression_threshold => 0.5,
 context_sensitivity => 0.6,
 dormancy_maintenance_cost => 0.005, % Keep dormant capabilities
 epigenetic_inheritance_strength => 0.7,% Strong inheritance
 regulatory_mutation_rate => 0.03 % Some exploration
}.
Expected outcomes:
	Dormant genes activate under stress
	Expression patterns inherit to offspring
	Gradual adaptation to environment

Tuning Guide
Trade-offs
	Goal	Settings
	Quick switching	Low switching cost, high sensitivity
	Stable behavior	High switching cost, low sensitivity
	Energy efficiency	High threshold, dormancy cost
	Flexibility	Low threshold, low dormancy cost
	Heritage	High epigenetic inheritance

Common Issues
	Problem	Likely Cause	Fix
	Too much switching	Low switching cost	Increase module_switching_cost
	No context response	Low sensitivity	Increase context_sensitivity
	All genes always on	Low threshold	Increase expression_threshold
	Dormant genes never used	High dormancy cost	Decrease dormancy_maintenance_cost
	Complex regulation	Low penalty	Increase regulatory_complexity_penalty

Recommended Starting Point
DefaultConfig = #{
 expression_threshold => 0.5,
 regulatory_mutation_rate => 0.02,
 context_sensitivity => 0.5,
 module_switching_cost => 0.1,
 dormancy_maintenance_cost => 0.01,
 epigenetic_inheritance_strength => 0.5,
 constitutive_expression_bonus => 0.05,
 regulatory_complexity_penalty => 0.02
}.
Control Loop
The Regulatory Silo executes per operation:
	Receive context signals - Get environment from Ecological Silo
	Evaluate expression thresholds - Determine which genes should be active
	Switch modules as needed - Activate/deactivate gene groups
	Apply epigenetic marks - Update expression modifiers
	Update gene registry - Record current expression state
	Check dormant awakening - Activate hidden genes if triggered
	Emit regulatory events - Notify listeners of changes
	Send cross-silo signals - Update dependent silos

Configuration Reference
Full Configuration Record
-record(regulatory_config, {
 %% Enable/disable
 enabled = true :: boolean(),

 %% Gene configuration
 max_genes = 1000 :: pos_integer(),
 max_modules = 50 :: pos_integer(),

 %% Epigenetics
 enable_epigenetics = true :: boolean(),
 max_marks_per_gene = 10 :: pos_integer(),

 %% Context
 available_contexts = [default] :: [context_id()],

 %% Event emission
 emit_events = true :: boolean()
}).
API Functions
%% Start the regulatory silo
regulatory_silo:start_link(Config)

%% Context management
regulatory_silo:set_context(Pid, ContextId)
regulatory_silo:update_context(Pid, RegContext)

%% Gene expression
ok = regulatory_silo:express_gene(Pid, GeneId)
ok = regulatory_silo:silence_gene(Pid, GeneId)
Expressed = regulatory_silo:get_expressed_genes(Pid)

%% Module activation
ok = regulatory_silo:activate_module(Pid, ModuleId)
ok = regulatory_silo:deactivate_module(Pid, ModuleId)
Active = regulatory_silo:get_active_modules(Pid)

%% Epigenetics
ok = regulatory_silo:add_epigenetic_mark(Pid, GeneId, Mark)
regulatory_silo:inherit_marks(Pid, ParentGeneId, ChildGeneId)

%% Get regulatory parameters
Params = regulatory_silo:get_regulatory_params(Pid)

%% Enable/disable silo
regulatory_silo:enable(Pid)
regulatory_silo:disable(Pid)
Biological Inspiration
The Regulatory Silo mirrors biological gene regulation:
	Biology	Regulatory Silo
	Gene promoters	Expression threshold
	Transcription factors	Regulatory signals
	Epigenetic marks	Inherited expression patterns
	Cell differentiation	Module specialization
	Stress response genes	Dormant capabilities
	Tissue-specific expression	Context-dependent activation

Source Code Reference
Core implementation files:
	File	Purpose
	src/lc_silos/regulatory_silo.erl	Main silo gen_server
	src/lc_silos/regulatory_silo_sensors.erl	L0 sensor implementation
	src/lc_silos/regulatory_silo_actuators.erl	L0 actuator implementation
	src/lc_silos/regulatory_silo.hrl	Record definitions

References
	PLAN_REGULATORY_SILO.md - Full specification
	"The Logic of Gene Regulation" - Ptashne
	"Epigenetics" - Allis, Jenuwein, Reinberg
	"Gene Regulatory Networks" - Davidson

See Also
	Ecological Silo Guide - Environmental context source
	Developmental Silo Guide - Stage affects expression
	Cultural Silo Guide - Expression flexibility for learning
	Competitive Silo Guide - Dormant capabilities for counter-strategies

 Communication Silo Guide

The Communication Silo manages signaling and language evolution: signal repertoires, protocol evolution, coordination messages, and deception detection. Multi-agent systems need communication to coordinate, and evolved communication is more robust than hard-coded protocols.
Overview
Traditional multi-agent systems use fixed communication protocols. The Communication Silo enables evolved communication:
	Signal invention - Agents create new signals with meanings
	Signal adoption - Successful signals spread through population
	Coordination - Agents coordinate through messaging
	Honesty/deception - Honest signaling evolves under pressure
	Dialect formation - Subgroups develop distinct languages

[image: Communication Silo Architecture]
Why Evolved Communication?
	Hard-coded Protocols	Evolved Communication
	Fixed signal meanings	Adaptive semantics
	No coordination discovery	Protocols emerge
	Cannot handle novelty	Adapts to new situations
	Opaque agent behavior	Interpretable signals
	Single global language	Dialect specialization

Architecture
The Communication Silo uses TWEANN controllers at three levels:
	Level	Time Constant	Controls
	L2 Strategic	Many runs	Optimal communication policies for task classes
	L1 Tactical	Per generation	Adapt parameters based on coordination success
	L0 Reactive	Per operation	Process signals, coordination, deception

Sensors (10 inputs)
The L0 controller receives 10 communication measurements:
	Sensor	Range	Description
	vocabulary_size	[0.0, 1.0]	Distinct signals / max possible
	vocabulary_growth_rate	[-1.0, 1.0]	Rate of new signal creation
	message_complexity_mean	[0.0, 1.0]	Average message length/structure
	communication_frequency	[0.0, 1.0]	Messages per interaction
	signal_honesty_rate	[0.0, 1.0]	Proportion of honest signals
	deception_detection_rate	[0.0, 1.0]	Success at detecting lies
	coordination_success_rate	[0.0, 1.0]	Success of coordinated actions
	language_stability	[0.0, 1.0]	How stable the language is
	dialect_count	[0.0, 1.0]	Number of distinct dialects (normalized)
	compression_ratio	[0.0, 1.0]	Information per signal unit

Actuators (8 outputs)
The controller adjusts 8 communication parameters:
	Actuator	Range	Default	Effect
	vocabulary_growth_rate	[0.0, 0.1]	0.02	Speed of vocabulary expansion
	communication_cost	[0.0, 0.2]	0.05	Energy cost per message
	lying_penalty	[0.0, 0.5]	0.2	Fitness penalty for detected lies
	deception_detection_bonus	[0.0, 0.3]	0.1	Bonus for catching liars
	coordination_reward	[0.0, 0.5]	0.2	Bonus for successful coordination
	message_compression_pressure	[0.0, 0.5]	0.1	Pressure to compress messages
	dialect_isolation	[0.0, 1.0]	0.3	How isolated dialects become
	language_mutation_rate	[0.0, 0.1]	0.02	Rate of signal meaning change

Communication Dynamics
[image: Communication Dynamics]
Signal Evolution
Signals evolve meanings through invention and adoption:
	Phase	Description	Example
	Invention	Agent creates new signal	Agent A invents "food here" signal
	Use	Inventor uses signal	A sends signal when finding food
	Adoption	Others learn meaning	B, C observe and adopt
	Stabilization	Signal becomes standard	Whole population uses signal

Vocabulary growth:
%% New signals created per generation
new_signals = vocabulary_growth_rate * population_size
%% Signal stabilizes when adopted by >50% of population
Coordination
Agents coordinate through message exchange:
	Step	Action	Result
	1	Agent A proposes action	Sends coordination message
	2	Agents B, C respond	Agreement/disagreement signals
	3	Action executed	All participants act together
	4	Outcome recorded	Success/failure tracked

Coordination reward:
reward = coordination_reward * success_rate * num_participants
%% Cost of coordination:
cost = communication_cost * messages_exchanged
Honesty and Deception
Evolutionary pressure shapes honest signaling:
	Behavior	Effect	Selection Pressure
	Honest signaling	Builds trust	Coordination benefits
	Deception	Short-term gain	Lying penalty if caught
	Detection	Catches liars	Detection bonus reward

Equilibrium:
	High lying penalty + high detection = honest population
	Low lying penalty + low detection = deceptive population
	Balance emerges from evolutionary dynamics

Dialect Formation
Subgroups develop distinct languages:
	Factor	Effect on Dialects
	Geographic isolation	Groups drift apart linguistically
	Coalition structure	Coalitions develop secret codes
	Specialization	Task-specific vocabularies
	Cultural diversity	Multiple communication styles

Dialect isolation:
%% Shared vocabulary between dialects
shared_vocab = total_vocab * (1 - dialect_isolation)
%% Higher isolation = more distinct dialects
Integration with Other Silos
[image: Communication Dataflow]
Outgoing Signals
	Signal	To Silo	Trigger
	coordination_capability	Task	Based on coordination success rate
	information_sharing	Cultural	Based on communication frequency
	trust_network	Social	Based on signal honesty rate
	language_complexity	Developmental	Based on message complexity
	trade_communication	Economic	Coordination * frequency

Incoming Signals
	Signal	From Silo	Effect
	social_network_density	Social	Dense networks = more communication
	coalition_structure	Social	Coalitions develop shared signals
	cultural_diversity	Cultural	Diversity creates dialects
	population_structure	Distribution	Isolated groups form dialects
	stress_level	Ecological	Stress may increase honest signaling

Signal Examples
%% Receive social network density from social silo
handle_cast({cross_silo, social_network_density, Density}, State) ->
 %% Dense networks increase communication baseline
 NewFrequency = State#state.base_frequency * (1 + Density * 0.5),
 {noreply, State#state{communication_frequency = NewFrequency}};

%% Send coordination capability to task silo
send_cross_silo_signals(SensorValues, State) ->
 PopId = State#communication_state.population_id,
 CoordSuccess = maps:get(coordination_success_rate, SensorValues, 0.5),
 task_silo:receive_signal(PopId, coordination_capability, CoordSuccess).
Events Emitted
	Event	Payload	Trigger
	signal_invented	{inventor_id, signal, meaning}	New signal created
	signal_adopted	{adopter_id, signal, source_id}	Signal spread to another
	message_sent	{sender_id, receiver_ids, signal_count}	Communication occurred
	deception_detected	{detector_id, liar_id, signal}	Lie caught
	coordination_succeeded	{participant_ids, action, outcome}	Team action worked
	coordination_failed	{participant_ids, action, reason}	Team action failed
	dialect_emerged	{dialect_id, members, vocabulary}	New dialect formed
	language_merged	{dialect_a, dialect_b, result}	Dialects combined

Practical Examples
Example 1: Cooperative Task
Configure for high coordination and honest signaling:
Config = #{
 coordination_reward => 0.4, % High coordination reward
 lying_penalty => 0.4, % Strong penalty for deception
 deception_detection_bonus => 0.15, % Reward catching liars
 communication_cost => 0.02, % Low message cost
 dialect_isolation => 0.1 % Encourage shared language
}.
Expected outcomes:
	High coordination success rate
	Honest population
	Unified vocabulary
	Efficient team actions

Example 2: Competitive Task
Configure for strategic signaling in competition:
Config = #{
 coordination_reward => 0.1, % Low coordination emphasis
 lying_penalty => 0.1, % Allow strategic deception
 deception_detection_bonus => 0.2, % Reward detecting enemy lies
 communication_cost => 0.05, % Medium message cost
 dialect_isolation => 0.7 % Allow secret codes
}.
Expected outcomes:
	Strategic deception emerges
	Coalition-specific languages
	Arms race between lying and detection
	Information warfare dynamics

Example 3: Mixed Environment
Configure for adaptive communication:
Config = #{
 coordination_reward => 0.25,
 lying_penalty => 0.2,
 deception_detection_bonus => 0.1,
 communication_cost => 0.03,
 dialect_isolation => 0.4,
 vocabulary_growth_rate => 0.03, % Moderate invention
 message_compression_pressure => 0.15 % Some efficiency pressure
}.
Expected outcomes:
	Context-dependent behavior
	Honest within groups, strategic across groups
	Moderate dialect formation
	Balanced vocabulary growth

Tuning Guide
Trade-offs
	Goal	Settings
	High coordination	High coordination_reward, low communication_cost
	Honest population	High lying_penalty, high detection_bonus
	Rich vocabulary	High vocabulary_growth_rate, low compression
	Efficient signals	High compression_pressure, low growth rate
	Unified language	Low dialect_isolation, high stability

Common Issues
	Problem	Likely Cause	Fix
	No coordination	Low reward	Increase coordination_reward
	Rampant lying	Low penalty	Increase lying_penalty
	Vocabulary explosion	High growth	Decrease vocabulary_growth_rate
	No dialects forming	Low isolation	Increase dialect_isolation
	Too costly messaging	High cost	Decrease communication_cost

Recommended Starting Point
DefaultConfig = #{
 vocabulary_growth_rate => 0.02,
 communication_cost => 0.05,
 lying_penalty => 0.2,
 deception_detection_bonus => 0.1,
 coordination_reward => 0.2,
 message_compression_pressure => 0.1,
 dialect_isolation => 0.3,
 language_mutation_rate => 0.02
}.
Control Loop
The Communication Silo executes per generation:
	Collect messages/signals - Gather communication data from agents
	Process signal inventions - Add new signals to registry
	Track coordination attempts - Record success/failure
	Record deception events - Track lying and detection
	Update dialect membership - Manage subgroup languages
	Apply actuator outputs - Set communication parameters
	Emit communication events - Notify listeners
	Send cross-silo signals - Update dependent silos

Configuration Reference
Full Configuration Record
-record(communication_config, {
 %% Enable/disable
 enabled = true :: boolean(),

 %% Vocabulary limits
 max_vocabulary_size = 1000 :: pos_integer(),
 max_message_complexity = 100 :: pos_integer(),

 %% Dialect limits
 max_dialects = 10 :: pos_integer(),

 %% Frequency tracking
 frequency_window_ms = 60000 :: pos_integer(),
 max_frequency = 100 :: pos_integer(),

 %% History limits
 history_limit = 1000 :: pos_integer(),

 %% L2 update interval
 l2_update_interval_ms = 30000 :: pos_integer()
}).
API Functions
%% Start the communication silo
communication_silo:start_link(Config)

%% Record a message
communication_silo:record_message(PopId, Message)

%% Record signal invention
communication_silo:record_signal_invention(PopId, Signal)

%% Record coordination attempt
communication_silo:record_coordination_attempt(PopId, Attempt)

%% Record deception event
communication_silo:record_deception_event(PopId, Event)

%% Get signal registry
Registry = communication_silo:get_signal_registry(PopId)

%% Get dialect info
Dialects = communication_silo:get_dialect_info(PopId)

%% Enable/disable silo
communication_silo:enable(PopId)
communication_silo:disable(PopId)
Biological Inspiration
The Communication Silo mirrors biological communication:
	Biology	Communication Silo
	Animal signals	Signal repertoire
	Honest signaling theory	Lying penalty/detection
	Language evolution	Vocabulary growth
	Dialects/accents	Dialect formation
	Cooperative communication	Coordination reward
	Deceptive mimicry	Strategic deception

Source Code Reference
Core implementation files:
	File	Purpose
	src/lc_silos/communication_silo.erl	Main silo gen_server
	src/lc_silos/communication_silo_sensors.erl	L0 sensor implementation
	src/lc_silos/communication_silo_actuators.erl	L0 actuator implementation
	src/lc_silos/communication_silo.hrl	Record definitions

References
	PLAN_COMMUNICATION_SILO.md - Full specification
	"The Evolution of Language" - Nowak & Krakauer
	"Signals: Evolution, Learning, and Information" - Skyrms
	"Modeling the Cultural Evolution of Language" - Steels

See Also
	Social Silo Guide - Social networks affect communication
	Cultural Silo Guide - Cultural learning and transmission
	Task Silo Guide - Coordination capability for tasks
	Competitive Silo Guide - Strategic signaling in competition

 Macula Neuroevolution

Population-based evolutionary training for neural networks.
[image: Hex.pm]
[image: Hex Docs]
[image: Buy Me A Coffee]
Overview
macula_neuroevolution is an Erlang library that provides domain-agnostic population-based evolutionary training for neural networks. It works with macula_tweann to evolve network weights through selection, crossover, and mutation.
[image: Architecture Overview]
Features
	Population Management - Maintain and evolve populations of neural networks
	Parallel Evaluation - Concurrent fitness evaluation using Erlang processes
	Sexual Reproduction - Uniform crossover of parent weights
	Mutation Operators - Weight perturbation with configurable rate/strength
	Selection Strategies - Top-N%, tournament, roulette wheel
	LTC Meta-Controller - Adaptive hyperparameter optimization using Liquid Time-Constant networks
	Lineage Tracking - Track parent1_id, parent2_id, generation_born
	Event Callbacks - Pluggable event handling for UI updates
	Target Fitness - Automatic stopping when fitness threshold is reached

The Liquid Conglomerate Vision
This library implements the first level of a hierarchical meta-learning system called the Liquid Conglomerate:
[image: Liquid Conglomerate]
The Liquid Conglomerate is a novel architecture that uses hierarchical Liquid Time-Constant (LTC) neural networks to create a self-optimizing training system. Instead of manually tuning hyperparameters, the system learns how to learn at multiple timescales:
	Level 0 (fast tau): Task networks react to immediate domain state
	Level 1 (medium tau): Meta-controller adapts hyperparameters per generation
	Level 2+ (slow tau): Higher-order controllers learn meta-strategies

Key effects on training:
	Self-tuning hyperparameters - Mutation rate, selection ratio adapt automatically
	Automatic stagnation recovery - Detects and escapes local optima
	Phase-appropriate strategies - Different strategies for exploration vs exploitation
	Transfer of meta-knowledge - Training strategies can transfer across domains

See The Liquid Conglomerate Guide for the full explanation, or LTC Meta-Controller for implementation details.
[image: Evolution Lifecycle]
Installation
Add to your rebar.config:
{deps, [
 {macula_neuroevolution, "~> 0.12.0"}
]}.
Quick Start
%% Define your evaluator module (implements neuroevolution_evaluator behaviour)
-module(my_evaluator).
-behaviour(neuroevolution_evaluator).
-export([evaluate/2]).

evaluate(Individual, Options) ->
 Network = Individual#individual.network,
 %% Run your domain-specific evaluation
 Score = run_simulation(Network),
 UpdatedIndividual = Individual#individual{
 metrics = #{total_score => Score}
 },
 {ok, UpdatedIndividual}.

%% Start training
Config = #neuro_config{
 population_size = 50,
 selection_ratio = 0.20,
 mutation_rate = 0.10,
 mutation_strength = 0.3,
 network_topology = {42, [16, 8], 6}, % 42 inputs, 2 hidden layers, 6 outputs
 evaluator_module = my_evaluator
},

{ok, Pid} = neuroevolution_server:start_link(Config),
neuroevolution_server:start_training(Pid).
Configuration
	Parameter	Default	Description
	population_size	50	Number of individuals
	evaluations_per_individual	10	Games/tests per individual per generation
	selection_ratio	0.20	Fraction of population that survives (top 20%)
	mutation_rate	0.10	Probability of mutating each weight
	mutation_strength	0.3	Magnitude of weight perturbation
	max_generations	infinity	Maximum generations to run
	network_topology	-	{InputSize, HiddenLayers, OutputSize}
	evaluator_module	-	Module implementing neuroevolution_evaluator
	evaluator_options	#{}	Options passed to evaluator
	event_handler	undefined	{Module, InitArg} for event notifications

Event Handling
Subscribe to training events by providing an event handler:
-module(my_event_handler).
-export([handle_event/2]).

handle_event({generation_started, Gen}, _State) ->
 io:format("Generation ~p started~n", [Gen]);
handle_event({generation_complete, Stats}, _State) ->
 io:format("Generation ~p: Best=~.2f, Avg=~.2f~n",
 [Stats#generation_stats.generation,
 Stats#generation_stats.best_fitness,
 Stats#generation_stats.avg_fitness]);
handle_event(_Event, _State) ->
 ok.

%% Configure with event handler
Config = #neuro_config{
 %% ... other options ...
 event_handler = {my_event_handler, undefined}
}.
Custom Evaluators
Implement the neuroevolution_evaluator behaviour:
-module(snake_game_evaluator).
-behaviour(neuroevolution_evaluator).
-export([evaluate/2, calculate_fitness/1]).

%% Required callback
evaluate(Individual, Options) ->
 Network = Individual#individual.network,
 NumGames = maps:get(games, Options, 10),

 %% Play multiple games and aggregate results
 Results = [play_game(Network) || _ <- lists:seq(1, NumGames)],

 TotalScore = lists:sum([R#result.score || R <- Results]),
 TotalTicks = lists:sum([R#result.ticks || R <- Results]),
 Wins = length([R || R <- Results, R#result.won]),

 UpdatedIndividual = Individual#individual{
 metrics = #{
 total_score => TotalScore,
 total_ticks => TotalTicks,
 wins => Wins
 }
 },
 {ok, UpdatedIndividual}.

%% Optional callback for custom fitness calculation
calculate_fitness(Metrics) ->
 Score = maps:get(total_score, Metrics, 0),
 Ticks = maps:get(total_ticks, Metrics, 0),
 Wins = maps:get(wins, Metrics, 0),
 Score * 50.0 + Ticks / 50.0 + Wins * 2.0.
Building
rebar3 compile
rebar3 eunit
rebar3 dialyzer

Academic References
Evolutionary Algorithms
	Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.
	Foundational text on genetic algorithms and evolutionary computation.

	Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley.
	Comprehensive coverage of genetic algorithm theory and practice.

Neuroevolution
	Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), 1423-1447.
	Comprehensive survey of neuroevolution approaches and taxonomy.

	Stanley, K.O. & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2), 99-127.
	NEAT paper introducing speciation for topology evolution (applicable to weight evolution too).

	Sher, G.I. (2013). Handbook of Neuroevolution Through Erlang. Springer.
	Erlang-specific neuroevolution patterns and DXNN2 architecture.

Selection & Breeding
	Miller, B.L. & Goldberg, D.E. (1995). Genetic Algorithms, Tournament Selection, and the Effects of Noise. Complex Systems, 9(3), 193-212.
	Tournament selection analysis and noise resistance.

	Goldberg, D.E. & Richardson, J. (1987). Genetic Algorithms with Sharing for Multimodal Function Optimization. Proceedings of the Second International Conference on Genetic Algorithms.
	Fitness sharing and speciation for maintaining diversity.

Fitness Evaluation
	Jin, Y. (2005). A Comprehensive Survey of Fitness Approximation in Evolutionary Computation. Soft Computing, 9(1), 3-12.	Survey of fitness approximation techniques for expensive evaluations.

Related Projects
Macula Ecosystem
	macula_tweann - Neural network library with topology evolution, LTC neurons, and ONNX export. Core dependency for network creation and evaluation.

	macula - HTTP/3 mesh networking platform enabling distributed neuroevolution across edge devices with NAT traversal.

Inspiration & Related Work
	DXNN2 - Gene Sher's original TWEANN implementation in Erlang.

	NEAT-Python - Popular Python NEAT implementation with extensive documentation.

	OpenAI ES - OpenAI's evolution strategies implementation for RL.

	EvoTorch - Modern PyTorch-based evolutionary algorithm library.

	DEAP - Distributed Evolutionary Algorithms in Python.

Guides
Getting Started
	Overview - Architecture and core concepts
	Getting Started - Quick setup guide
	Custom Evaluators - Implement your own evaluator

Advanced Topics
	The Liquid Conglomerate - Hierarchical meta-learning explained
	LTC Meta-Controller - Adaptive hyperparameter optimization
	Cooperative Silos - Cross-silo communication in LC v2
	Topology Evolution Roadmap - TWEANN integration plans
	Interoperability - Export formats and cross-language deployment
	Inference Scenarios - Production deployment patterns
	Swarm Robotics - Coordinated autonomous systems
	Evolution Strategies - Pluggable evolution algorithms

License
Apache License 2.0
Links
	Documentation
	GitHub
	macula_tweann - Neural network library

agent_actuator behaviour

See also: agent_bridge, agent_definition, agent_sensor.

 Summary

 Types

 action/0

 Action command produced by the actuator. Structure is domain-defined, typically includes: #{type => atom(), ...action_specific_fields}.

 actuator_name/0

 Unique identifier for the actuator type within an agent. Examples: <<"movement">>, <<"signal">>, <<"eat">>.

 agent_state/0

 Agent-specific state. See agent_sensor:agent_state().

 env_state/0

 Environment state. See agent_sensor:env_state().

 output_count/0

 Number of neural network output nodes this actuator consumes. Must be positive (at least 1 output).

 output_values/0

 List of neural network outputs to interpret. Length must match output_count/0.

 Callbacks

 act/3

 name/0

 output_count/0

 Functions

 get_info(Module)

 validate(Module)

 validate_outputs(Module, Outputs)

 Types

 action/0

 -type action() :: map().

Action command produced by the actuator. Structure is domain-defined, typically includes: #{type => atom(), ...action_specific_fields}.

 actuator_name/0

 -type actuator_name() :: binary().

Unique identifier for the actuator type within an agent. Examples: <<"movement">>, <<"signal">>, <<"eat">>.

 agent_state/0

 -type agent_state() :: map().

Agent-specific state. See agent_sensor:agent_state().

 env_state/0

 -type env_state() :: map().

Environment state. See agent_sensor:env_state().

 output_count/0

 -type output_count() :: pos_integer().

Number of neural network output nodes this actuator consumes. Must be positive (at least 1 output).

 output_values/0

 -type output_values() :: [float()].

List of neural network outputs to interpret. Length must match output_count/0.

 Callbacks

 act/3

 -callback act(Outputs, AgentState, EnvState) -> {ok, Action} | {error, Reason}
 when
 Outputs :: output_values(),
 AgentState :: agent_state(),
 EnvState :: env_state(),
 Action :: action(),
 Reason :: term().

 name/0

 -callback name() -> actuator_name().

 output_count/0

 -callback output_count() -> output_count().

 Functions

 get_info(Module)

 -spec get_info(Module) -> {ok, Info} | {error, Reason}
 when
 Module :: module(),
 Info :: #{name := actuator_name(), output_count := output_count()},
 Reason :: term().

 validate(Module)

 -spec validate(Module) -> ok | {error, [Reason]} when Module :: module(), Reason :: term().

 validate_outputs(Module, Outputs)

 -spec validate_outputs(Module, Outputs) -> ok | {error, Reason}
 when Module :: module(), Outputs :: output_values(), Reason :: term().

agent_bridge

Agent Bridge - Orchestrates the Sense→Think→Act Cycle.
This module ties together agent definition, sensors, actuators, and environment to run complete evaluation episodes. It is the integration point between domain-defined behaviours and the neuroevolution engine.
The bridge answers the question: "HOW do all the pieces fit together?"
[bookmark: Overview]Overview
The agent bridge:
	Registers sensors and actuators for an agent type
	Validates that topology matches I/O counts
	Orchestrates the sense→think→act cycle
	Slices inputs/outputs correctly for each sensor/actuator

[bookmark: Bridge_Configuration]Bridge Configuration
A bridge config specifies all components of an agent:
 Config = #{
 definition => my_agent_definition,
 sensors => [vision_sensor, hearing_sensor, energy_sensor],
 actuators => [movement_actuator, signal_actuator],
 environment => hex_arena_env
 }
[bookmark: Sense→Think→Act_Cycle]Sense→Think→Act Cycle
Each tick, the bridge executes:
 1. SENSE: For each sensor, call read/2 → collect inputs
 2. THINK: Feed inputs to neural network → get outputs
 3. ACT: For each actuator, slice outputs → call act/3 → collect actions
 4. APPLY: For each action, call environment:apply_action/3
[bookmark: Input/Output_Slicing]Input/Output Slicing
Sensors and actuators are processed in registration order:
 Sensors: [vision(18), hearing(4), energy(1)] → Inputs: [0..17, 18..21, 22]
 Actuators: [movement(7), signal(1)] → Outputs: [0..6, 7]
[bookmark: Topology_Validation]Topology Validation
The bridge validates that:
	Sum of sensor input_counts == topology inputs
	Sum of actuator output_counts == topology outputs

This catches configuration errors before training begins.
See also: agent_actuator, agent_definition, agent_environment, agent_sensor.

 Summary

 Types

 agent_state/0

 bridge_config/0

 env_state/0

 network/0

 Neural network (from macula_tweann).

 validated_bridge/0

 Functions

 act(Bridge, Outputs, AgentState, EnvState)

 Processes outputs through all actuators.

 new(Config)

 Creates and validates a new bridge configuration.

 run_episode(Bridge, Network, EnvConfig)

 Runs a complete evaluation episode.

 run_episode(Bridge, Network, EnvConfig, SpeciesId)

 Runs an evaluation episode with optional species ID.

 sense(Bridge, AgentState, EnvState)

 Collects inputs from all sensors.

 sense_think_act(Bridge, Network, AgentState, EnvState)

 Executes one complete sense→think→act cycle.

 validate(Config)

 Validates a bridge configuration.

 Types

 agent_state/0

 -type agent_state() :: map().

 bridge_config/0

 -type bridge_config() ::
 #{definition := module(),
 sensors := [module()],
 actuators := [module()],
 environment := module(),
 evaluator => module()}.

 env_state/0

 -type env_state() :: map().

 network/0

 -type network() :: term().

Neural network (from macula_tweann).

 validated_bridge/0

 -type validated_bridge() ::
 #{definition := module(),
 sensors := [{module(), non_neg_integer(), pos_integer()}],
 actuators := [{module(), non_neg_integer(), pos_integer()}],
 environment := module(),
 evaluator => module(),
 total_inputs := pos_integer(),
 total_outputs := pos_integer(),
 topology := {pos_integer(), [pos_integer()], pos_integer()}}.

 Functions

 act(Bridge, Outputs, AgentState, EnvState)

 -spec act(Bridge, Outputs, AgentState, EnvState) -> Actions
 when
 Bridge :: validated_bridge(),
 Outputs :: [float()],
 AgentState :: agent_state(),
 EnvState :: env_state(),
 Actions :: [map()].

Processes outputs through all actuators.
Slices the output vector and calls each actuator's act/3. Returns a list of actions to apply.

 new(Config)

 -spec new(Config) -> {ok, ValidatedBridge} | {error, Reason}
 when Config :: bridge_config(), ValidatedBridge :: validated_bridge(), Reason :: term().

Creates and validates a new bridge configuration.
Returns a validated bridge with computed I/O offsets, or an error if validation fails.
Example:
 Config = #{
 definition => my_agent,
 sensors => [vision_sensor, energy_sensor],
 actuators => [movement_actuator],
 environment => arena_env
 },
 {ok, Bridge} = agent_bridge:new(Config).

 run_episode(Bridge, Network, EnvConfig)

 -spec run_episode(Bridge, Network, EnvConfig) -> Result
 when
 Bridge :: validated_bridge(),
 Network :: network(),
 EnvConfig :: map(),
 Result :: {ok, float(), map()} | {ok, map()} | {error, term()}.

Runs a complete evaluation episode.
Executes the full episode lifecycle: 1. Initialize environment 2. Spawn agent 3. Loop: tick → sense → think → act → apply actions 4. Extract metrics when terminal 5. Calculate fitness if evaluator is configured
Returns: - {ok, Fitness, Metrics} if evaluator is configured - {ok, Metrics} if no evaluator (backward compatible)

 run_episode(Bridge, Network, EnvConfig, SpeciesId)

 -spec run_episode(Bridge, Network, EnvConfig, SpeciesId) -> Result
 when
 Bridge :: validated_bridge(),
 Network :: network(),
 EnvConfig :: map(),
 SpeciesId :: atom() | undefined,
 Result :: {ok, float(), map()} | {ok, map()} | {error, term()}.

Runs an evaluation episode with optional species ID.
For multi-species environments, the SpeciesId parameter is passed to spawn_agent/3. For standard environments, spawn_agent/2 is used.

 sense(Bridge, AgentState, EnvState)

 -spec sense(Bridge, AgentState, EnvState) -> Inputs
 when
 Bridge :: validated_bridge(),
 AgentState :: agent_state(),
 EnvState :: env_state(),
 Inputs :: [float()].

Collects inputs from all sensors.
Calls each sensor's read/2 in order and concatenates the results. Returns a flat list of floats ready for the neural network.

 sense_think_act(Bridge, Network, AgentState, EnvState)

 -spec sense_think_act(Bridge, Network, AgentState, EnvState) -> {Inputs, Outputs, Actions}
 when
 Bridge :: validated_bridge(),
 Network :: network(),
 AgentState :: agent_state(),
 EnvState :: env_state(),
 Inputs :: [float()],
 Outputs :: [float()],
 Actions :: [map()].

Executes one complete sense→think→act cycle.
This is the core function called each tick: 1. Sense: Collect inputs from all sensors 2. Think: Evaluate neural network 3. Act: Convert outputs to actions
Returns the list of actions to apply to the environment.

 validate(Config)

 -spec validate(Config) -> {ok, ValidatedBridge} | {error, Reason}
 when
 Config :: bridge_config(), ValidatedBridge :: validated_bridge(), Reason :: term().

Validates a bridge configuration.
Checks:
	All modules implement their respective behaviours
	Sum of sensor inputs matches topology inputs
	Sum of actuator outputs matches topology outputs

agent_definition behaviour

See also: agent_actuator, agent_bridge, agent_sensor.

 Summary

 Types

 agent_name/0

 Unique identifier for the agent type. Should be a descriptive name like <<"hex_arena_agent">>.

 agent_version/0

 Semantic version string, e.g., <<"1.0.0">>.

 network_topology/0

 Neural network shape specification: {Inputs, HiddenLayers, Outputs}.

 Callbacks

 name/0

 network_topology/0

 version/0

 Functions

 get_info(Module)

 validate(Module)

 Types

 agent_name/0

 -type agent_name() :: binary().

Unique identifier for the agent type. Should be a descriptive name like <<"hex_arena_agent">>.

 agent_version/0

 -type agent_version() :: binary().

Semantic version string, e.g., <<"1.0.0">>.

 network_topology/0

 -type network_topology() :: {pos_integer(), [pos_integer()], pos_integer()}.

Neural network shape specification: {Inputs, HiddenLayers, Outputs}.
	Inputs - Total input count, must match sum of all sensor input counts
	HiddenLayers - List of hidden layer sizes (can be empty for direct connections)
	Outputs - Total output count, must match sum of all actuator output counts

 Callbacks

 name/0

 -callback name() -> agent_name().

 network_topology/0

 -callback network_topology() -> network_topology().

 version/0

 -callback version() -> agent_version().

 Functions

 get_info(Module)

 -spec get_info(Module) -> {ok, Info} | {error, Reason}
 when
 Module :: module(),
 Info ::
 #{name := agent_name(),
 version := agent_version(),
 topology := network_topology(),
 inputs := pos_integer(),
 hidden_layers := [pos_integer()],
 outputs := pos_integer()},
 Reason :: term().

 validate(Module)

 -spec validate(Module) -> ok | {error, [Reason]} when Module :: module(), Reason :: term().

agent_environment behaviour

See also: agent_actuator, agent_bridge, agent_definition, agent_sensor.

 Summary

 Types

 action/0

 Action command from an actuator. See agent_actuator:action().

 agent_id/0

 Unique identifier for an agent within an episode.

 agent_state/0

 Agent-specific state containing position, energy, etc. See agent_sensor:agent_state().

 env_config/0

 Configuration passed to init/1. Structure is domain-defined, typically includes: max_ticks, seed, arena_size, etc.

 env_name/0

 Unique identifier for the environment type. Examples: <<"hex_arena">>, <<"maze">>, <<"open_field">>.

 env_state/0

 Environment state containing world information. Structure is domain-defined, typically includes: walls, food, tick, max_ticks, etc.

 metrics/0

 Performance metrics extracted after episode. Used by evaluator for fitness calculation.

 Callbacks

 apply_action/3

 extract_metrics/2

 init/1

 is_terminal/2

 name/0

 spawn_agent/2

 tick/2

 Functions

 get_info(Module)

 validate(Module)

 Types

 action/0

 -type action() :: map().

Action command from an actuator. See agent_actuator:action().

 agent_id/0

 -type agent_id() :: term().

Unique identifier for an agent within an episode.

 agent_state/0

 -type agent_state() :: map().

Agent-specific state containing position, energy, etc. See agent_sensor:agent_state().

 env_config/0

 -type env_config() :: map().

Configuration passed to init/1. Structure is domain-defined, typically includes: max_ticks, seed, arena_size, etc.

 env_name/0

 -type env_name() :: binary().

Unique identifier for the environment type. Examples: <<"hex_arena">>, <<"maze">>, <<"open_field">>.

 env_state/0

 -type env_state() :: map().

Environment state containing world information. Structure is domain-defined, typically includes: walls, food, tick, max_ticks, etc.

 metrics/0

 -type metrics() :: map().

Performance metrics extracted after episode. Used by evaluator for fitness calculation.

 Callbacks

 apply_action/3

 -callback apply_action(Action, AgentState, EnvState) -> {ok, AgentState, EnvState}
 when Action :: action(), AgentState :: agent_state(), EnvState :: env_state().

 extract_metrics/2

 -callback extract_metrics(AgentState, EnvState) -> metrics()
 when AgentState :: agent_state(), EnvState :: env_state().

 init/1

 -callback init(Config) -> {ok, EnvState} | {error, Reason}
 when Config :: env_config(), EnvState :: env_state(), Reason :: term().

 is_terminal/2

 -callback is_terminal(AgentState, EnvState) -> boolean()
 when AgentState :: agent_state(), EnvState :: env_state().

 name/0

 -callback name() -> env_name().

 spawn_agent/2

 -callback spawn_agent(AgentId, EnvState) -> {ok, AgentState, EnvState} | {error, Reason}
 when
 AgentId :: agent_id(),
 EnvState :: env_state(),
 AgentState :: agent_state(),
 Reason :: term().

 tick/2

 -callback tick(AgentState, EnvState) -> {ok, AgentState, EnvState}
 when AgentState :: agent_state(), EnvState :: env_state().

 Functions

 get_info(Module)

 -spec get_info(Module) -> {ok, Info} | {error, Reason}
 when Module :: module(), Info :: #{name := env_name()}, Reason :: term().

 validate(Module)

 -spec validate(Module) -> ok | {error, [Reason]} when Module :: module(), Reason :: term().

agent_evaluator behaviour

See also: agent_bridge, agent_environment.

 Summary

 Types

 evaluator_name/0

 Unique identifier for the evaluator. Examples: <<"hex_arena_fitness">>, <<"foraging_score">>.

 fitness/0

 Scalar fitness score. Higher is better. Should be non-negative for compatibility with selection algorithms.

 fitness_components/0

 Breakdown of fitness into named components. Useful for analysis and debugging.

 metrics/0

 Performance metrics from a completed episode. See agent_environment:metrics().

 Callbacks

 calculate_fitness/1

 fitness_components/1

 name/0

 Functions

 evaluate(Module, Metrics)

 evaluate_with_breakdown(Module, Metrics)

 get_info(Module)

 validate(Module)

 Types

 evaluator_name/0

 -type evaluator_name() :: binary().

Unique identifier for the evaluator. Examples: <<"hex_arena_fitness">>, <<"foraging_score">>.

 fitness/0

 -type fitness() :: float().

Scalar fitness score. Higher is better. Should be non-negative for compatibility with selection algorithms.

 fitness_components/0

 -type fitness_components() :: #{atom() => float()}.

Breakdown of fitness into named components. Useful for analysis and debugging.

 metrics/0

 -type metrics() :: map().

Performance metrics from a completed episode. See agent_environment:metrics().

 Callbacks

 calculate_fitness/1

 -callback calculate_fitness(Metrics) -> Fitness when Metrics :: metrics(), Fitness :: fitness().

 fitness_components/1

 (optional)

 -callback fitness_components(Metrics) -> Components
 when Metrics :: metrics(), Components :: fitness_components().

 name/0

 -callback name() -> evaluator_name().

 Functions

 evaluate(Module, Metrics)

 -spec evaluate(Module, Metrics) -> {ok, Fitness} | {error, Reason}
 when Module :: module(), Metrics :: metrics(), Fitness :: fitness(), Reason :: term().

 evaluate_with_breakdown(Module, Metrics)

 -spec evaluate_with_breakdown(Module, Metrics) -> {ok, Fitness, Components} | {error, Reason}
 when
 Module :: module(),
 Metrics :: metrics(),
 Fitness :: fitness(),
 Components :: fitness_components(),
 Reason :: term().

 get_info(Module)

 -spec get_info(Module) -> {ok, Info} | {error, Reason}
 when
 Module :: module(),
 Info :: #{name := evaluator_name(), has_components := boolean()},
 Reason :: term().

 validate(Module)

 -spec validate(Module) -> ok | {error, [Reason]} when Module :: module(), Reason :: term().

agent_sensor behaviour

See also: agent_actuator, agent_bridge, agent_definition.

 Summary

 Types

 agent_state/0

 Agent-specific state containing position, energy, etc. Structure is domain-defined.

 env_state/0

 Environment state containing world information. Structure is domain-defined.

 input_count/0

 Number of neural network input nodes this sensor provides. Must be positive (at least 1 input).

 sensor_name/0

 Unique identifier for the sensor type within an agent. Examples: <<"vision">>, <<"hearing">>, <<"energy">>.

 sensor_values/0

 List of sensor readings, length must match input_count/0. Values should be normalized to [0.0, 1.0] range.

 Callbacks

 input_count/0

 name/0

 read/2

 Functions

 get_info(Module)

 validate(Module)

 validate_values(Module, Values)

 Types

 agent_state/0

 -type agent_state() :: map().

Agent-specific state containing position, energy, etc. Structure is domain-defined.

 env_state/0

 -type env_state() :: map().

Environment state containing world information. Structure is domain-defined.

 input_count/0

 -type input_count() :: pos_integer().

Number of neural network input nodes this sensor provides. Must be positive (at least 1 input).

 sensor_name/0

 -type sensor_name() :: binary().

Unique identifier for the sensor type within an agent. Examples: <<"vision">>, <<"hearing">>, <<"energy">>.

 sensor_values/0

 -type sensor_values() :: [float()].

List of sensor readings, length must match input_count/0. Values should be normalized to [0.0, 1.0] range.

 Callbacks

 input_count/0

 -callback input_count() -> input_count().

 name/0

 -callback name() -> sensor_name().

 read/2

 -callback read(AgentState, EnvState) -> sensor_values()
 when AgentState :: agent_state(), EnvState :: env_state().

 Functions

 get_info(Module)

 -spec get_info(Module) -> {ok, Info} | {error, Reason}
 when
 Module :: module(),
 Info :: #{name := sensor_name(), input_count := input_count()},
 Reason :: term().

 validate(Module)

 -spec validate(Module) -> ok | {error, [Reason]} when Module :: module(), Reason :: term().

 validate_values(Module, Values)

 -spec validate_values(Module, Values) -> ok | {error, Reason}
 when Module :: module(), Values :: sensor_values(), Reason :: term().

agent_species behaviour

Agent Species Behaviour - Defines a species/culture of agents.
This behaviour extends agent_definition to support multi-species coevolution. Each species has its own network topology, sensors, actuators, and fitness function.
[bookmark: Overview]Overview
Species represent distinct agent types that coevolve in a shared environment. Examples:
	Foragers - Optimized for finding and consuming food
	Predators - Optimized for hunting other agents
	Scavengers - Optimized for following and opportunistic feeding

[bookmark: Two-Level_Speciation]Two-Level Speciation
 Level 1: EXPLICIT SPECIES (user-defined)
 - Different network topologies
 - Different sensors/actuators
 - Different fitness functions

 Level 2: BEHAVIORAL SUB-SPECIES (emergent)
 - Same topology, different behaviors
 - Identified via behavioral fingerprinting
 - Preserves diversity within species
  ```
 
  == Example Implementation ==
 
  ```
 -module(forager_species).
 -behaviour(agent_species).

 name() -> <<"forager">>.
 network_topology() -> {29, [32, 16], 9}.
 sensors() -> [vision_sensor, smell_sensor, state_sensor].
 actuators() -> [movement_actuator, signal_actuator].
 evaluator() -> forager_evaluator.
 spawn_config() -> #{energy => 150, spawn_zone => center}.
 subspeciation_threshold() -> 1.5.
See also: coevolution_trainer, species_registry.

 Summary

 Types

 species_config/0

 species_id/0

 subspecies_id/0

 Callbacks

 actuators/0

 evaluator/0

 mutation_config/0

 name/0

 network_topology/0

 sensors/0

 spawn_config/0

 subspeciation_threshold/0

 version/0

 Functions

 to_bridge_config(Module, Environment)

 Converts species to bridge config for single-species training.

 to_config(Module)

 Extracts species configuration from a module.

 validate(Module)

 Validates that a module correctly implements agent_species.

 Types

 species_config/0

 -type species_config() ::
 #{name := binary(),
 topology := {pos_integer(), [pos_integer()], pos_integer()},
 sensors := [module()],
 actuators := [module()],
 evaluator := module(),
 spawn_config := map(),
 subspeciation_threshold := float() | infinity,
 mutation_config => map()}.

 species_id/0

 -type species_id() :: atom() | binary().

 subspecies_id/0

 -type subspecies_id() :: {species_id(), non_neg_integer()}.

 Callbacks

 actuators/0

 -callback actuators() -> [module()].

 evaluator/0

 -callback evaluator() -> module().

 mutation_config/0

 (optional)

 -callback mutation_config() -> map().

 name/0

 -callback name() -> binary().

 network_topology/0

 -callback network_topology() -> {pos_integer(), [pos_integer()], pos_integer()}.

 sensors/0

 -callback sensors() -> [module()].

 spawn_config/0

 -callback spawn_config() -> map().

 subspeciation_threshold/0

 -callback subspeciation_threshold() -> float() | infinity.

 version/0

 -callback version() -> binary().

 Functions

 to_bridge_config(Module, Environment)

 -spec to_bridge_config(Module, Environment) -> agent_bridge:bridge_config()
 when Module :: module(), Environment :: module().

Converts species to bridge config for single-species training.

 to_config(Module)

 -spec to_config(Module) -> species_config() when Module :: module().

Extracts species configuration from a module.

 validate(Module)

 -spec validate(Module) -> ok | {error, Reasons} when Module :: module(), Reasons :: [term()].

Validates that a module correctly implements agent_species.

agent_trainer

Agent Trainer - Integration between Agent SDK and Neuroevolution.
This module bridges the gap between domain-defined agent behaviours and the neuroevolution engine. It provides convenience functions to configure, train, and evaluate agents without manual boilerplate.
[bookmark: Overview]Overview
The trainer eliminates manual wiring between agent_bridge and neuroevolution_server:
 %% WITHOUT agent_trainer (manual boilerplate):
 {ok, Bridge} = agent_bridge:new(Config),
 {Inputs, _, Outputs} = my_agent:network_topology(),
 FitnessFn = fun(Network) ->
 {ok, Fitness, _} = agent_bridge:run_episode(Bridge, Network, EnvConfig),
 Fitness
 end,
 NeuroConfig = neuro_config:new(#{
 population_size => 100,
 input_count => Inputs,
 output_count => Outputs,
 fitness_function => FitnessFn
 }),
 {ok, Pid} = neuroevolution_server:start_link(NeuroConfig),
 neuroevolution_server:evolve(Pid, 100).

 %% WITH agent_trainer (one line):
 {ok, Best, Stats} = agent_trainer:train(Bridge, #{generations => 100}).
[bookmark: Quick_Start]Quick Start
 %% 1. Create bridge with all components (including evaluator!)
 {ok, Bridge} = agent_bridge:new(#{
 definition => my_agent,
 sensors => [my_sensor],
 actuators => [my_actuator],
 environment => my_environment,
 evaluator => my_evaluator %% Required for training!
 }),

 %% 2. Train
 {ok, BestNetwork, Stats} = agent_trainer:train(Bridge, #{
 generations => 100,
 population_size => 50
 }).
[bookmark: Configuration_Options]Configuration Options
Training options passed to train/2:
	generations - Number of generations (default: 100)
	population_size - Population size (default: 100)
	strategy - Evolution strategy (default: generational)
	env_config - Environment configuration (default: #{})
	episodes_per_eval - Episodes to average (default: 1)
	Any other neuro_config options

See also: agent_bridge, neuro_config, neuroevolution_server.

 Summary

 Types

 fitness_fn/0

 Fitness function type.

 train_options/0

 train_result/0

 Result of training: best network and final statistics.

 Functions

 evaluate(Bridge, Network, EnvConfig)

 Evaluates a single network using the bridge.

 evaluate_many(Bridge, Network, EnvConfig, Episodes)

 Evaluates a network over multiple episodes and averages fitness.

 to_fitness_fn(Bridge, EnvConfig)

 Creates a fitness function from a bridge.

 to_neuro_config(Bridge, EnvConfig)

 Creates a neuro_config from a bridge.

 to_neuro_config(Bridge, EnvConfig, Options)

 Creates a neuro_config with custom options.

 train(Bridge, Options)

 Trains an agent using neuroevolution.

 train(Bridge, EnvConfig, Options)

 Trains an agent with explicit environment configuration.

 Types

 fitness_fn/0

 -type fitness_fn() :: fun((term()) -> float()).

Fitness function type.

 train_options/0

 -type train_options() ::
 #{generations => pos_integer(),
 population_size => pos_integer(),
 strategy => atom(),
 env_config => map(),
 episodes_per_eval => pos_integer(),
 atom() => term()}.

 train_result/0

 -type train_result() :: {ok, Network :: term(), Stats :: map()} | {error, term()}.

Result of training: best network and final statistics.

 Functions

 evaluate(Bridge, Network, EnvConfig)

 -spec evaluate(Bridge, Network, EnvConfig) -> {ok, float(), map()} | {error, term()}
 when Bridge :: agent_bridge:validated_bridge(), Network :: term(), EnvConfig :: map().

Evaluates a single network using the bridge.
Runs one episode and returns fitness and metrics.
Example:
 {ok, Fitness, Metrics} = agent_trainer:evaluate(Bridge, Network, EnvConfig).

 evaluate_many(Bridge, Network, EnvConfig, Episodes)

 -spec evaluate_many(Bridge, Network, EnvConfig, Episodes) -> {ok, float(), [map()]} | {error, term()}
 when
 Bridge :: agent_bridge:validated_bridge(),
 Network :: term(),
 EnvConfig :: map(),
 Episodes :: pos_integer().

Evaluates a network over multiple episodes and averages fitness.
Useful for stochastic environments where single-episode fitness may have high variance.
Example:
 {ok, AvgFitness, AllMetrics} = agent_trainer:evaluate_many(Bridge, Network, EnvConfig, 10).

 to_fitness_fn(Bridge, EnvConfig)

 -spec to_fitness_fn(Bridge, EnvConfig) -> fitness_fn()
 when Bridge :: agent_bridge:validated_bridge(), EnvConfig :: map().

Creates a fitness function from a bridge.
The returned function can be used with neuro_config directly for advanced users who want manual control.
Example:
 FitnessFn = agent_trainer:to_fitness_fn(Bridge, EnvConfig),
 Config = neuro_config:new(#{
 fitness_function => FitnessFn,
 ...
 }).

 to_neuro_config(Bridge, EnvConfig)

 -spec to_neuro_config(Bridge, EnvConfig) -> {ok, term()} | {error, term()}
 when Bridge :: agent_bridge:validated_bridge(), EnvConfig :: map().

Creates a neuro_config from a bridge.
Extracts topology from the bridge definition and creates appropriate neuroevolution configuration.
Example:
 {ok, Config} = agent_trainer:to_neuro_config(Bridge, EnvConfig),
 {ok, Pid} = neuroevolution_server:start_link(Config).

 to_neuro_config(Bridge, EnvConfig, Options)

 -spec to_neuro_config(Bridge, EnvConfig, Options) -> {ok, term()} | {error, term()}
 when
 Bridge :: agent_bridge:validated_bridge(),
 EnvConfig :: map(),
 Options :: map().

Creates a neuro_config with custom options.
Options are merged with defaults extracted from the bridge. Returns a #neuro_config{} record suitable for neuroevolution_server.

 train(Bridge, Options)

 -spec train(Bridge, Options) -> train_result()
 when Bridge :: agent_bridge:validated_bridge(), Options :: train_options().

Trains an agent using neuroevolution.
This is the main entry point for training. It: 1. Creates a fitness function from the bridge 2. Configures neuroevolution from the bridge topology 3. Runs evolution for the specified generations 4. Returns the best network and statistics
Example:
 {ok, Bridge} = agent_bridge:new(#{
 definition => my_agent,
 sensors => [my_sensor],
 actuators => [my_actuator],
 environment => my_env,
 evaluator => my_evaluator
 }),
 {ok, BestNetwork, Stats} = agent_trainer:train(Bridge, #{
 generations => 100,
 population_size => 50
 }).

 train(Bridge, EnvConfig, Options)

 -spec train(Bridge, EnvConfig, Options) -> train_result()
 when
 Bridge :: agent_bridge:validated_bridge(),
 EnvConfig :: map(),
 Options :: train_options().

Trains an agent with explicit environment configuration.
Same as train/2 but with environment config as separate argument.

archive_crdt

OR-Set CRDT for opponent archive synchronization.
Implements an Observed-Remove Set (OR-Set) CRDT for conflict-free archive merging across distributed nodes. Each champion entry includes a unique tag allowing concurrent adds and removes to be resolved automatically.
CRDT Operations: - add/3: Add element with unique tag (actor + counter) - remove/2: Remove specific element (marks tag as tombstone) - merge/2: Combine two OR-Sets (union of all non-tombstoned entries) - value/1: Get current set contents
Binary Format (for network serialization): - Version byte (1) - Entry count (4 bytes, big-endian) - For each entry: - Tag length (2 bytes) + Tag binary - Entry term_to_binary (4 bytes length + data)

 Summary

 Types

 actor_id/0

 entry/0

 orset/0

 Functions

 add(Value, Orset, ActorId)

 Add element to OR-Set. Returns updated OR-Set with new entry tagged uniquely.

 export_binary(Orset)

 Export OR-Set to binary for network transmission.

 import_binary(_)

 Import OR-Set from binary.

 is_crdt(Orset)

 Check if term is an OR-Set.

 merge(Orset, _)

 Merge two OR-Sets. - All unique tags are preserved - Tombstones win: if any version has tombstone=true, result is tombstone

 new()

 Create new empty OR-Set with random actor ID.

 new(ActorId)

 Create new empty OR-Set with specific actor ID.

 remove(Value, Orset)

 Remove element from OR-Set by value. Marks all entries with matching value as tombstones.

 size(ORSet)

 Get size (live entries only).

 value(Orset)

 Get current set values (excludes tombstones).

 Types

 actor_id/0

 -type actor_id() :: binary().

 entry/0

 -type entry() :: #entry{tag :: binary(), value :: term(), tombstone :: boolean()}.

 orset/0

 -type orset() ::
 #orset{actor_id :: binary(),
 counter :: non_neg_integer(),
 entries ::
 #{binary() => #entry{tag :: binary(), value :: term(), tombstone :: boolean()}}}.

 Functions

 add(Value, Orset, ActorId)

 -spec add(term(), orset(), actor_id()) -> orset().

Add element to OR-Set. Returns updated OR-Set with new entry tagged uniquely.

 export_binary(Orset)

 -spec export_binary(orset()) -> binary().

Export OR-Set to binary for network transmission.

 import_binary(_)

 -spec import_binary(binary()) -> {ok, orset()} | {error, term()}.

Import OR-Set from binary.

 is_crdt(Orset)

 -spec is_crdt(term()) -> boolean().

Check if term is an OR-Set.

 merge(Orset, _)

 -spec merge(orset(), orset()) -> orset().

Merge two OR-Sets. - All unique tags are preserved - Tombstones win: if any version has tombstone=true, result is tombstone

 new()

 -spec new() -> orset().

Create new empty OR-Set with random actor ID.

 new(ActorId)

 -spec new(actor_id()) -> orset().

Create new empty OR-Set with specific actor ID.

 remove(Value, Orset)

 -spec remove(term(), orset()) -> orset().

Remove element from OR-Set by value. Marks all entries with matching value as tombstones.

 size(ORSet)

 -spec size(orset()) -> non_neg_integer().

Get size (live entries only).

 value(Orset)

 -spec value(orset()) -> [term()].

Get current set values (excludes tombstones).

bridge_evaluator

Bridge Evaluator - Adapts Agent SDK to neuroevolution_evaluator behaviour.
This module bridges the Agent SDK's agent_bridge with the neuroevolution system's evaluator interface. It allows agent_trainer to use agent_bridge configurations with neuroevolution_server.
[bookmark: Usage]Usage
This module is used internally by agent_trainer. You don't need to use it directly. Configure your training via agent_trainer:train/2.
[bookmark: How_It_Works]How It Works
1. agent_trainer stores the validated bridge in evaluator_options 2. This module extracts the bridge and env_config from options 3. For each individual, it extracts the network and runs an episode 4. Returns the individual with populated metrics and fitness
See also: agent_trainer, neuroevolution_evaluator.

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 Functions

 calculate_fitness(Metrics)

 Calculates fitness from metrics (not used - fitness comes from bridge).

 evaluate(Individual, Options)

 Evaluates an individual using the agent bridge.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 Functions

 calculate_fitness(Metrics)

 -spec calculate_fitness(Metrics) -> float() when Metrics :: map().

Calculates fitness from metrics (not used - fitness comes from bridge).
This is a fallback in case the neuroevolution server calls it directly. Normally, fitness is calculated by agent_evaluator via the bridge.

 evaluate(Individual, Options)

 -spec evaluate(Individual, Options) -> {ok, Individual} | {error, term()}
 when Individual :: individual(), Options :: map().

Evaluates an individual using the agent bridge.
Extracts the network from the individual, runs it through the bridge's sense-think-act cycle, and returns the individual with metrics populated.

checkpoint_manager

Network Checkpoint Manager.
This module provides network checkpointing capabilities for saving and loading evolved networks at key milestones during training.
[bookmark: Checkpoint_Triggers]Checkpoint Triggers
Networks are saved at configurable milestones: fitness_record - When a new best fitness is achieved generation_interval - Every N generations evaluation_interval - Every N evaluations
[bookmark: Storage_Format]Storage Format
Each checkpoint is stored as an Erlang term file containing: Network binary (from network_evaluator:to_binary/1) Metadata (fitness, generation, timestamp, etc.) Configuration used during training

 Summary

 Types

 checkpoint/0

 checkpoint_metadata/0

 checkpoint_reason/0

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 Functions

 checkpoint_filename(Metadata, Dir)

 Generate a checkpoint filename from metadata. Format: REASON-genN-fitF-TIMESTAMP.checkpoint Uses dashes as separators since reason names may contain underscores.

 delete_checkpoint(Filename)

 Delete a specific checkpoint.

 get_checkpoint_dir()

 Get the current checkpoint directory.

 init(Config)

 Initialize the checkpoint manager with a configuration. Creates the checkpoint directory if it doesn't exist.

 list_checkpoints()

 List all checkpoints in the default directory.

 list_checkpoints(Options)

 List all checkpoints in the specified directory. Returns a list of maps with metadata and filename for each checkpoint.

 load_best_fitness()

 Load the checkpoint with the best fitness.

 load_best_fitness(Options)

 Load the checkpoint with the best fitness from a specific directory.

 load_checkpoint(Filename)

 Load a checkpoint from a file.

 load_latest()

 Load the most recent checkpoint.

 load_latest(Options)

 Load the most recent checkpoint from a specific directory.

 parse_checkpoint_filename(Filename)

 Parse checkpoint information from a filename. Extracts reason, generation, fitness, and timestamp from the filename. Format: REASON-genN-fitF-TIMESTAMP.checkpoint

 prune_checkpoints(Options)

 Prune old checkpoints, keeping only the most recent N per reason. Options: max_per_reason - Maximum checkpoints to keep per reason (default: 20) keep_best - Always keep the best fitness checkpoint (default: true)

 save_checkpoint(Individual, Metadata)

 Save a checkpoint with the given individual and metadata.

 save_checkpoint(Individual, Metadata, Options)

 Save a checkpoint with additional options. Options: checkpoint_dir - Override the default directory compress - true (default) or false

 set_checkpoint_dir(Dir)

 Set the checkpoint directory.

 Types

 checkpoint/0

 -type checkpoint() :: #{individual := individual(), metadata := checkpoint_metadata()}.

 checkpoint_metadata/0

 -type checkpoint_metadata() ::
 #{reason := checkpoint_reason(),
 fitness := float(),
 generation := non_neg_integer(),
 total_evaluations := non_neg_integer(),
 individual_id := term(),
 timestamp := non_neg_integer(),
 config => map()}.

 checkpoint_reason/0

 -type checkpoint_reason() ::
 fitness_record | generation_interval | evaluation_interval | manual | pre_mutation |
 training_complete.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 Functions

 checkpoint_filename(Metadata, Dir)

 -spec checkpoint_filename(checkpoint_metadata(), file:filename()) -> file:filename().

Generate a checkpoint filename from metadata. Format: REASON-genN-fitF-TIMESTAMP.checkpoint Uses dashes as separators since reason names may contain underscores.

 delete_checkpoint(Filename)

 -spec delete_checkpoint(file:filename()) -> ok | {error, term()}.

Delete a specific checkpoint.

 get_checkpoint_dir()

 -spec get_checkpoint_dir() -> file:filename().

Get the current checkpoint directory.

 init(Config)

 -spec init(map()) -> ok | {error, term()}.

Initialize the checkpoint manager with a configuration. Creates the checkpoint directory if it doesn't exist.

 list_checkpoints()

 -spec list_checkpoints() -> [map()].

List all checkpoints in the default directory.

 list_checkpoints(Options)

 -spec list_checkpoints(map()) -> [map()].

List all checkpoints in the specified directory. Returns a list of maps with metadata and filename for each checkpoint.

 load_best_fitness()

 -spec load_best_fitness() ->
 {ok, individual(), checkpoint_metadata()} | {error, no_checkpoints | term()}.

Load the checkpoint with the best fitness.

 load_best_fitness(Options)

 -spec load_best_fitness(map()) ->
 {ok, individual(), checkpoint_metadata()} | {error, no_checkpoints | term()}.

Load the checkpoint with the best fitness from a specific directory.

 load_checkpoint(Filename)

 -spec load_checkpoint(file:filename()) -> {ok, individual(), checkpoint_metadata()} | {error, term()}.

Load a checkpoint from a file.

 load_latest()

 -spec load_latest() -> {ok, individual(), checkpoint_metadata()} | {error, no_checkpoints | term()}.

Load the most recent checkpoint.

 load_latest(Options)

 -spec load_latest(map()) -> {ok, individual(), checkpoint_metadata()} | {error, no_checkpoints | term()}.

Load the most recent checkpoint from a specific directory.

 parse_checkpoint_filename(Filename)

 -spec parse_checkpoint_filename(file:filename()) -> {ok, map()} | {error, invalid_format}.

Parse checkpoint information from a filename. Extracts reason, generation, fitness, and timestamp from the filename. Format: REASON-genN-fitF-TIMESTAMP.checkpoint

 prune_checkpoints(Options)

 -spec prune_checkpoints(map()) -> {ok, non_neg_integer()} | {error, term()}.

Prune old checkpoints, keeping only the most recent N per reason. Options: max_per_reason - Maximum checkpoints to keep per reason (default: 20) keep_best - Always keep the best fitness checkpoint (default: true)

 save_checkpoint(Individual, Metadata)

 -spec save_checkpoint(individual(), checkpoint_metadata()) -> ok | {error, term()}.

Save a checkpoint with the given individual and metadata.

 save_checkpoint(Individual, Metadata, Options)

 -spec save_checkpoint(individual(), checkpoint_metadata(), map()) -> ok | {error, term()}.

Save a checkpoint with additional options. Options: checkpoint_dir - Override the default directory compress - true (default) or false

 set_checkpoint_dir(Dir)

 -spec set_checkpoint_dir(file:filename()) -> ok | {error, term()}.

Set the checkpoint directory.

coevolution_manager

Competitive Coevolution Manager.
Manages the Red Team (champion archive) and coordinates competitive coevolution between Blue Team (evolving population) and Red Team.
[bookmark: Red_Team_vs_Blue_Team]Red Team vs Blue Team
IMPORTANT NAMING CONVENTION: - Red Team = CHAMPIONS / Hall of Fame / Elite Archive These are the "good guys" - networks that have proven themselves and now serve as the benchmark that others must beat. - Blue Team = CHALLENGERS / Evolving Population These are actively evolving, trying to beat the Red Team champions.
The naming follows the "Red Queen" hypothesis from evolutionary biology, where the Red Queen (champion) sets the pace that others must match.
This implements true competitive coevolution where: - Blue Team: Main evolving population (managed by neuroevolution_server) - Red Team: Elite champion archive that also evolves (managed here)
Both teams evolve, creating an arms race dynamic where each team must continuously improve to beat the other.
[bookmark: Integration_with_Evaluation]Integration with Evaluation
The domain evaluator calls this manager to get Red Team opponents:
%% In domain evaluator: evaluate(Individual, Options) -> ManagerPid = maps:get(coevolution_manager, Options), BatchNetworks = maps:get(batch_networks, Options, []), {ok, Opponent} = coevolution_manager:get_red_team_opponent(ManagerPid, BatchNetworks), evaluate_vs_network(Individual, Opponent).
[bookmark: Arms_Race_Dynamics]Arms Race Dynamics
After Blue Team evaluation, results are reported to update Red Team: - Red Team members gain fitness when they beat Blue Team members - Immigration allows genetic material to flow between teams

 Summary

 Functions

 add_to_red_team(Pid, Champion)

 Add a champion directly to the Red Team. Used when importing champions or promoting Blue Team members.

 get_red_team_opponent(Pid, BatchNetworks)

 Get a Red Team opponent for evaluating a Blue Team member.

 get_stats(Pid)

 Get current statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 immigrate_to_blue_team(Pid, Count)

 Get immigrants from Red Team to join Blue Team. Returns a list of networks to be injected into Blue Team population. Count specifies how many immigrants to return.

 init(_)

 report_blue_team_result(Pid, Result)

 Report Blue Team evaluation result. Called after each Blue Team evaluation to potentially update Red Team. Result map should contain: individual - The evaluated Blue Team member (map with 'network' key) fitness - The fitness score achieved against Red Team

 report_red_team_fitness(Pid, RedTeamId, Fitness)

 Report fitness for a Red Team member. Called when a Red Team opponent has finished competing against Blue Team. RedTeamId identifies the Red Team member, Fitness is their performance.

 set_config(Pid, ConfigUpdates)

 Update configuration at runtime.

 start_link(Realm)

 Start the coevolution manager for a realm.

 start_link(Realm, Options)

 Start with configuration options. Options: red_team_size - Maximum members in Red Team (default: 30) red_team_threshold - Fitness threshold for Red Team entry (default: auto) min_fitness_percentile - Minimum percentile to enter Red Team (default: 0.5) immigration_rate - Fraction of individuals that immigrate per generation (default: 0.05) red_team_evolution_rate - How often Red Team evolves vs Blue Team (default: 0.5)

 stop(Pid)

 Stop the manager.

 terminate(Reason, State)

 Functions

 add_to_red_team(Pid, Champion)

 -spec add_to_red_team(pid(), map()) -> ok | rejected.

Add a champion directly to the Red Team. Used when importing champions or promoting Blue Team members.

 get_red_team_opponent(Pid, BatchNetworks)

 -spec get_red_team_opponent(pid(), [map()]) -> {ok, map()}.

Get a Red Team opponent for evaluating a Blue Team member.
Returns a network from Red Team to compete against. - If Red Team has members: sample from Red Team (fitness-weighted) - If Red Team empty: sample from BatchNetworks (intra-batch pairing)
BatchNetworks is a list of networks from the current Blue Team evaluation batch.

 get_stats(Pid)

 -spec get_stats(pid()) -> map().

Get current statistics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 immigrate_to_blue_team(Pid, Count)

 -spec immigrate_to_blue_team(pid(), pos_integer()) -> {ok, [map()]}.

Get immigrants from Red Team to join Blue Team. Returns a list of networks to be injected into Blue Team population. Count specifies how many immigrants to return.

 init(_)

 report_blue_team_result(Pid, Result)

 -spec report_blue_team_result(pid(), map()) -> ok.

Report Blue Team evaluation result. Called after each Blue Team evaluation to potentially update Red Team. Result map should contain: individual - The evaluated Blue Team member (map with 'network' key) fitness - The fitness score achieved against Red Team

 report_red_team_fitness(Pid, RedTeamId, Fitness)

 -spec report_red_team_fitness(pid(), term(), float()) -> ok.

Report fitness for a Red Team member. Called when a Red Team opponent has finished competing against Blue Team. RedTeamId identifies the Red Team member, Fitness is their performance.

 set_config(Pid, ConfigUpdates)

 -spec set_config(pid(), map()) -> ok.

Update configuration at runtime.

 start_link(Realm)

 -spec start_link(Realm :: atom() | binary()) -> {ok, pid()} | {error, term()}.

Start the coevolution manager for a realm.

 start_link(Realm, Options)

 -spec start_link(Realm :: atom() | binary(), Options :: map()) -> {ok, pid()} | {error, term()}.

Start with configuration options. Options: red_team_size - Maximum members in Red Team (default: 30) red_team_threshold - Fitness threshold for Red Team entry (default: auto) min_fitness_percentile - Minimum percentile to enter Red Team (default: 0.5) immigration_rate - Fraction of individuals that immigrate per generation (default: 0.05) red_team_evolution_rate - How often Red Team evolves vs Blue Team (default: 0.5)

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the manager.

 terminate(Reason, State)

coevolution_sup

Supervisor for competitive coevolution components.
Manages lifecycle of Red Team archives and coevolution managers for different realms. Each realm gets its own Red Team and manager.
[bookmark: Starting_Competitive_Coevolution_for_a_Realm]Starting Competitive Coevolution for a Realm
To enable competitive coevolution for a realm:
{ok, ManagerPid} = coevolution_sup:start_coevolution(my_realm, #{ red_team_size => 30, immigration_rate => 0.05 }).
The ManagerPid can then be passed to evaluators in their options.

 Summary

 Functions

 get_manager(Realm)

 Get the coevolution manager PID for a realm.

 init(_)

 list_realms()

 List all realms with active competitive coevolution.

 start_coevolution(Realm, Options)

 Start competitive coevolution for a realm. Creates and manages a Red Team and coevolution manager. Options are passed to coevolution_manager:start_link/2.

 start_link()

 Start the competitive coevolution supervisor.

 stop_coevolution(Realm)

 Stop competitive coevolution for a realm.

 Functions

 get_manager(Realm)

 -spec get_manager(Realm :: atom() | binary()) -> {ok, pid()} | {error, not_found}.

Get the coevolution manager PID for a realm.

 init(_)

 list_realms()

 -spec list_realms() -> [atom() | binary()].

List all realms with active competitive coevolution.

 start_coevolution(Realm, Options)

 -spec start_coevolution(Realm :: atom() | binary(), Options :: map()) ->
 {ok, ManagerPid :: pid()} | {error, term()}.

Start competitive coevolution for a realm. Creates and manages a Red Team and coevolution manager. Options are passed to coevolution_manager:start_link/2.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the competitive coevolution supervisor.

 stop_coevolution(Realm)

 -spec stop_coevolution(Realm :: atom() | binary()) -> ok | {error, not_found}.

Stop competitive coevolution for a realm.

coevolution_trainer

Coevolution Trainer - Evolves multiple species simultaneously.
This module orchestrates competitive or cooperative coevolution of multiple species in a shared environment.
[bookmark: Overview]Overview
 ┌───┐
 │ Coevolution Trainer │
 ├───┤
 │ │
 │ Generation Loop: │
 │ ┌───┐ │
 │ │ 1. Spawn mixed population in shared environment │ │
 │ │ 2. Run episode (all species interact) │ │
 │ │ 3. Evaluate fitness per species │ │
 │ │ 4. Update subspecies (behavioral clustering) │ │
 │ │ 5. Select survivors per species │ │
 │ │ 6. Reproduce within species │ │
 │ │ 7. Repeat until termination │ │
 │ └───┘ │
 │ │
 └───┘
[bookmark: Evaluation_Modes]Evaluation Modes
	competitive - Species compete (predator/prey dynamics)
	cooperative - Species benefit from collaboration
	mixed - Intra-species competition, inter-species cooperation

[bookmark: Usage]Usage
 {ok, Trainer} = coevolution_trainer:start(#{
 species => [forager_species, predator_species],
 environment => hex_arena_env,
 population_sizes => #{forager => 100, predator => 30},
 evaluation_mode => competitive,
 max_generations => 500
 }).

 %% Monitor progress
 Stats = coevolution_trainer:get_stats(Trainer).

 %% Get best networks per species
 Champions = coevolution_trainer:get_champions(Trainer).
See also: agent_species, species_registry.

 Summary

 Types

 evaluation_mode/0

 generation_stats/0

 trainer_config/0

 trainer_state/0

 Functions

 get_champions(Trainer)

 Gets champion networks per species.

 get_generation(Trainer)

 Gets current generation number.

 get_registry(Trainer)

 Gets the species registry.

 get_stats(Trainer)

 Gets training statistics per species.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 pause(Trainer)

 Pauses training.

 resume(Trainer)

 Resumes training.

 run_generation(Trainer)

 Manually triggers one generation (for testing).

 start(Config)

 Starts the coevolution trainer.

 start_link(Config)

 Starts the coevolution trainer with link.

 stop(Trainer)

 Stops the trainer.

 terminate(Reason, State)

 Types

 evaluation_mode/0

 -type evaluation_mode() :: competitive | cooperative | mixed.

 generation_stats/0

 -type generation_stats() ::
 #{generation := non_neg_integer(),
 best_fitness := float(),
 avg_fitness := float(),
 subspecies_count := non_neg_integer(),
 population_size := non_neg_integer()}.

 trainer_config/0

 -type trainer_config() ::
 #{species := [module()],
 environment := module(),
 population_sizes => #{atom() => pos_integer()},
 evaluation_mode => evaluation_mode(),
 max_generations => pos_integer(),
 episodes_per_eval => pos_integer(),
 selection_ratio => float(),
 env_config => map(),
 subspeciation_enabled => boolean(),
 mutation_strength => float(),
 crossover_rate => float()}.

 trainer_state/0

 -type trainer_state() ::
 #{registry := species_registry:registry(),
 config := trainer_config(),
 generation := non_neg_integer(),
 running := boolean(),
 stats := #{atom() => [generation_stats()]},
 champions := #{atom() => term()}}.

 Functions

 get_champions(Trainer)

 -spec get_champions(Trainer) -> #{atom() => term()} when Trainer :: pid().

Gets champion networks per species.

 get_generation(Trainer)

 -spec get_generation(Trainer) -> non_neg_integer() when Trainer :: pid().

Gets current generation number.

 get_registry(Trainer)

 -spec get_registry(Trainer) -> species_registry:registry() when Trainer :: pid().

Gets the species registry.

 get_stats(Trainer)

 -spec get_stats(Trainer) -> #{atom() => [generation_stats()]} when Trainer :: pid().

Gets training statistics per species.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 pause(Trainer)

 -spec pause(Trainer) -> ok when Trainer :: pid().

Pauses training.

 resume(Trainer)

 -spec resume(Trainer) -> ok when Trainer :: pid().

Resumes training.

 run_generation(Trainer)

 -spec run_generation(Trainer) -> ok when Trainer :: pid().

Manually triggers one generation (for testing).

 start(Config)

 -spec start(Config) -> {ok, pid()} | {error, term()} when Config :: trainer_config().

Starts the coevolution trainer.

 start_link(Config)

 -spec start_link(Config) -> {ok, pid()} | {error, term()} when Config :: trainer_config().

Starts the coevolution trainer with link.

 stop(Trainer)

 -spec stop(Trainer) -> ok when Trainer :: pid().

Stops the trainer.

 terminate(Reason, State)

communication_silo

Communication Silo - Signaling, vocabulary evolution, and coordination.
Part of the Liquid Conglomerate v2 architecture. The Communication Silo manages: Vocabulary and signal definitions Dialect formation Message exchange tracking Coordination success Honesty/deception dynamics
[bookmark: Time_Constant]Time Constant
τ = 55 (slow adaptation for communication dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: coordination_capability to task: Coordination ability information_transfer to cultural: Information sharing rate trust_signal to social: Trust level strategic_signaling to competitive: Signaling strategy
Incoming: coordination_need from task: Need for coordination norm_transmission from social: Social norms influence information_sharing from cultural: Cultural sharing patterns social_structure from competitive: Competition influence

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_communication_stats(Pid)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 get_vocabulary(Pid)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_coordination(Pid, Participants, Success)

 register_signal(Pid, SignalId, SignalData)

 reset(Pid)

 send_message(Pid, Sender, Receiver, MessageData)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_communication_stats(Pid)

 -spec get_communication_stats(pid()) -> map().

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 get_vocabulary(Pid)

 -spec get_vocabulary(pid()) -> [map()].

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_coordination(Pid, Participants, Success)

 -spec record_coordination(pid(), [term()], boolean()) -> ok.

 register_signal(Pid, SignalId, SignalData)

 -spec register_signal(pid(), term(), map()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 send_message(Pid, Sender, Receiver, MessageData)

 -spec send_message(pid(), term(), term(), map()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

competitive_silo

Competitive Silo - Opponent archives, Elo ratings, matchmaking.
Part of the Liquid Conglomerate v2 architecture. The Competitive Silo manages: Opponent archive maintenance and selection Elo rating system for skill tracking Matchmaking based on skill levels Arms race detection and mitigation Strategy diversity monitoring
[bookmark: Time_Constant]Time Constant
τ = 15 (medium-fast adaptation for competitive dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: competitive_pressure to task: Competitive intensity level strategy_diversity_need to cultural: Need for strategy variety arms_race_active to resource: Arms race intensity coalition_competition to social: Inter-coalition rivalry
Incoming: fitness_pressure from task: Fitness selection pressure strategy_innovation from cultural: Strategic novelty rate resource_level from ecological: Resource availability coalition_structure from social: Coalition organization level

 Summary

 Functions

 add_to_archive(Pid, IndividualId, NetworkBinary)

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_archive_stats(Pid)

 get_elo(Pid, IndividualId)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_match(Pid, PlayerId, OpponentId, Result, EloChange)

 reset(Pid)

 select_opponent(Pid, PlayerId)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_elo(Pid, PlayerId, OpponentId, Result)

 Functions

 add_to_archive(Pid, IndividualId, NetworkBinary)

 -spec add_to_archive(pid(), term(), binary()) -> ok | {error, term()}.

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_archive_stats(Pid)

 -spec get_archive_stats(pid()) -> map().

 get_elo(Pid, IndividualId)

 -spec get_elo(pid(), term()) -> {ok, float()} | not_found.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_match(Pid, PlayerId, OpponentId, Result, EloChange)

 -spec record_match(pid(), term(), term(), win | loss | draw, float()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 select_opponent(Pid, PlayerId)

 -spec select_opponent(pid(), term()) -> {ok, term()} | no_opponents.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

 update_elo(Pid, PlayerId, OpponentId, Result)

 -spec update_elo(pid(), term(), term(), win | loss | draw) -> {ok, float(), float()}.

controller_events

Controller Event Publishing for Liquid Conglomerate.
Part of the Liquid Conglomerate v2 event-driven architecture. This module provides topic definitions and publishing helpers for L0/L1/L2 controller chain communication.
[bookmark: Event-Driven_Controller_Chain]Event-Driven Controller Chain
Instead of direct function calls between controller levels, each level publishes events to topics. Higher levels subscribe and react.
[bookmark: Topic_Hierarchy]Topic Hierarchy
controller.reward - Reward signals for learning controller.SILO.l0.metrics - L0 performance metrics controller.SILO.l1.metrics - L1 performance metrics controller.SILO.l2.guidance - L2 strategic guidance controller.population.metrics - Population-level metrics
[bookmark: Data_Flow_(Event-Driven)]Data Flow (Event-Driven)
1. Evolution engine publishes controller.reward with reward signal 2. L0 publishes controller.SILO.l0.metrics after each update 3. L1 subscribes to L0 metrics, publishes controller.SILO.l1.metrics 4. L2 subscribes to L1 metrics, publishes controller.SILO.l2.guidance 5. L0/L1 subscribe to guidance to adjust their behavior

 Summary

 Types

 silo_name/0

 Functions

 l0_metrics_topic(Silo)

 Get the L0 metrics topic for a silo.

 l1_metrics_topic(Silo)

 Get the L1 metrics topic for a silo.

 l2_guidance_topic(Silo)

 Get the L2 guidance topic for a silo.

 population_metrics_topic()

 Get the population metrics topic.

 publish_l0_metrics(Silo, Metrics)

 Publish L0 controller metrics.

 publish_l1_metrics(Silo, Metrics)

 Publish L1 controller metrics.

 publish_l2_guidance(Silo, Guidance)

 Publish L2 strategic guidance.

 publish_population_metrics(Metrics)

 Publish population-level metrics.

 publish_reward(Silo, Reward)

 Publish a reward signal for controller learning.

 reward_topic()

 Get the reward signal topic.

 subscribe_to_l0_metrics(Silo)

 Subscribe to L0 metrics for a specific silo.

 subscribe_to_l0_metrics(Silo, Pid)

 Subscribe a specific process to L0 metrics for a silo.

 subscribe_to_l1_metrics(Silo)

 Subscribe to L1 metrics for a specific silo.

 subscribe_to_l1_metrics(Silo, Pid)

 Subscribe a specific process to L1 metrics for a silo.

 subscribe_to_l2_guidance(Silo)

 Subscribe to L2 guidance for a specific silo.

 subscribe_to_l2_guidance(Silo, Pid)

 Subscribe a specific process to L2 guidance for a silo.

 subscribe_to_population_metrics()

 Subscribe to population-level metrics.

 subscribe_to_population_metrics(Pid)

 Subscribe a specific process to population-level metrics.

 subscribe_to_reward()

 Subscribe the calling process to reward signals.

 subscribe_to_reward(Pid)

 Subscribe a specific process to reward signals.

 Types

 silo_name/0

 -type silo_name() ::
 task | resource | distribution | temporal | competitive | social | cultural | ecological |
 morphological | developmental | regulatory | economic | communication.

 Functions

 l0_metrics_topic(Silo)

 -spec l0_metrics_topic(silo_name()) -> binary().

Get the L0 metrics topic for a silo.

 l1_metrics_topic(Silo)

 -spec l1_metrics_topic(silo_name()) -> binary().

Get the L1 metrics topic for a silo.

 l2_guidance_topic(Silo)

 -spec l2_guidance_topic(silo_name()) -> binary().

Get the L2 guidance topic for a silo.

 population_metrics_topic()

 -spec population_metrics_topic() -> binary().

Get the population metrics topic.

 publish_l0_metrics(Silo, Metrics)

 -spec publish_l0_metrics(silo_name(), map()) -> ok.

Publish L0 controller metrics.
Called by L0 after each update cycle to report performance. L1 subscribes to adjust its hyperparameter deltas.
Metrics typically include: - reward: Recent reward signal - hyperparameters: Current L0 output values - update_count: Number of L0 updates

 publish_l1_metrics(Silo, Metrics)

 -spec publish_l1_metrics(silo_name(), map()) -> ok.

Publish L1 controller metrics.
Called by L1 after processing L0 metrics. L2 subscribes to adjust its strategic parameters.
Metrics typically include: - cumulative_reward: Sum of L0 rewards over L1 window - hyperparameter_deltas: Current L1 output values - observations: Number of L0 observations

 publish_l2_guidance(Silo, Guidance)

 -spec publish_l2_guidance(silo_name(), map()) -> ok.

Publish L2 strategic guidance.
Called by L2 to provide guidance to L1 and L0.
Guidance typically includes: - l1_hyperparameters: Hyperparameters for L1 controller - exploration_rate: How much L1 should explore - adaptation_speed: How fast L1 should adapt

 publish_population_metrics(Metrics)

 -spec publish_population_metrics(map()) -> ok.

Publish population-level metrics.
Called by lc_population after processing training metrics.
Metrics typically include: - generation: Current generation number - active_agent: Currently active controller - fitness_scores: All agent fitness scores - trial_progress: Progress through current trial

 publish_reward(Silo, Reward)

 -spec publish_reward(silo_name() | global, float()) -> ok.

Publish a reward signal for controller learning.
This replaces imperative calls like: - lc_chain:train(ChainPid, Reward) - lc_silo_chain:report_reward(Chain, Reward)
Event format (map with keys): event_type - binary "reward_signal" timestamp - millisecond timestamp silo - silo name atom reward - float reward value source - caller module atom

 reward_topic()

 -spec reward_topic() -> binary().

Get the reward signal topic.

 subscribe_to_l0_metrics(Silo)

 -spec subscribe_to_l0_metrics(silo_name()) -> ok.

Subscribe to L0 metrics for a specific silo.

 subscribe_to_l0_metrics(Silo, Pid)

 -spec subscribe_to_l0_metrics(silo_name(), pid()) -> ok.

Subscribe a specific process to L0 metrics for a silo.

 subscribe_to_l1_metrics(Silo)

 -spec subscribe_to_l1_metrics(silo_name()) -> ok.

Subscribe to L1 metrics for a specific silo.

 subscribe_to_l1_metrics(Silo, Pid)

 -spec subscribe_to_l1_metrics(silo_name(), pid()) -> ok.

Subscribe a specific process to L1 metrics for a silo.

 subscribe_to_l2_guidance(Silo)

 -spec subscribe_to_l2_guidance(silo_name()) -> ok.

Subscribe to L2 guidance for a specific silo.

 subscribe_to_l2_guidance(Silo, Pid)

 -spec subscribe_to_l2_guidance(silo_name(), pid()) -> ok.

Subscribe a specific process to L2 guidance for a silo.

 subscribe_to_population_metrics()

 -spec subscribe_to_population_metrics() -> ok.

Subscribe to population-level metrics.

 subscribe_to_population_metrics(Pid)

 -spec subscribe_to_population_metrics(pid()) -> ok.

Subscribe a specific process to population-level metrics.

 subscribe_to_reward()

 -spec subscribe_to_reward() -> ok.

Subscribe the calling process to reward signals.

 subscribe_to_reward(Pid)

 -spec subscribe_to_reward(pid()) -> ok.

Subscribe a specific process to reward signals.

cultural_silo

Cultural Silo - Innovations, traditions, and meme propagation.
Part of the Liquid Conglomerate v2 architecture. The Cultural Silo manages: Innovation tracking and rewards Tradition formation and maintenance Meme spread and mutation Imitation and cultural learning Cultural diversity metrics
[bookmark: Time_Constant]Time Constant
τ = 35 (slow adaptation for cultural dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: innovation_impact to task: Innovation contribution to fitness strategy_innovation to competitive: Strategic novelty rate plasticity_influence to developmental: Cultural effect on plasticity information_sharing to communication: Information flow rate
Incoming: exploration_need from task: Need for innovation strategy_diversity_need from competitive: Need for strategy variety plasticity_available from developmental: Learning capacity norm_transmission from social: Norm propagation rate

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_innovation_stats(Pid)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 get_tradition(Pid, TraditionId)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 promote_to_tradition(Pid, InnovationId)

 record_imitation(Pid, ImitatorId, SourceId, Success)

 record_innovation(Pid, InnovatorId, BehaviorSignature, FitnessDelta)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_innovation_stats(Pid)

 -spec get_innovation_stats(pid()) -> map().

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 get_tradition(Pid, TraditionId)

 -spec get_tradition(pid(), term()) -> {ok, map()} | not_found.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 promote_to_tradition(Pid, InnovationId)

 -spec promote_to_tradition(pid(), term()) -> ok | {error, term()}.

 record_imitation(Pid, ImitatorId, SourceId, Success)

 -spec record_imitation(pid(), term(), term(), boolean()) -> ok.

 record_innovation(Pid, InnovatorId, BehaviorSignature, FitnessDelta)

 -spec record_innovation(pid(), term(), term(), float()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

developmental_silo

Developmental Silo - Ontogeny, plasticity, and critical periods.
Part of the Liquid Conglomerate v2 architecture. The Developmental Silo manages: Developmental stages and maturation Plasticity levels and decay Critical period timing Metamorphosis triggers Developmental noise
[bookmark: Time_Constant]Time Constant
τ = 40 (slow adaptation for developmental dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: maturity_distribution to task: Population maturity level plasticity_available to cultural: Learning capacity metamorphosis_rate to ecological: Stage transition rate expression_stage to regulatory: Developmental expression phase
Incoming: maturity_target from task: Target maturity level plasticity_influence from cultural: Cultural effect on plasticity stress_signal from ecological: Environmental stress level critical_period_timing from temporal: Timing in critical period

 Summary

 Functions

 apply_actuators(Actuators, State)

 close_critical_period(Pid, IndividualId)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_developmental_state(Pid, IndividualId)

 get_developmental_stats(Pid)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 open_critical_period(Pid, IndividualId, PeriodType)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 trigger_metamorphosis(Pid, IndividualId)

 update_developmental_state(Pid, IndividualId, Stage, Plasticity)

 Functions

 apply_actuators(Actuators, State)

 close_critical_period(Pid, IndividualId)

 -spec close_critical_period(pid(), term()) -> ok.

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_developmental_state(Pid, IndividualId)

 -spec get_developmental_state(pid(), term()) -> {ok, map()} | not_found.

 get_developmental_stats(Pid)

 -spec get_developmental_stats(pid()) -> map().

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 open_critical_period(Pid, IndividualId, PeriodType)

 -spec open_critical_period(pid(), term(), atom()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

 trigger_metamorphosis(Pid, IndividualId)

 -spec trigger_metamorphosis(pid(), term()) -> ok.

 update_developmental_state(Pid, IndividualId, Stage, Plasticity)

 -spec update_developmental_state(pid(), term(), float(), float()) -> ok.

distributed_evaluator

Distributed evaluator for mesh-based fitness evaluation.
Provides a high-level API for evaluating individuals across the mesh. Features: - Load-balanced evaluation dispatch - Automatic retry on failure - Local preference for reduced latency - Batch evaluation with parallelism control - Graceful degradation when mesh unavailable

 Summary

 Functions

 evaluate(Individual, EvaluatorModule)

 evaluate(Individual, EvaluatorModule, Options)

 evaluate_batch(Individuals, EvaluatorModule, Options)

 evaluate_batch(Individuals, EvaluatorModule, EvalOptions, BatchOptions)

 get_stats()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_evaluator(EvaluatorModule)

 register_evaluator(EvaluatorModule, Options)

 start_link(Config)

 terminate(Reason, State)

 Functions

 evaluate(Individual, EvaluatorModule)

 -spec evaluate(Individual :: term(), EvaluatorModule :: module()) ->
 {ok, Fitness :: float()} | {error, term()}.

 evaluate(Individual, EvaluatorModule, Options)

 -spec evaluate(Individual :: term(), EvaluatorModule :: module(), Options :: map()) ->
 {ok, Fitness :: float()} | {error, term()}.

 evaluate_batch(Individuals, EvaluatorModule, Options)

 -spec evaluate_batch(Individuals :: [term()], EvaluatorModule :: module(), Options :: map()) ->
 [{ok, Fitness :: float()} | {error, term()}].

 evaluate_batch(Individuals, EvaluatorModule, EvalOptions, BatchOptions)

 -spec evaluate_batch(Individuals :: [term()],
 EvaluatorModule :: module(),
 EvalOptions :: map(),
 BatchOptions :: map()) ->
 [{ok, Fitness :: float()} | {error, term()}].

 get_stats()

 -spec get_stats() -> map().

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_evaluator(EvaluatorModule)

 -spec register_evaluator(EvaluatorModule :: module()) -> ok | {error, term()}.

 register_evaluator(EvaluatorModule, Options)

 -spec register_evaluator(EvaluatorModule :: module(), Options :: map()) -> ok | {error, term()}.

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

distribution_l0_actuators

Distribution Silo L0 Actuators - Denormalizes and applies TWEANN outputs.
Part of the Liquid Conglomerate v2 architecture. This module takes the normalized output vector from the L0 TWEANN and converts it into actual distribution control signals affecting load balancing and migration.
[bookmark: Responsibilities]Responsibilities
1. Convert TWEANN outputs (0.0-1.0) to distribution parameter ranges 2. Apply outputs to island topology and load balancer 3. Control migration rates and strategies 4. Track applied values for debugging/monitoring
[bookmark: Usage]Usage
%% Start the actuator controller {ok, Pid} = distribution_l0_actuators:start_link(Config),
%% Apply TWEANN output vector distribution_l0_actuators:apply_output_vector(OutputVector),
%% Get current actuator values Values = distribution_l0_actuators:get_actuator_values(), %% Returns: #{local_vs_remote_ratio => 0.7, migration_rate => 0.05, ...}

 Summary

 Functions

 apply_output_vector(OutputVector)

 Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 Get current denormalized actuator values.

 get_actuator_values(Pid)

 Get current denormalized actuator values (specific server).

 get_distribution_params()

 Get distribution parameters ready for distribution components.

 get_distribution_params(Pid)

 Get distribution parameters (specific server).

 get_raw_outputs()

 Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 Start the actuator controller with default configuration.

 start_link(Config)

 Start the actuator controller with custom configuration.

 terminate(Reason, State)

 Functions

 apply_output_vector(OutputVector)

 -spec apply_output_vector([float()]) -> ok.

Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 -spec apply_output_vector(pid(), [float()]) -> ok.

Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 -spec apply_outputs(map()) -> ok.

Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 -spec apply_outputs(pid(), map()) -> ok.

Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 -spec get_actuator_values() -> map().

Get current denormalized actuator values.

 get_actuator_values(Pid)

 -spec get_actuator_values(pid()) -> map().

Get current denormalized actuator values (specific server).

 get_distribution_params()

 -spec get_distribution_params() -> map().

Get distribution parameters ready for distribution components.

 get_distribution_params(Pid)

 -spec get_distribution_params(pid()) -> map().

Get distribution parameters (specific server).

 get_raw_outputs()

 -spec get_raw_outputs() -> [float()].

Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 -spec get_raw_outputs(pid()) -> [float()].

Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with custom configuration.

 terminate(Reason, State)

distribution_l0_morphology

Distribution Silo L0 Morphology - TWEANN sensor/actuator definitions.
Part of the Liquid Conglomerate v2 architecture. Defines the neural network morphology for the Distribution Silo's L0 load balancing controller.
[bookmark: Architecture]Architecture
L0 is a TWEANN (Topology and Weight Evolving Artificial Neural Network) that: - Takes 14 sensor inputs (normalized 0.0-1.0) - Produces 10 actuator outputs (distribution decisions) - Has 8 hyperparameters that L1 can tune - Has 5 L1 hyperparameters that L2 can tune
[bookmark: Time_Constant]Time Constant
tau_L0 = 1 second (real-time routing decisions)
Note: The Distribution Silo operates on wall-clock time for networking decisions, not evaluation counts like the Task Silo.

 Summary

 Functions

 actuator_count()

 Number of actuators (neural network outputs).

 actuator_names()

 Ordered list of actuator names.

 actuator_spec(_)

 Get specification for an actuator.

 get_l0_bounds()

 Get bounds for L0 hyperparameters.

 get_l0_defaults()

 Get default values for L0 hyperparameters.

 get_l1_bounds()

 Get bounds for L1 hyperparameters.

 get_l1_defaults()

 Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 List of L1 hyperparameter names.

 sensor_count()

 Number of sensors (neural network inputs).

 sensor_names()

 Ordered list of sensor names.

 sensor_spec(_)

 Get specification for a sensor.

 tau_l0()

 L0 time constant - 1 second for real-time routing decisions.

 tau_l1()

 L1 time constant - 10 seconds for load balancing adaptation.

 tau_l2()

 L2 time constant - 1 minute for topology learning.

 Functions

 actuator_count()

 -spec actuator_count() -> pos_integer().

Number of actuators (neural network outputs).

 actuator_names()

 -spec actuator_names() -> [atom()].

Ordered list of actuator names.

 actuator_spec(_)

 -spec actuator_spec(atom()) -> map() | undefined.

Get specification for an actuator.

 get_l0_bounds()

 -spec get_l0_bounds() -> map().

Get bounds for L0 hyperparameters.

 get_l0_defaults()

 -spec get_l0_defaults() -> map().

Get default values for L0 hyperparameters.

 get_l1_bounds()

 -spec get_l1_bounds() -> map().

Get bounds for L1 hyperparameters.

 get_l1_defaults()

 -spec get_l1_defaults() -> map().

Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 -spec l0_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 -spec l0_hyperparameters() -> [atom()].

List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 -spec l1_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 -spec l1_hyperparameters() -> [atom()].

List of L1 hyperparameter names.
Note: These are called "meta-parameters" from L1's perspective, but "hyperparameters" from L2's perspective.

 sensor_count()

 -spec sensor_count() -> pos_integer().

Number of sensors (neural network inputs).

 sensor_names()

 -spec sensor_names() -> [atom()].

Ordered list of sensor names.

 sensor_spec(_)

 -spec sensor_spec(atom()) -> map() | undefined.

Get specification for a sensor.

 tau_l0()

 -spec tau_l0() -> pos_integer().

L0 time constant - 1 second for real-time routing decisions.

 tau_l1()

 -spec tau_l1() -> pos_integer().

L1 time constant - 10 seconds for load balancing adaptation.

 tau_l2()

 -spec tau_l2() -> pos_integer().

L2 time constant - 1 minute for topology learning.

distribution_l0_sensors

Distribution Silo L0 Sensors - Collects and normalizes sensor inputs for TWEANN.
Part of the Liquid Conglomerate v2 architecture. This module collects network and distribution metrics for the L0 load balancing TWEANN.
[bookmark: Responsibilities]Responsibilities
1. Collect network metrics (peer load, latency, bandwidth) 2. Track island topology state 3. Monitor migration success rates 4. Normalize all values for TWEANN input 5. Handle cross-silo input signals
[bookmark: Usage]Usage
%% Start the sensor collector {ok, Pid} = distribution_l0_sensors:start_link(Config),
%% Update with peer metrics distribution_l0_sensors:update_peer_metrics(Pid, PeerMetrics),
%% Get current sensor vector SensorVector = distribution_l0_sensors:get_sensor_vector(Pid), %% Returns: [0.45, 0.23, ...] (14 values)

 Summary

 Functions

 get_sensor_vector()

 Get ordered sensor vector for TWEANN input.

 get_sensor_vector(Pid)

 Get ordered sensor vector from specific server.

 get_sensors()

 Get named sensor map.

 get_sensors(Pid)

 Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 record_migration_time()

 Record that a migration just happened.

 start_link()

 Start the sensor collector with default configuration.

 start_link(Config)

 Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_cross_silo_signal(SignalName, Value)

 Update cross-silo signal from another silo.

 update_evaluation_queue(Depth)

 Update evaluation queue depth.

 update_island_topology(Topology)

 Update island topology information.

 update_migration_result(Success)

 Record a migration result (success or failure).

 update_peer_metrics(PeerMetrics)

 Update peer metrics from mesh.

 Functions

 get_sensor_vector()

 -spec get_sensor_vector() -> [float()].

Get ordered sensor vector for TWEANN input.

 get_sensor_vector(Pid)

 -spec get_sensor_vector(pid()) -> [float()].

Get ordered sensor vector from specific server.

 get_sensors()

 -spec get_sensors() -> map().

Get named sensor map.

 get_sensors(Pid)

 -spec get_sensors(pid()) -> map().

Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 record_migration_time()

 -spec record_migration_time() -> ok.

Record that a migration just happened.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_cross_silo_signal(SignalName, Value)

 -spec update_cross_silo_signal(atom(), float()) -> ok.

Update cross-silo signal from another silo.

 update_evaluation_queue(Depth)

 -spec update_evaluation_queue(non_neg_integer()) -> ok.

Update evaluation queue depth.

 update_island_topology(Topology)

 -spec update_island_topology(map()) -> ok.

Update island topology information.

 update_migration_result(Success)

 -spec update_migration_result(boolean()) -> ok.

Record a migration result (success or failure).

 update_peer_metrics(PeerMetrics)

 -spec update_peer_metrics(map()) -> ok.

Update peer metrics from mesh.
PeerMetrics should be a map: #{peer_id => #{load => L, latency => Ms, bandwidth => Mbps}}

distribution_silo

Distribution Silo - Mesh networking, island migration, and load balancing.
Part of the Liquid Conglomerate v2 architecture. The Distribution Silo manages: Island statistics and topology Migration between islands Load balancing across nodes Network connectivity Remote capacity tracking
[bookmark: Time_Constant]Time Constant
τ = 60 (slow adaptation for distribution dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: network_latency to temporal: Network delay information remote_capacity to resource: Available remote compute migration_pressure to competitive: Migration opportunity island_diversity to ecological: Cross-island diversity
Incoming: local_pressure from resource: Local resource pressure compute_availability from temporal: Time budget available arms_race_load from competitive: Competition intensity abundance_signal from ecological: Resource levels

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_distribution_stats(Pid)

 get_island(Pid, IslandId)

 get_migrations(Pid)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_migration(Pid, FromIsland, ToIsland, IndividualId)

 register_island(Pid, IslandId)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_island_stats(Pid, IslandId, Stats)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_distribution_stats(Pid)

 -spec get_distribution_stats(pid()) -> map().

 get_island(Pid, IslandId)

 -spec get_island(pid(), term()) -> {ok, map()} | not_found.

 get_migrations(Pid)

 -spec get_migrations(pid()) -> [map()].

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_migration(Pid, FromIsland, ToIsland, IndividualId)

 -spec record_migration(pid(), term(), term(), term()) -> ok.

 register_island(Pid, IslandId)

 -spec register_island(pid(), term()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 update_island_stats(Pid, IslandId, Stats)

 -spec update_island_stats(pid(), term(), map()) -> ok.

domain_actuators behaviour

Domain Actuator Consumer behaviour.
Domains implement this behaviour to declare what actuators they accept and how to apply actuator outputs to the domain state.
[bookmark: Example_Implementation]Example Implementation
A domain bridge module implementing this behaviour:
-module(my_domain_bridge). -behaviour(domain_actuators).
actuator_spec() -> [#{name => turn, dimension => 1, range => {-1.0, 1.0}, level => l0, category => motor, description => "Rotation amount"}].
apply_actuators(Outputs, DomainState) -> Turn = maps:get(turn, Outputs, [0.0]), update_rotation(DomainState, hd(Turn)).

 Summary

 Types

 actuator_definition/0

 actuator_outputs/0

 Callbacks

 actuator_spec/0

 apply_actuators/2

 Types

 actuator_definition/0

 -type actuator_definition() ::
 #{name := atom(),
 dimension := pos_integer(),
 range := {Min :: float(), Max :: float()},
 level := l0 | l1 | l2,
 category := atom(),
 description := binary()}.

 actuator_outputs/0

 -type actuator_outputs() :: #{atom() => [float()]}.

 Callbacks

 actuator_spec/0

 -callback actuator_spec() -> [actuator_definition()].

 apply_actuators/2

 -callback apply_actuators(actuator_outputs(), DomainState :: term()) -> NewDomainState :: term().

domain_rewards behaviour

Domain Reward Provider behaviour.
Domains implement this behaviour to declare what reward signals they emit and how to compute rewards from domain state and metrics.
[bookmark: Example_Implementation]Example Implementation
A domain bridge module implementing this behaviour:
-module(my_domain_bridge). -behaviour(domain_rewards).
reward_spec() -> [#{name => survival, weight => 1.0, level => l0, sign => reward, category => temporal, description => "Ticks survived"}, #{name => death, weight => 100.0, level => l0, sign => punishment, category => temporal, description => "Death penalty"}].
compute_rewards(DomainState, Metrics) -> Ticks = maps:get(ticks, Metrics, 0), Died = maps:get(died, Metrics, false), #{survival => Ticks * 1.0, death => case Died of true -> -100.0; false -> 0.0 end}.

 Summary

 Types

 reward_definition/0

 reward_signals/0

 Callbacks

 compute_rewards/2

 reward_spec/0

 Types

 reward_definition/0

 -type reward_definition() ::
 #{name := atom(),
 weight := float(),
 level := l0 | l1 | l2,
 sign := reward | punishment,
 category := atom(),
 description := binary()}.

 reward_signals/0

 -type reward_signals() :: #{atom() => float()}.

 Callbacks

 compute_rewards/2

 -callback compute_rewards(DomainState :: term(), Metrics :: map()) -> reward_signals().

 reward_spec/0

 -callback reward_spec() -> [reward_definition()].

domain_sensors behaviour

Domain Sensor Provider behaviour.
Domains implement this behaviour to declare what sensors they provide and how to read sensor values from the domain state.
[bookmark: Example_Implementation]Example Implementation
A domain bridge module implementing this behaviour:
-module(my_domain_bridge). -behaviour(domain_sensors).
sensor_spec() -> [#{name => vision_food, dimension => 8, range => {0.0, 1.0}, level => l0, category => ecological, description => "Distance to food in 8 directions"}].
read_sensors(DomainState) -> #{vision_food => calculate_vision(DomainState)}.

 Summary

 Types

 sensor_definition/0

 sensor_readings/0

 Callbacks

 read_sensors/1

 sensor_spec/0

 Types

 sensor_definition/0

 -type sensor_definition() ::
 #{name := atom(),
 dimension := pos_integer(),
 range := {Min :: float(), Max :: float()},
 level := l0 | l1 | l2,
 category := atom(),
 description := binary()}.

 sensor_readings/0

 -type sensor_readings() :: #{atom() => [float()]}.

 Callbacks

 read_sensors/1

 -callback read_sensors(DomainState :: term()) -> sensor_readings().

 sensor_spec/0

 -callback sensor_spec() -> [sensor_definition()].

domain_signals behaviour

Domain Signal Provider behaviour.
Domains implement this behaviour to emit signals that inform silo decision-making. Unlike sensors (which feed L0 networks), signals provide meta-level information to the self-tuning silos.
Signals are routed to silos by category via the signal_router. Each silo declares which categories it handles.
[bookmark: Signal_Categories]Signal Categories
Categories map to silo types:
ecological - Resource pressure, carrying capacity, scarcity competitive - Predator/prey ratios, conflict rates, rankings morphological - Topology patterns, connectivity metrics regulatory - Threshold violations, homeostatic state task - Task difficulty, learning progress resource - Compute usage, memory pressure distribution - Node load, network latency temporal - Time patterns, seasonal effects developmental - Growth stage, maturation progress cultural - Behavioral diversity, meme spread social - Group structures, cooperation levels communication - Signal quality, message rates economic - Resource trading, market conditions
[bookmark: Example_Implementation]Example Implementation
A domain bridge module implementing this behaviour:
-module(my_domain_bridge). -behaviour(domain_signals).
signal_spec() -> [#{name => food_scarcity, category => ecological, level => l0, range => {0.0, 1.0}, description => "Food availability"}, #{name => predator_ratio, category => competitive, level => l0, range => {0.0, 1.0}, description => "Predator to prey ratio"}].
emit_signals(DomainState, Metrics) -> FoodCount = maps:get(food_count, DomainState, 0), MaxFood = maps:get(max_food, DomainState, 100), Scarcity = 1.0 - (FoodCount / max(1, MaxFood)),
PredatorCount = maps:get(predators, Metrics, 0), PreyCount = maps:get(prey, Metrics, 1), Ratio = PredatorCount / max(1, PreyCount),
[{ecological, food_scarcity, Scarcity}, {competitive, predator_ratio, min(1.0, Ratio)}].

 Summary

 Types

 signal/0

 signal_category/0

 signal_definition/0

 signal_level/0

 Callbacks

 emit_signals/2

 signal_spec/0

 Types

 signal/0

 -type signal() :: {Category :: signal_category(), Name :: atom(), Value :: float()}.

 signal_category/0

 -type signal_category() ::
 ecological | competitive | morphological | regulatory | task | resource | distribution |
 temporal | developmental | cultural | social | communication | economic.

 signal_definition/0

 -type signal_definition() ::
 #{name := atom(),
 category := signal_category(),
 level := signal_level(),
 range := {Min :: float(), Max :: float()},
 description := binary() | string()}.

 signal_level/0

 -type signal_level() :: l0 | l1 | l2.

 Callbacks

 emit_signals/2

 -callback emit_signals(DomainState :: term(), Metrics :: map()) -> [signal()].

 signal_spec/0

 -callback signal_spec() -> [signal_definition()].

ecological_silo

Ecological Silo - Niches, resource competition, and environmental dynamics.
Part of the Liquid Conglomerate v2 architecture. The Ecological Silo manages: Niche formation and occupancy Resource pools and regeneration Carrying capacity Environmental stress Ecosystem stability
[bookmark: Time_Constant]Time Constant
τ = 50 (slow adaptation for ecological dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: environmental_pressure to task: Environmental stress level resource_level to resource: Available resources stress_signal to developmental: Environmental stress environmental_context to regulatory: Context for gene expression
Incoming: adaptation_pressure from task: Need for adaptation abundance_signal from resource: Resource availability metamorphosis_rate from developmental: Stage transitions efficiency_score from morphological: Network efficiency

 Summary

 Functions

 add_to_niche(Pid, NicheId, IndividualId)

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_ecological_stats(Pid)

 get_niche(Pid, NicheId)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 register_niche(Pid, NicheId, NicheData)

 remove_from_niche(Pid, NicheId, IndividualId)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_niche(Pid, NicheId, Updates)

 update_resource_pool(Pid, ResourceId, Amount)

 Functions

 add_to_niche(Pid, NicheId, IndividualId)

 -spec add_to_niche(pid(), term(), term()) -> ok.

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_ecological_stats(Pid)

 -spec get_ecological_stats(pid()) -> map().

 get_niche(Pid, NicheId)

 -spec get_niche(pid(), term()) -> {ok, map()} | not_found.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 register_niche(Pid, NicheId, NicheData)

 -spec register_niche(pid(), term(), map()) -> ok.

 remove_from_niche(Pid, NicheId, IndividualId)

 -spec remove_from_niche(pid(), term(), term()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 update_niche(Pid, NicheId, Updates)

 -spec update_niche(pid(), term(), map()) -> ok.

 update_resource_pool(Pid, ResourceId, Amount)

 -spec update_resource_pool(pid(), term(), float()) -> ok.

economic_silo

Economic Silo - Compute budget and resource allocation for neuroevolution.
Part of the Liquid Conglomerate v2 architecture. The Economic Silo manages: Per-individual compute budgets Energy accounting (income/expenditure) Wealth distribution and Gini coefficient tracking Trade between individuals/species Bankruptcy and debt management
[bookmark: Time_Constant]Time Constant
τ = 20 (medium-fast adaptation for responsive budget management)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: economic_pressure to task: Budget constraint severity budget_available to temporal: Available computation budget efficiency_requirement to morphological: Efficiency targets trade_opportunity to social: Trading possibilities
Incoming: episode_efficiency from temporal: Episode cost efficiency complexity_signal from morphological: Network complexity trust_network from social: Trust for trades budget_signal from resource: Available system resources

 Summary

 Functions

 allocate_budget(Pid, IndividualId)

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_balance(Pid, IndividualId)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 get_wealth_distribution(Pid)

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_expenditure(Pid, IndividualId, Amount)

 record_income(Pid, IndividualId, Amount)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 Functions

 allocate_budget(Pid, IndividualId)

 -spec allocate_budget(pid(), term()) -> {ok, float()} | {error, term()}.

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_balance(Pid, IndividualId)

 -spec get_balance(pid(), term()) -> {ok, float()} | not_found.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 get_wealth_distribution(Pid)

 -spec get_wealth_distribution(pid()) -> {float(), float()}.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_expenditure(Pid, IndividualId, Amount)

 -spec record_expenditure(pid(), term(), float()) -> ok.

 record_income(Pid, IndividualId, Amount)

 -spec record_income(pid(), term(), float()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

elixir_evaluator_bridge

Bridge module for calling Elixir evaluators from Erlang.
This module implements the neuroevolution_evaluator behaviour and provides a bridge to call Elixir evaluator modules from the Erlang neuroevolution_server.
[bookmark: Usage]Usage
Configure neuroevolution_server with this module as the evaluator. Set evaluator_module to elixir_evaluator_bridge and provide elixir_module and elixir_options in evaluator_options.
The Elixir module must export: - evaluate/2 - Takes (IndividualMap, Options), returns ok tuple or error

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 Functions

 calculate_fitness(Metrics)

 Calculate fitness from metrics.

 evaluate(Individual, Options)

 Evaluate an individual using an Elixir module.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 Functions

 calculate_fitness(Metrics)

 -spec calculate_fitness(map()) -> float().

Calculate fitness from metrics.
This is used when fitness needs to be computed from raw metrics. The Elixir evaluator typically returns fitness directly in the metrics map.

 evaluate(Individual, Options)

 -spec evaluate(individual(), map()) -> {ok, individual()} | {error, term()}.

Evaluate an individual using an Elixir module.
The Options map must contain: - elixir_module: The Elixir module atom (e.g., 'Elixir.MyApp.Evaluator') - elixir_options: Options to pass to the Elixir evaluator (optional) - games: Number of evaluation games/episodes (optional, passed to Elixir) - notify_pid: PID to notify of progress (optional)

evaluator_pool_registry

Evaluator pool registry for distributed evaluation.
Tracks the capacity and availability of evaluator nodes across the mesh. Provides load-balanced selection of evaluator nodes based on: - Current load (active evaluations) - Maximum capacity (CPU cores / configured limit) - Latency estimates - Node health

 Summary

 Functions

 get_all_evaluators()

 get_available_evaluator()

 get_available_evaluator(Options)

 get_stats()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_evaluator(NodeId, Info)

 report_evaluation_completed(NodeId, LatencyMs)

 report_evaluation_started(NodeId)

 start_link(Config)

 terminate(Reason, State)

 unregister_evaluator(NodeId)

 Functions

 get_all_evaluators()

 -spec get_all_evaluators() ->
 [#evaluator_node{node_id :: binary(),
 endpoint :: binary(),
 capacity :: pos_integer(),
 active :: non_neg_integer(),
 evaluator_module :: module(),
 latency_ms :: non_neg_integer(),
 last_heartbeat :: integer(),
 error_count :: non_neg_integer()}].

 get_available_evaluator()

 -spec get_available_evaluator() ->
 {ok,
 #evaluator_node{node_id :: binary(),
 endpoint :: binary(),
 capacity :: pos_integer(),
 active :: non_neg_integer(),
 evaluator_module :: module(),
 latency_ms :: non_neg_integer(),
 last_heartbeat :: integer(),
 error_count :: non_neg_integer()}} |
 {error, no_evaluators}.

 get_available_evaluator(Options)

 -spec get_available_evaluator(Options :: map()) ->
 {ok,
 #evaluator_node{node_id :: binary(),
 endpoint :: binary(),
 capacity :: pos_integer(),
 active :: non_neg_integer(),
 evaluator_module :: module(),
 latency_ms :: non_neg_integer(),
 last_heartbeat :: integer(),
 error_count :: non_neg_integer()}} |
 {error, no_evaluators}.

 get_stats()

 -spec get_stats() -> map().

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 register_evaluator(NodeId, Info)

 -spec register_evaluator(NodeId :: binary(), Info :: map()) -> ok.

 report_evaluation_completed(NodeId, LatencyMs)

 -spec report_evaluation_completed(NodeId :: binary(), LatencyMs :: non_neg_integer()) -> ok.

 report_evaluation_started(NodeId)

 -spec report_evaluation_started(NodeId :: binary()) -> ok.

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 terminate(Reason, State)

 unregister_evaluator(NodeId)

 -spec unregister_evaluator(NodeId :: binary()) -> ok.

evolution_strategy behaviour

Behaviour definition for pluggable evolution strategies.
This behaviour allows different evolution paradigms to be implemented as interchangeable modules. Each strategy controls:
- When individuals are created and removed - How selection and reproduction work - What events are emitted - What inputs are provided to meta-controllers
[bookmark: Implementing_a_Strategy]Implementing a Strategy
A strategy module must implement these callbacks:
- init/1 - Initialize strategy state from configuration - handle_evaluation_result/3 - Process a single evaluation result - tick/1 - Periodic callback for time-based actions - get_population_snapshot/1 - Return current population state for UI - get_meta_inputs/1 - Return inputs for meta-controller - apply_meta_params/2 - Apply meta-controller parameter adjustments
[bookmark: Built-in_Strategies]Built-in Strategies
- generational_strategy - Traditional (mu,lambda) batch evolution - steady_state_strategy - Continuous replacement, no generations - island_strategy - Parallel populations with migration - novelty_strategy - Behavioral novelty search - map_elites_strategy - Quality-diversity with niche grid
[bookmark: Actions_and_Events]Actions and Events
Strategies return {Actions, Events, NewState} tuples:
Actions are requests for the server to perform: - {create_individual, ParentIds, Metadata} - {remove_individual, Id, Reason} - {evaluate_individual, Id} - {evaluate_batch, [Id]}
Events are lifecycle notifications: - #individual_born{} - #individual_died{} - #generation_advanced{} - etc.

 Summary

 Types

 birth_origin/0

 death_reason/0

 fitness/0

 individual_id/0

 individual_summary/0

 island_id/0

 lifecycle_event/0

 meta_inputs/0

 meta_params/0

 niche_id/0

 population_snapshot/0

 species_id/0

 strategy_action/0

 strategy_module/0

 strategy_result/0

 strategy_state/0

 timestamp/0

 Callbacks

 apply_meta_params/2

 get_archive_state/1

 get_island_state/2

 get_meta_inputs/1

 get_population_snapshot/1

 handle_archive_update/3

 handle_evaluation_result/3

 handle_migration/4

 handle_niche_update/3

 init/1

 tick/1

 Functions

 apply_meta_params(Module, Params, State)

 Apply meta-controller parameters to strategy.

 get_meta_inputs(Module, State)

 Get meta-controller inputs from strategy.

 get_population_snapshot(Module, State)

 Get population snapshot from strategy.

 handle_evaluation_result(Module, IndividualId, FitnessResult, State)

 Dispatch evaluation result to strategy.

 has_callback(Module, Function, Arity)

 Check if a strategy module exports an optional callback.

 init(Module, Config)

 Initialize a strategy.

 tick(Module, State)

 Dispatch tick to strategy.

 Types

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 meta_inputs/0

 -type meta_inputs() :: [float()].

 meta_params/0

 -type meta_params() ::
 #{mutation_rate => float(),
 mutation_strength => float(),
 selection_ratio => float(),
 migration_rate => float(),
 novelty_weight => float(),
 atom() => number()}.

 niche_id/0

 -type niche_id() :: term().

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 species_id/0

 -type species_id() :: pos_integer().

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 strategy_module/0

 -type strategy_module() :: module().

 strategy_result/0

 -type strategy_result() ::
 {Actions :: [strategy_action()], Events :: [lifecycle_event()], NewState :: strategy_state()}.

 strategy_state/0

 -type strategy_state() :: term().

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Callbacks

 apply_meta_params/2

 -callback apply_meta_params(Params :: meta_params(), State :: strategy_state()) -> strategy_state().

 get_archive_state/1

 (optional)

 -callback get_archive_state(State :: strategy_state()) ->
 {ok, ArchiveState :: map()} | {error, not_supported}.

 get_island_state/2

 (optional)

 -callback get_island_state(IslandId :: island_id(), State :: strategy_state()) ->
 {ok, IslandState :: map()} | {error, not_found}.

 get_meta_inputs/1

 -callback get_meta_inputs(State :: strategy_state()) -> meta_inputs().

 get_population_snapshot/1

 -callback get_population_snapshot(State :: strategy_state()) -> population_snapshot().

 handle_archive_update/3

 (optional)

 -callback handle_archive_update(IndividualId :: individual_id(),
 Novelty :: float(),
 State :: strategy_state()) ->
 strategy_result().

 handle_evaluation_result/3

 -callback handle_evaluation_result(IndividualId :: individual_id(),
 FitnessResult :: #{fitness := fitness(), metrics => map()},
 State :: strategy_state()) ->
 strategy_result().

 handle_migration/4

 (optional)

 -callback handle_migration(IndividualId :: individual_id(),
 FromIsland :: island_id(),
 ToIsland :: island_id(),
 State :: strategy_state()) ->
 strategy_result().

 handle_niche_update/3

 (optional)

 -callback handle_niche_update(NicheId :: niche_id(),
 NewIndividualId :: individual_id(),
 State :: strategy_state()) ->
 strategy_result().

 init/1

 -callback init(Config :: map()) -> {ok, State :: strategy_state()} | {error, Reason :: term()}.

 tick/1

 -callback tick(State :: strategy_state()) -> strategy_result().

 Functions

 apply_meta_params(Module, Params, State)

 -spec apply_meta_params(Module, Params, State) -> strategy_state()
 when
 Module :: strategy_module(),
 Params :: meta_params(),
 State :: strategy_state().

Apply meta-controller parameters to strategy.

 get_meta_inputs(Module, State)

 -spec get_meta_inputs(Module, State) -> meta_inputs()
 when Module :: strategy_module(), State :: strategy_state().

Get meta-controller inputs from strategy.

 get_population_snapshot(Module, State)

 -spec get_population_snapshot(Module, State) -> population_snapshot()
 when Module :: strategy_module(), State :: strategy_state().

Get population snapshot from strategy.

 handle_evaluation_result(Module, IndividualId, FitnessResult, State)

 -spec handle_evaluation_result(Module, IndividualId, FitnessResult, State) -> Result
 when
 Module :: strategy_module(),
 IndividualId :: individual_id(),
 FitnessResult :: map(),
 State :: strategy_state(),
 Result :: strategy_result().

Dispatch evaluation result to strategy.

 has_callback(Module, Function, Arity)

 -spec has_callback(Module, Function, Arity) -> boolean()
 when Module :: strategy_module(), Function :: atom(), Arity :: non_neg_integer().

Check if a strategy module exports an optional callback.

 init(Module, Config)

 -spec init(Module, Config) -> Result
 when
 Module :: strategy_module(),
 Config :: map(),
 Result :: {ok, strategy_state()} | {error, term()}.

Initialize a strategy.

 tick(Module, State)

 -spec tick(Module, State) -> Result
 when Module :: strategy_module(), State :: strategy_state(), Result :: strategy_result().

Dispatch tick to strategy.

generational_strategy

Generational evolution strategy - the default (mu,lambda) batch evolution.
This strategy implements traditional generational evolution: 1. Evaluate entire population 2. Select survivors based on fitness 3. Breed offspring via crossover and mutation 4. Form next generation from survivors + offspring 5. Repeat
This preserves all existing behavior from neuroevolution_server including: - Fixed population size - Tournament/top-n selection - Sexual reproduction with crossover - Weight mutation - Optional NEAT-style speciation
[bookmark: Lifecycle_Events]Lifecycle Events
Universal events (all strategies emit): - individual_born - when offspring are created - individual_died - when individuals are eliminated - individual_evaluated - when fitness is computed
Strategy-specific events: - cohort_evaluated - all individuals in generation evaluated - breeding_complete - selection and breeding finished - generation_advanced - new generation begins

 Summary

 Types

 birth_origin/0

 death_reason/0

 fitness/0

 generation/0

 generational_params/0

 genome/0

 individual/0

 individual_id/0

 individual_summary/0

 island_id/0

 lifecycle_event/0

 meta_inputs/0

 meta_params/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 niche_id/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species/0

 species_id/0

 strategy_action/0

 strategy_result/0

 strategy_state/0

 timestamp/0

 Functions

 apply_meta_params(Params, Gen_state)

 Apply meta-controller parameter adjustments.

 get_meta_inputs(Gen_state)

 Get inputs for the meta-controller.

 get_population_snapshot(Gen_state)

 Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Gen_state)

 Handle an individual evaluation result.

 init(Config)

 Initialize the generational strategy.

 tick(Gen_state)

 Periodic tick - not heavily used in generational strategy.

 Types

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 generational_params/0

 -type generational_params() ::
 #generational_params{selection_method :: top_n | tournament | roulette,
 selection_ratio :: float(),
 tournament_size :: pos_integer(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 crossover_rate :: float(),
 elitism :: boolean(),
 elite_count :: pos_integer()}.

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 meta_inputs/0

 -type meta_inputs() :: [float()].

 meta_params/0

 -type meta_params() ::
 #{mutation_rate => float(),
 mutation_strength => float(),
 selection_ratio => float(),
 migration_rate => float(),
 novelty_weight => float(),
 atom() => number()}.

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 niche_id/0

 -type niche_id() :: term().

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species/0

 -type species() ::
 #species{id :: species_id(),
 representative :: individual(),
 members :: [individual_id()],
 best_fitness :: fitness(),
 best_fitness_ever :: fitness(),
 generation_created :: generation(),
 age :: non_neg_integer(),
 stagnant_generations :: non_neg_integer(),
 offspring_quota :: non_neg_integer()}.

 species_id/0

 -type species_id() :: pos_integer().

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 strategy_result/0

 -type strategy_result() ::
 {Actions :: [strategy_action()], Events :: [lifecycle_event()], NewState :: strategy_state()}.

 strategy_state/0

 -type strategy_state() :: term().

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Functions

 apply_meta_params(Params, Gen_state)

 -spec apply_meta_params(Params :: meta_params(),
 State ::
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}) ->
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}.

Apply meta-controller parameter adjustments.

 get_meta_inputs(Gen_state)

 -spec get_meta_inputs(State ::
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}) ->
 meta_inputs().

Get inputs for the meta-controller.
Returns normalized values representing evolution progress.

 get_population_snapshot(Gen_state)

 -spec get_population_snapshot(State ::
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}) ->
 population_snapshot().

Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Gen_state)

 -spec handle_evaluation_result(IndividualId :: individual_id(),
 FitnessResult :: map(),
 State ::
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}) ->
 strategy_result().

Handle an individual evaluation result.
Accumulates results until all individuals are evaluated, then triggers selection and breeding.

 init(Config)

 -spec init(Config :: map()) ->
 {ok,
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}} |
 {error, term()}.

Initialize the generational strategy.
Expects config map with: - neuro_config - the full neuroevolution config - strategy_params - optional generational_params record or map - network_factory - optional module for network creation (default: network_factory)

 tick(Gen_state)

 -spec tick(State ::
 #gen_state{config :: neuro_config(),
 params :: generational_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 total_evaluations :: non_neg_integer(),
 generation :: pos_integer(),
 evaluating :: boolean(),
 evaluated_count :: non_neg_integer(),
 evaluated_individuals :: [individual()],
 best_fitness_ever :: float(),
 last_best_fitness :: float(),
 last_avg_fitness :: float(),
 stagnation_count :: non_neg_integer(),
 species :: [species()],
 next_species_id :: pos_integer()}) ->
 strategy_result().

Periodic tick - not heavily used in generational strategy.
Could be used for timeout handling or periodic statistics.

genome_factory

NEAT-style genome factory for topology-evolving neural networks.
This module implements genome operations for NEAT (NeuroEvolution of Augmenting Topologies) style evolution. It provides: - Minimal genome creation (starting point for NEAT) - Genome to network conversion (for evaluation) - NEAT-style crossover (gene alignment by innovation number) - Structural and weight mutations
The module delegates to macula_tweann's innovation.erl and genome_crossover.erl for core NEAT operations.
Reference: Stanley, K.O. and Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2).

 Summary

 Types

 genome/0

 mutation_config/0

 neuro_config/0

 self_play_config/0

 speciation_config/0

 Functions

 create_minimal(Config)

 Create a minimal NEAT genome.

 crossover(Genome1, Genome2, FitterParent)

 Perform NEAT-style crossover between two genomes.

 mutate(Genome, Config)

 Apply mutations to a genome (structural + weight).

 to_compiled_network(Genome)

 Convert a genome to a NIF-compiled network for fast evaluation.

 to_network(Genome)

 Convert a genome to a network for evaluation.

 Types

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 Functions

 create_minimal(Config)

 -spec create_minimal(neuro_config()) -> genome().

Create a minimal NEAT genome.
Creates a genome where all inputs connect directly to all outputs. This is the NEAT starting point - networks grow from this minimal structure.

 crossover(Genome1, Genome2, FitterParent)

 -spec crossover(genome(), genome(), 1 | 2 | equal) -> genome().

Perform NEAT-style crossover between two genomes.
Aligns genes by innovation number and: - Matching genes: randomly inherit from either parent - Disjoint/Excess genes: inherit from fitter parent

 mutate(Genome, Config)

 -spec mutate(genome(), mutation_config()) -> genome().

Apply mutations to a genome (structural + weight).
Mutations are applied based on the mutation_config probabilities: - Weight mutation: Perturb or replace weights - Add node: Split an existing connection - Add connection: Add new connection between unconnected nodes - Toggle connection: Enable/disable a connection

 to_compiled_network(Genome)

 -spec to_compiled_network(genome()) -> {ok, nif_network:compiled_network()} | {error, term()}.

Convert a genome to a NIF-compiled network for fast evaluation.
This is the optimized path: compile once, evaluate many times. Uses NIF acceleration when available (50-100x faster evaluation).

 to_network(Genome)

 -spec to_network(genome()) -> network_evaluator:network().

Convert a genome to a network for evaluation.
Builds a neural network from the genome's connection genes. Disabled connections are excluded from the network.
Note: For variable topology, we create a network that matches the genome structure. Since network_evaluator uses dense layers with biases, we create a network topology and then set the weights to match the genome.

island_strategy

Island model evolution strategy implementation.
The island model runs multiple isolated subpopulations (islands) in parallel, with periodic migration of individuals between islands. This maintains diversity and enables exploration of multiple fitness peaks simultaneously.
Key features: - Multiple islands, each running its own sub-strategy - Configurable migration topology (ring, full, random, custom) - Various migrant selection methods (best, random, diverse) - Periodic migration events based on evaluation count
Migration topologies: - ring: Each island sends to the next (circular) - full: Every island can send to every other island - random: Random destination for each migration - custom: User-specified connections

 Summary

 Types

 birth_origin/0

 death_reason/0

 fitness/0

 individual_id/0

 individual_summary/0

 island_id/0

 island_params/0

 lifecycle_event/0

 mutation_config/0

 neuro_config/0

 niche_id/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species_id/0

 strategy_action/0

 strategy_module/0

 timestamp/0

 Functions

 apply_meta_params(MetaParams, Island_state)

 Apply parameter updates from meta-controller.

 get_meta_inputs(Island_state)

 Get normalized inputs for meta-controller.

 get_population_snapshot(Island_state)

 Get a snapshot of the population across all islands.

 handle_evaluation_result(IndividualId, FitnessResult, State)

 Handle an individual evaluation result.

 init(Config)

 Initialize the island model strategy.

 terminate(Reason, Island_state)

 Clean up when strategy terminates.

 tick(Island_state)

 Periodic tick for maintenance operations.

 Types

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 island_params/0

 -type island_params() ::
 #island_params{island_count :: pos_integer(),
 population_per_island :: pos_integer(),
 migration_interval :: pos_integer(),
 migration_count :: pos_integer(),
 migration_selection :: best | random | diverse,
 topology :: ring | full | random | custom,
 custom_connections :: [{island_id(), island_id()}],
 island_strategy :: strategy_module(),
 island_strategy_params :: map()}.

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 niche_id/0

 -type niche_id() :: term().

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species_id/0

 -type species_id() :: pos_integer().

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 strategy_module/0

 -type strategy_module() :: module().

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Functions

 apply_meta_params(MetaParams, Island_state)

 -spec apply_meta_params(MetaParams :: map(),
 State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}) ->
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}.

Apply parameter updates from meta-controller.

 get_meta_inputs(Island_state)

 -spec get_meta_inputs(State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}) ->
 [float()].

Get normalized inputs for meta-controller.

 get_population_snapshot(Island_state)

 -spec get_population_snapshot(State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}) ->
 population_snapshot().

Get a snapshot of the population across all islands.

 handle_evaluation_result(IndividualId, FitnessResult, State)

 -spec handle_evaluation_result(IndividualId, FitnessResult, State) -> Result
 when
 IndividualId :: individual_id(),
 FitnessResult :: #{fitness := float(), metrics => map()},
 State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()},
 Result ::
 {[strategy_action()],
 [lifecycle_event()],
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration ::
 non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}}.

Handle an individual evaluation result.
Routes the result to the appropriate island based on individual ID.

 init(Config)

 -spec init(Config :: map()) ->
 {ok,
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration :: non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()},
 [lifecycle_event()]}.

Initialize the island model strategy.

 terminate(Reason, Island_state)

 -spec terminate(Reason :: term(),
 State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration :: non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}) ->
 ok.

Clean up when strategy terminates.

 tick(Island_state)

 -spec tick(State ::
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration :: non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}) ->
 {[strategy_action()],
 [lifecycle_event()],
 #island_state{config :: neuro_config(),
 params :: island_params(),
 network_factory :: module(),
 islands ::
 #{island_id() =>
 #island{id :: island_id(),
 strategy_module :: module(),
 strategy_state :: term(),
 evaluations_since_migration :: non_neg_integer()}},
 topology :: #{island_id() => [island_id()]},
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float()}}.

Periodic tick for maintenance operations.

lc_chain

Chained LTC Controller for Liquid Conglomerate.
This gen_server manages the L2→L1→L0 chain of LTC TWEANN networks. Each level is a separate neural network that learns at different timescales.
[bookmark: Architecture]Architecture
L2 (Strategic, τ=100): Inputs: Evolution metrics (fitness, stagnation, diversity) Outputs: 4 strategic signals → L1 inputs
L1 (Tactical, τ=50): Inputs: L2's 4 outputs Outputs: 5 tactical signals → L0 inputs
L0 (Reactive, τ=10): Inputs: L1's 5 outputs + emergent metrics (evolvable sensors) Outputs: Final hyperparameters
[bookmark: Usage]Usage
%% Start the chain {ok, Pid} = lc_chain:start_link(Config),
%% Forward pass: compute hyperparameters EvoMetrics = #evolution_metrics{best_fitness = 0.85, ...}, EmergentMetrics = #emergent_metrics{convergence_rate = 0.02, ...}, Hyperparams = lc_chain:forward(Pid, EvoMetrics, EmergentMetrics),
%% Train: provide reward signal lc_chain:train(Pid, Reward).

 Summary

 Types

 emergent_metrics/0

 evolution_metrics/0

 lc_chain_config/0

 lc_hyperparams/0

 lc_level_state/0

 Functions

 code_change(OldVsn, State, Extra)

 forward(ServerRef, EvoMetrics)

 Forward pass with only evolution metrics.

 forward(ServerRef, EvoMetrics, EmergentMetrics)

 Forward pass through the chain.

 get_hyperparams(ServerRef)

 Get last computed hyperparameters.

 get_state(ServerRef)

 Get current chain state (for debugging/visualization).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 reset(ServerRef)

 Reset the chain state.

 start_link()

 Start the LC chain with default configuration.

 start_link(Config)

 Start the LC chain with custom configuration.

 terminate(Reason, State)

 train(ServerRef, Reward)

 Train the chain with a reward signal.

 Types

 emergent_metrics/0

 -type emergent_metrics() ::
 #emergent_metrics{convergence_rate :: float(),
 fitness_plateau_duration :: non_neg_integer(),
 current_mutation_rate :: float(),
 current_selection_ratio :: float(),
 survival_rate :: float(),
 offspring_rate :: float(),
 elite_age :: non_neg_integer(),
 complexity_trend :: float(),
 avg_network_size :: float(),
 species_extinction_rate :: float(),
 species_creation_rate :: float(),
 innovation_rate :: float(),
 diversity_index :: float()}.

 evolution_metrics/0

 -type evolution_metrics() ::
 #evolution_metrics{best_fitness :: float(),
 avg_fitness :: float(),
 fitness_improvement :: float(),
 fitness_variance :: float(),
 stagnation_counter :: non_neg_integer(),
 generation_progress :: float(),
 population_diversity :: float(),
 species_count :: pos_integer()}.

 lc_chain_config/0

 -type lc_chain_config() ::
 #lc_chain_config{l2_tau :: float(),
 l1_tau :: float(),
 l0_tau :: float(),
 learning_rate :: float(),
 evolve_topology :: boolean(),
 l2_hidden_layers :: [pos_integer()],
 l1_hidden_layers :: [pos_integer()],
 l0_hidden_layers :: [pos_integer()],
 activation :: tanh | sigmoid | relu,
 gamma :: float()}.

 lc_hyperparams/0

 -type lc_hyperparams() ::
 #lc_hyperparams{mutation_rate :: float(),
 mutation_strength :: float(),
 selection_ratio :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float()}.

 lc_level_state/0

 -type lc_level_state() ::
 #lc_level_state{level :: l0 | l1 | l2,
 agent_id :: term(),
 tau :: float(),
 neuron_states :: #{term() => float()},
 last_outputs :: [float()],
 connected_sensors :: [atom()],
 generation :: non_neg_integer()}.

 Functions

 code_change(OldVsn, State, Extra)

 forward(ServerRef, EvoMetrics)

 -spec forward(pid() | atom(), evolution_metrics()) -> lc_hyperparams().

Forward pass with only evolution metrics.
Uses default emergent metrics.

 forward(ServerRef, EvoMetrics, EmergentMetrics)

 -spec forward(pid() | atom(), evolution_metrics(), emergent_metrics()) -> lc_hyperparams().

Forward pass through the chain.
Computes hyperparameters by cascading through L2→L1→L0.

 get_hyperparams(ServerRef)

 -spec get_hyperparams(pid() | atom()) -> lc_hyperparams().

Get last computed hyperparameters.

 get_state(ServerRef)

 -spec get_state(pid() | atom()) -> {ok, map()}.

Get current chain state (for debugging/visualization).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 reset(ServerRef)

 -spec reset(pid() | atom()) -> ok.

Reset the chain state.

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the LC chain with default configuration.

 start_link(Config)

 -spec start_link(lc_chain_config()) -> {ok, pid()} | {error, term()}.

Start the LC chain with custom configuration.

 terminate(Reason, State)

 train(ServerRef, Reward)

 -spec train(pid() | atom(), float()) -> ok.

Train the chain with a reward signal.
Backpropagates reward through all three levels.

lc_communication_events

Behavioral event constructors for Communication Silo.
Events related to signaling, vocabulary, and coordination. Communication Silo operates at timescale τ=55.

 Summary

 Types

 communication_event/0

 individual_id/0

 population_id/0

 timestamp/0

 Functions

 coordination_achieved(Data)

 deception_detected(Data)

 dialect_formed(Data)

 dialect_merged(Data)

 event_to_map(Event)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 signal_emitted(Data)

 signal_interpreted(Data)

 signal_received(Data)

 vocabulary_contracted(Data)

 vocabulary_expanded(Data)

 Types

 communication_event/0

 -type communication_event() ::
 #signal_emitted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 sender_id :: individual_id(),
 signal_id :: binary(),
 signal_content :: term(),
 intended_receivers :: [individual_id()] | broadcast,
 honesty :: honest | deceptive} |
 #signal_received{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 receiver_id :: individual_id(),
 sender_id :: individual_id(),
 signal_id :: binary(),
 interpretation :: correct | incorrect | ambiguous} |
 #signal_interpreted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 interpreter_id :: individual_id(),
 signal_id :: binary(),
 intended_meaning :: term(),
 interpreted_meaning :: term(),
 accuracy :: float()} |
 #vocabulary_expanded{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 new_signal_id :: binary(),
 signal_meaning :: term(),
 inventor_id :: individual_id(),
 vocabulary_size_after :: non_neg_integer()} |
 #vocabulary_contracted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 removed_signal_id :: binary(),
 removal_reason :: obsolescence | ambiguity | replacement,
 vocabulary_size_after :: non_neg_integer()} |
 #dialect_formed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 dialect_id :: binary(),
 population_id :: population_id(),
 speaker_ids :: [individual_id()],
 unique_signals :: non_neg_integer(),
 formation_cause :: isolation | drift | innovation} |
 #dialect_merged{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 dialect_a_id :: binary(),
 dialect_b_id :: binary(),
 merged_dialect_id :: binary(),
 merge_cause :: contact | migration | normalization} |
 #coordination_achieved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coordination_id :: binary(),
 participant_ids :: [individual_id()],
 coordination_type :: synchronization | division_of_labor | joint_action,
 success_level :: float(),
 communication_rounds :: non_neg_integer()} |
 #deception_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 deceiver_id :: individual_id(),
 detector_id :: individual_id(),
 signal_id :: binary(),
 deception_type :: false_alarm | concealment | manipulation,
 detection_confidence :: float()}.

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 coordination_achieved(Data)

 -spec coordination_achieved(map()) ->
 #coordination_achieved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coordination_id :: binary(),
 participant_ids :: [individual_id()],
 coordination_type ::
 synchronization | division_of_labor |
 joint_action,
 success_level :: float(),
 communication_rounds :: non_neg_integer()}.

 deception_detected(Data)

 -spec deception_detected(map()) ->
 #deception_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 deceiver_id :: individual_id(),
 detector_id :: individual_id(),
 signal_id :: binary(),
 deception_type ::
 false_alarm | concealment | manipulation,
 detection_confidence :: float()}.

 dialect_formed(Data)

 -spec dialect_formed(map()) ->
 #dialect_formed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 dialect_id :: binary(),
 population_id :: population_id(),
 speaker_ids :: [individual_id()],
 unique_signals :: non_neg_integer(),
 formation_cause :: isolation | drift | innovation}.

 dialect_merged(Data)

 -spec dialect_merged(map()) ->
 #dialect_merged{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 dialect_a_id :: binary(),
 dialect_b_id :: binary(),
 merged_dialect_id :: binary(),
 merge_cause :: contact | migration | normalization}.

 event_to_map(Event)

 -spec event_to_map(communication_event()) -> map().

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 signal_emitted(Data)

 -spec signal_emitted(map()) ->
 #signal_emitted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 sender_id :: individual_id(),
 signal_id :: binary(),
 signal_content :: term(),
 intended_receivers :: [individual_id()] | broadcast,
 honesty :: honest | deceptive}.

 signal_interpreted(Data)

 -spec signal_interpreted(map()) ->
 #signal_interpreted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 interpreter_id :: individual_id(),
 signal_id :: binary(),
 intended_meaning :: term(),
 interpreted_meaning :: term(),
 accuracy :: float()}.

 signal_received(Data)

 -spec signal_received(map()) ->
 #signal_received{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 receiver_id :: individual_id(),
 sender_id :: individual_id(),
 signal_id :: binary(),
 interpretation :: correct | incorrect | ambiguous}.

 vocabulary_contracted(Data)

 -spec vocabulary_contracted(map()) ->
 #vocabulary_contracted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 removed_signal_id :: binary(),
 removal_reason ::
 obsolescence | ambiguity | replacement,
 vocabulary_size_after :: non_neg_integer()}.

 vocabulary_expanded(Data)

 -spec vocabulary_expanded(map()) ->
 #vocabulary_expanded{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 new_signal_id :: binary(),
 signal_meaning :: term(),
 inventor_id :: individual_id(),
 vocabulary_size_after :: non_neg_integer()}.

lc_competitive_events

Behavioral event constructors for Competitive Silo.
Events related to Elo ratings, opponent archives, and matchmaking. Competitive Silo operates at timescale τ=15.

 Summary

 Types

 competitive_event/0

 generation/0

 individual_id/0

 population_id/0

 timestamp/0

 Functions

 arms_race_detected(Data)

 dominance_matrix_updated(Data)

 elo_updated(Data)

 event_to_map(Event)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 match_completed(Data)

 matchmaking_adjusted(Data)

 opponent_archived(Data)

 opponent_retired(Data)

 strategy_countered(Data)

 Types

 competitive_event/0

 -type competitive_event() ::
 #opponent_archived{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 opponent_id :: individual_id(),
 archive_id :: binary(),
 fitness_at_archive :: float(),
 elo_at_archive :: float(),
 generation :: generation(),
 archive_size_after :: non_neg_integer()} |
 #opponent_retired{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 opponent_id :: individual_id(),
 archive_id :: binary(),
 retirement_reason :: age | performance | diversity,
 games_played :: non_neg_integer(),
 final_elo :: float()} |
 #match_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 match_id :: binary(),
 player_a_id :: individual_id(),
 player_b_id :: individual_id(),
 winner_id :: individual_id() | draw,
 player_a_elo_before :: float(),
 player_b_elo_before :: float(),
 player_a_elo_after :: float(),
 player_b_elo_after :: float(),
 match_duration_ms :: non_neg_integer()} |
 #elo_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 elo_before :: float(),
 elo_after :: float(),
 k_factor :: float(),
 match_result :: win | loss | draw} |
 #strategy_countered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 counter_id :: individual_id(),
 countered_id :: individual_id(),
 win_rate_against :: float(),
 strategy_signature :: binary(),
 generation :: generation()} |
 #arms_race_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 cycle_length :: non_neg_integer(),
 participants :: [individual_id()],
 intensity :: float(),
 generation :: generation()} |
 #matchmaking_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 elo_range_before :: float(),
 elo_range_after :: float(),
 self_play_ratio_before :: float(),
 self_play_ratio_after :: float(),
 adjustment_reason :: diversity | exploitation | exploration} |
 #dominance_matrix_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 matrix_size :: non_neg_integer(),
 strongest_counter :: {individual_id(), individual_id(), float()},
 cycle_detected :: boolean(),
 update_generation :: generation()}.

 generation/0

 -type generation() :: non_neg_integer().

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 arms_race_detected(Data)

 -spec arms_race_detected(map()) ->
 #arms_race_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 cycle_length :: non_neg_integer(),
 participants :: [individual_id()],
 intensity :: float(),
 generation :: generation()}.

 dominance_matrix_updated(Data)

 -spec dominance_matrix_updated(map()) ->
 #dominance_matrix_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 matrix_size :: non_neg_integer(),
 strongest_counter ::
 {individual_id(),
 individual_id(),
 float()},
 cycle_detected :: boolean(),
 update_generation :: generation()}.

 elo_updated(Data)

 -spec elo_updated(map()) ->
 #elo_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 elo_before :: float(),
 elo_after :: float(),
 k_factor :: float(),
 match_result :: win | loss | draw}.

 event_to_map(Event)

 -spec event_to_map(competitive_event()) -> map().

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 match_completed(Data)

 -spec match_completed(map()) ->
 #match_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 match_id :: binary(),
 player_a_id :: individual_id(),
 player_b_id :: individual_id(),
 winner_id :: individual_id() | draw,
 player_a_elo_before :: float(),
 player_b_elo_before :: float(),
 player_a_elo_after :: float(),
 player_b_elo_after :: float(),
 match_duration_ms :: non_neg_integer()}.

 matchmaking_adjusted(Data)

 -spec matchmaking_adjusted(map()) ->
 #matchmaking_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 elo_range_before :: float(),
 elo_range_after :: float(),
 self_play_ratio_before :: float(),
 self_play_ratio_after :: float(),
 adjustment_reason ::
 diversity | exploitation | exploration}.

 opponent_archived(Data)

 -spec opponent_archived(map()) ->
 #opponent_archived{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 opponent_id :: individual_id(),
 archive_id :: binary(),
 fitness_at_archive :: float(),
 elo_at_archive :: float(),
 generation :: generation(),
 archive_size_after :: non_neg_integer()}.

 opponent_retired(Data)

 -spec opponent_retired(map()) ->
 #opponent_retired{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 opponent_id :: individual_id(),
 archive_id :: binary(),
 retirement_reason :: age | performance | diversity,
 games_played :: non_neg_integer(),
 final_elo :: float()}.

 strategy_countered(Data)

 -spec strategy_countered(map()) ->
 #strategy_countered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 counter_id :: individual_id(),
 countered_id :: individual_id(),
 win_rate_against :: float(),
 strategy_signature :: binary(),
 generation :: generation()}.

lc_controller

LC Controller - Simple online-learning TWEANN for hyperparameter control.
Unlike the main TWEANN population which evolves competitively, LC controllers are single networks that learn "on the job" through online weight updates.
Architecture: - Input layer: Sensor values (21 for task silo, 15 for resource silo) - Hidden layers: Configurable (default: [32, 16]) - Output layer: Actuator values (16 for task silo, 9 for resource silo)
Learning: Evolution Strategies (ES) style weight perturbation - Perturb weights with Gaussian noise - Keep perturbation if reward improves - Decay noise over time as performance stabilizes

 Summary

 Functions

 get_recommendations(Controller, SensorInputs)

 Get hyperparameter recommendations from the controller.

 get_state(Controller)

 Get current controller state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_reward(Controller, Reward)

 Report reward signal to the controller for learning.

 start_link(Name)

 Start the LC controller with default options.

 start_link(Name, Config)

 Start the LC controller with custom configuration.

 terminate(Reason, State)

 Functions

 get_recommendations(Controller, SensorInputs)

 -spec get_recommendations(atom() | pid(), map()) -> map().

Get hyperparameter recommendations from the controller.
SensorInputs is a map of sensor name => value (all normalized to 0-1 or -1 to 1). Returns a map of actuator name => value (scaled to actual ranges).

 get_state(Controller)

 -spec get_state(atom() | pid()) -> map().

Get current controller state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_reward(Controller, Reward)

 -spec report_reward(atom() | pid(), float()) -> ok.

Report reward signal to the controller for learning.
The reward should be in range [-1, 1].

 start_link(Name)

 -spec start_link(atom()) -> {ok, pid()} | ignore | {error, term()}.

Start the LC controller with default options.

 start_link(Name, Config)

 -spec start_link(atom(), map()) -> {ok, pid()} | ignore | {error, term()}.

Start the LC controller with custom configuration.
Config options: - input_size: Number of sensor inputs (default: 21) - output_size: Number of actuator outputs (default: 16) - hidden_sizes: List of hidden layer sizes (default: [32, 16]) - learning_rate: Weight update rate (default: 0.1) - noise_std: Initial noise standard deviation (default: 0.1) - output_ranges: Map of output name to {min, max} ranges

 terminate(Reason, State)

lc_cross_silo

Cross-Silo Communication Coordinator for Liquid Conglomerate.
Part of the Liquid Conglomerate v2 event-driven architecture. This module subscribes to silo signal events and aggregates them for consumers.
[bookmark: Event-Driven_Architecture]Event-Driven Architecture
Silos publish signals via silo_events:publish_signal/3 to topic-based pub/sub. This module subscribes to all silo topics and maintains an aggregated view for backward compatibility and efficient querying.
[bookmark: Architecture]Architecture
The LC routes ~60+ named signals between 13 specialized silos:
Core Silos (Original): Task Silo: Evolution optimization (tau = 50) Resource Silo: System stability (tau = 5) Distribution Silo: Mesh networking (tau = 1)
Extension Silos (LC v2): Temporal Silo: Episode timing, early termination (tau = 10) Competitive Silo: Opponent archives, Elo ratings (tau = 50) Social Silo: Reputation, coalitions, mentoring (tau = 50) Cultural Silo: Innovations, traditions, imitation (tau = 100) Ecological Silo: Niches, carrying capacity, stress (tau = 100) Morphological Silo: Network size, pruning (tau = 30) Developmental Silo: Ontogeny, critical periods (tau = 100) Regulatory Silo: Gene expression, module activation (tau = 50) Economic Silo: Compute budgets, energy economics (tau = 20) Communication Silo: Vocabulary, coordination (tau = 30)
[bookmark: Signal_Naming_Convention]Signal Naming Convention
Pressure signals: constraint indicators (0-1, higher = more constrained) Boost signals: enhancement requests (0-1, higher = more boost) Score signals: quality metrics (0-1, higher = better) Rate signals: frequency indicators (0-1, higher = more frequent)
[bookmark: Signal_Decay]Signal Decay
Signals not updated within decay_ms (default 30s) decay toward neutral: Pressure/boost signals decay to 0.0, balance signals decay to 0.5.

 Summary

 Functions

 emit(FromSilo, ToSilo, SignalName, Value)

 Emit a signal from one silo to another.

 emit_batch(FromSilo, ToSilo, Signals)

 Emit multiple signals from one silo to another.

 get_all_signals()

 Get all signals for all silos.

 get_effective_evals_per_individual()

 Get effective evaluations per individual (negotiated between silos).

 get_signals_for(Silo)

 Get all signals destined for a specific silo.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 Start the cross-silo coordinator with default configuration.

 start_link(Config)

 Start the cross-silo coordinator with custom configuration. If the coordinator is already running, returns the existing pid.

 subscribe(Silo, Callback)

 Subscribe to signals for a specific silo.

 terminate(Reason, State)

 unsubscribe(Silo)

 Unsubscribe from signals for a specific silo.

 Functions

 emit(FromSilo, ToSilo, SignalName, Value)

 -spec emit(atom(), atom(), atom(), number()) -> ok.

Emit a signal from one silo to another.
Example: emit(resource, task, pressure_signal, 0.7)

 emit_batch(FromSilo, ToSilo, Signals)

 -spec emit_batch(atom(), atom(), map()) -> ok.

Emit multiple signals from one silo to another.

 get_all_signals()

 -spec get_all_signals() -> map().

Get all signals for all silos.

 get_effective_evals_per_individual()

 -spec get_effective_evals_per_individual() -> pos_integer().

Get effective evaluations per individual (negotiated between silos).
This resolves the shared resource conflict: - Resource Silo sets max based on pressure - Task Silo requests desired based on fitness variance - Effective = min(resource_max, task_desired)

 get_signals_for(Silo)

 -spec get_signals_for(atom()) -> map().

Get all signals destined for a specific silo.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the cross-silo coordinator with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the cross-silo coordinator with custom configuration. If the coordinator is already running, returns the existing pid.

 subscribe(Silo, Callback)

 -spec subscribe(atom(), fun((map()) -> ok)) -> ok.

Subscribe to signals for a specific silo.
The callback will be invoked whenever signals change.

 terminate(Reason, State)

 unsubscribe(Silo)

 -spec unsubscribe(atom()) -> ok.

Unsubscribe from signals for a specific silo.

lc_cultural_events

Behavioral event constructors for Cultural Silo.
Events related to behavioral innovations, traditions, and memes. Cultural Silo operates at timescale τ=35.

 Summary

 Types

 cultural_event/0

 individual_id/0

 population_id/0

 timestamp/0

 Functions

 cultural_convergence(Data)

 cultural_divergence(Data)

 event_to_map(Event)

 innovation_discovered(Data)

 innovation_spread(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 meme_created(Data)

 meme_mutated(Data)

 meme_spread(Data)

 tradition_abandoned(Data)

 tradition_established(Data)

 Types

 cultural_event/0

 -type cultural_event() ::
 #innovation_discovered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 innovator_id :: individual_id(),
 innovation_id :: binary(),
 population_id :: population_id(),
 novelty_score :: float(),
 fitness_advantage :: float(),
 innovation_type :: behavioral | structural | strategic} |
 #innovation_spread{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 innovation_id :: binary(),
 source_id :: individual_id(),
 adopter_id :: individual_id(),
 spread_fidelity :: float(),
 total_adopters :: non_neg_integer()} |
 #tradition_established{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 tradition_id :: binary(),
 population_id :: population_id(),
 behavior_signature :: binary(),
 initial_practitioners :: non_neg_integer(),
 establishment_threshold :: non_neg_integer()} |
 #tradition_abandoned{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 tradition_id :: binary(),
 population_id :: population_id(),
 abandonment_reason :: obsolescence | competition | drift,
 final_practitioners :: non_neg_integer(),
 duration_generations :: non_neg_integer()} |
 #meme_created{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 meme_id :: binary(),
 creator_id :: individual_id(),
 population_id :: population_id(),
 meme_encoding :: term(),
 initial_fitness_correlation :: float()} |
 #meme_spread{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 meme_id :: binary(),
 source_id :: individual_id(),
 target_id :: individual_id(),
 spread_fidelity :: float(),
 fitness_correlation :: float(),
 total_adopters :: non_neg_integer()} |
 #meme_mutated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 original_meme_id :: binary(),
 mutated_meme_id :: binary(),
 mutator_id :: individual_id(),
 mutation_magnitude :: float(),
 fitness_change :: float()} |
 #cultural_convergence{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 behavioral_variance_before :: float(),
 behavioral_variance_after :: float(),
 convergence_driver :: selection | imitation | drift} |
 #cultural_divergence{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 behavioral_variance_before :: float(),
 behavioral_variance_after :: float(),
 divergence_driver :: exploration | speciation | isolation}.

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 cultural_convergence(Data)

 -spec cultural_convergence(map()) ->
 #cultural_convergence{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 behavioral_variance_before :: float(),
 behavioral_variance_after :: float(),
 convergence_driver :: selection | imitation | drift}.

 cultural_divergence(Data)

 -spec cultural_divergence(map()) ->
 #cultural_divergence{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 behavioral_variance_before :: float(),
 behavioral_variance_after :: float(),
 divergence_driver ::
 exploration | speciation | isolation}.

 event_to_map(Event)

 -spec event_to_map(cultural_event()) -> map().

 innovation_discovered(Data)

 -spec innovation_discovered(map()) ->
 #innovation_discovered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 innovator_id :: individual_id(),
 innovation_id :: binary(),
 population_id :: population_id(),
 novelty_score :: float(),
 fitness_advantage :: float(),
 innovation_type ::
 behavioral | structural | strategic}.

 innovation_spread(Data)

 -spec innovation_spread(map()) ->
 #innovation_spread{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 innovation_id :: binary(),
 source_id :: individual_id(),
 adopter_id :: individual_id(),
 spread_fidelity :: float(),
 total_adopters :: non_neg_integer()}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 meme_created(Data)

 -spec meme_created(map()) ->
 #meme_created{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 meme_id :: binary(),
 creator_id :: individual_id(),
 population_id :: population_id(),
 meme_encoding :: term(),
 initial_fitness_correlation :: float()}.

 meme_mutated(Data)

 -spec meme_mutated(map()) ->
 #meme_mutated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 original_meme_id :: binary(),
 mutated_meme_id :: binary(),
 mutator_id :: individual_id(),
 mutation_magnitude :: float(),
 fitness_change :: float()}.

 meme_spread(Data)

 -spec meme_spread(map()) ->
 #meme_spread{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 meme_id :: binary(),
 source_id :: individual_id(),
 target_id :: individual_id(),
 spread_fidelity :: float(),
 fitness_correlation :: float(),
 total_adopters :: non_neg_integer()}.

 tradition_abandoned(Data)

 -spec tradition_abandoned(map()) ->
 #tradition_abandoned{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 tradition_id :: binary(),
 population_id :: population_id(),
 abandonment_reason ::
 obsolescence | competition | drift,
 final_practitioners :: non_neg_integer(),
 duration_generations :: non_neg_integer()}.

 tradition_established(Data)

 -spec tradition_established(map()) ->
 #tradition_established{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 tradition_id :: binary(),
 population_id :: population_id(),
 behavior_signature :: binary(),
 initial_practitioners :: non_neg_integer(),
 establishment_threshold :: non_neg_integer()}.

lc_developmental_events

Behavioral event constructors for Developmental Silo.
Events related to ontogeny, critical periods, and plasticity. Developmental Silo operates at timescale τ=40.

 Summary

 Types

 developmental_event/0

 individual_id/0

 timestamp/0

 Functions

 canalization_increased(Data)

 critical_period_closed(Data)

 critical_period_opened(Data)

 developmental_milestone(Data)

 developmental_stage_reached(Data)

 event_to_map(Event)

 heterochrony_detected(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 metamorphosis_triggered(Data)

 plasticity_changed(Data)

 Types

 developmental_event/0

 -type developmental_event() ::
 #critical_period_opened{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 period_type :: sensory | motor | cognitive | social,
 plasticity_boost :: float(),
 expected_duration_generations :: non_neg_integer()} |
 #critical_period_closed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 period_type :: sensory | motor | cognitive | social,
 actual_duration_generations :: non_neg_integer(),
 learning_achieved :: float()} |
 #plasticity_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 plasticity_before :: float(),
 plasticity_after :: float(),
 change_cause :: age | experience | stress | development} |
 #developmental_stage_reached{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 stage_before :: atom(),
 stage_after :: atom(),
 age_generations :: non_neg_integer(),
 fitness_at_transition :: float()} |
 #metamorphosis_triggered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 stage_before :: atom(),
 stage_after :: atom(),
 structural_changes ::
 #{neurons_added => non_neg_integer(),
 connections_rewired => non_neg_integer()},
 fitness_before :: float()} |
 #canalization_increased{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 canalization_before :: float(),
 canalization_after :: float(),
 perturbation_resistance :: float()} |
 #heterochrony_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 timing_deviation :: float(),
 affected_traits :: [atom()],
 fitness_impact :: float()} |
 #developmental_milestone{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 milestone_type ::
 first_signal | first_action | first_success | maturity,
 age_generations :: non_neg_integer(),
 performance_level :: float()}.

 individual_id/0

 -type individual_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 canalization_increased(Data)

 -spec canalization_increased(map()) ->
 #canalization_increased{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 canalization_before :: float(),
 canalization_after :: float(),
 perturbation_resistance :: float()}.

 critical_period_closed(Data)

 -spec critical_period_closed(map()) ->
 #critical_period_closed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 period_type ::
 sensory | motor | cognitive | social,
 actual_duration_generations :: non_neg_integer(),
 learning_achieved :: float()}.

 critical_period_opened(Data)

 -spec critical_period_opened(map()) ->
 #critical_period_opened{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 period_type ::
 sensory | motor | cognitive | social,
 plasticity_boost :: float(),
 expected_duration_generations ::
 non_neg_integer()}.

 developmental_milestone(Data)

 -spec developmental_milestone(map()) ->
 #developmental_milestone{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 milestone_type ::
 first_signal | first_action |
 first_success | maturity,
 age_generations :: non_neg_integer(),
 performance_level :: float()}.

 developmental_stage_reached(Data)

 -spec developmental_stage_reached(map()) ->
 #developmental_stage_reached{meta ::
 #lc_event_meta{event_id ::
 binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 stage_before :: atom(),
 stage_after :: atom(),
 age_generations :: non_neg_integer(),
 fitness_at_transition :: float()}.

 event_to_map(Event)

 -spec event_to_map(developmental_event()) -> map().

 heterochrony_detected(Data)

 -spec heterochrony_detected(map()) ->
 #heterochrony_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 timing_deviation :: float(),
 affected_traits :: [atom()],
 fitness_impact :: float()}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 metamorphosis_triggered(Data)

 -spec metamorphosis_triggered(map()) ->
 #metamorphosis_triggered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 stage_before :: atom(),
 stage_after :: atom(),
 structural_changes ::
 #{neurons_added => non_neg_integer(),
 connections_rewired => non_neg_integer()},
 fitness_before :: float()}.

 plasticity_changed(Data)

 -spec plasticity_changed(map()) ->
 #plasticity_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 plasticity_before :: float(),
 plasticity_after :: float(),
 change_cause :: age | experience | stress | development}.

lc_distribution_events

Behavioral event constructors for Distribution Silo.
Events related to distributed computing, islands, and load balancing. Distribution Silo operates at timescale τ=60.

 Summary

 Types

 distribution_event/0

 timestamp/0

 Functions

 event_to_map(Event)

 island_created(Data)

 island_destroyed(Data)

 load_rebalanced(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 migration_route_established(Data)

 migration_route_severed(Data)

 node_departed(Data)

 node_joined(Data)

 synchronization_completed(Data)

 topology_updated(Data)

 Types

 distribution_event/0

 -type distribution_event() ::
 #island_created{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 island_id :: binary(),
 cluster_id :: binary(),
 initial_population_size :: non_neg_integer(),
 compute_capacity :: float(),
 connected_islands :: [binary()]} |
 #island_destroyed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 island_id :: binary(),
 cluster_id :: binary(),
 destruction_reason :: consolidation | failure | migration,
 final_population :: non_neg_integer(),
 individuals_migrated :: non_neg_integer()} |
 #migration_route_established{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 route_id :: binary(),
 source_island_id :: binary(),
 target_island_id :: binary(),
 bandwidth :: float(),
 latency_ms :: non_neg_integer()} |
 #migration_route_severed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 route_id :: binary(),
 source_island_id :: binary(),
 target_island_id :: binary(),
 severance_reason :: failure | policy | consolidation} |
 #load_rebalanced{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 load_variance_before :: float(),
 load_variance_after :: float(),
 individuals_migrated :: non_neg_integer(),
 rebalance_strategy :: random | fitness_based | load_based} |
 #topology_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 topology_type :: ring | mesh | star | hierarchical,
 island_count :: non_neg_integer(),
 route_count :: non_neg_integer(),
 diameter :: non_neg_integer()} |
 #node_joined{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 node_id :: binary(),
 cluster_id :: binary(),
 compute_capacity :: float(),
 assigned_islands :: [binary()]} |
 #node_departed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 node_id :: binary(),
 cluster_id :: binary(),
 departure_reason :: graceful | failure | eviction,
 affected_islands :: [binary()],
 individuals_orphaned :: non_neg_integer()} |
 #synchronization_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 islands_synchronized :: [binary()],
 sync_duration_ms :: non_neg_integer(),
 conflicts_resolved :: non_neg_integer()}.

 timestamp/0

 -type timestamp() :: integer().

 Functions

 event_to_map(Event)

 -spec event_to_map(distribution_event()) -> map().

 island_created(Data)

 -spec island_created(map()) ->
 #island_created{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 island_id :: binary(),
 cluster_id :: binary(),
 initial_population_size :: non_neg_integer(),
 compute_capacity :: float(),
 connected_islands :: [binary()]}.

 island_destroyed(Data)

 -spec island_destroyed(map()) ->
 #island_destroyed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 island_id :: binary(),
 cluster_id :: binary(),
 destruction_reason :: consolidation | failure | migration,
 final_population :: non_neg_integer(),
 individuals_migrated :: non_neg_integer()}.

 load_rebalanced(Data)

 -spec load_rebalanced(map()) ->
 #load_rebalanced{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 load_variance_before :: float(),
 load_variance_after :: float(),
 individuals_migrated :: non_neg_integer(),
 rebalance_strategy :: random | fitness_based | load_based}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 migration_route_established(Data)

 -spec migration_route_established(map()) ->
 #migration_route_established{meta ::
 #lc_event_meta{event_id ::
 binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 route_id :: binary(),
 source_island_id :: binary(),
 target_island_id :: binary(),
 bandwidth :: float(),
 latency_ms :: non_neg_integer()}.

 migration_route_severed(Data)

 -spec migration_route_severed(map()) ->
 #migration_route_severed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 route_id :: binary(),
 source_island_id :: binary(),
 target_island_id :: binary(),
 severance_reason ::
 failure | policy | consolidation}.

 node_departed(Data)

 -spec node_departed(map()) ->
 #node_departed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 node_id :: binary(),
 cluster_id :: binary(),
 departure_reason :: graceful | failure | eviction,
 affected_islands :: [binary()],
 individuals_orphaned :: non_neg_integer()}.

 node_joined(Data)

 -spec node_joined(map()) ->
 #node_joined{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 node_id :: binary(),
 cluster_id :: binary(),
 compute_capacity :: float(),
 assigned_islands :: [binary()]}.

 synchronization_completed(Data)

 -spec synchronization_completed(map()) ->
 #synchronization_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 islands_synchronized :: [binary()],
 sync_duration_ms :: non_neg_integer(),
 conflicts_resolved :: non_neg_integer()}.

 topology_updated(Data)

 -spec topology_updated(map()) ->
 #topology_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 cluster_id :: binary(),
 topology_type :: ring | mesh | star | hierarchical,
 island_count :: non_neg_integer(),
 route_count :: non_neg_integer(),
 diameter :: non_neg_integer()}.

lc_ecological_events

Behavioral event constructors for Ecological Silo.
Events related to niches, environmental stress, and carrying capacity. Ecological Silo operates at timescale τ=50.

 Summary

 Types

 ecological_event/0

 individual_id/0

 population_id/0

 species_id/0

 timestamp/0

 Functions

 carrying_capacity_changed(Data)

 ecosystem_disrupted(Data)

 event_to_map(Event)

 extinction_risk_elevated(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 niche_occupied(Data)

 niche_vacated(Data)

 resource_abundance_detected(Data)

 resource_scarcity_detected(Data)

 stress_applied(Data)

 stress_relieved(Data)

 Types

 ecological_event/0

 -type ecological_event() ::
 #niche_occupied{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 niche_id :: binary(),
 occupant_id :: individual_id(),
 population_id :: population_id(),
 niche_fitness_range :: {float(), float()},
 competition_level :: float()} |
 #niche_vacated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 niche_id :: binary(),
 vacating_id :: individual_id() | undefined,
 population_id :: population_id(),
 vacation_reason :: extinction | migration | outcompeted} |
 #stress_applied{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 stress_type :: resource | environmental | competitive | random,
 stress_intensity :: float(),
 affected_individuals :: non_neg_integer(),
 expected_duration :: non_neg_integer() | indefinite} |
 #stress_relieved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 stress_type :: resource | environmental | competitive | random,
 previous_intensity :: float(),
 relief_cause :: adaptation | environment_change | intervention} |
 #carrying_capacity_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 capacity_before :: non_neg_integer(),
 capacity_after :: non_neg_integer(),
 change_cause :: resource_availability | environmental | policy} |
 #resource_scarcity_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 resource_type :: compute | memory | evaluation_time,
 availability :: float(),
 threshold :: float(),
 affected_ratio :: float()} |
 #resource_abundance_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 resource_type :: compute | memory | evaluation_time,
 availability :: float(),
 surplus_ratio :: float()} |
 #extinction_risk_elevated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 risk_level :: float(),
 risk_factors :: [atom()],
 population_size :: non_neg_integer()} |
 #ecosystem_disrupted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 disruption_type :: catastrophe | invasion | collapse,
 disruption_severity :: float(),
 species_affected :: non_neg_integer(),
 recovery_estimate_generations :: non_neg_integer()}.

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 species_id/0

 -type species_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 carrying_capacity_changed(Data)

 -spec carrying_capacity_changed(map()) ->
 #carrying_capacity_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 capacity_before :: non_neg_integer(),
 capacity_after :: non_neg_integer(),
 change_cause ::
 resource_availability |
 environmental | policy}.

 ecosystem_disrupted(Data)

 -spec ecosystem_disrupted(map()) ->
 #ecosystem_disrupted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 disruption_type :: catastrophe | invasion | collapse,
 disruption_severity :: float(),
 species_affected :: non_neg_integer(),
 recovery_estimate_generations :: non_neg_integer()}.

 event_to_map(Event)

 -spec event_to_map(ecological_event()) -> map().

 extinction_risk_elevated(Data)

 -spec extinction_risk_elevated(map()) ->
 #extinction_risk_elevated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 risk_level :: float(),
 risk_factors :: [atom()],
 population_size :: non_neg_integer()}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 niche_occupied(Data)

 -spec niche_occupied(map()) ->
 #niche_occupied{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 niche_id :: binary(),
 occupant_id :: individual_id(),
 population_id :: population_id(),
 niche_fitness_range :: {float(), float()},
 competition_level :: float()}.

 niche_vacated(Data)

 -spec niche_vacated(map()) ->
 #niche_vacated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 niche_id :: binary(),
 vacating_id :: individual_id() | undefined,
 population_id :: population_id(),
 vacation_reason :: extinction | migration | outcompeted}.

 resource_abundance_detected(Data)

 -spec resource_abundance_detected(map()) ->
 #resource_abundance_detected{meta ::
 #lc_event_meta{event_id ::
 binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 resource_type ::
 compute | memory | evaluation_time,
 availability :: float(),
 surplus_ratio :: float()}.

 resource_scarcity_detected(Data)

 -spec resource_scarcity_detected(map()) ->
 #resource_scarcity_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 resource_type ::
 compute | memory | evaluation_time,
 availability :: float(),
 threshold :: float(),
 affected_ratio :: float()}.

 stress_applied(Data)

 -spec stress_applied(map()) ->
 #stress_applied{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 stress_type :: resource | environmental | competitive | random,
 stress_intensity :: float(),
 affected_individuals :: non_neg_integer(),
 expected_duration :: non_neg_integer() | indefinite}.

 stress_relieved(Data)

 -spec stress_relieved(map()) ->
 #stress_relieved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 stress_type :: resource | environmental | competitive | random,
 previous_intensity :: float(),
 relief_cause :: adaptation | environment_change | intervention}.

lc_economic_events

Behavioral event constructors for Economic Silo.
Events related to compute budgets, resource economics, and wealth. Economic Silo operates at timescale τ=20.

 Summary

 Types

 economic_event/0

 individual_id/0

 population_id/0

 timestamp/0

 Functions

 bankruptcy_declared(Data)

 budget_allocated(Data)

 budget_exhausted(Data)

 compute_traded(Data)

 dividend_distributed(Data)

 event_to_map(Event)

 inflation_adjusted(Data)

 investment_made(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 wealth_redistributed(Data)

 Types

 economic_event/0

 -type economic_event() ::
 #budget_allocated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 amount :: float(),
 allocation_type :: initial | bonus | redistribution} |
 #budget_exhausted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 initial_budget :: float(),
 expenditure_history :: [float()],
 exhaustion_cause :: evaluation | mutation | reproduction} |
 #compute_traded{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 seller_id :: individual_id(),
 buyer_id :: individual_id(),
 amount :: float(),
 price :: float(),
 trade_reason :: scarcity | opportunity | altruism} |
 #wealth_redistributed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 gini_before :: float(),
 gini_after :: float(),
 redistribution_amount :: float(),
 beneficiaries_count :: non_neg_integer(),
 redistribution_method :: progressive_tax | universal_basic | merit_bonus} |
 #bankruptcy_declared{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 final_balance :: float(),
 debt_amount :: float(),
 consequence :: removal | bailout | restructure} |
 #investment_made{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 investor_id :: individual_id(),
 target_id :: individual_id() | population_id(),
 amount :: float(),
 expected_return :: float(),
 investment_type :: offspring | coalition | exploration} |
 #dividend_distributed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 investment_id :: binary(),
 investor_id :: individual_id(),
 return_amount :: float(),
 roi_percentage :: float()} |
 #inflation_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 inflation_rate :: float(),
 price_level_before :: float(),
 price_level_after :: float(),
 adjustment_trigger :: scheduled | market_pressure | policy}.

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 bankruptcy_declared(Data)

 -spec bankruptcy_declared(map()) ->
 #bankruptcy_declared{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 final_balance :: float(),
 debt_amount :: float(),
 consequence :: removal | bailout | restructure}.

 budget_allocated(Data)

 -spec budget_allocated(map()) ->
 #budget_allocated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 amount :: float(),
 allocation_type :: initial | bonus | redistribution}.

 budget_exhausted(Data)

 -spec budget_exhausted(map()) ->
 #budget_exhausted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 initial_budget :: float(),
 expenditure_history :: [float()],
 exhaustion_cause :: evaluation | mutation | reproduction}.

 compute_traded(Data)

 -spec compute_traded(map()) ->
 #compute_traded{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 seller_id :: individual_id(),
 buyer_id :: individual_id(),
 amount :: float(),
 price :: float(),
 trade_reason :: scarcity | opportunity | altruism}.

 dividend_distributed(Data)

 -spec dividend_distributed(map()) ->
 #dividend_distributed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 investment_id :: binary(),
 investor_id :: individual_id(),
 return_amount :: float(),
 roi_percentage :: float()}.

 event_to_map(Event)

 -spec event_to_map(economic_event()) -> map().

 inflation_adjusted(Data)

 -spec inflation_adjusted(map()) ->
 #inflation_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 inflation_rate :: float(),
 price_level_before :: float(),
 price_level_after :: float(),
 adjustment_trigger ::
 scheduled | market_pressure | policy}.

 investment_made(Data)

 -spec investment_made(map()) ->
 #investment_made{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 investor_id :: individual_id(),
 target_id :: individual_id() | population_id(),
 amount :: float(),
 expected_return :: float(),
 investment_type :: offspring | coalition | exploration}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 wealth_redistributed(Data)

 -spec wealth_redistributed(map()) ->
 #wealth_redistributed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 gini_before :: float(),
 gini_after :: float(),
 redistribution_amount :: float(),
 beneficiaries_count :: non_neg_integer(),
 redistribution_method ::
 progressive_tax | universal_basic | merit_bonus}.

lc_ets_utils

Shared ETS utilities for Liquid Conglomerate Silos.
Provides a consistent pattern for silos that need persistent collections: Competitive Silo: opponents, matches, elo_ratings Social Silo: reputations, coalitions, interactions Cultural Silo: innovations, traditions, memes Communication Silo: vocabulary, dialects, messages
[bookmark: Usage_Pattern]Usage Pattern
In init/1, create tables for your silo:
EtsTables = lc_ets_utils:create_tables(competitive, Realm, TableSpecs)
In normal operation, use insert/lookup/delete:
lc_ets_utils:insert(Table, Key, Value) {ok, Data} = lc_ets_utils:lookup(Table, Key)
Cleanup when silo terminates:
lc_ets_utils:delete_tables(EtsTables)
[bookmark: Time-Based_Operations]Time-Based Operations
All entries are timestamped automatically for: Age-based pruning (remove stale entries) Recency queries (get most recent N entries) Decay calculations (reduce values over time)

 Summary

 Types

 table_name/0

 table_ref/0

 table_spec/0

 timestamped_entry/0

 Functions

 all(Table)

 Get all entries as a list of {Key, Value, Timestamp} tuples.

 all_keys(Table)

 Get all keys in the table.

 avg_field(Table, FieldFn)

 Average a numeric field from all values.

 count(Table)

 Count entries in the table.

 create_tables(SiloType, Realm, TableSpecs)

 Create ETS tables for a silo with consistent naming.

 delete(Table, Key)

 Delete an entry by key.

 delete_tables(Tables)

 Delete all ETS tables in the map.

 filter(Pred, Table)

 Filter entries matching a predicate.

 fold(Fun, InitAcc, Table)

 Fold over all entries.

 foreach(Fun, Table)

 Execute a function for each entry (side effects).

 get_oldest(Table, N)

 Get the N oldest entries.

 get_recent(Table, N)

 Get the N most recent entries.

 insert(Table, Key, Value)

 Insert a key-value pair with automatic timestamp.

 insert_with_timestamp(Table, Key, Value, Timestamp)

 Insert with explicit timestamp (for time-travel or replay).

 lookup(Table, Key)

 Lookup a value by key. Returns {ok, Value} or not_found.

 lookup_with_timestamp(Table, Key)

 Lookup a value with its timestamp.

 max_field(Table, FieldFn)

 Find maximum value of a numeric field.

 min_field(Table, FieldFn)

 Find minimum value of a numeric field.

 prune_by_age(Table, MaxAgeMs)

 Remove entries older than MaxAgeMs milliseconds.

 prune_by_count(Table, MaxCount)

 Remove oldest entries to keep table at MaxCount size.

 sum_field(Table, FieldFn)

 Sum a numeric field from all values.

 table_name(SiloType, Realm, TableName)

 Generate consistent table name atom.

 update(Table, Key, UpdateFn)

 Update a value using a function.

 Types

 table_name/0

 -type table_name() :: atom().

 table_ref/0

 -type table_ref() :: ets:tid() | atom().

 table_spec/0

 -type table_spec() :: {table_name(), [ets:table_type() | {atom(), term()}]}.

 timestamped_entry/0

 -type timestamped_entry() :: {Key :: term(), Value :: term(), Timestamp :: integer()}.

 Functions

 all(Table)

 -spec all(Table :: table_ref()) -> [timestamped_entry()].

Get all entries as a list of {Key, Value, Timestamp} tuples.

 all_keys(Table)

 -spec all_keys(Table :: table_ref()) -> [term()].

Get all keys in the table.

 avg_field(Table, FieldFn)

 -spec avg_field(Table :: table_ref(), FieldFn :: fun((term()) -> number())) -> number() | undefined.

Average a numeric field from all values.

 count(Table)

 -spec count(Table :: table_ref()) -> non_neg_integer().

Count entries in the table.

 create_tables(SiloType, Realm, TableSpecs)

 -spec create_tables(SiloType :: atom(), Realm :: binary(), TableSpecs :: [table_spec()]) ->
 #{table_name() => table_ref()}.

Create ETS tables for a silo with consistent naming.
Tables are named: {SiloType}_{Realm}_{TableName} Example: competitive_realm1_opponents
Returns a map of table_name => ets:tid().

 delete(Table, Key)

 -spec delete(Table :: table_ref(), Key :: term()) -> true.

Delete an entry by key.

 delete_tables(Tables)

 -spec delete_tables(Tables :: #{table_name() => table_ref()}) -> ok.

Delete all ETS tables in the map.

 filter(Pred, Table)

 -spec filter(Pred :: fun((timestamped_entry()) -> boolean()), Table :: table_ref()) ->
 [timestamped_entry()].

Filter entries matching a predicate.

 fold(Fun, InitAcc, Table)

 -spec fold(Fun :: fun((timestamped_entry(), Acc) -> Acc), InitAcc :: Acc, Table :: table_ref()) -> Acc
 when Acc :: term().

Fold over all entries.

 foreach(Fun, Table)

 -spec foreach(Fun :: fun((timestamped_entry()) -> any()), Table :: table_ref()) -> ok.

Execute a function for each entry (side effects).

 get_oldest(Table, N)

 -spec get_oldest(Table :: table_ref(), N :: pos_integer()) -> [timestamped_entry()].

Get the N oldest entries.

 get_recent(Table, N)

 -spec get_recent(Table :: table_ref(), N :: pos_integer()) -> [timestamped_entry()].

Get the N most recent entries.

 insert(Table, Key, Value)

 -spec insert(Table :: table_ref(), Key :: term(), Value :: term()) -> true.

Insert a key-value pair with automatic timestamp.

 insert_with_timestamp(Table, Key, Value, Timestamp)

 -spec insert_with_timestamp(Table :: table_ref(),
 Key :: term(),
 Value :: term(),
 Timestamp :: integer()) ->
 true.

Insert with explicit timestamp (for time-travel or replay).

 lookup(Table, Key)

 -spec lookup(Table :: table_ref(), Key :: term()) -> {ok, term()} | not_found.

Lookup a value by key. Returns {ok, Value} or not_found.

 lookup_with_timestamp(Table, Key)

 -spec lookup_with_timestamp(Table :: table_ref(), Key :: term()) -> {ok, term(), integer()} | not_found.

Lookup a value with its timestamp.

 max_field(Table, FieldFn)

 -spec max_field(Table :: table_ref(), FieldFn :: fun((term()) -> number())) -> number() | undefined.

Find maximum value of a numeric field.

 min_field(Table, FieldFn)

 -spec min_field(Table :: table_ref(), FieldFn :: fun((term()) -> number())) -> number() | undefined.

Find minimum value of a numeric field.

 prune_by_age(Table, MaxAgeMs)

 -spec prune_by_age(Table :: table_ref(), MaxAgeMs :: pos_integer()) -> non_neg_integer().

Remove entries older than MaxAgeMs milliseconds.
Returns the number of entries deleted.

 prune_by_count(Table, MaxCount)

 -spec prune_by_count(Table :: table_ref(), MaxCount :: pos_integer()) -> non_neg_integer().

Remove oldest entries to keep table at MaxCount size.
Returns the number of entries deleted.

 sum_field(Table, FieldFn)

 -spec sum_field(Table :: table_ref(), FieldFn :: fun((term()) -> number())) -> number().

Sum a numeric field from all values.
FieldFn extracts the numeric field from each value.

 table_name(SiloType, Realm, TableName)

 -spec table_name(SiloType :: atom(), Realm :: binary(), TableName :: atom()) -> atom().

Generate consistent table name atom.

 update(Table, Key, UpdateFn)

 -spec update(Table :: table_ref(), Key :: term(), UpdateFn :: fun((term()) -> term())) -> ok.

Update a value using a function.
UpdateFn(OldValue) -> NewValue If key doesn't exist, UpdateFn(undefined) is called.

lc_event_emitter

Zero-config event emitter for Liquid Conglomerate silos.
Provides fire-and-forget event emission that automatically uses esdb_lineage_backend when available. If the backend is not installed, events are silently dropped (no-op).
Auto-detects if macula_neuroevolution_esdb is available. If the esdb_lineage_backend module exists, events are persisted. Otherwise, emit/3 returns ok immediately (no-op).
Event emission never blocks the silo. Backend state is cached in persistent_term for efficiency. The backend uses spawn for async writes and errors are logged, not propagated.
Events are routed to streams using the pattern: lc-REALM.SILO_TYPE

 Summary

 Functions

 emit(SiloType, EventType, Payload)

 Emit a single LC silo event (fire-and-forget). Uses the default realm from the event payload or "default".

 emit(SiloType, EventType, Realm, Payload)

 Emit a single LC silo event with explicit realm (fire-and-forget).

 emit_batch(Events)

 Emit a batch of LC silo events (fire-and-forget). Each event map should have keys: silo, event_type, realm (optional), payload.

 get_backend_state()

 Get the cached backend state.

 is_backend_available()

 Check if the event store backend is available.

 Functions

 emit(SiloType, EventType, Payload)

 -spec emit(SiloType, EventType, Payload) -> ok
 when SiloType :: atom(), EventType :: atom(), Payload :: map().

Emit a single LC silo event (fire-and-forget). Uses the default realm from the event payload or "default".

 emit(SiloType, EventType, Realm, Payload)

 -spec emit(SiloType, EventType, Realm, Payload) -> ok
 when SiloType :: atom(), EventType :: atom(), Realm :: binary(), Payload :: map().

Emit a single LC silo event with explicit realm (fire-and-forget).

 emit_batch(Events)

 -spec emit_batch(Events) -> ok when Events :: [map()].

Emit a batch of LC silo events (fire-and-forget). Each event map should have keys: silo, event_type, realm (optional), payload.

 get_backend_state()

 -spec get_backend_state() -> term() | undefined.

Get the cached backend state.
Initializes the backend on first call if available. Returns undefined if backend is not available.

 is_backend_available()

 -spec is_backend_available() -> boolean().

Check if the event store backend is available.
Result is cached after first check.

lc_l0_morphology

L0 Reactive Layer Morphology for Liquid Conglomerate.
The L0 layer operates at the lowest temporal abstraction (tau=10). It receives tactical signals from L1 plus emergent metrics from the model under training, and outputs the final hyperparameters.
[bookmark: Input_Sensors]Input Sensors
Fixed inputs (always connected, from L1): - l0_from_l1_signal_1 through l0_from_l1_signal_5
Emergent metric sensors (available for topology evolution): - convergence_rate, current_mutation_rate, survival_rate, etc.
The emergent sensors are NOT initially connected. Topology evolution can add them via add_sensor/1 when the network determines they are useful for hyperparameter control.
[bookmark: Output_Actuators]Output Actuators
Final hyperparameters for the model under training: - mutation_rate: [0.01, 0.5] - mutation_strength: [0.05, 1.0] - selection_ratio: [0.1, 0.5] - add_node_rate: [0.0, 0.1] - add_connection_rate: [0.0, 0.2]

 Summary

 Functions

 get_actuators(_)

 Get actuators for L0 reactive layer.

 get_emergent_sensors()

 Get emergent metric sensors.

 get_fixed_sensors()

 Get fixed sensors that receive L1 tactical outputs.

 get_sensors(_)

 Get all sensors for L0 reactive layer.

 Functions

 get_actuators(_)

 -spec get_actuators(lc_l0) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get actuators for L0 reactive layer.
Returns actuators that output the final hyperparameters for the model under training. Each output is scaled to its valid range.

 get_emergent_sensors()

 -spec get_emergent_sensors() ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get emergent metric sensors.
These sensors observe metrics from the model under training. They are available for topology evolution to add, but NOT initially connected. This allows the LC to evolve which emergent signals are useful.

 get_fixed_sensors()

 -spec get_fixed_sensors() ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get fixed sensors that receive L1 tactical outputs.
These sensors are always connected in new agents.

 get_sensors(_)

 -spec get_sensors(lc_l0) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get all sensors for L0 reactive layer.
Returns both fixed sensors (from L1) and emergent sensors (from model). Fixed sensors are always connected initially. Emergent sensors are available but not initially connected - topology evolution can add them via add_sensor/1.

lc_l1_controller

L1 Hyperparameter Controller for Liquid Conglomerate Silos.
Part of the Liquid Conglomerate v2 architecture. This module implements the L1 tactical layer that learns to tune L0's hyperparameters based on L0's performance metrics.
[bookmark: Architecture]Architecture
L1 is itself a TWEANN that: - Observes L0 performance over τ_L1 time windows - Outputs adjustments (deltas) to L0's hyperparameters - Evolves slower than L0 to provide a stable adaptation platform
[bookmark: Hyperparameters_Tuned_(by_Silo)]Hyperparameters Tuned (by Silo)
Resource Silo: - memory_high_threshold, pressure_smoothing_alpha
Task Silo: - mutation_rate_min/max, topology_mutation_boost, exploitation_vs_exploration - archive_threshold_min/max, archive_diversity_weight, archive_recency_decay
Distribution Silo: - migration_cooldown_ms, load_imbalance_threshold
[bookmark: Learning_Mechanism]Learning Mechanism
L1 learns through meta-evolution: 1. Population of L1 TWEANNs (5-10 individuals) 2. Each L1 variant manages L0 for N τ_L1 cycles 3. Fitness = how well L0 performed under that hyperparameter regime 4. Selection + mutation + crossover produces next generation
[bookmark: Usage]Usage
%% Create L1 controller for a silo Config = #{ silo_type => resource, morphology_module => resource_l0_morphology, tau_l1 => 30000, % 30 seconds l0_hyperparameters => resource_l0_morphology:l0_hyperparameters() }, {ok, Pid} = lc_l1_controller:start_link(Config),
%% Update with L0 performance (called every τ_L0) lc_l1_controller:observe_l0_performance(Pid, L0Metrics),
%% Get current hyperparameter adjustments for L0 Deltas = lc_l1_controller:get_hyperparameter_deltas(Pid),

 Summary

 Functions

 apply_deltas_to_hyperparameters(BaseHyperparams, Deltas)

 Apply deltas to base hyperparameters (utility function).

 get_current_hyperparameters(Pid)

 Get current absolute hyperparameters for L0.

 get_hyperparameter_deltas(Pid)

 Get current hyperparameter adjustment deltas.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 observe_l0_performance(Pid, L0Metrics)

 Observe L0 performance metrics.

 set_l2_hyperparameters(Pid, L1Hyperparams)

 Set L1's own hyperparameters (from L2).

 start_link(Config)

 Start L1 controller with configuration.

 terminate(Reason, State)

 Functions

 apply_deltas_to_hyperparameters(BaseHyperparams, Deltas)

 -spec apply_deltas_to_hyperparameters(map(), map()) -> map().

Apply deltas to base hyperparameters (utility function).

 get_current_hyperparameters(Pid)

 -spec get_current_hyperparameters(pid()) -> map().

Get current absolute hyperparameters for L0.

 get_hyperparameter_deltas(Pid)

 -spec get_hyperparameter_deltas(pid()) -> map().

Get current hyperparameter adjustment deltas.
Returns map of {hyperparameter_name => delta_value}

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 observe_l0_performance(Pid, L0Metrics)

 -spec observe_l0_performance(pid(), map()) -> ok.

Observe L0 performance metrics.
Called every τ_L0 with L0's performance metrics (reward, sensors, etc.)

 set_l2_hyperparameters(Pid, L1Hyperparams)

 -spec set_l2_hyperparameters(pid(), map()) -> ok.

Set L1's own hyperparameters (from L2).

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start L1 controller with configuration.

 terminate(Reason, State)

lc_l1_morphology

L1 Tactical Layer Morphology for Liquid Conglomerate.
The L1 layer operates at medium temporal abstraction (tau=50). It receives strategic signals from L2 and outputs tactical signals that feed into the L0 reactive layer.
[bookmark: Input_Sensors]Input Sensors
Strategic signals from L2 outputs: - l1_from_l2_signal_1 through l1_from_l2_signal_4
These inputs carry the strategic context computed by L2.
[bookmark: Output_Actuators]Output Actuators
Tactical signals (fed to L0 inputs): - tactical_signal_1 through tactical_signal_5
Five outputs provide L0 with sufficient tactical context while matching the expected input structure of the reactive layer.

 Summary

 Functions

 get_actuators(_)

 Get actuators for L1 tactical layer.

 get_sensors(_)

 Get sensors for L1 tactical layer.

 Functions

 get_actuators(_)

 -spec get_actuators(lc_l1) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get actuators for L1 tactical layer.
Returns actuators that output tactical signals. These signals become the primary inputs to the L0 reactive layer.
Five outputs are provided to give L0 sufficient tactical context for computing final hyperparameters.

 get_sensors(_)

 -spec get_sensors(lc_l1) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get sensors for L1 tactical layer.
Returns sensors that receive L2's strategic outputs. All sensors are always connected since they carry essential information from L2.

lc_l2_controller

L2 Strategic Controller for Liquid Conglomerate Silos.
Part of the Liquid Conglomerate v2 architecture. This module implements the L2 strategic layer that learns to tune L1's hyperparameters based on long-term L0 performance.
[bookmark: Architecture]Architecture
L2 is the slowest-evolving layer that: - Observes L0 performance over many τ_L1 cycles - Outputs adjustments to L1's hyperparameters - Provides a stable strategic platform for the adaptation hierarchy
[bookmark: Learning_Mechanism]Learning Mechanism
L2 learns through slow evolution or Bayesian optimization: 1. Tiny population (3-5 L2 variants) or single individual with exploration 2. Each L2 variant's settings tested over many L1 cycles 3. Fitness = long-term cumulative L0 performance 4. Very slow evolution (τ_L2 = 5 min for Resource, 10000 evals for Task)
[bookmark: Usage]Usage
%% Create L2 controller for a silo Config = #{ silo_type => task, morphology_module => task_l0_morphology, tau_l2 => 300000, % 5 minutes l1_hyperparameters => task_l0_morphology:l1_hyperparameters() }, {ok, Pid} = lc_l2_controller:start_link(Config),
%% Update with L1 performance (called every τ_L1) lc_l2_controller:observe_l1_performance(Pid, L1Metrics),
%% Get current L1 hyperparameter settings L1Hyperparams = lc_l2_controller:get_l1_hyperparameters(Pid),

 Summary

 Functions

 get_l1_hyperparameters(Pid)

 Get current L1 hyperparameter settings.

 get_performance_summary(Pid)

 Get performance summary for diagnostics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 observe_l1_performance(Pid, L1Metrics)

 Observe L1 performance metrics.

 start_link(Config)

 Start L2 controller with configuration.

 terminate(Reason, State)

 Functions

 get_l1_hyperparameters(Pid)

 -spec get_l1_hyperparameters(pid()) -> map().

Get current L1 hyperparameter settings.

 get_performance_summary(Pid)

 -spec get_performance_summary(pid()) -> map().

Get performance summary for diagnostics.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 observe_l1_performance(Pid, L1Metrics)

 -spec observe_l1_performance(pid(), map()) -> ok.

Observe L1 performance metrics.
Called every τ_L1 with L1's performance summary

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start L2 controller with configuration.

 terminate(Reason, State)

lc_l2_morphology

L2 Strategic Layer Morphology for Liquid Conglomerate.
The L2 layer operates at the highest level of temporal abstraction (tau=100). It observes long-term evolution metrics and outputs strategic signals that feed into the L1 tactical layer.
[bookmark: Input_Sensors]Input Sensors
Evolution metrics from the neuroevolution process: - best_fitness: Current best fitness in population - avg_fitness: Average population fitness - fitness_improvement: Delta from previous generation - fitness_variance: Population fitness variance - stagnation_counter: Generations without improvement - generation_progress: Current gen / max gen ratio - population_diversity: Genotype diversity measure - species_count: Number of active species
[bookmark: Output_Actuators]Output Actuators
Strategic signals (fed to L1 inputs): - strategic_signal_1 through strategic_signal_4
These outputs have no predefined semantics - the network learns what information to pass to L1 for effective hyperparameter control.

 Summary

 Functions

 get_actuators(_)

 Get actuators for L2 strategic layer.

 get_sensors(_)

 Get sensors for L2 strategic layer.

 Functions

 get_actuators(_)

 -spec get_actuators(lc_l2) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get actuators for L2 strategic layer.
Returns actuators that output strategic signals. These signals become the inputs to the L1 tactical layer.
The number of outputs (4) was chosen to provide sufficient capacity for strategic information while keeping the L1 input size manageable.

 get_sensors(_)

 -spec get_sensors(lc_l2) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get sensors for L2 strategic layer.
Returns sensors that observe evolution metrics. All sensors are initially connected to provide full observability of the evolution process.

lc_morphological_events

Behavioral event constructors for Morphological Silo.
Events related to network complexity, structure, and efficiency. Morphological Silo operates at timescale τ=30.

 Summary

 Types

 generation/0

 individual_id/0

 morphological_event/0

 timestamp/0

 Functions

 bloat_detected(Data)

 complexity_measured(Data)

 efficiency_improved(Data)

 event_to_map(Event)

 growth_occurred(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 modularity_detected(Data)

 pruning_triggered(Data)

 symmetry_broken(Data)

 topology_milestone(Data)

 Types

 generation/0

 -type generation() :: non_neg_integer().

 individual_id/0

 -type individual_id() :: binary().

 morphological_event/0

 -type morphological_event() ::
 #complexity_measured{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_count :: non_neg_integer(),
 connection_count :: non_neg_integer(),
 parameter_count :: non_neg_integer(),
 complexity_score :: float()} |
 #pruning_triggered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neurons_removed :: non_neg_integer(),
 connections_removed :: non_neg_integer(),
 complexity_before :: float(),
 complexity_after :: float(),
 fitness_impact :: float(),
 pruning_criterion :: unused | weak | redundant} |
 #growth_occurred{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neurons_added :: non_neg_integer(),
 connections_added :: non_neg_integer(),
 growth_trigger :: mutation | development | learning,
 complexity_before :: float(),
 complexity_after :: float()} |
 #modularity_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_count :: non_neg_integer(),
 modularity_score :: float(),
 module_sizes :: [non_neg_integer()],
 inter_module_connectivity :: float()} |
 #efficiency_improved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 fitness_before :: float(),
 fitness_after :: float(),
 complexity_before :: float(),
 complexity_after :: float(),
 efficiency_ratio_before :: float(),
 efficiency_ratio_after :: float()} |
 #bloat_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 complexity :: float(),
 fitness :: float(),
 expected_complexity :: float(),
 bloat_ratio :: float()} |
 #symmetry_broken{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 symmetry_before :: float(),
 symmetry_after :: float(),
 breaking_cause :: mutation | pruning | growth} |
 #topology_milestone{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 milestone_type :: first_hidden | multi_layer | recurrent | modular,
 neuron_count :: non_neg_integer(),
 connection_count :: non_neg_integer(),
 generation :: generation()}.

 timestamp/0

 -type timestamp() :: integer().

 Functions

 bloat_detected(Data)

 -spec bloat_detected(map()) ->
 #bloat_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 complexity :: float(),
 fitness :: float(),
 expected_complexity :: float(),
 bloat_ratio :: float()}.

 complexity_measured(Data)

 -spec complexity_measured(map()) ->
 #complexity_measured{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_count :: non_neg_integer(),
 connection_count :: non_neg_integer(),
 parameter_count :: non_neg_integer(),
 complexity_score :: float()}.

 efficiency_improved(Data)

 -spec efficiency_improved(map()) ->
 #efficiency_improved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 fitness_before :: float(),
 fitness_after :: float(),
 complexity_before :: float(),
 complexity_after :: float(),
 efficiency_ratio_before :: float(),
 efficiency_ratio_after :: float()}.

 event_to_map(Event)

 -spec event_to_map(morphological_event()) -> map().

 growth_occurred(Data)

 -spec growth_occurred(map()) ->
 #growth_occurred{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neurons_added :: non_neg_integer(),
 connections_added :: non_neg_integer(),
 growth_trigger :: mutation | development | learning,
 complexity_before :: float(),
 complexity_after :: float()}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 modularity_detected(Data)

 -spec modularity_detected(map()) ->
 #modularity_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_count :: non_neg_integer(),
 modularity_score :: float(),
 module_sizes :: [non_neg_integer()],
 inter_module_connectivity :: float()}.

 pruning_triggered(Data)

 -spec pruning_triggered(map()) ->
 #pruning_triggered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neurons_removed :: non_neg_integer(),
 connections_removed :: non_neg_integer(),
 complexity_before :: float(),
 complexity_after :: float(),
 fitness_impact :: float(),
 pruning_criterion :: unused | weak | redundant}.

 symmetry_broken(Data)

 -spec symmetry_broken(map()) ->
 #symmetry_broken{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 symmetry_before :: float(),
 symmetry_after :: float(),
 breaking_cause :: mutation | pruning | growth}.

 topology_milestone(Data)

 -spec topology_milestone(map()) ->
 #topology_milestone{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 milestone_type ::
 first_hidden | multi_layer | recurrent | modular,
 neuron_count :: non_neg_integer(),
 connection_count :: non_neg_integer(),
 generation :: generation()}.

lc_morphologies

Registration module for Liquid Conglomerate morphologies.
This module provides functions to register all LC morphologies with the morphology_registry. Call register_all/0 during application startup.
[bookmark: Morphology_Hierarchy]Morphology Hierarchy
The LC uses three chained LTC networks:
L2 (Strategic, tau=100): - Inputs: Evolution metrics (fitness, stagnation, diversity, etc.) - Outputs: 4 strategic signals
L1 (Tactical, tau=50): - Inputs: L2's 4 strategic signals - Outputs: 5 tactical signals
L0 (Reactive, tau=10): - Inputs: L1's 5 tactical signals + emergent metrics (evolvable) - Outputs: Final hyperparameters (mutation_rate, selection_ratio, etc.)

 Summary

 Functions

 list_morphologies()

 List all LC morphology names.

 register_all()

 Register all LC morphologies with the morphology registry.

 unregister_all()

 Unregister all LC morphologies.

 Functions

 list_morphologies()

 -spec list_morphologies() -> [atom()].

List all LC morphology names.

 register_all()

 -spec register_all() -> ok.

Register all LC morphologies with the morphology registry.
This should be called during application startup, after macula_tweann is started and morphology_registry is available.

 unregister_all()

 -spec unregister_all() -> ok.

Unregister all LC morphologies.
Useful for testing or cleanup.

lc_population

LC Population Manager - Evolves Liquid Conglomerate controller TWEANNs.
This gen_server manages a population of LC controller neural networks that compete to be the active controller. Each controller is evaluated over a "trial period" (e.g., 5000 evaluations) and rewarded based on:
1. Fitness improvement velocity (faster learning = better) 2. Training efficiency (fewer evaluations to reach target) 3. Avoiding premature convergence (not getting stuck at low fitness) 4. Resource efficiency (low memory/CPU usage)
[bookmark: Evolution_Strategy]Evolution Strategy
- Population of N LC TWEANNs (default: 10) - Each generation: trial period for each controller - Active controller is the champion from last generation - After each trial, compute reward using lc_reward:compute_trial_reward/1 - Select top 50% as parents, mutate to create offspring - Repeat
[bookmark: Time_Constants]Time Constants
- Trial period: 5000 evaluations (tau_l0 * 5) - Generation: N * trial_period evaluations - Champion persistence: 3 generations (give good controllers time)

 Summary

 Functions

 get_active_controller(Pid)

 Get the active LC controller's recommendations. This is called by task_silo to get hyperparameters from the LC TWEANN.

 get_recommendations(Pid, SensorInputs)

 Get hyperparameter recommendations from the active LC TWEANN. Sensors are fed to the network, outputs are scaled to hyperparameter ranges.

 get_state(Pid)

 Get current population state for monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_metrics(Pid, Metrics)

 Report evolution metrics for reward computation. Called by task_silo after each cohort/generation.

 reset(Pid)

 Reset population (start fresh evolution).

 start_link()

 Start LC population manager with default config.

 start_link(Config)

 Start LC population manager with custom config.

 terminate(Reason, State)

 Functions

 get_active_controller(Pid)

 -spec get_active_controller(pid()) -> {ok, pid()} | {error, no_controller}.

Get the active LC controller's recommendations. This is called by task_silo to get hyperparameters from the LC TWEANN.

 get_recommendations(Pid, SensorInputs)

 -spec get_recommendations(pid(), map()) -> map().

Get hyperparameter recommendations from the active LC TWEANN. Sensors are fed to the network, outputs are scaled to hyperparameter ranges.

 get_state(Pid)

 -spec get_state(pid()) -> map().

Get current population state for monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_metrics(Pid, Metrics)

 -spec report_metrics(pid(), map()) -> ok.

Report evolution metrics for reward computation. Called by task_silo after each cohort/generation.

 reset(Pid)

 -spec reset(pid()) -> ok.

Reset population (start fresh evolution).

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start LC population manager with default config.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start LC population manager with custom config.

 terminate(Reason, State)

lc_regulatory_events

Behavioral event constructors for Regulatory Silo.
Events related to gene expression and module activation. Regulatory Silo operates at timescale τ=45.

 Summary

 Types

 individual_id/0

 regulatory_event/0

 timestamp/0

 Functions

 context_switched(Data)

 dormancy_entered(Data)

 dormancy_exited(Data)

 event_to_map(Event)

 gene_expressed(Data)

 gene_silenced(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 module_activated(Data)

 module_deactivated(Data)

 regulatory_network_updated(Data)

 Types

 individual_id/0

 -type individual_id() :: binary().

 regulatory_event/0

 -type regulatory_event() ::
 #gene_expressed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 gene_id :: binary(),
 expression_level :: float(),
 trigger :: environmental | developmental | conditional,
 context :: term()} |
 #gene_silenced{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 gene_id :: binary(),
 silencing_cause :: regulatory | epigenetic | conditional,
 duration :: temporary | permanent} |
 #module_activated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_id :: binary(),
 activation_context :: term(),
 neurons_involved :: non_neg_integer(),
 switching_cost :: float()} |
 #module_deactivated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_id :: binary(),
 deactivation_reason :: context_change | resource_constraint | completion,
 active_duration_ms :: non_neg_integer()} |
 #context_switched{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 context_before :: term(),
 context_after :: term(),
 genes_affected :: [binary()],
 modules_toggled :: non_neg_integer()} |
 #regulatory_network_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 regulators_added :: non_neg_integer(),
 regulators_removed :: non_neg_integer(),
 network_complexity :: float()} |
 #dormancy_entered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 dormant_capabilities :: [binary()],
 dormancy_trigger :: resource_constraint | environmental | developmental,
 maintenance_cost :: float()} |
 #dormancy_exited{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 reactivated_capabilities :: [binary()],
 reactivation_trigger :: opportunity | stress | development,
 reactivation_delay_ms :: non_neg_integer()}.

 timestamp/0

 -type timestamp() :: integer().

 Functions

 context_switched(Data)

 -spec context_switched(map()) ->
 #context_switched{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 context_before :: term(),
 context_after :: term(),
 genes_affected :: [binary()],
 modules_toggled :: non_neg_integer()}.

 dormancy_entered(Data)

 -spec dormancy_entered(map()) ->
 #dormancy_entered{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 dormant_capabilities :: [binary()],
 dormancy_trigger ::
 resource_constraint | environmental | developmental,
 maintenance_cost :: float()}.

 dormancy_exited(Data)

 -spec dormancy_exited(map()) ->
 #dormancy_exited{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 reactivated_capabilities :: [binary()],
 reactivation_trigger :: opportunity | stress | development,
 reactivation_delay_ms :: non_neg_integer()}.

 event_to_map(Event)

 -spec event_to_map(regulatory_event()) -> map().

 gene_expressed(Data)

 -spec gene_expressed(map()) ->
 #gene_expressed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 gene_id :: binary(),
 expression_level :: float(),
 trigger :: environmental | developmental | conditional,
 context :: term()}.

 gene_silenced(Data)

 -spec gene_silenced(map()) ->
 #gene_silenced{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 gene_id :: binary(),
 silencing_cause :: regulatory | epigenetic | conditional,
 duration :: temporary | permanent}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 module_activated(Data)

 -spec module_activated(map()) ->
 #module_activated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_id :: binary(),
 activation_context :: term(),
 neurons_involved :: non_neg_integer(),
 switching_cost :: float()}.

 module_deactivated(Data)

 -spec module_deactivated(map()) ->
 #module_deactivated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 module_id :: binary(),
 deactivation_reason ::
 context_change | resource_constraint | completion,
 active_duration_ms :: non_neg_integer()}.

 regulatory_network_updated(Data)

 -spec regulatory_network_updated(map()) ->
 #regulatory_network_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 regulators_added :: non_neg_integer(),
 regulators_removed :: non_neg_integer(),
 network_complexity :: float()}.

lc_reward

Reward Signal Computation for Liquid Conglomerate Silos.
Part of the Liquid Conglomerate v2 architecture. This module computes reward signals for each silo's L0 TWEANN, including cooperative penalties/bonuses to encourage alignment between silos.
[bookmark: Reward_Structure]Reward Structure
Each silo has local objectives plus cooperation terms:
Resource Silo: reward = 0.35*throughput + 0.25*stability + 0.15*efficiency - 0.15*task_blocked - 0.10*distribution_blocked
Task Silo: reward = 0.40*improvement + 0.20*diversity - 0.15*complexity - 0.15*resource_pressure + 0.10*distribution_diversity
Distribution Silo: reward = 0.30*load_balance + 0.25*migration + 0.20*network_eff - 0.15*resource_pressure + 0.10*task_diversity
[bookmark: Global_Health_Bonus]Global Health Bonus
All silos receive: +0.1 * global_health_improvement where global_health = weighted sum of all silo performances

 Summary

 Functions

 add_global_bonus(SiloReward, GlobalState)

 Add global bonus to a silo's reward based on global health improvement.

 compute_distribution_reward(Metrics)

 Compute reward signal for Distribution Silo L0.

 compute_global_health(SiloRewards)

 Compute global health metric from all silo rewards.

 compute_resource_reward(Metrics)

 Compute reward signal for Resource Silo L0.

 compute_task_reward(Metrics)

 Compute reward signal for Task Silo L0 TWEANN.

 compute_task_reward_breakdown(Metrics)

 Compute reward breakdown for Task Silo L0 - returns individual component scores.

 compute_trial_reward(Metrics)

 Compute cumulative reward for an LC TWEANN trial.

 Functions

 add_global_bonus(SiloReward, GlobalState)

 -spec add_global_bonus(float(), map()) -> float().

Add global bonus to a silo's reward based on global health improvement.
Each silo gets +0.1 * (current_global - previous_global) as bonus. This encourages silos to cooperate for overall system improvement.

 compute_distribution_reward(Metrics)

 -spec compute_distribution_reward(map()) -> float().

Compute reward signal for Distribution Silo L0.
Input metrics map should contain: - load_balance_score: How evenly distributed load is (0-1) - migration_effectiveness: Do migrations improve diversity? (0-1) - network_efficiency: Low overhead, successful transfers (0-1) - resource_pressure_caused: Pressure on Resource Silo (0-1) - task_diversity_contribution: Helping Task Silo diversity (0-1)

 compute_global_health(SiloRewards)

 -spec compute_global_health(map()) -> float().

Compute global health metric from all silo rewards.
Global health is a weighted average of silo rewards. This provides a holistic view of system performance.

 compute_resource_reward(Metrics)

 -spec compute_resource_reward(map()) -> float().

Compute reward signal for Resource Silo L0.
Input metrics map should contain: - throughput: Evaluations per second (normalized 0-1) - gc_triggers: Number of GC triggers in period (0 = best) - pauses: Number of evolution pauses (0 = best) - memory_utilization: Current memory usage (0-1) - cpu_utilization: Current CPU usage (0-1) - task_silo_blocked: Was Task Silo blocked? (0-1) - distribution_blocked: Was Distribution blocked? (0-1)

 compute_task_reward(Metrics)

 -spec compute_task_reward(map()) -> float().

Compute reward signal for Task Silo L0 TWEANN.
Designed to reward LC controllers that: 1. MAXIMIZE fitness improvement velocity (faster learning) 2. MINIMIZE training time to convergence (efficiency) 3. PUNISH premature convergence (getting stuck at low fitness) 4. MINIMIZE resource usage (memory/CPU efficiency)
Input metrics map should contain: - improvement_velocity: Fitness improvement rate per 1000 evals (-1 to 1) - best_fitness: Current best fitness achieved (0-1) - fitness_target: Target fitness to reach (0-1) - evaluations_used: Total evaluations consumed - evaluations_budget: Total evaluation budget - stagnation_severity: How stuck evolution is (0=progressing, 1=stuck) - diversity_index: Population diversity (0-1) - memory_pressure: Current memory usage (0-1) - cpu_pressure: Current CPU usage (0-1)

 compute_task_reward_breakdown(Metrics)

 -spec compute_task_reward_breakdown(map()) -> map().

Compute reward breakdown for Task Silo L0 - returns individual component scores.
Returns a map containing: - total_reward: The combined weighted reward (-1.0 to 1.0) - velocity_score: Fitness improvement velocity score (40% weight) - efficiency_score: Training time efficiency score (20% weight) - convergence_score: Premature convergence penalty score (20% weight) - resource_score: Memory/CPU efficiency score (20% weight) - velocity_weight, efficiency_weight, etc.: The weights used
This allows visualization of which factors are contributing to the reward.

 compute_trial_reward(Metrics)

 -spec compute_trial_reward(map()) -> float().

Compute cumulative reward for an LC TWEANN trial.
Called at the end of a trial period to evaluate the LC controller's performance. Uses fitness improvement achieved during the trial as the primary metric.
Input metrics map should contain: - start_fitness: Fitness at trial start - end_fitness: Fitness at trial end - evaluations_used: Evaluations consumed during trial - evaluation_budget: Evaluation budget for trial - peak_memory: Peak memory usage during trial (0-1) - avg_cpu: Average CPU usage during trial (0-1) - stagnation_events: Number of stagnation events during trial - convergence_reached: true if fitness target was reached

lc_sensor_publisher

LC Sensor Publisher - Publishes sensor events for all enabled silos.
Part of the Liquid Conglomerate v2 architecture. This module: - Polls all enabled extension silos for sensor data - Publishes sensor events to the silo_sensors topic - Throttles publishing to avoid overwhelming the UI - Supports runtime silo enable/disable
[bookmark: Event_Format]Event Format
Each silo publishes events like: {temporal_sensors_updated, #{realm => Realm, sensors => SensorMap}} {competitive_sensors_updated, #{realm => Realm, sensors => SensorMap}} ...
[bookmark: Configuration]Configuration
Started by lc_supervisor with realm and poll_interval_ms options.

 Summary

 Functions

 disable_silo(SiloType)

 Disable sensor publishing for a silo.

 enable_silo(SiloType)

 Enable sensor publishing for a silo.

 force_publish()

 Force immediate publish of all enabled silo sensors.

 force_publish(SiloType)

 Force immediate publish of a specific silo's sensors.

 get_enabled_silos()

 Get list of enabled silos.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 Start the sensor publisher with default configuration.

 start_link(Config)

 Start the sensor publisher with custom configuration.

 terminate(Reason, State)

 Functions

 disable_silo(SiloType)

 -spec disable_silo(atom()) -> ok.

Disable sensor publishing for a silo.

 enable_silo(SiloType)

 -spec enable_silo(atom()) -> ok.

Enable sensor publishing for a silo.

 force_publish()

 -spec force_publish() -> ok.

Force immediate publish of all enabled silo sensors.

 force_publish(SiloType)

 -spec force_publish(atom()) -> ok.

Force immediate publish of a specific silo's sensors.

 get_enabled_silos()

 -spec get_enabled_silos() -> [atom()].

Get list of enabled silos.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the sensor publisher with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the sensor publisher with custom configuration.

 terminate(Reason, State)

lc_silo_behavior behaviour

Common behavior module for Liquid Conglomerate Silos.
All 13 silos implement this common pattern derived from task_silo.erl: gen_server behavior L0/L1/L2 hierarchical control levels Evaluation-centric tracking (total_evaluations as primary dimension) Velocity-based stagnation detection Cross-silo signal integration via lc_cross_silo ETS tables for persistent collections (where needed)
[bookmark: Implementing_a_New_Silo]Implementing a New Silo
1. Create module with -behaviour(lc_silo_behavior) 2. Include lc_silos.hrl for common records 3. Implement required callbacks: init_silo/1: Initialize silo-specific state collect_sensors/1: Gather L0 sensor values apply_actuators/2: Apply L0 actuator outputs compute_reward/1: Compute reward for LC learning

 Summary

 Callbacks

 apply_actuators/2

 collect_sensors/1

 compute_reward/1

 emit_cross_silo_signals/1

 emit_silo_events/2

 get_silo_type/0

 get_time_constant/0

 handle_cross_silo_signals/2

 init_silo/1

 Functions

 asymmetric_ema_smooth(NewValue, PreviousValue, BaseMomentum, EscalationFactor, DeescalationOffset)

 Apply asymmetric EMA smoothing for fast escalation, slow de-escalation.

 clamp(Value, Min, Max)

 Clamp a value to a specified range.

 compute_stagnation_severity(AvgVelocity, VelocityThreshold)

 Compute stagnation severity from velocity.

 compute_velocity(CurrentFitness, CurrentEvals, PrevFitness, PrevEvals)

 Compute improvement velocity from checkpoints.

 ema_smooth(NewValue, PreviousValue, Momentum)

 Apply exponential moving average smoothing.

 normalize(Value, Min, Max)

 Normalize a value to [0,1] range given min/max bounds.

 Callbacks

 apply_actuators/2

 -callback apply_actuators(Actuators :: map(), SiloState :: map()) -> {ok, NewSiloState :: map()}.

 collect_sensors/1

 -callback collect_sensors(SiloState :: map()) -> Sensors :: map().

 compute_reward/1

 -callback compute_reward(SiloState :: map()) -> Reward :: float().

 emit_cross_silo_signals/1

 (optional)

 -callback emit_cross_silo_signals(SiloState :: map()) -> ok.

 emit_silo_events/2

 (optional)

 -callback emit_silo_events(EventType :: atom(), SiloState :: map()) -> ok.

 get_silo_type/0

 -callback get_silo_type() -> atom().

 get_time_constant/0

 -callback get_time_constant() -> float().

 handle_cross_silo_signals/2

 (optional)

 -callback handle_cross_silo_signals(Signals :: map(), SiloState :: map()) -> {ok, NewSiloState :: map()}.

 init_silo/1

 -callback init_silo(Config :: map()) -> {ok, SiloState :: map()} | {error, Reason :: term()}.

 Functions

 asymmetric_ema_smooth(NewValue, PreviousValue, BaseMomentum, EscalationFactor, DeescalationOffset)

 -spec asymmetric_ema_smooth(NewValue :: float(),
 PreviousValue :: float(),
 BaseMomentum :: float(),
 EscalationFactor :: float(),
 DeescalationOffset :: float()) ->
 float().

Apply asymmetric EMA smoothing for fast escalation, slow de-escalation.
When escalating (new value higher): use low momentum (fast response) When de-escalating (new value lower): use high momentum (slow recovery)
This prevents oscillation while ensuring responsive intervention.

 clamp(Value, Min, Max)

 -spec clamp(Value :: number(), Min :: number(), Max :: number()) -> number().

Clamp a value to a specified range.

 compute_stagnation_severity(AvgVelocity, VelocityThreshold)

 -spec compute_stagnation_severity(AvgVelocity :: float(), VelocityThreshold :: float()) -> float().

Compute stagnation severity from velocity.
Severity = clamp((threshold - avg_velocity) / threshold, 0.0, 1.0)
Returns 0.0 = healthy, 1.0 = critical stagnation.

 compute_velocity(CurrentFitness, CurrentEvals, PrevFitness, PrevEvals)

 -spec compute_velocity(CurrentFitness :: float(),
 CurrentEvals :: non_neg_integer(),
 PrevFitness :: float(),
 PrevEvals :: non_neg_integer()) ->
 float().

Compute improvement velocity from checkpoints.
Velocity = (delta_fitness / delta_evaluations) * 1000
Returns velocity in fitness improvement per 1000 evaluations.

 ema_smooth(NewValue, PreviousValue, Momentum)

 -spec ema_smooth(NewValue :: float(), PreviousValue :: float(), Momentum :: float()) -> float().

Apply exponential moving average smoothing.
SmoothedValue = Momentum * PreviousValue + (1 - Momentum) * NewValue
Higher momentum = smoother but slower response.

 normalize(Value, Min, Max)

 -spec normalize(Value :: number(), Min :: number(), Max :: number()) -> float().

Normalize a value to [0,1] range given min/max bounds.

lc_silo_chain

LC Silo Chain - Manages L0/L1/L2 LTC TWEANNs for a single silo.
Each silo (Task, Resource, Distribution) has 3 chained LTC TWEANNs that operate at different time scales. Training metrics flow to all levels, while outputs cascade down: L2 outputs feed into L1 inputs, and L1 outputs feed into L0 inputs.
See assets/lc_silo_chain.svg for the architecture diagram.
[bookmark: Data_Flow]Data Flow
1. Training metrics from NuT are fed to ALL levels 2. L2 outputs become PART OF L1's inputs (L1 hyperparameters) 3. L1 outputs become PART OF L0's inputs (L0 hyperparameters) 4. L0 outputs are the actual hyperparameters applied to evolution
[bookmark: Time_Constants]Time Constants
Each level operates at a different time scale: - L2: Slow (strategic) - updates every τ_L2 (e.g., 100 generations) - L1: Medium (tactical) - updates every τ_L1 (e.g., 50 generations) - L0: Fast (reactive) - updates every τ_L0 (e.g., 10 generations)

 Summary

 Types

 layer/0

 network/0

 Functions

 get_recommendations(Chain, TrainingMetrics)

 Get hyperparameter recommendations.

 get_state(Chain)

 Get current state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_reward(Chain, Reward)

 Report reward signal for learning.

 start_link(Name, Config)

 Start the silo chain with configuration.

 terminate(Reason, State)

 Types

 layer/0

 -type layer() :: #{weights := [[float()]], biases := [float()]}.

 network/0

 -type network() ::
 #network{input_size :: pos_integer(),
 hidden_sizes :: [pos_integer()],
 output_size :: pos_integer(),
 layers :: [layer()],
 candidate_layers :: [layer()] | undefined,
 candidate_reward :: float()}.

 Functions

 get_recommendations(Chain, TrainingMetrics)

 -spec get_recommendations(atom() | pid(), map()) -> map().

Get hyperparameter recommendations.
TrainingMetrics is a map containing: - best_fitness, avg_fitness, fitness_variance - improvement_velocity, convergence_trend - stagnation_severity, diversity_index - memory_pressure, cpu_pressure - etc.
Returns a map of hyperparameter name => value.

 get_state(Chain)

 -spec get_state(atom() | pid()) -> map().

Get current state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 report_reward(Chain, Reward)

 -spec report_reward(atom() | pid(), float()) -> ok.

Report reward signal for learning.
The reward is distributed to all levels based on their contribution.

 start_link(Name, Config)

 -spec start_link(atom(), map()) -> {ok, pid()} | {error, term()}.

Start the silo chain with configuration.
Config options: - silo_type: task | resource | distribution - tau_l0, tau_l1, tau_l2: time constants for each level - l0_topology, l1_topology, l2_topology: {InputSize, HiddenSizes, OutputSize} - output_ranges: map of output name to {min, max}

 terminate(Reason, State)

lc_social_events

Behavioral event constructors for Social Silo.
Events related to reputation, coalitions, and social networks. Social Silo operates at timescale τ=25.

 Summary

 Types

 individual_id/0

 population_id/0

 social_event/0

 timestamp/0

 Functions

 betrayal_detected(Data)

 coalition_dissolved(Data)

 coalition_formed(Data)

 coalition_member_expelled(Data)

 coalition_member_joined(Data)

 event_to_map(Event)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 mentoring_ended(Data)

 mentoring_started(Data)

 reputation_changed(Data)

 social_network_updated(Data)

 trust_established(Data)

 Types

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 social_event/0

 -type social_event() ::
 #reputation_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 reputation_before :: float(),
 reputation_after :: float(),
 change_cause :: cooperation | defection | achievement | punishment,
 witnesses :: [individual_id()]} |
 #coalition_formed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 founder_ids :: [individual_id()],
 population_id :: population_id(),
 formation_reason :: defense | resource | breeding,
 initial_strength :: float()} |
 #coalition_dissolved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 population_id :: population_id(),
 dissolution_reason :: success | failure | conflict | attrition,
 duration_generations :: non_neg_integer(),
 final_members :: [individual_id()]} |
 #coalition_member_joined{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 individual_id :: individual_id(),
 membership_type :: full | associate | candidate,
 coalition_size_after :: non_neg_integer()} |
 #coalition_member_expelled{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 individual_id :: individual_id(),
 expulsion_reason :: defection | underperformance | conflict,
 coalition_size_after :: non_neg_integer()} |
 #mentoring_started{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 mentor_id :: individual_id(),
 mentee_id :: individual_id(),
 mentoring_type :: skill | strategy | general,
 expected_duration :: non_neg_integer() | indefinite} |
 #mentoring_ended{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 mentor_id :: individual_id(),
 mentee_id :: individual_id(),
 outcome :: success | failure | interrupted,
 duration_generations :: non_neg_integer(),
 mentee_improvement :: float()} |
 #social_network_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 connections_added :: non_neg_integer(),
 connections_removed :: non_neg_integer(),
 network_density :: float(),
 clustering_coefficient :: float()} |
 #trust_established{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_a_id :: individual_id(),
 individual_b_id :: individual_id(),
 trust_level :: float(),
 trust_basis :: cooperation | kinship | reputation} |
 #betrayal_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 betrayer_id :: individual_id(),
 victim_id :: individual_id(),
 betrayal_type :: defection | deception | abandonment,
 trust_before :: float(),
 trust_after :: float()}.

 timestamp/0

 -type timestamp() :: integer().

 Functions

 betrayal_detected(Data)

 -spec betrayal_detected(map()) ->
 #betrayal_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 betrayer_id :: individual_id(),
 victim_id :: individual_id(),
 betrayal_type :: defection | deception | abandonment,
 trust_before :: float(),
 trust_after :: float()}.

 coalition_dissolved(Data)

 -spec coalition_dissolved(map()) ->
 #coalition_dissolved{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 population_id :: population_id(),
 dissolution_reason ::
 success | failure | conflict | attrition,
 duration_generations :: non_neg_integer(),
 final_members :: [individual_id()]}.

 coalition_formed(Data)

 -spec coalition_formed(map()) ->
 #coalition_formed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 founder_ids :: [individual_id()],
 population_id :: population_id(),
 formation_reason :: defense | resource | breeding,
 initial_strength :: float()}.

 coalition_member_expelled(Data)

 -spec coalition_member_expelled(map()) ->
 #coalition_member_expelled{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 individual_id :: individual_id(),
 expulsion_reason ::
 defection | underperformance |
 conflict,
 coalition_size_after :: non_neg_integer()}.

 coalition_member_joined(Data)

 -spec coalition_member_joined(map()) ->
 #coalition_member_joined{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 coalition_id :: binary(),
 individual_id :: individual_id(),
 membership_type ::
 full | associate | candidate,
 coalition_size_after :: non_neg_integer()}.

 event_to_map(Event)

 -spec event_to_map(social_event()) -> map().

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 mentoring_ended(Data)

 -spec mentoring_ended(map()) ->
 #mentoring_ended{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 mentor_id :: individual_id(),
 mentee_id :: individual_id(),
 outcome :: success | failure | interrupted,
 duration_generations :: non_neg_integer(),
 mentee_improvement :: float()}.

 mentoring_started(Data)

 -spec mentoring_started(map()) ->
 #mentoring_started{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 mentor_id :: individual_id(),
 mentee_id :: individual_id(),
 mentoring_type :: skill | strategy | general,
 expected_duration :: non_neg_integer() | indefinite}.

 reputation_changed(Data)

 -spec reputation_changed(map()) ->
 #reputation_changed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 reputation_before :: float(),
 reputation_after :: float(),
 change_cause ::
 cooperation | defection | achievement | punishment,
 witnesses :: [individual_id()]}.

 social_network_updated(Data)

 -spec social_network_updated(map()) ->
 #social_network_updated{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 connections_added :: non_neg_integer(),
 connections_removed :: non_neg_integer(),
 network_density :: float(),
 clustering_coefficient :: float()}.

 trust_established(Data)

 -spec trust_established(map()) ->
 #trust_established{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_a_id :: individual_id(),
 individual_b_id :: individual_id(),
 trust_level :: float(),
 trust_basis :: cooperation | kinship | reputation}.

lc_supervisor

Liquid Conglomerate Supervisor.
Supervises all 13 silos of the Liquid Conglomerate v2 architecture:
Core Silos (Always Enabled): Task Silo: Evolution optimization (τ = 50) Resource Silo: System stability (τ = 5)
Optional Silos (Enable via Config): Distribution Silo: Mesh networking (τ = 1) Temporal Silo: Episode timing (τ = 10) Competitive Silo: Opponent archives, Elo (τ = 50) Social Silo: Reputation, coalitions (τ = 50) Cultural Silo: Innovations, traditions (τ = 100) Ecological Silo: Niches, stress (τ = 100) Morphological Silo: Network complexity (τ = 30) Developmental Silo: Ontogeny, plasticity (τ = 100) Regulatory Silo: Gene expression (τ = 50) Economic Silo: Compute budgets (τ = 20) Communication Silo: Vocabulary, coordination (τ = 30)
Additionally supervises the meta_controller (L2 strategic layer) when enabled: Meta Controller: LTC-based hierarchical control (outputs L1 guidance)
Each silo operates independently with its own hierarchical levels (L0/L1/L2). When meta_controller is enabled, it provides L2 guidance to silos.

 Summary

 Types

 meta_config/0

 meta_param/0

 reward_component/0

 Functions

 all_silo_types()

 List all available silo types.

 disable_silo(SiloType)

 Disable an extension silo at runtime.

 enable_silo(SiloType)

 Enable an extension silo at runtime with default configuration.

 enable_silo(SiloType, Config)

 Enable an extension silo at runtime with custom configuration.

 get_silo_config(SiloType)

 Get the current configuration for a silo.

 init(Config)

 is_silo_enabled(SiloType)

 Check if a silo is currently enabled.

 list_available_silos()

 List all available silo types.

 list_enabled_silos()

 List all currently enabled silos.

 reconfigure_silo(SiloType, NewConfig)

 Reconfigure a running silo with new configuration.

 silo_dependencies(_)

 Get the dependencies for a silo type.

 silo_module(_)

 Map silo type atom to its module name.

 start_link()

 Start the Liquid Conglomerate supervisor with default configuration.

 start_link(Config)

 Start the Liquid Conglomerate supervisor with custom configuration.

 validate_silo_config(SiloType, Config)

 Validate configuration for a silo type.

 Types

 meta_config/0

 -type meta_config() ::
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

 meta_param/0

 -type meta_param() ::
 mutation_rate | mutation_strength | selection_ratio | evaluations_per_individual |
 max_concurrent_evaluations | population_size | add_node_rate | add_connection_rate |
 complexity_penalty.

 reward_component/0

 -type reward_component() ::
 convergence_speed | final_fitness | efficiency_ratio | diversity_aware | normative_structure.

 Functions

 all_silo_types()

 -spec all_silo_types() -> [atom()].

List all available silo types.

 disable_silo(SiloType)

 -spec disable_silo(atom()) -> ok | {error, term()}.

Disable an extension silo at runtime.
Core silos (task, resource) cannot be disabled. Also checks that no other enabled silos depend on this one.

 enable_silo(SiloType)

 -spec enable_silo(atom()) -> ok | {error, term()}.

Enable an extension silo at runtime with default configuration.

 enable_silo(SiloType, Config)

 -spec enable_silo(atom(), map()) -> ok | {error, term()}.

Enable an extension silo at runtime with custom configuration.
Valid silo types: temporal, competitive, social, cultural, ecological, morphological, developmental, regulatory, economic, communication
Before enabling, this function: 1. Validates the silo type 2. Checks dependencies are satisfied 3. Validates the configuration 4. Stores config in ETS for later retrieval

 get_silo_config(SiloType)

 -spec get_silo_config(atom()) -> {ok, map()} | {error, not_enabled | unknown_silo}.

Get the current configuration for a silo.
Returns the config that was used to start the silo, or {error, not_enabled} if the silo is not running.

 init(Config)

 is_silo_enabled(SiloType)

 -spec is_silo_enabled(atom()) -> boolean().

Check if a silo is currently enabled.

 list_available_silos()

 -spec list_available_silos() -> [atom()].

List all available silo types.

 list_enabled_silos()

 -spec list_enabled_silos() -> [atom()].

List all currently enabled silos.

 reconfigure_silo(SiloType, NewConfig)

 -spec reconfigure_silo(atom(), map()) -> ok | {error, term()}.

Reconfigure a running silo with new configuration.
This stops the silo, validates the new config, and restarts with new config. Core silos (task, resource) cannot be reconfigured this way.

 silo_dependencies(_)

 -spec silo_dependencies(atom()) -> [atom()].

Get the dependencies for a silo type.
Some silos require other silos to be enabled first. Returns a list of silo types that must be enabled before this one.

 silo_module(_)

 -spec silo_module(atom()) -> atom() | {error, unknown_silo}.

Map silo type atom to its module name.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the Liquid Conglomerate supervisor with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the Liquid Conglomerate supervisor with custom configuration.
Configuration is merged from multiple sources (in priority order): 1. Config map passed to start_link/1 (highest priority) 2. Application env: application:get_env(macula_neuroevolution, lc_supervisor) 3. Default values (lowest priority)
If the supervisor is already running, returns the existing pid.

 validate_silo_config(SiloType, Config)

 -spec validate_silo_config(atom(), map()) -> ok | {error, term()}.

Validate configuration for a silo type.
Each silo type has specific configuration requirements. This function checks that required fields are present and values are within valid ranges.

lc_temporal_events

Behavioral event constructors for Temporal Silo.
Events related to timing, episodes, and learning rate adaptation. Temporal Silo operates at timescale τ=10 (fastest adaptation).

 Summary

 Types

 generation/0

 individual_id/0

 population_id/0

 temporal_event/0

 timestamp/0

 Functions

 convergence_detected(Data)

 episode_completed(Data)

 episode_started(Data)

 event_to_map(Event)

 learning_rate_adapted(Data)

 make_meta(Emitter)

 make_meta(Emitter, Opts)

 patience_exhausted(Data)

 timeout_threshold_reached(Data)

 timing_adjusted(Data)

 Types

 generation/0

 -type generation() :: non_neg_integer().

 individual_id/0

 -type individual_id() :: binary().

 population_id/0

 -type population_id() :: binary().

 temporal_event/0

 -type temporal_event() ::
 #episode_started{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 episode_number :: non_neg_integer(),
 expected_duration_ms :: non_neg_integer() | undefined,
 generation :: generation()} |
 #episode_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 episode_number :: non_neg_integer(),
 duration_ms :: non_neg_integer(),
 outcome :: success | failure | timeout | early_termination,
 fitness_delta :: float(),
 steps_taken :: non_neg_integer()} |
 #timing_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 previous_timeout_ms :: non_neg_integer(),
 new_timeout_ms :: non_neg_integer(),
 adjustment_reason :: convergence | stagnation | resource_pressure} |
 #learning_rate_adapted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 previous_rate :: float(),
 new_rate :: float(),
 adaptation_reason ::
 stagnation | breakthrough | scheduled | convergence,
 generation :: generation()} |
 #patience_exhausted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generations_waited :: non_neg_integer(),
 best_fitness :: float(),
 action_taken :: terminate | reset | diversify} |
 #convergence_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 fitness_variance :: float(),
 generations_stable :: non_neg_integer(),
 generation :: generation()} |
 #timeout_threshold_reached{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 elapsed_ms :: non_neg_integer(),
 threshold_ms :: non_neg_integer(),
 action :: terminate | extend | warn}.

 timestamp/0

 -type timestamp() :: integer().

 Functions

 convergence_detected(Data)

 -spec convergence_detected(map()) ->
 #convergence_detected{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 fitness_variance :: float(),
 generations_stable :: non_neg_integer(),
 generation :: generation()}.

 episode_completed(Data)

 -spec episode_completed(map()) ->
 #episode_completed{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 episode_number :: non_neg_integer(),
 duration_ms :: non_neg_integer(),
 outcome :: success | failure | timeout | early_termination,
 fitness_delta :: float(),
 steps_taken :: non_neg_integer()}.

 episode_started(Data)

 -spec episode_started(map()) ->
 #episode_started{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 episode_number :: non_neg_integer(),
 expected_duration_ms :: non_neg_integer() | undefined,
 generation :: generation()}.

 event_to_map(Event)

 -spec event_to_map(temporal_event()) -> map().

 learning_rate_adapted(Data)

 -spec learning_rate_adapted(map()) ->
 #learning_rate_adapted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 previous_rate :: float(),
 new_rate :: float(),
 adaptation_reason ::
 stagnation | breakthrough | scheduled |
 convergence,
 generation :: generation()}.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

 patience_exhausted(Data)

 -spec patience_exhausted(map()) ->
 #patience_exhausted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generations_waited :: non_neg_integer(),
 best_fitness :: float(),
 action_taken :: terminate | reset | diversify}.

 timeout_threshold_reached(Data)

 -spec timeout_threshold_reached(map()) ->
 #timeout_threshold_reached{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id ::
 binary() |
 undefined,
 causation_id ::
 binary() |
 undefined,
 timestamp ::
 timestamp(),
 version ::
 pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 elapsed_ms :: non_neg_integer(),
 threshold_ms :: non_neg_integer(),
 action :: terminate | extend | warn}.

 timing_adjusted(Data)

 -spec timing_adjusted(map()) ->
 #timing_adjusted{meta ::
 #lc_event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 previous_timeout_ms :: non_neg_integer(),
 new_timeout_ms :: non_neg_integer(),
 adjustment_reason ::
 convergence | stagnation | resource_pressure}.

lc_tweann_morphology

LC TWEANN Morphology - Sensor/actuator definitions for LC controllers.
Implements morphology_behaviour for the Liquid Conglomerate hyperparameter controllers. This allows LC controllers to be evolved using macula_tweann.
[bookmark: Morphology_Names]Morphology Names
- lc_task_controller: Task Silo L0 controller (21 sensors, 16 actuators) - lc_resource_controller: Resource Silo L0 controller (15 sensors, 9 actuators)
[bookmark: Usage]Usage
1. Register at application startup: morphology_registry:register(lc_task_controller, lc_tweann_morphology).
2. Create agent with this morphology: Constraint = #constraint{morphology = lc_task_controller}, AgentId = genotype:construct_Agent(SpecieId, AgentId, Constraint).

 Summary

 Functions

 get_actuators(_)

 Get actuators for LC morphologies.

 get_sensors(_)

 Get sensors for LC morphologies.

 register_morphologies()

 Register all LC morphologies with the morphology_registry. Call this at application startup.

 Functions

 get_actuators(_)

 -spec get_actuators(atom()) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get actuators for LC morphologies.

 get_sensors(_)

 -spec get_sensors(atom()) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get sensors for LC morphologies.

 register_morphologies()

 -spec register_morphologies() -> ok.

Register all LC morphologies with the morphology_registry. Call this at application startup.

macula_mesh

Macula mesh integration facade.
Provides a unified API for interacting with the Macula mesh platform. Handles: - Service advertisement (register as evaluator) - RPC requests (distributed evaluation) - Pub/Sub (signal broadcasting) - DHT operations (service discovery)
When macula is not available (no MACULA_MESH_ENABLED define), operations gracefully degrade to local-only mode.

 Summary

 Functions

 advertise_evaluator(EvaluatorModule, Capacity)

 discover_evaluators(Realm)

 get_state()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 is_mesh_available()

 publish_signal(Topic, Signal, Options)

 request_evaluation(NodeId, Individual, EvaluatorModule, Options)

 start_link(Config)

 subscribe_signals(Topic, Callback)

 terminate(Reason, State)

 Functions

 advertise_evaluator(EvaluatorModule, Capacity)

 -spec advertise_evaluator(EvaluatorModule :: module(), Capacity :: pos_integer()) ->
 ok | {error, term()}.

 discover_evaluators(Realm)

 -spec discover_evaluators(Realm :: binary()) -> {ok, [map()]} | {error, term()}.

 get_state()

 -spec get_state() -> map().

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 is_mesh_available()

 -spec is_mesh_available() -> boolean().

 publish_signal(Topic, Signal, Options)

 -spec publish_signal(Topic :: binary(), Signal :: term(), Options :: map()) -> ok | {error, term()}.

 request_evaluation(NodeId, Individual, EvaluatorModule, Options)

 -spec request_evaluation(NodeId :: binary(),
 Individual :: term(),
 EvaluatorModule :: module(),
 Options :: map()) ->
 {ok, RequestId :: binary()} | {error, term()}.

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

 subscribe_signals(Topic, Callback)

 -spec subscribe_signals(Topic :: binary(), Callback :: fun()) -> ok | {error, term()}.

 terminate(Reason, State)

macula_neuroevolution_app

OTP Application module for macula_neuroevolution.
This module implements the OTP application behaviour and is responsible for starting the application supervisor.

 Summary

 Functions

 start(StartType, StartArgs)

 Start the application.

 stop(State)

 Stop the application.

 Functions

 start(StartType, StartArgs)

 -spec start(StartType, StartArgs) -> {ok, pid()} | {error, term()}
 when StartType :: normal | {takeover, node()} | {failover, node()}, StartArgs :: term().

Start the application.

 stop(State)

 -spec stop(State) -> ok when State :: term().

Stop the application.

macula_neuroevolution_sup

Top-level supervisor for macula_neuroevolution.
This supervisor manages: - Liquid Conglomerate (LC) supervisor for resource/task/distribution silos - Competitive Coevolution supervisor for Red Team vs Blue Team dynamics - Dynamic neuroevolution server supervisor for training sessions
[bookmark: Usage]Usage
Use the API functions to start and stop neuroevolution servers:
Config = #neuro_config{...}, {ok, Pid} = macula_neuroevolution_sup:start_server(Config), macula_neuroevolution_sup:stop_server(Pid).

 Summary

 Types

 mutation_config/0

 neuro_config/0

 self_play_config/0

 speciation_config/0

 Functions

 start_link()

 Start the supervisor.

 start_server(Config)

 Start a neuroevolution server with given configuration.

 start_server(Config, Options)

 Start a neuroevolution server with configuration and options.

 stop_server(Pid)

 Stop a neuroevolution server.

 Types

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the supervisor.

 start_server(Config)

 -spec start_server(Config) -> {ok, pid()} | {error, term()} when Config :: neuro_config().

Start a neuroevolution server with given configuration.

 start_server(Config, Options)

 -spec start_server(Config, Options) -> {ok, pid()} | {error, term()}
 when Config :: neuro_config(), Options :: proplists:proplist().

Start a neuroevolution server with configuration and options.

 stop_server(Pid)

 -spec stop_server(Pid) -> ok | {error, term()} when Pid :: pid().

Stop a neuroevolution server.

map_elites_strategy

MAP-Elites quality-diversity evolution strategy.
MAP-Elites is a quality-diversity algorithm that maintains a map (grid) of elite solutions. Each cell in the grid corresponds to a region of behavior space, and contains the highest-fitness individual whose behavior maps to that region.
This approach simultaneously optimizes for: - Quality: Each cell contains the best-performing solution for that behavior - Diversity: The grid covers a wide range of behaviors
[bookmark: Behavior_Space]Behavior Space
The behavior space is divided into discrete bins: - behavior_dimensions: number of dimensions (e.g., 2 for a 2D grid) - bins_per_dimension: discretization resolution (e.g., 10 means 10x10=100 cells) - behavior_bounds: min/max for each dimension (for normalization)
The evaluator must return behavior descriptors in metrics: #{fitness => F, metrics => #{behavior => [float(), ...]}}
[bookmark: Algorithm]Algorithm
1. Initialize: Generate random individuals, evaluate, place in grid 2. Select: Choose parents from existing elites 3. Mutate: Create offspring through mutation 4. Evaluate: Get fitness and behavior for offspring 5. Update: Place offspring in grid if better than current occupant 6. Repeat from step 2
[bookmark: Key_Properties]Key Properties
- Grid cells act as niches preventing competition between behaviors - Elites are never deleted, only replaced by better solutions - Coverage metric: fraction of cells with elites - QD-score: sum of all elite fitnesses (quality × diversity)

 Summary

 Types

 birth_origin/0

 cell_index/0

 death_reason/0

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 individual_summary/0

 island_id/0

 lifecycle_event/0

 map_elites_params/0

 meta_inputs/0

 meta_params/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 niche_id/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species_id/0

 strategy_action/0

 strategy_result/0

 strategy_state/0

 timestamp/0

 Functions

 apply_meta_params(Params, Me_state)

 Apply meta-controller parameter adjustments.

 get_meta_inputs(Me_state)

 Get inputs for the meta-controller.

 get_population_snapshot(Me_state)

 Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Me_state)

 Handle an individual evaluation result.

 init(Config)

 Initialize the MAP-Elites strategy.

 tick(Me_state)

 Periodic tick - not heavily used.

 Types

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 cell_index/0

 -type cell_index() :: tuple().

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 map_elites_params/0

 -type map_elites_params() ::
 #map_elites_params{behavior_dimensions :: pos_integer(),
 bins_per_dimension :: pos_integer(),
 behavior_bounds :: [{float(), float()}],
 batch_size :: pos_integer(),
 random_probability :: float(),
 mutation_rate :: float(),
 mutation_strength :: float()}.

 meta_inputs/0

 -type meta_inputs() :: [float()].

 meta_params/0

 -type meta_params() ::
 #{mutation_rate => float(),
 mutation_strength => float(),
 selection_ratio => float(),
 migration_rate => float(),
 novelty_weight => float(),
 atom() => number()}.

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 niche_id/0

 -type niche_id() :: term().

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species_id/0

 -type species_id() :: pos_integer().

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 strategy_result/0

 -type strategy_result() ::
 {Actions :: [strategy_action()], Events :: [lifecycle_event()], NewState :: strategy_state()}.

 strategy_state/0

 -type strategy_state() :: term().

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Functions

 apply_meta_params(Params, Me_state)

 -spec apply_meta_params(Params :: meta_params(),
 State ::
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}) ->
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}.

Apply meta-controller parameter adjustments.

 get_meta_inputs(Me_state)

 -spec get_meta_inputs(State ::
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}) ->
 meta_inputs().

Get inputs for the meta-controller.

 get_population_snapshot(Me_state)

 -spec get_population_snapshot(State ::
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}) ->
 population_snapshot().

Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Me_state)

 -spec handle_evaluation_result(IndividualId :: individual_id(),
 FitnessResult :: map(),
 State ::
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}) ->
 strategy_result().

Handle an individual evaluation result.
When an individual is evaluated: 1. Compute which cell it belongs to 2. If cell is empty or new individual is better, update the grid 3. When batch is complete, generate new batch from elites

 init(Config)

 -spec init(Config :: map()) ->
 {ok,
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()},
 [lifecycle_event()]} |
 {error, term()}.

Initialize the MAP-Elites strategy.

 tick(Me_state)

 -spec tick(State ::
 #me_state{config :: neuro_config(),
 params :: map_elites_params(),
 network_factory :: module(),
 grid :: #{cell_index() => individual()},
 dimensions :: pos_integer(),
 bins :: pos_integer(),
 total_cells :: pos_integer(),
 bounds :: [{float(), float()}],
 batch :: [individual()],
 batch_map :: #{individual_id() => individual()},
 batch_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 iteration :: pos_integer(),
 cells_filled :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness :: float(),
 qd_score :: float()}) ->
 strategy_result().

Periodic tick - not heavily used.

mesh_sup

Supervisor for mesh distribution components.
Manages the lifecycle of distributed evaluation components: - macula_mesh: Macula integration facade - evaluator_pool_registry: Tracks remote evaluator capacity - distributed_evaluator: RPC-based evaluation dispatch

 Summary

 Functions

 init(Config)

 start_link()

 start_link(Config)

 Functions

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 start_link(Config)

 -spec start_link(Config :: map()) -> {ok, pid()} | {error, term()}.

meta_config

Configuration builder for the LTC meta-controller.
This module provides helper functions to construct #meta_config{} records from maps, enabling clean integration with Elixir applications.
[bookmark: Usage]Usage
From Elixir: meta_config = :meta_config.from_map(%{ network_topology: {11, [24, 16, 8], 5}, neuron_type: :cfc, time_constant: 50.0 }) neuro_config = :neuro_config.from_map(%{ meta_controller_config: meta_config, ... })

 Summary

 Types

 meta_param/0

 reward_component/0

 Functions

 default()

 Create a default configuration with sensible defaults.

 default_param_bounds()

 Default parameter bounds for meta-controller outputs.

 default_reward_weights()

 Default reward component weights.

 from_map(Map)

 Build a #meta_config{} record from a map.

 to_map(Meta_config)

 Convert a #meta_config{} record to a map.

 Types

 meta_param/0

 -type meta_param() ::
 mutation_rate | mutation_strength | selection_ratio | evaluations_per_individual |
 max_concurrent_evaluations | population_size | add_node_rate | add_connection_rate |
 complexity_penalty.

 reward_component/0

 -type reward_component() ::
 convergence_speed | final_fitness | efficiency_ratio | diversity_aware | normative_structure.

 Functions

 default()

 -spec default() ->
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

Create a default configuration with sensible defaults.

 default_param_bounds()

 -spec default_param_bounds() -> map().

Default parameter bounds for meta-controller outputs.
These bounds define the legal ranges for each hyperparameter that the LTC meta-controller can adjust.
Includes resource-aware parameters: - evaluations_per_individual: Can drop to 1 under memory pressure - max_concurrent_evaluations: Limits parallelism under load

 default_reward_weights()

 -spec default_reward_weights() -> map().

Default reward component weights.
These weights balance different aspects of training quality: - convergence_speed: How quickly fitness improves - final_fitness: The ultimate fitness achieved - efficiency_ratio: Fitness improvement per evaluation - diversity_aware: Maintaining population diversity - normative_structure: Preserving adaptation potential

 from_map(Map)

 -spec from_map(map()) ->
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

Build a #meta_config{} record from a map.
All fields are optional - missing fields use sensible defaults. This function handles type coercion and validation.

 to_map(Meta_config)

 -spec to_map(#meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}) ->
 map().

Convert a #meta_config{} record to a map.
Useful for serialization, logging, and passing to Elixir code.

meta_controller

LTC-based meta-controller for adaptive hyperparameter optimization.
This gen_server implements a meta-learning system that uses Liquid Time-Constant (LTC) neural networks to dynamically control neuroevolution hyperparameters.
[bookmark: Architecture]Architecture
The meta-controller operates at a higher timescale than task networks. It receives training metrics as inputs and outputs hyperparameters: mutation_rate, mutation_strength, and selection_ratio.
[bookmark: LTC_Advantage]LTC Advantage
LTC neurons maintain internal state that evolves continuously. This enables temporal memory of training dynamics, adaptive response speed based on signal magnitude, and smooth parameter transitions.
[bookmark: Usage]Usage
Create a config and start the meta-controller:
Config = #meta_config{network_topology = {8, [16, 8], 4}}, {ok, Pid} = meta_controller:start_link(Config), meta_controller:start_training(Pid), NewParams = meta_controller:update(Pid, GenerationStats).

 Summary

 Types

 fitness/0

 generation/0

 generation_stats/0

 individual_id/0

 l2_guidance/0

 meta_config/0

 meta_param/0

 reward_component/0

 Functions

 get_current_guidance(ServerRef)

 Get current L1 guidance without updating (for monitoring).

 get_l1_guidance(ServerRef, GenStats)

 Get L1 guidance based on generation statistics.

 get_params(ServerRef)

 Get current hyperparameter values (legacy API).

 get_state(ServerRef)

 Get current meta-controller state (for visualization).

 reset(ServerRef)

 Reset the meta-controller to initial state.

 start_link(Config)

 Start the meta-controller with given configuration.

 start_link(Config, Options)

 Start the meta-controller with configuration and options.

 start_training(ServerRef)

 Start the meta-learning training process.

 stop_training(ServerRef)

 Stop the meta-learning training process.

 update(ServerRef, GenerationStats)

 Update the meta-controller with new generation stats.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 generation_stats/0

 -type generation_stats() ::
 #generation_stats{generation :: generation(),
 best_fitness :: fitness(),
 avg_fitness :: fitness(),
 worst_fitness :: fitness(),
 best_individual_id :: individual_id(),
 survivors :: [individual_id()],
 eliminated :: [individual_id()],
 offspring :: [individual_id()],
 population_size :: non_neg_integer(),
 survivor_count :: non_neg_integer(),
 top_individuals ::
 [#{id := individual_id(),
 fitness := fitness(),
 complexity := non_neg_integer()}]}.

 individual_id/0

 -type individual_id() :: term().

 l2_guidance/0

 -type l2_guidance() ::
 #l2_guidance{aggression_factor :: float(),
 exploration_step :: float(),
 stagnation_sensitivity :: float(),
 topology_aggression :: float(),
 exploitation_weight :: float(),
 adaptation_momentum :: float(),
 warning_threshold :: float(),
 intervention_threshold :: float(),
 critical_threshold :: float(),
 velocity_window_size :: pos_integer(),
 memory_high_threshold :: float(),
 memory_critical_threshold :: float(),
 cpu_high_threshold :: float(),
 pressure_scale_factor :: float(),
 min_scale_factor :: float(),
 pressure_change_threshold :: float(),
 generation :: non_neg_integer()}.

 meta_config/0

 -type meta_config() ::
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

 meta_param/0

 -type meta_param() ::
 mutation_rate | mutation_strength | selection_ratio | evaluations_per_individual |
 max_concurrent_evaluations | population_size | add_node_rate | add_connection_rate |
 complexity_penalty.

 reward_component/0

 -type reward_component() ::
 convergence_speed | final_fitness | efficiency_ratio | diversity_aware | normative_structure.

 Functions

 get_current_guidance(ServerRef)

 -spec get_current_guidance(pid() | atom()) -> l2_guidance().

Get current L1 guidance without updating (for monitoring).

 get_l1_guidance(ServerRef, GenStats)

 -spec get_l1_guidance(pid() | atom(), map()) -> l2_guidance().

Get L1 guidance based on generation statistics.
This is the primary L2→L1 interface. Called by task_silo to get meta-parameters that control L1's adjustment behavior.
Returns an #l2_guidance{} record with: - aggression_factor: How aggressive L1 adjustments should be - exploration_step: How fast exploration_boost increases - stagnation_sensitivity: Threshold for detecting stagnation - topology_aggression: How much to boost topology mutations - exploitation_weight: Balance between explore and exploit

 get_params(ServerRef)

 -spec get_params(pid() | atom()) -> #{atom() => float()}.

Get current hyperparameter values (legacy API).

 get_state(ServerRef)

 -spec get_state(pid() | atom()) -> {ok, map()}.

Get current meta-controller state (for visualization).

 reset(ServerRef)

 -spec reset(pid() | atom()) -> ok.

Reset the meta-controller to initial state.

 start_link(Config)

 -spec start_link(meta_config()) -> {ok, pid()} | {error, term()}.

Start the meta-controller with given configuration.

 start_link(Config, Options)

 -spec start_link(meta_config(), proplists:proplist()) -> {ok, pid()} | {error, term()}.

Start the meta-controller with configuration and options.
Options: - {id, Id} - Server identifier (default: make_ref()) - {name, Name} - Register with given name

 start_training(ServerRef)

 -spec start_training(pid() | atom()) -> {ok, started | already_running}.

Start the meta-learning training process.

 stop_training(ServerRef)

 -spec stop_training(pid() | atom()) -> ok.

Stop the meta-learning training process.

 update(ServerRef, GenerationStats)

 -spec update(pid() | atom(), generation_stats() | map()) -> #{atom() => float()}.

Update the meta-controller with new generation stats.
This is the main entry point called after each neuroevolution generation. Returns new hyperparameters to use for the next generation.

meta_reward

Composite reward computation for meta-controller training.
This module computes a multi-objective reward signal for training the meta-controller. The reward balances multiple objectives:
1. **Convergence Speed** - How quickly fitness improves 2. **Final Fitness** - Absolute performance achieved 3. **Efficiency Ratio** - Fitness gained per computation spent 4. **Diversity Awareness** - Maintains exploration capacity 5. **Normative Structure** - Preserves capacity for future adaptation
[bookmark: Reward_Formula]Reward Formula
The total reward is a weighted sum:
R = w1*convergence + w2*fitness + w3*efficiency + w4*diversity + w5*normative
Where weights are configured in meta_config.reward_weights.
[bookmark: Normalization]Normalization
All reward components are normalized to [0, 1] or [-1, 1] range for stable training. Historical data is used for normalization.

 Summary

 Types

 generation_metrics/0

 meta_config/0

 meta_param/0

 meta_reward/0

 reward_component/0

 Functions

 compute(Metrics, History, Config)

 Compute composite reward for a generation.

 compute_components(Metrics, History, Config)

 Compute individual reward components.

 normalize_component(Component, Value, History)

 Normalize a reward component value.

 Types

 generation_metrics/0

 -type generation_metrics() ::
 #generation_metrics{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 fitness_std_dev :: float(),
 fitness_delta :: float(),
 relative_improvement :: float(),
 population_diversity :: float(),
 strategy_entropy :: float(),
 evaluations_used :: pos_integer(),
 fitness_per_evaluation :: float(),
 diversity_corridors :: float(),
 adaptation_readiness :: float(),
 params_used :: #{meta_param() => float()},
 timestamp :: erlang:timestamp()}.

 meta_config/0

 -type meta_config() ::
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

 meta_param/0

 -type meta_param() ::
 mutation_rate | mutation_strength | selection_ratio | evaluations_per_individual |
 max_concurrent_evaluations | population_size | add_node_rate | add_connection_rate |
 complexity_penalty.

 meta_reward/0

 -type meta_reward() ::
 #meta_reward{convergence_speed :: float(),
 final_fitness :: float(),
 efficiency_ratio :: float(),
 diversity_aware :: float(),
 normative_structure :: float(),
 total :: float(),
 generation :: pos_integer()}.

 reward_component/0

 -type reward_component() ::
 convergence_speed | final_fitness | efficiency_ratio | diversity_aware | normative_structure.

 Functions

 compute(Metrics, History, Config)

 -spec compute(generation_metrics(), [generation_metrics()], meta_config()) -> meta_reward().

Compute composite reward for a generation.

 compute_components(Metrics, History, Config)

 -spec compute_components(generation_metrics(), [generation_metrics()], meta_config()) ->
 #{atom() => float()}.

Compute individual reward components.

 normalize_component(Component, Value, History)

 -spec normalize_component(atom(), float(), [float()]) -> float().

Normalize a reward component value.
Uses tweann_nif:z_score/3 for NIF-accelerated Z-score computation.

meta_trainer

Gradient-based training for the meta-controller.
This module implements gradient-based optimization for updating the meta-controller's LTC network weights. It uses policy gradient methods adapted for continuous action spaces.
[bookmark: Training_Algorithm]Training Algorithm
We use a simplified REINFORCE-style policy gradient:
1. Collect experience: (state, action, reward) tuples 2. Compute returns: G_t = sum of future discounted rewards 3. Estimate gradients: nabla_theta = E[G_t * nabla_theta log pi(a|s)] 4. Update weights: theta = theta + alpha * gradient
[bookmark: LTC-Specific_Considerations]LTC-Specific Considerations
LTC neurons have temporal state that affects gradient flow: - Backpropagation through time (BPTT) for temporal dependencies - Truncated gradients for computational efficiency - Momentum to smooth updates across generations

 Summary

 Types

 meta_config/0

 meta_param/0

 meta_training_event/0

 reward_component/0

 Functions

 apply_gradients(Weights, Gradients, LearningRate)

 Apply gradients to weights.

 compute_gradients(Experience, Weights, Config)

 Compute gradients from experience.

 estimate_advantage(Reward, History)

 Estimate advantage for a reward.

 update_weights(Weights, Experience, Config, LearningRate)

 Update meta-controller weights based on collected experience.

 Types

 meta_config/0

 -type meta_config() ::
 #meta_config{network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 neuron_type :: ltc | cfc,
 time_constant :: float(),
 state_bound :: float(),
 reward_weights :: #{reward_component() => float()},
 learning_rate :: float(),
 param_bounds :: #{meta_param() => {float(), float()}},
 control_population_size :: boolean(),
 control_topology :: boolean(),
 history_window :: pos_integer(),
 momentum :: float()}.

 meta_param/0

 -type meta_param() ::
 mutation_rate | mutation_strength | selection_ratio | evaluations_per_individual |
 max_concurrent_evaluations | population_size | add_node_rate | add_connection_rate |
 complexity_penalty.

 meta_training_event/0

 -type meta_training_event() ::
 #meta_training_event{generation :: pos_integer(),
 inputs :: [float()],
 outputs :: [float()],
 reward :: float(),
 gradients :: #{term() => float()}}.

 reward_component/0

 -type reward_component() ::
 convergence_speed | final_fitness | efficiency_ratio | diversity_aware | normative_structure.

 Functions

 apply_gradients(Weights, Gradients, LearningRate)

 -spec apply_gradients(map(), map(), float()) -> map().

Apply gradients to weights.
Uses gradient descent with optional momentum and gradient clipping.

 compute_gradients(Experience, Weights, Config)

 -spec compute_gradients([meta_training_event()], map(), meta_config()) -> map().

Compute gradients from experience.
Uses REINFORCE-style policy gradient estimation.

 estimate_advantage(Reward, History)

 -spec estimate_advantage(float(), [float()]) -> float().

Estimate advantage for a reward.
Advantage = reward - baseline, where baseline is a moving average.

 update_weights(Weights, Experience, Config, LearningRate)

 -spec update_weights(map(), [meta_training_event()], meta_config(), float()) -> map().

Update meta-controller weights based on collected experience.

morphological_silo

Morphological Silo - Network structure and complexity management.
Part of the Liquid Conglomerate v2 architecture. The Morphological Silo manages: Network size constraints (neurons, connections) Complexity tracking and penalties Pruning thresholds Parameter efficiency optimization Sensor/actuator addition rates
[bookmark: Time_Constant]Time Constant
τ = 30 (medium adaptation for structural changes)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: complexity_signal to task: Current network complexity level size_budget to resource: Network size requirements efficiency_score to economic: Parameter efficiency metric growth_stage to developmental: Structural development stage
Incoming: pressure_signal from resource: Resource constraint complexity_target from task: Target complexity level efficiency_requirement from economic: Efficiency targets expression_cost from regulatory: Cost of gene expression

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_complexity_stats(Pid)

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_network_size(Pid, IndividualId, NeuronCount, ConnectionCount)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 get_complexity_stats(Pid)

 -spec get_complexity_stats(pid()) -> map().

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_network_size(Pid, IndividualId, NeuronCount, ConnectionCount)

 -spec record_network_size(pid(), term(), non_neg_integer(), non_neg_integer()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

multispecies_environment behaviour

Multi-Species Environment Behaviour.
Extends agent_environment to support multiple species coevolving in a shared environment.
[bookmark: Overview]Overview
A multi-species environment manages:
	Multiple agent types with different capabilities
	Species-specific spawning rules
	Inter-species interactions (predation, cooperation)
	Per-species metrics extraction

[bookmark: Agent_State_Extension]Agent State Extension
Each agent state must include:
 #{
 id := term(),
 species := atom(), %% Species identifier
 species_data := map(), %% Species-specific state
 ... %% Standard agent fields
 }
[bookmark: Interaction_Types]Interaction Types
 ┌───┐
 │ Interaction Matrix │
 ├───┤
 │ │ Forager │ Predator │ Scavenger │
 ├──────────────┼─────────┼──────────┼─────────────────┤
 │ Forager │ compete │ prey │ ignore │
 │ Predator │ hunt │ compete │ ignore │
 │ Scavenger │ follow │ avoid │ compete │
 └───┘
See also: agent_environment, agent_species.

 Summary

 Types

 interaction/0

 species_spawn_config/0

 Callbacks

 apply_action/3

 extract_metrics/2

 extract_species_metrics/3

 handle_interaction/3

 init/1

 interaction_type/2

 is_terminal/2

 name/0

 spawn_agent/3

 supported_species/0

 tick/2

 Functions

 extract_all_metrics(Module, State)

 Extracts metrics for all species.

 process_interactions(Module, State)

 Processes interactions between all agent pairs.

 spawn_population(Module, SpeciesConfigs, EnvState)

 Spawns a population of agents for each species.

 validate(Module)

 Validates a multi-species environment module.

 Types

 interaction/0

 -type interaction() :: hunt | prey | compete | cooperate | ignore | avoid | follow.

 species_spawn_config/0

 -type species_spawn_config() ::
 #{energy := float(),
 spawn_zone := center | edge | random | {hex, {integer(), integer()}},
 max_count => pos_integer(),
 spawn_delay => non_neg_integer()}.

 Callbacks

 apply_action/3

 -callback apply_action(Action :: map(), AgentState :: map(), EnvState :: map()) ->
 {ok, AgentState :: map(), EnvState :: map()}.

 extract_metrics/2

 -callback extract_metrics(AgentState :: map(), EnvState :: map()) -> map().

 extract_species_metrics/3

 (optional)

 -callback extract_species_metrics(SpeciesId :: atom(), AgentStates :: [map()], EnvState :: map()) -> map().

 handle_interaction/3

 (optional)

 -callback handle_interaction(Agent1 :: map(), Agent2 :: map(), EnvState :: map()) ->
 {ok, Agent1New :: map(), Agent2New :: map(), EnvState :: map()}.

 init/1

 -callback init(Config :: map()) -> {ok, EnvState :: map()} | {error, term()}.

 interaction_type/2

 (optional)

 -callback interaction_type(Species1 :: atom(), Species2 :: atom()) ->
 hunt | prey | compete | cooperate | ignore | avoid | follow.

 is_terminal/2

 -callback is_terminal(AgentState :: map(), EnvState :: map()) -> boolean().

 name/0

 -callback name() -> binary().

 spawn_agent/3

 -callback spawn_agent(AgentId :: term(), SpeciesId :: atom(), EnvState :: map()) ->
 {ok, AgentState :: map(), EnvState :: map()} | {error, term()}.

 supported_species/0

 -callback supported_species() -> [atom()].

 tick/2

 -callback tick(AgentState :: map(), EnvState :: map()) -> {ok, AgentState :: map(), EnvState :: map()}.

 Functions

 extract_all_metrics(Module, State)

 -spec extract_all_metrics(Module, State) -> #{atom() => map()}
 when Module :: module(), State :: {[map()], map()}.

Extracts metrics for all species.

 process_interactions(Module, State)

 -spec process_interactions(Module, State) -> {ok, NewAgents, NewEnv}
 when
 Module :: module(),
 State :: {[map()], map()},
 NewAgents :: [map()],
 NewEnv :: map().

Processes interactions between all agent pairs.

 spawn_population(Module, SpeciesConfigs, EnvState)

 -spec spawn_population(Module, SpeciesConfigs, EnvState) -> {ok, AgentStates, EnvState}
 when
 Module :: module(),
 SpeciesConfigs :: #{atom() => {pos_integer(), species_spawn_config()}},
 EnvState :: map(),
 AgentStates :: [map()].

Spawns a population of agents for each species.

 validate(Module)

 -spec validate(Module) -> ok | {error, Reasons} when Module :: module(), Reasons :: [term()].

Validates a multi-species environment module.
Note: This does NOT call agent_environment:validate/1 because multi-species environments use spawn_agent/3 instead of spawn_agent/2.

network_factory

Network factory wrapper for macula_tweann's network_evaluator.
This module implements the network factory interface expected by evolution strategies, delegating to the real network_evaluator from macula_tweann.
The factory interface provides: - create_feedforward/1 - Create a new feedforward network - mutate/2 - Mutate a network's weights - crossover/2 - Create offspring from two parent networks
This abstraction enables: - Dependency injection for testing (use mock_network_factory in tests) - Clean separation between evolution logic and network implementation - Future support for different network types (RNNs, LSTMs, etc.)

 Summary

 Functions

 compile(Network)

 Compile an existing network for NIF-accelerated evaluation.

 create_compiled_feedforward(Topology)

 Create a NIF-compiled feedforward network for fast evaluation.

 create_feedforward(Topology)

 Create a new feedforward neural network.

 crossover(Parent1, Parent2)

 Crossover two networks to produce offspring.

 mutate(Network, MutationStrength)

 Mutate a network's weights.

 Functions

 compile(Network)

 -spec compile(Network) -> Result
 when
 Network :: network_evaluator:network(),
 Result :: {ok, nif_network:compiled_network()} | {error, term()}.

Compile an existing network for NIF-accelerated evaluation.
Takes a network from create_feedforward/1 and compiles it for fast repeated evaluation via NIF.

 create_compiled_feedforward(Topology)

 -spec create_compiled_feedforward(Topology) -> Result
 when
 Topology :: {pos_integer(), [pos_integer()], pos_integer()},
 Result ::
 {ok, nif_network:compiled_network()} | {error, term()}.

Create a NIF-compiled feedforward network for fast evaluation.
Combines network creation and NIF compilation in one step. Uses NIF acceleration when available (50-100x faster evaluation).

 create_feedforward(Topology)

 -spec create_feedforward(Topology) -> network_evaluator:network()
 when Topology :: {pos_integer(), [pos_integer()], pos_integer()}.

Create a new feedforward neural network.
Delegates to network_evaluator:create_feedforward/3 from macula_tweann.

 crossover(Parent1, Parent2)

 -spec crossover(Parent1, Parent2) -> network_evaluator:network()
 when Parent1 :: network_evaluator:network(), Parent2 :: network_evaluator:network().

Crossover two networks to produce offspring.
Performs uniform crossover: each weight in the offspring is randomly selected from either parent with equal probability.

 mutate(Network, MutationStrength)

 -spec mutate(Network, MutationStrength) -> network_evaluator:network()
 when Network :: network_evaluator:network(), MutationStrength :: float().

Mutate a network's weights.
Creates a copy of the network with mutated weights. The mutation applies gaussian noise to each weight with the given strength.

neuro_config

Configuration builder for neuroevolution server.
This module provides helper functions to construct #neuro_config{} records from maps, enabling clean integration with Elixir applications without requiring manual tuple construction.
[bookmark: Usage]Usage
From Elixir: config = :neuro_config.from_map(%{ population_size: 50, network_topology: {42, [24], 6}, evaluator_module: :my_evaluator }) {:ok, pid} = :neuroevolution_server.start_link(config)

 Summary

 Types

 mutation_config/0

 self_play_config/0

 speciation_config/0

 Functions

 default()

 Create a default configuration.

 default(Overrides)

 Create a configuration with the given overrides.

 from_map(Map)

 Build a #neuro_config{} record from a map.

 to_map(Neuro_config)

 Convert a #neuro_config{} record to a map.

 with_l0_params(Neuro_config)

 Merge L0 actuator values into config.

 with_l0_params(Neuro_config, L0Params)

 Merge specific L0 params into config.

 Types

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 Functions

 default()

 -spec default() ->
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

Create a default configuration.
Note: This creates a config with placeholder topology and evaluator. In practice, you should use from_map/1 with your actual values.

 default(Overrides)

 -spec default(map()) ->
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

Create a configuration with the given overrides.

 from_map(Map)

 -spec from_map(map()) ->
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

Build a #neuro_config{} record from a map.
All fields are optional - missing fields use sensible defaults. This function handles type coercion and validation.
Required fields (no reasonable defaults): - network_topology - {Inputs, HiddenLayers, Outputs} - evaluator_module - Module implementing neuroevolution_evaluator behaviour
Throws {missing_required_field, FieldName} if required field is missing.

 to_map(Neuro_config)

 -spec to_map(#neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}) ->
 map().

Convert a #neuro_config{} record to a map.
Useful for serialization, logging, and passing to Elixir code.

 with_l0_params(Neuro_config)

 -spec with_l0_params(#neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}) ->
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology ::
 {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

Merge L0 actuator values into config.
When Liquid Conglomerate (LC) is enabled, this function gets the current hyperparameter values from the L0 controller and updates the config. This enables dynamic adaptation of mutation rates during training.
If task_l0_actuators is not running, returns the config unchanged.
Example: Config = neuro_config:from_map(#{...}), DynamicConfig = neuro_config:with_l0_params(Config), %% DynamicConfig now has L0-controlled mutation rates

 with_l0_params(Neuro_config, L0Params)

 -spec with_l0_params(#neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined},
 map()) ->
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology ::
 {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

Merge specific L0 params into config.
This variant takes the L0 params directly, useful when you already have them.

neuroevolution_behavioral_events

Behavioral event constructors for neuroevolution.
This module provides helper functions to construct properly-formed behavioral events. All events include standard metadata and follow the behavioral naming conventions (past tense, domain language).
[bookmark: Usage]Usage
 Event = neuroevolution_behavioral_events:offspring_born(#{
 individual_id => IndId,
 parent_ids => [P1, P2],
 generation => 42,
 species_id => SpeciesId,
 population_id => PopId
 }),
 neuroevolution_lineage_events:persist_event(Event, State).

 Summary

 Types

 behavioral_event/0

 birth_event/0

 breeding_event/0

 controller_event/0

 death_event/0

 fitness/0

 fitness_event/0

 generation/0

 generation_event/0

 individual_id/0

 lifecycle_event/0

 mutation_event/0

 population_id/0

 species_event/0

 species_id/0

 timestamp/0

 Functions

 activation_changed(Data)

 Create activation_changed event.

 bias_perturbed(Data)

 Create bias_perturbed event.

 breakthrough_achieved(Data)

 Create breakthrough_achieved event.

 champion_crowned(Data)

 Create champion_crowned event.

 clone_produced(Data)

 Create clone_produced event.

 connection_added(Data)

 Create connection_added event.

 connection_removed(Data)

 Create connection_removed event.

 controller_adjusted(Data)

 Create controller_adjusted event.

 crossover_performed(Data)

 Create crossover_performed event.

 evaluation_timeout(Data)

 Create evaluation_timeout event.

 event_to_map(Event)

 Convert an event record to a map for serialization.

 fertility_waned(Data)

 Create fertility_waned event.

 fitness_declined(Data)

 Create fitness_declined event.

 fitness_evaluated(Data)

 Create fitness_evaluated event.

 fitness_improved(Data)

 Create fitness_improved event.

 generation_completed(Data)

 Create generation_completed event.

 immigrant_arrived(Data)

 Create immigrant_arrived event.

 individual_culled(Data)

 Create individual_culled event.

 individual_matured(Data)

 Create individual_matured event.

 individual_perished(Data)

 Create individual_perished event.

 lifespan_expired(Data)

 Create lifespan_expired event.

 lineage_diverged(Data)

 Create lineage_diverged event.

 lineage_ended(Data)

 Create lineage_ended event.

 make_meta(Emitter)

 Create event metadata with default values.

 make_meta(Emitter, Opts)

 Create event metadata with options.

 mating_occurred(Data)

 Create mating_occurred event.

 mutation_applied(Data)

 Create mutation_applied event.

 neuron_added(Data)

 Create neuron_added event.

 neuron_removed(Data)

 Create neuron_removed event.

 offspring_born(Data)

 Create offspring_born event.

 pioneer_spawned(Data)

 Create pioneer_spawned event.

 population_initialized(Data)

 Create population_initialized event.

 population_terminated(Data)

 Create population_terminated event.

 silo_activated(Data)

 Create silo_activated event.

 silo_deactivated(Data)

 Create silo_deactivated event.

 species_emerged(Data)

 Create species_emerged event.

 stagnation_detected(Data)

 Create stagnation_detected event.

 stream_id(Type, Id)

 Generate stream ID for an entity.

 weight_perturbed(Data)

 Create weight_perturbed event.

 Types

 behavioral_event/0

 -type behavioral_event() ::
 birth_event() |
 death_event() |
 mutation_event() |
 fitness_event() |
 generation_event() |
 species_event() |
 breeding_event() |
 lifecycle_event() |
 controller_event().

 birth_event/0

 -type birth_event() ::
 #offspring_born{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 parent_ids :: [individual_id()],
 generation :: generation(),
 species_id :: species_id(),
 population_id :: population_id(),
 genome_hash :: binary(),
 initial_fitness :: fitness() | undefined} |
 #pioneer_spawned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 species_id :: species_id(),
 generation :: generation(),
 genome_hash :: binary()} |
 #clone_produced{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 parent_id :: individual_id(),
 generation :: generation(),
 species_id :: species_id(),
 population_id :: population_id(),
 mutation_applied :: boolean()} |
 #immigrant_arrived{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 source_population_id :: population_id(),
 target_population_id :: population_id(),
 source_species_id :: species_id(),
 target_species_id :: species_id(),
 fitness :: fitness()}.

 breeding_event/0

 -type breeding_event() ::
 #mating_occurred{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 parent_a_id :: individual_id(),
 parent_b_id :: individual_id(),
 offspring_ids :: [individual_id()],
 crossover_method :: atom(),
 compatibility_distance :: float(),
 relatedness_coefficient :: float()} |
 #crossover_performed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 parent_a_id :: individual_id(),
 parent_b_id :: individual_id(),
 offspring_id :: individual_id(),
 crossover_point :: non_neg_integer() | multiple,
 genes_from_a :: non_neg_integer(),
 genes_from_b :: non_neg_integer()}.

 controller_event/0

 -type controller_event() ::
 #controller_adjusted{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 controller_id :: binary(),
 population_id :: population_id(),
 adjustments :: #{atom() => float()},
 trigger :: stagnation | diversity_crisis | breakthrough | scheduled} |
 #silo_activated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 silo_type :: atom(),
 realm :: binary(),
 config :: map()} |
 #silo_deactivated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 silo_type :: atom(),
 realm :: binary(),
 reason :: manual | dependency_removed | error}.

 death_event/0

 -type death_event() ::
 #individual_culled{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 species_id :: species_id(),
 final_fitness :: fitness(),
 age_generations :: non_neg_integer(),
 cause :: selection | stagnation | overcrowding,
 lineage_depth :: non_neg_integer()} |
 #lifespan_expired{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 age_generations :: non_neg_integer(),
 lifecycle_stage :: senescent,
 peak_fitness :: fitness(),
 offspring_count :: non_neg_integer()} |
 #individual_perished{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 cause :: evaluation_crash | simulation_death | timeout,
 generation :: generation()}.

 fitness/0

 -type fitness() :: float().

 fitness_event/0

 -type fitness_event() ::
 #fitness_evaluated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 fitness :: fitness(),
 fitness_components :: #{atom() => float()},
 evaluation_duration_ms :: non_neg_integer(),
 generation :: generation()} |
 #fitness_improved{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_fitness :: fitness(),
 new_fitness :: fitness(),
 improvement :: float(),
 generation :: generation()} |
 #fitness_declined{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_fitness :: fitness(),
 new_fitness :: fitness(),
 decline :: float(),
 generation :: generation()} |
 #champion_crowned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 fitness :: fitness(),
 previous_champion_id :: individual_id() | undefined,
 previous_champion_fitness :: fitness() | undefined,
 generation :: generation()} |
 #evaluation_timeout{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 timeout_ms :: non_neg_integer(),
 generation :: generation()} |
 #stagnation_detected{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generations_stagnant :: non_neg_integer(),
 best_fitness :: fitness(),
 generation :: generation()} |
 #breakthrough_achieved{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_best :: fitness(),
 new_best :: fitness(),
 improvement_ratio :: float(),
 generation :: generation()}.

 generation/0

 -type generation() :: non_neg_integer().

 generation_event/0

 -type generation_event() ::
 #generation_completed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generation :: generation(),
 statistics ::
 #{population_size => non_neg_integer(),
 species_count => non_neg_integer(),
 mean_fitness => float(),
 max_fitness => float(),
 min_fitness => float(),
 std_fitness => float(),
 mean_complexity => float(),
 diversity_index => float()},
 champion_id :: individual_id(),
 duration_ms :: non_neg_integer()} |
 #population_initialized{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 initial_size :: non_neg_integer(),
 config :: map()} |
 #population_terminated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 final_generation :: generation(),
 reason :: target_reached | max_generations | manual | error,
 final_champion_id :: individual_id(),
 final_champion_fitness :: fitness()}.

 individual_id/0

 -type individual_id() :: binary().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_matured{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_stage :: juvenile,
 new_stage :: fertile,
 age_generations :: non_neg_integer(),
 fitness_at_maturity :: fitness()} |
 #fertility_waned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_stage :: fertile,
 new_stage :: senescent,
 age_generations :: non_neg_integer(),
 offspring_count :: non_neg_integer()}.

 mutation_event/0

 -type mutation_event() ::
 #mutation_applied{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 mutation_id :: binary(),
 mutation_type :: atom(),
 generation :: generation()} |
 #neuron_added{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 layer :: input | hidden | output,
 layer_index :: float(),
 activation_function :: atom(),
 bias :: float(),
 mutation_id :: binary()} |
 #neuron_removed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 layer :: input | hidden | output,
 mutation_id :: binary()} |
 #connection_added{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 from_neuron_id :: binary(),
 to_neuron_id :: binary(),
 weight :: float(),
 mutation_id :: binary()} |
 #connection_removed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 from_neuron_id :: binary(),
 to_neuron_id :: binary(),
 mutation_id :: binary()} |
 #weight_perturbed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 old_weight :: float(),
 new_weight :: float(),
 mutation_id :: binary()} |
 #bias_perturbed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 old_bias :: float(),
 new_bias :: float(),
 mutation_id :: binary()} |
 #activation_changed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 old_activation :: atom(),
 new_activation :: atom(),
 mutation_id :: binary()}.

 population_id/0

 -type population_id() :: binary().

 species_event/0

 -type species_event() ::
 #lineage_diverged{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 new_species_id :: species_id(),
 parent_species_id :: species_id(),
 founder_individual_id :: individual_id(),
 divergence_cause :: structural | behavioral | geographic,
 compatibility_distance :: float(),
 generation :: generation()} |
 #species_emerged{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 founder_id :: individual_id(),
 generation :: generation()} |
 #lineage_ended{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 final_generation :: generation(),
 total_generations :: non_neg_integer(),
 peak_fitness :: fitness(),
 total_individuals :: non_neg_integer()}.

 species_id/0

 -type species_id() :: binary().

 timestamp/0

 -type timestamp() :: integer().

 Functions

 activation_changed(Data)

 -spec activation_changed(map()) ->
 #activation_changed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 old_activation :: atom(),
 new_activation :: atom(),
 mutation_id :: binary()}.

Create activation_changed event.

 bias_perturbed(Data)

 -spec bias_perturbed(map()) ->
 #bias_perturbed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 old_bias :: float(),
 new_bias :: float(),
 mutation_id :: binary()}.

Create bias_perturbed event.

 breakthrough_achieved(Data)

 -spec breakthrough_achieved(map()) ->
 #breakthrough_achieved{meta ::
 #event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_best :: fitness(),
 new_best :: fitness(),
 improvement_ratio :: float(),
 generation :: generation()}.

Create breakthrough_achieved event.

 champion_crowned(Data)

 -spec champion_crowned(map()) ->
 #champion_crowned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 fitness :: fitness(),
 previous_champion_id :: individual_id() | undefined,
 previous_champion_fitness :: fitness() | undefined,
 generation :: generation()}.

Create champion_crowned event.

 clone_produced(Data)

 -spec clone_produced(map()) ->
 #clone_produced{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 parent_id :: individual_id(),
 generation :: generation(),
 species_id :: species_id(),
 population_id :: population_id(),
 mutation_applied :: boolean()}.

Create clone_produced event.

 connection_added(Data)

 -spec connection_added(map()) ->
 #connection_added{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 from_neuron_id :: binary(),
 to_neuron_id :: binary(),
 weight :: float(),
 mutation_id :: binary()}.

Create connection_added event.

 connection_removed(Data)

 -spec connection_removed(map()) ->
 #connection_removed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 from_neuron_id :: binary(),
 to_neuron_id :: binary(),
 mutation_id :: binary()}.

Create connection_removed event.

 controller_adjusted(Data)

 -spec controller_adjusted(map()) ->
 #controller_adjusted{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 controller_id :: binary(),
 population_id :: population_id(),
 adjustments :: #{atom() => float()},
 trigger ::
 stagnation | diversity_crisis | breakthrough |
 scheduled}.

Create controller_adjusted event.

 crossover_performed(Data)

 -spec crossover_performed(map()) ->
 #crossover_performed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 parent_a_id :: individual_id(),
 parent_b_id :: individual_id(),
 offspring_id :: individual_id(),
 crossover_point :: non_neg_integer() | multiple,
 genes_from_a :: non_neg_integer(),
 genes_from_b :: non_neg_integer()}.

Create crossover_performed event.

 evaluation_timeout(Data)

 -spec evaluation_timeout(map()) ->
 #evaluation_timeout{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 timeout_ms :: non_neg_integer(),
 generation :: generation()}.

Create evaluation_timeout event.

 event_to_map(Event)

 -spec event_to_map(behavioral_event()) -> map().

Convert an event record to a map for serialization.

 fertility_waned(Data)

 -spec fertility_waned(map()) ->
 #fertility_waned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_stage :: fertile,
 new_stage :: senescent,
 age_generations :: non_neg_integer(),
 offspring_count :: non_neg_integer()}.

Create fertility_waned event.

 fitness_declined(Data)

 -spec fitness_declined(map()) ->
 #fitness_declined{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_fitness :: fitness(),
 new_fitness :: fitness(),
 decline :: float(),
 generation :: generation()}.

Create fitness_declined event.

 fitness_evaluated(Data)

 -spec fitness_evaluated(map()) ->
 #fitness_evaluated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 fitness :: fitness(),
 fitness_components :: #{atom() => float()},
 evaluation_duration_ms :: non_neg_integer(),
 generation :: generation()}.

Create fitness_evaluated event.

 fitness_improved(Data)

 -spec fitness_improved(map()) ->
 #fitness_improved{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_fitness :: fitness(),
 new_fitness :: fitness(),
 improvement :: float(),
 generation :: generation()}.

Create fitness_improved event.

 generation_completed(Data)

 -spec generation_completed(map()) ->
 #generation_completed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generation :: generation(),
 statistics ::
 #{population_size => non_neg_integer(),
 species_count => non_neg_integer(),
 mean_fitness => float(),
 max_fitness => float(),
 min_fitness => float(),
 std_fitness => float(),
 mean_complexity => float(),
 diversity_index => float()},
 champion_id :: individual_id(),
 duration_ms :: non_neg_integer()}.

Create generation_completed event.

 immigrant_arrived(Data)

 -spec immigrant_arrived(map()) ->
 #immigrant_arrived{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 source_population_id :: population_id(),
 target_population_id :: population_id(),
 source_species_id :: species_id(),
 target_species_id :: species_id(),
 fitness :: fitness()}.

Create immigrant_arrived event.

 individual_culled(Data)

 -spec individual_culled(map()) ->
 #individual_culled{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 species_id :: species_id(),
 final_fitness :: fitness(),
 age_generations :: non_neg_integer(),
 cause :: selection | stagnation | overcrowding,
 lineage_depth :: non_neg_integer()}.

Create individual_culled event.

 individual_matured(Data)

 -spec individual_matured(map()) ->
 #individual_matured{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 previous_stage :: juvenile,
 new_stage :: fertile,
 age_generations :: non_neg_integer(),
 fitness_at_maturity :: fitness()}.

Create individual_matured event.

 individual_perished(Data)

 -spec individual_perished(map()) ->
 #individual_perished{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 cause :: evaluation_crash | simulation_death | timeout,
 generation :: generation()}.

Create individual_perished event.

 lifespan_expired(Data)

 -spec lifespan_expired(map()) ->
 #lifespan_expired{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 age_generations :: non_neg_integer(),
 lifecycle_stage :: senescent,
 peak_fitness :: fitness(),
 offspring_count :: non_neg_integer()}.

Create lifespan_expired event.

 lineage_diverged(Data)

 -spec lineage_diverged(map()) ->
 #lineage_diverged{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 new_species_id :: species_id(),
 parent_species_id :: species_id(),
 founder_individual_id :: individual_id(),
 divergence_cause :: structural | behavioral | geographic,
 compatibility_distance :: float(),
 generation :: generation()}.

Create lineage_diverged event.

 lineage_ended(Data)

 -spec lineage_ended(map()) ->
 #lineage_ended{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 final_generation :: generation(),
 total_generations :: non_neg_integer(),
 peak_fitness :: fitness(),
 total_individuals :: non_neg_integer()}.

Create lineage_ended event.

 make_meta(Emitter)

 -spec make_meta(Emitter :: atom()) ->
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

Create event metadata with default values.

 make_meta(Emitter, Opts)

 -spec make_meta(Emitter :: atom(), Opts :: map()) ->
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()}.

Create event metadata with options.

 mating_occurred(Data)

 -spec mating_occurred(map()) ->
 #mating_occurred{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 parent_a_id :: individual_id(),
 parent_b_id :: individual_id(),
 offspring_ids :: [individual_id()],
 crossover_method :: atom(),
 compatibility_distance :: float(),
 relatedness_coefficient :: float()}.

Create mating_occurred event.

 mutation_applied(Data)

 -spec mutation_applied(map()) ->
 #mutation_applied{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 mutation_id :: binary(),
 mutation_type :: atom(),
 generation :: generation()}.

Create mutation_applied event.

 neuron_added(Data)

 -spec neuron_added(map()) ->
 #neuron_added{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 layer :: input | hidden | output,
 layer_index :: float(),
 activation_function :: atom(),
 bias :: float(),
 mutation_id :: binary()}.

Create neuron_added event.

 neuron_removed(Data)

 -spec neuron_removed(map()) ->
 #neuron_removed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 neuron_id :: binary(),
 layer :: input | hidden | output,
 mutation_id :: binary()}.

Create neuron_removed event.

 offspring_born(Data)

 -spec offspring_born(map()) ->
 #offspring_born{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 parent_ids :: [individual_id()],
 generation :: generation(),
 species_id :: species_id(),
 population_id :: population_id(),
 genome_hash :: binary(),
 initial_fitness :: fitness() | undefined}.

Create offspring_born event.

 pioneer_spawned(Data)

 -spec pioneer_spawned(map()) ->
 #pioneer_spawned{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 population_id :: population_id(),
 species_id :: species_id(),
 generation :: generation(),
 genome_hash :: binary()}.

Create pioneer_spawned event.

 population_initialized(Data)

 -spec population_initialized(map()) ->
 #population_initialized{meta ::
 #event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 initial_size :: non_neg_integer(),
 config :: map()}.

Create population_initialized event.

 population_terminated(Data)

 -spec population_terminated(map()) ->
 #population_terminated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id ::
 binary() | undefined,
 causation_id ::
 binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 final_generation :: generation(),
 reason ::
 target_reached | max_generations | manual |
 error,
 final_champion_id :: individual_id(),
 final_champion_fitness :: fitness()}.

Create population_terminated event.

 silo_activated(Data)

 -spec silo_activated(map()) ->
 #silo_activated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 silo_type :: atom(),
 realm :: binary(),
 config :: map()}.

Create silo_activated event.

 silo_deactivated(Data)

 -spec silo_deactivated(map()) ->
 #silo_deactivated{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 silo_type :: atom(),
 realm :: binary(),
 reason :: manual | dependency_removed | error}.

Create silo_deactivated event.

 species_emerged(Data)

 -spec species_emerged(map()) ->
 #species_emerged{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 species_id :: species_id(),
 population_id :: population_id(),
 founder_id :: individual_id(),
 generation :: generation()}.

Create species_emerged event.

 stagnation_detected(Data)

 -spec stagnation_detected(map()) ->
 #stagnation_detected{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 population_id :: population_id(),
 generations_stagnant :: non_neg_integer(),
 best_fitness :: fitness(),
 generation :: generation()}.

Create stagnation_detected event.

 stream_id(Type, Id)

 -spec stream_id(Type :: atom(), Id :: binary()) -> binary().

Generate stream ID for an entity.

 weight_perturbed(Data)

 -spec weight_perturbed(map()) ->
 #weight_perturbed{meta ::
 #event_meta{event_id :: binary(),
 correlation_id :: binary() | undefined,
 causation_id :: binary() | undefined,
 timestamp :: timestamp(),
 version :: pos_integer(),
 emitter :: atom()},
 individual_id :: individual_id(),
 connection_id :: binary(),
 old_weight :: float(),
 new_weight :: float(),
 mutation_id :: binary()}.

Create weight_perturbed event.

neuroevolution_evaluator behaviour

Behaviour for domain-specific evaluators.
This module defines the behaviour that domain-specific evaluators must implement. Evaluators are responsible for:
	Running an individual through domain-specific tests/games/simulations
	Calculating metrics (score, ticks survived, wins, etc.)
	Optionally calculating fitness from metrics

[bookmark: Implementing_an_Evaluator]Implementing an Evaluator
To create a custom evaluator, implement the evaluate/2 callback:
-module(my_evaluator). -behaviour(neuroevolution_evaluator).
-export([evaluate/2]).
evaluate(Individual, Options) -> Network = Individual#individual.network, %% Run your evaluation logic Score = run_game(Network), Ticks = get_survival_time(), %% Return updated individual with metrics UpdatedIndividual = Individual#individual{ metrics = #{score => Score, ticks => Ticks} }, {ok, UpdatedIndividual}.
[bookmark: Optional_Fitness_Calculation]Optional Fitness Calculation
By default, fitness is calculated by the neuroevolution server using a standard formula. You can override this by implementing calculate_fitness/1:
-export([calculate_fitness/1]).
calculate_fitness(Metrics) -> Score = maps:get(score, Metrics, 0), Ticks = maps:get(ticks, Metrics, 0), Score * 50.0 + Ticks / 50.0.

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 Callbacks

 calculate_fitness/1

 evaluate/2

 Functions

 default_fitness(Metrics)

 Default fitness calculation from standard metrics.

 evaluate_batch_distributed(Population, EvaluatorModule, Options, SelfPlayManager)

 Evaluate a batch distributed across all connected BEAM nodes.

 evaluate_batch_parallel(Population, EvaluatorModule, Options)

 Evaluate a batch of individuals in parallel using Elixir PartitionSupervisor.

 evaluate_individual(Individual, EvaluatorModule, Options)

 Evaluate an individual using the specified evaluator module.

 get_worker_nodes()

 Get list of connected worker nodes.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 Callbacks

 calculate_fitness/1

 (optional)

 -callback calculate_fitness(Metrics) -> Fitness when Metrics :: map(), Fitness :: float().

 evaluate/2

 -callback evaluate(Individual, Options) -> Result
 when
 Individual :: individual(),
 Options :: map(),
 Result :: {ok, EvaluatedIndividual :: individual()} | {error, term()}.

 Functions

 default_fitness(Metrics)

 -spec default_fitness(Metrics) -> Fitness when Metrics :: map(), Fitness :: float().

Default fitness calculation from standard metrics.
Uses a formula that balances: - Score (food eaten, points, etc.) - primary goal - Survival (ticks lived) - secondary goal - Wins - bonus
Formula: Score * 50 + Ticks / 50 + Wins * 2

 evaluate_batch_distributed(Population, EvaluatorModule, Options, SelfPlayManager)

 -spec evaluate_batch_distributed(Population, EvaluatorModule, Options, SelfPlayManager) -> Results
 when
 Population :: [individual()],
 EvaluatorModule :: module(),
 Options :: map(),
 SelfPlayManager :: pid() | undefined,
 Results :: [individual()].

Evaluate a batch distributed across all connected BEAM nodes.
This function splits the population across all available nodes and uses erpc to distribute work. When worker nodes are available, evaluations are spread across all nodes for horizontal scaling. Falls back to local parallel evaluation if no workers are connected.
The coordinator splits the population, dispatches batches to workers via erpc, evaluates a local batch in parallel, and collects all results.
See assets/distributed_evaluation.svg for the architecture diagram.

 evaluate_batch_parallel(Population, EvaluatorModule, Options)

 -spec evaluate_batch_parallel(Population, EvaluatorModule, Options) -> Results
 when
 Population :: [individual()],
 EvaluatorModule :: module(),
 Options :: map(),
 Results :: [{ok, individual()} | {error, term()}].

Evaluate a batch of individuals in parallel using Elixir PartitionSupervisor.
This function delegates batch evaluation to the Elixir EvaluationPool module, which uses PartitionSupervisor to distribute work across all CPU cores. This provides true multi-core parallelism compared to spawn_link which creates processes on the same scheduler as the spawner.
Falls back to sequential evaluation if the Elixir pool is not available.

 evaluate_individual(Individual, EvaluatorModule, Options)

 -spec evaluate_individual(Individual, EvaluatorModule, Options) -> Result
 when
 Individual :: individual(),
 EvaluatorModule :: module(),
 Options :: map(),
 Result :: {ok, individual()} | {error, term()}.

Evaluate an individual using the specified evaluator module.
Delegates to the evaluator module's evaluate/2 callback. Returns the evaluated individual with metrics populated. Catches and logs any exceptions from the evaluator.
PERFORMANCE: Compiles the network for NIF evaluation before calling the evaluator. This provides 50-100x faster network evaluation compared to pure Erlang. The compiled_ref is stripped by the caller after evaluation to prevent memory leaks (see neuroevolution_server:strip_compiled_ref_from_individual/1).

 get_worker_nodes()

 -spec get_worker_nodes() -> [node()].

Get list of connected worker nodes.

neuroevolution_evaluator_worker

Event-driven evaluator worker for distributed neuroevolution.
This gen_server subscribes to evaluation request events and runs evaluations using a configured evaluator module. Results are published back to the evaluated topic.
[bookmark: Usage]Usage
Start a worker for a specific realm:
{ok, Pid} = neuroevolution_evaluator_worker:start_link(#{ realm => RealmBinary, evaluator_module => my_evaluator, evaluator_options => #{} }).
The worker will automatically subscribe to neuro.<realm>.evaluate and publish results to neuro.<realm>.evaluated.
[bookmark: Message_Format]Message Format
The worker expects messages in the format: {neuro_event, Topic, {evaluate_request, RequestMap}}
Where RequestMap contains: - request_id - Correlation ID for tracking - individual_id - The individual's ID - network - The neural network to evaluate - options - Domain-specific evaluation options
[bookmark: Distributed_Operation]Distributed Operation
Multiple workers can subscribe to the same realm topic. The event backend determines load distribution: - Local backend (pg): All workers receive all requests - Macula backend: DHT-based routing (load balanced)

 Summary

 Types

 worker_config/0

 Functions

 start_link(Config)

 Start a linked evaluator worker.

 stop(Pid)

 Stop a worker.

 Types

 worker_config/0

 -type worker_config() ::
 #{realm := binary(),
 evaluator_module := module(),
 evaluator_options => map(),
 max_concurrent => pos_integer()}.

 Functions

 start_link(Config)

 -spec start_link(Config) -> {ok, pid()} | {error, term()} when Config :: worker_config().

Start a linked evaluator worker.
Config must contain: - realm - The realm to subscribe to - evaluator_module - Module implementing neuroevolution_evaluator behaviour
Optional: - evaluator_options - Options passed to evaluator (default: #{}) - max_concurrent - Max concurrent evaluations (default: 10)

 stop(Pid)

 -spec stop(Pid) -> ok when Pid :: pid().

Stop a worker.

neuroevolution_events behaviour

Event publishing abstraction for neuroevolution.
This module provides a pluggable event system that can use different backends for event distribution:
- neuroevolution_events_local - Local pg-based pubsub (default) - neuroevolution_events_macula - Distributed via Macula mesh (future)
[bookmark: Event_Types]Event Types
Commands (requests for work): - {evaluate_request, #{request_id, realm, individual_id, network, options}} - {evaluate_batch_request, #{request_id, realm, individuals, options}}
Events (facts that happened): - {evaluated, #{request_id, individual_id, metrics, evaluator_node}} - {generation_started, #{realm, generation, population_size, timestamp}} - {generation_completed, #{realm, generation, best_fitness, avg_fitness, ...}} - {training_started, #{realm, config}} - {training_stopped, #{realm, generation, reason}}
[bookmark: Topic_Design]Topic Design
Topics follow the pattern: evolution:<realm>:<type> - evolution:default:generation_complete - Generation lifecycle events - evolution:default:training - Training lifecycle events - evolution:default:intervention - LC intervention events - evolution:default:resource_alert - Resource pressure alerts
Legacy topics (for distributed evaluation): - neuro.default.evaluate - Evaluation requests - neuro.default.evaluated - Evaluation results

 Summary

 Callbacks

 publish/2

 subscribe/2

 unsubscribe/2

 Functions

 evaluate_topic(Realm)

 Get the evaluation request topic for a realm.

 evaluated_topic(Realm)

 Get the evaluation results topic for a realm.

 events_topic(Realm)

 deprecated

 Get the training events topic for a realm.

 get_backend()

 Get the current event backend module.

 make_event(Realm, Source, Payload)

 Create a standardized event map with realm, source, and timestamp.

 make_event(EventType, Realm, Source, Payload)

 Create a standardized event with explicit event type.

 publish(Topic, Event)

 Publish an event to a topic.

 publish_event(Topic, EventType, Realm, Source, Payload)

 Create and publish a standardized event in one call.

 set_backend(Module)

 Set the event backend module.

 subscribe(Topic)

 Subscribe the calling process to a topic.

 subscribe(Topic, Pid)

 Subscribe a specific process to a topic.

 topic_competition(Realm)

 Topic for competitive coevolution events (medium frequency).

 topic_environment(Realm)

 Topic for environment change events (low frequency).

 topic_generation(Realm)

 Topic for generation lifecycle events (low frequency, rich payload).

 topic_individual(Realm)

 Topic for individual-level events (high frequency, use sparingly).

 topic_intervention(Realm)

 Topic for LC intervention events (Task Silo actions).

 topic_island(Realm)

 Topic for island model events (medium frequency).

 topic_meta(Realm)

 Topic for meta-controller parameter updates (low frequency).

 topic_novelty(Realm)

 Topic for novelty search events (medium frequency).

 topic_population(Realm)

 Topic for population-level events (medium frequency).

 topic_progress(Realm)

 Topic for strategy-agnostic progress events (configurable frequency).

 topic_qd(Realm)

 Topic for quality-diversity (MAP-Elites) events (medium frequency).

 topic_resource_alert(Realm)

 Topic for resource pressure alerts (Resource Silo warnings).

 topic_silo_sensors(Realm)

 Topic for real-time LC silo sensor updates (high frequency).

 topic_species(Realm)

 Topic for species lifecycle events (low frequency).

 topic_training(Realm)

 Topic for training lifecycle events (rare, important).

 unsubscribe(Topic)

 Unsubscribe the calling process from a topic.

 Callbacks

 publish/2

 -callback publish(Topic :: binary(), Event :: term()) -> ok.

 subscribe/2

 -callback subscribe(Topic :: binary(), Pid :: pid()) -> ok.

 unsubscribe/2

 -callback unsubscribe(Topic :: binary(), Pid :: pid()) -> ok.

 Functions

 evaluate_topic(Realm)

 -spec evaluate_topic(Realm) -> binary() when Realm :: binary().

Get the evaluation request topic for a realm.

 evaluated_topic(Realm)

 -spec evaluated_topic(Realm) -> binary() when Realm :: binary().

Get the evaluation results topic for a realm.

 events_topic(Realm)

 This function is deprecated. Use topic_generation/1, topic_population/1, etc. instead..

 -spec events_topic(Realm) -> binary() when Realm :: binary().

Get the training events topic for a realm.

 get_backend()

 -spec get_backend() -> module().

Get the current event backend module.

 make_event(Realm, Source, Payload)

 -spec make_event(Realm, Source, Payload) -> {atom(), map()}
 when Realm :: binary(), Source :: atom(), Payload :: map().

Create a standardized event map with realm, source, and timestamp.
Example:
 Event = neuroevolution_events:make_event(<<"snake_duel">>, task_silo, #{
 event_type => task_silo_intervention_started,
 stagnation_severity => 0.75,
 exploration_boost => 0.3
 }).

 make_event(EventType, Realm, Source, Payload)

 -spec make_event(EventType, Realm, Source, Payload) -> {atom(), map()}
 when EventType :: atom(), Realm :: binary(), Source :: atom(), Payload :: map().

Create a standardized event with explicit event type.
Example:
 Event = neuroevolution_events:make_event(generation_complete, <<"snake_duel">>,
 neuroevolution_server, #{
 cohort => 42,
 best_fitness => 0.95
 }).

 publish(Topic, Event)

 -spec publish(Topic, Event) -> ok when Topic :: binary(), Event :: term().

Publish an event to a topic.
The event will be delivered to all subscribers of the topic. Event format is typically {EventType, EventData} where EventData is a map.

 publish_event(Topic, EventType, Realm, Source, Payload)

 -spec publish_event(Topic, EventType, Realm, Source, Payload) -> ok
 when
 Topic :: binary(),
 EventType :: atom(),
 Realm :: binary(),
 Source :: atom(),
 Payload :: map().

Create and publish a standardized event in one call.
Example:
 neuroevolution_events:publish_event(
 topic_intervention(Realm),
 task_silo_intervention_started,
 Realm,
 task_silo,
 #{stagnation_severity => 0.75, exploration_boost => 0.3}
).

 set_backend(Module)

 -spec set_backend(Module) -> ok when Module :: module().

Set the event backend module.
The backend module must implement the neuroevolution_events behaviour. Default is neuroevolution_events_local.

 subscribe(Topic)

 -spec subscribe(Topic) -> ok when Topic :: binary().

Subscribe the calling process to a topic.

 subscribe(Topic, Pid)

 -spec subscribe(Topic, Pid) -> ok when Topic :: binary(), Pid :: pid().

Subscribe a specific process to a topic.

 topic_competition(Realm)

 -spec topic_competition(Realm) -> binary() when Realm :: binary().

Topic for competitive coevolution events (medium frequency).
Competitive Coevolution (Red Team vs Blue Team) events: - {red_team_updated, #{realm, red_team_size, red_team_avg_fitness, red_team_max_fitness, members_added}} - {blue_team_evaluated, #{realm, blue_team_best_fitness, red_team_opponent_id, result}} - {immigration_occurred, #{realm, direction, count, individuals}} direction: blue_to_red or red_to_blue - {arms_race_progress, #{realm, generation, blue_best, red_best, blue_improvement_rate, red_improvement_rate}}
The arms race dynamic is key: both populations must continuously improve to beat each other, preventing overfitting to static opponents.

 topic_environment(Realm)

 -spec topic_environment(Realm) -> binary() when Realm :: binary().

Topic for environment change events (low frequency).
Events: - {environment_changed, #environment_changed{}} - Fitness landscape changed
Used for curriculum learning, adaptive difficulty, or simulating changing real-world conditions.

 topic_generation(Realm)

 -spec topic_generation(Realm) -> binary() when Realm :: binary().

Topic for generation lifecycle events (low frequency, rich payload).
Events: - {generation_started, #{realm, generation, population_size, timestamp}} - {generation_complete, #{realm, generation, generation_stats, history_point, meta_params, silo_state, convergence_status, ...}}

 topic_individual(Realm)

 -spec topic_individual(Realm) -> binary() when Realm :: binary().

Topic for individual-level events (high frequency, use sparingly).
Events: - {individual_evaluated, #{realm, individual_id, fitness, metrics}}
Note: For UI purposes, prefer subscribing to topic_population/1 which provides aggregated data. This topic is for distributed evaluation workers.

 topic_intervention(Realm)

 -spec topic_intervention(Realm) -> binary() when Realm :: binary().

Topic for LC intervention events (Task Silo actions).
Events: - {task_silo_intervention_started, #{realm, generation, exploration_boost, ...}} - {task_silo_intervention_ended, #{realm, generation, prev_boost}} - {task_silo_intervention_intensified, #{realm, generation, old_boost, new_boost}}
These events are emitted when the Task Silo intervenes to address stagnation. The dashboard subscribes directly to this topic for immediate UI updates.

 topic_island(Realm)

 -spec topic_island(Realm) -> binary() when Realm :: binary().

Topic for island model events (medium frequency).
Events: - {island_migration, #island_migration{}} - Individual migrated between islands - {island_topology_changed, #island_topology_changed{}} - Island connectivity changed

 topic_meta(Realm)

 -spec topic_meta(Realm) -> binary() when Realm :: binary().

Topic for meta-controller parameter updates (low frequency).
Events: - {meta_params_updated, #{realm, generation, params, silo_states}}

 topic_novelty(Realm)

 -spec topic_novelty(Realm) -> binary() when Realm :: binary().

Topic for novelty search events (medium frequency).
Events: - {archive_updated, #archive_updated{}} - Novelty archive changed - {niche_discovered, #niche_discovered{}} - New behavioral niche found

 topic_population(Realm)

 -spec topic_population(Realm) -> binary() when Realm :: binary().

Topic for population-level events (medium frequency).
Events: - {population_evaluated, #{realm, generation, population, top_individuals, ...}} - {selection_complete, #{realm, generation, survivors, offspring}}

 topic_progress(Realm)

 -spec topic_progress(Realm) -> binary() when Realm :: binary().

Topic for strategy-agnostic progress events (configurable frequency).
Events: - {progress_checkpoint, #progress_checkpoint{}} - Periodic progress updates
This topic is useful for continuous evolution strategies (steady-state) where traditional "generation" boundaries don't apply. Progress checkpoints are emitted every N evaluations (configurable).

 topic_qd(Realm)

 -spec topic_qd(Realm) -> binary() when Realm :: binary().

Topic for quality-diversity (MAP-Elites) events (medium frequency).
Events: - {niche_discovered, #niche_discovered{}} - New cell in grid occupied - {niche_updated, #niche_updated{}} - Better individual in existing cell - {archive_updated, #archive_updated{}} - Grid coverage/QD-score updated

 topic_resource_alert(Realm)

 -spec topic_resource_alert(Realm) -> binary() when Realm :: binary().

Topic for resource pressure alerts (Resource Silo warnings).
Events: - {resource_alert, #{realm, action, memory_pressure, message}}
Emitted when resource pressure changes from continue to throttle or pause, or when recovering from a resource-constrained state.

 topic_silo_sensors(Realm)

 -spec topic_silo_sensors(Realm) -> binary() when Realm :: binary().

Topic for real-time LC silo sensor updates (high frequency).
Events: - {task_sensors_updated, #{realm, sensors}} Emitted when Task Silo L0 sensors change significantly. - {resource_sensors_updated, #{realm, sensors}} Emitted when Resource Silo L0 sensors change significantly. - {distribution_sensors_updated, #{realm, sensors}} Emitted when Distribution Silo L0 sensors change significantly.
Sensors map contains all current L0 sensor values. Events are throttled to avoid flooding - only emitted when significant changes occur or at a maximum rate of 10Hz.

 topic_species(Realm)

 -spec topic_species(Realm) -> binary() when Realm :: binary().

Topic for species lifecycle events (low frequency).
Events: - {species_updated, #{realm, generation, species, species_count}} - {species_emerged, #{realm, species_id, founding_member}} - {species_extinct, #{realm, species_id, final_generation}}

 topic_training(Realm)

 -spec topic_training(Realm) -> binary() when Realm :: binary().

Topic for training lifecycle events (rare, important).
Events: - {training_started, #{realm, config, timestamp}} - {training_paused, #{realm, generation, reason}} - {training_resumed, #{realm, generation}} - {training_stopped, #{realm, generation, reason, final_stats}} - {training_complete, #{realm, generation, best_individual, elapsed_ms}}

 unsubscribe(Topic)

 -spec unsubscribe(Topic) -> ok when Topic :: binary().

Unsubscribe the calling process from a topic.

neuroevolution_events_local

Local event backend using Erlang's pg (process groups).
This is the default backend for single-node or development use. For distributed operation, use neuroevolution_events_macula.
[bookmark: Message_Format]Message Format
Subscribers receive messages in the format: {neuro_event, Topic, Event}
[bookmark: Example]Example
Subscribe to events: neuroevolution_events:subscribe(Topic)
In handle_info: handle_info({neuro_event, Topic, Event}, State) -> io:format("Received ~p on ~p~n", [Event, Topic]), {noreply, State}.

 Summary

 Functions

 publish(Topic, Event)

 Publish an event to all subscribers of a topic.

 start()

 Start the local event system.

 subscribe(Topic, Pid)

 Subscribe a process to a topic.

 unsubscribe(Topic, Pid)

 Unsubscribe a process from a topic.

 Functions

 publish(Topic, Event)

 -spec publish(Topic, Event) -> ok when Topic :: binary(), Event :: term().

Publish an event to all subscribers of a topic.

 start()

 -spec start() -> ok.

Start the local event system.
This must be called once at application startup to initialize the pg scope. It's safe to call multiple times.

 subscribe(Topic, Pid)

 -spec subscribe(Topic, Pid) -> ok when Topic :: binary(), Pid :: pid().

Subscribe a process to a topic.

 unsubscribe(Topic, Pid)

 -spec unsubscribe(Topic, Pid) -> ok when Topic :: binary(), Pid :: pid().

Unsubscribe a process from a topic.

neuroevolution_genetic

Genetic operators for neuroevolution.
This module provides crossover and mutation operators for evolving neural networks. Supports two modes:
[bookmark: NEAT_Topology_Evolution]NEAT Topology Evolution
When individuals have genomes (connection_genes with innovation numbers), uses NEAT-style crossover and structural mutations via genome_factory. This enables topology-evolving networks.
[bookmark: Fixed_Topology_(Legacy)]Fixed Topology (Legacy)
For backward compatibility, when individuals don't have genomes, uses weight-only evolution with uniform crossover and perturbation mutation.
Reference: Stanley, K.O. and Miikkulainen, R. (2002). "Evolving Neural Networks through Augmenting Topologies." Evolutionary Computation, 10(2).

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 self_play_config/0

 speciation_config/0

 Functions

 create_offspring(Parent1, Parent2, Config, Generation)

 Create offspring from two parent individuals.

 create_offspring_neat(Parent1, Parent2, Config, Generation)

 Create offspring using NEAT topology evolution.

 crossover_uniform(Weights1, Weights2)

 Uniform crossover of two weight lists.

 mutate_weights(Weights, MutationRate, MutationStrength)

 Mutate weights with given rate and strength.

 mutate_weights_layered(Weights, Topology, ReservoirParams, ReadoutParams, FallbackParams)

 Mutate weights with layer-specific rates.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 Functions

 create_offspring(Parent1, Parent2, Config, Generation)

 -spec create_offspring(Parent1, Parent2, Config, Generation) -> Offspring
 when
 Parent1 :: individual(),
 Parent2 :: individual(),
 Config :: neuro_config(),
 Generation :: generation(),
 Offspring :: individual().

Create offspring from two parent individuals.
Automatically selects the appropriate mode: - NEAT mode: When both parents have genomes and topology_mutation_config is set - Legacy mode: Weight-only evolution with uniform crossover
For NEAT mode: 1. Determine fitter parent 2. Perform NEAT crossover (gene alignment by innovation number) 3. Apply structural and weight mutations 4. Convert genome to network for evaluation
For Legacy mode: 1. Extract weights from both parent networks 2. Perform uniform crossover 3. Apply mutation 4. Create new network with child weights
Returns a new individual record with lineage tracking.

 create_offspring_neat(Parent1, Parent2, Config, Generation)

 -spec create_offspring_neat(Parent1, Parent2, Config, Generation) -> Offspring
 when
 Parent1 :: individual(),
 Parent2 :: individual(),
 Config :: neuro_config(),
 Generation :: generation(),
 Offspring :: individual().

Create offspring using NEAT topology evolution.
Uses genome_factory to perform NEAT-style crossover and mutation. Both parents must have genomes for this to work.

 crossover_uniform(Weights1, Weights2)

 -spec crossover_uniform(Weights1, Weights2) -> ChildWeights
 when Weights1 :: [float()], Weights2 :: [float()], ChildWeights :: [float()].

Uniform crossover of two weight lists.
For each weight position, randomly selects from either parent with equal probability (50/50).
Both weight lists must be the same length.
Example: Parent1 = [1.0, 2.0, 3.0, 4.0], Parent2 = [5.0, 6.0, 7.0, 8.0], %% Might produce: [1.0, 6.0, 3.0, 8.0] Child = neuroevolution_genetic:crossover_uniform(Parent1, Parent2).

 mutate_weights(Weights, MutationRate, MutationStrength)

 -spec mutate_weights(Weights, MutationRate, MutationStrength) -> MutatedWeights
 when
 Weights :: [float()],
 MutationRate :: float(),
 MutationStrength :: float(),
 MutatedWeights :: [float()].

Mutate weights with given rate and strength.
Each weight has MutationRate probability of being perturbed. When mutated, a random value in [-Strength, +Strength] is added.
Example: Weights = [1.0, 2.0, 3.0], Rate = 0.1, %% 10% of weights mutated Strength = 0.3, %% Changes up to +/- 0.3 Mutated = neuroevolution_genetic:mutate_weights(Weights, Rate, Strength).

 mutate_weights_layered(Weights, Topology, ReservoirParams, ReadoutParams, FallbackParams)

 -spec mutate_weights_layered(Weights, Topology, ReservoirParams, ReadoutParams, FallbackParams) ->
 MutatedWeights
 when
 Weights :: [float()],
 Topology :: {pos_integer(), [pos_integer()], pos_integer()},
 ReservoirParams :: {float(), float()} | undefined,
 ReadoutParams :: {float(), float()} | undefined,
 FallbackParams :: {float(), float()},
 MutatedWeights :: [float()].

Mutate weights with layer-specific rates.
Applies different mutation rates to reservoir (hidden) and readout (output) layers. The reservoir typically benefits from lower mutation rates for stability, while the readout can adapt faster with higher rates.
Reference: See guides/training-strategies.md for rationale.
Example: Weights = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6], %% 4 reservoir, 2 readout Topology = {2, [2], 2}, %% 2 inputs, 2 hidden, 2 outputs ReservoirParams = {0.05, 0.2}, %% Low rate for reservoir ReadoutParams = {0.20, 0.5}, %% High rate for readout Mutated = neuroevolution_genetic:mutate_weights_layered(Weights, Topology, ReservoirParams, ReadoutParams).

neuroevolution_lineage_events behaviour

Behaviour definition for neuroevolution lineage event persistence.
This behaviour defines the minimal API for lineage tracking. Implementations MUST be non-blocking to avoid impacting evolution performance.
[bookmark: Callbacks]Callbacks
init/1 - Initialize backend persist_event/2 - Fire-and-forget single event persist_batch/2 - Fire-and-forget batch of events read_stream/3 - Read events (for recovery/replay) subscribe/3 - Subscribe to stream (for projections) unsubscribe/3 - Unsubscribe from stream
[bookmark: Performance_Requirements]Performance Requirements
Lineage tracking must NEVER block the evolution loop:
- persist_event/persist_batch should return immediately - Use async I/O internally (spawn, cast, buffering) - Acceptable to lose events under extreme load - read_stream may block (only used for recovery)
[bookmark: Stream_Design]Stream Design
Events are organized into streams based on entity type:
- individual-{id} : Birth, death, fitness, mutations - species-{id} : Speciation, lineage events - population-{id} : Generation, capacity events - coalition-{id} : Coalition lifecycle

 Summary

 Types

 direction/0

 event/0

 position/0

 read_opts/0

 stream_id/0

 Callbacks

 init/1

 persist_batch/2

 persist_event/2

 read_stream/3

 subscribe/3

 unsubscribe/3

 Types

 direction/0

 -type direction() :: forward | backward.

 event/0

 -type event() :: map().

 position/0

 -type position() :: non_neg_integer().

 read_opts/0

 -type read_opts() :: #{from => position(), limit => pos_integer(), direction => direction()}.

 stream_id/0

 -type stream_id() :: binary().

 Callbacks

 init/1

 -callback init(Config :: map()) -> {ok, State :: term()} | {error, Reason :: term()}.

 persist_batch/2

 -callback persist_batch(Events :: [event()], State :: term()) -> ok.

 persist_event/2

 -callback persist_event(Event :: event(), State :: term()) -> ok.

 read_stream/3

 -callback read_stream(StreamId :: stream_id(), Opts :: read_opts(), State :: term()) ->
 {ok, Events :: [event()]} | {error, Reason :: term()}.

 subscribe/3

 -callback subscribe(StreamId :: stream_id(), Pid :: pid(), State :: term()) ->
 ok | {error, Reason :: term()}.

 unsubscribe/3

 -callback unsubscribe(StreamId :: stream_id(), Pid :: pid(), State :: term()) ->
 ok | {error, Reason :: term()}.

neuroevolution_selection

Selection strategies for neuroevolution.
This module provides different strategies for selecting which individuals survive to the next generation and which are used as parents for breeding.
[bookmark: Selection_Strategies]Selection Strategies
	top_n/2 - Select top N% by fitness (truncation selection)
	tournament/3 - Tournament selection with configurable size
	roulette_wheel/1 - Fitness-proportionate selection
	random_select/1 - Uniform random selection

All strategies expect individuals to have fitness values already calculated.

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 self_play_config/0

 speciation_config/0

 Functions

 random_select(Population)

 Uniform random selection.

 roulette_wheel(Population)

 Roulette wheel (fitness-proportionate) selection.

 select_parents(Population, Config)

 Select two parents for breeding.

 top_n(Population, N)

 Select top N individuals by fitness (truncation selection).

 tournament(Population, TournamentSize, NumSelections)

 Tournament selection.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 Functions

 random_select(Population)

 -spec random_select(Population) -> Selected when Population :: [individual()], Selected :: individual().

Uniform random selection.
Selects a single individual uniformly at random. All individuals have equal probability regardless of fitness.

 roulette_wheel(Population)

 -spec roulette_wheel(Population) -> Selected when Population :: [individual()], Selected :: individual().

Roulette wheel (fitness-proportionate) selection.
Probability of selection is proportional to fitness. Higher fitness = higher probability of being selected.
Note: Handles negative fitness by shifting to positive range.
Uses tweann_nif:roulette_select/3 for NIF-accelerated selection.
Returns a single selected individual.

 select_parents(Population, Config)

 -spec select_parents(Population, Config) -> {Parent1, Parent2}
 when
 Population :: [individual()],
 Config :: neuro_config(),
 Parent1 :: individual(),
 Parent2 :: individual().

Select two parents for breeding.
Uses roulette wheel selection to choose parents, ensuring that two different individuals are selected (if population allows).

 top_n(Population, N)

 -spec top_n(Population, N) -> Survivors
 when Population :: [individual()], N :: pos_integer(), Survivors :: [individual()].

Select top N individuals by fitness (truncation selection).
Sorts population by fitness descending and returns top N. This is elitist selection - only the best survive.
Example: %% Select top 10 individuals Survivors = neuroevolution_selection:top_n(Population, 10).

 tournament(Population, TournamentSize, NumSelections)

 -spec tournament(Population, TournamentSize, NumSelections) -> Selected
 when
 Population :: [individual()],
 TournamentSize :: pos_integer(),
 NumSelections :: pos_integer(),
 Selected :: [individual()].

Tournament selection.
Randomly samples TournamentSize individuals from the population, returns the fittest one. Repeat to select multiple individuals.
Tournament selection provides moderate selection pressure while maintaining diversity.
Uses tweann_nif:tournament_select/2 for NIF-accelerated selection.
Example: %% Tournament of size 3 Winner = neuroevolution_selection:tournament(Population, 3, 1).

neuroevolution_server

Population-based evolutionary training server.
This gen_server manages a population of neural network individuals, running them through domain-specific evaluation and evolving them across generations.
[bookmark: Pluggable_Evolution_Strategies]Pluggable Evolution Strategies
The server delegates all evolution logic to a configurable strategy module that implements the evolution_strategy behaviour. Built-in strategies:
- generational_strategy - Traditional (mu,lambda) batch evolution (default) - steady_state_strategy - Continuous replacement, no generations - island_strategy - Parallel populations with migration - novelty_strategy - Behavioral novelty search - map_elites_strategy - Quality-diversity with niche grid
[bookmark: Generation_Lifecycle]Generation Lifecycle
Each generation follows this cycle:
	Evaluate all individuals in parallel using the configured evaluator
	Strategy receives evaluation results and manages selection/breeding
	Strategy emits lifecycle events (individual_born, individual_died, etc.)
	Server orchestrates next evaluation round
	Repeat

[bookmark: Configuration]Configuration
The server is configured via a #neuro_config{} record that specifies:
	Population size and selection ratio
	Mutation rate and strength
	Network topology (inputs, hidden layers, outputs)
	Evaluator module (implements neuroevolution_evaluator behaviour)
	Strategy module (implements evolution_strategy behaviour)
	Optional event handler for notifications

 Summary

 Types

 breeding_event/0

 competitive_entry/0

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 individual_summary/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 neuro_state/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species/0

 species_event/0

 species_id/0

 Functions

 get_population(ServerRef)

 Get the current population (raw individuals).

 get_population_snapshot(ServerRef)

 Get population snapshot from the strategy.

 get_stats(ServerRef)

 Get current training statistics.

 start_link(Config)

 Start the neuroevolution server with given configuration.

 start_link(Config, Options)

 Start the neuroevolution server with configuration and options.

 start_training(ServerRef)

 Start the evolutionary training process.

 stop_training(ServerRef)

 Stop the evolutionary training process.

 update_config(ServerRef, Params)

 Update configuration dynamically (used by external meta-controllers).

 Types

 breeding_event/0

 -type breeding_event() ::
 #breeding_event{parent1_id :: individual_id(),
 parent2_id :: individual_id(),
 child_id :: individual_id(),
 generation :: generation()}.

 competitive_entry/0

 -type competitive_entry() ::
 #{generation := generation(),
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 top_10_avg := fitness(),
 bottom_10_avg := fitness(),
 fitness_variance := float(),
 competitive_pressure := float(),
 archive_size := non_neg_integer(),
 archive_avg := fitness()}.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 neuro_state/0

 -type neuro_state() ::
 #neuro_state{id :: term(),
 config :: neuro_config(),
 population :: [individual()],
 total_evaluations :: non_neg_integer(),
 generation :: generation(),
 running :: boolean(),
 evaluating :: boolean(),
 games_completed :: non_neg_integer(),
 total_games :: non_neg_integer(),
 best_fitness_ever :: fitness(),
 last_gen_best :: fitness(),
 last_gen_avg :: fitness(),
 generation_history :: [{generation(), fitness(), fitness()}],
 last_gen_results :: map() | undefined,
 breeding_events :: [breeding_event()],
 competitive_history :: [competitive_entry()],
 eval_task :: reference() | undefined,
 meta_controller :: pid() | undefined,
 lc_chain :: pid() | undefined,
 self_play_manager :: pid() | undefined,
 strategy_module :: module() | undefined,
 strategy_state :: term() | undefined,
 species :: [species()],
 species_events :: [species_event()],
 next_species_id :: species_id(),
 pending_evaluations :: #{reference() => {individual_id(), individual()}},
 eval_timeout_ref :: reference() | undefined,
 last_checkpoint_time :: non_neg_integer() | undefined,
 last_checkpoint_evals :: non_neg_integer(),
 cached_resource_recommendations :: map(),
 cached_task_recommendations :: map()}.

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species/0

 -type species() ::
 #species{id :: species_id(),
 representative :: individual(),
 members :: [individual_id()],
 best_fitness :: fitness(),
 best_fitness_ever :: fitness(),
 generation_created :: generation(),
 age :: non_neg_integer(),
 stagnant_generations :: non_neg_integer(),
 offspring_quota :: non_neg_integer()}.

 species_event/0

 -type species_event() ::
 #species_event{generation :: generation(),
 species_id :: species_id(),
 event_type ::
 species_created | species_extinct | species_stagnant | champion_emerged,
 details :: map()}.

 species_id/0

 -type species_id() :: pos_integer().

 Functions

 get_population(ServerRef)

 -spec get_population(ServerRef) -> {ok, [individual()]} when ServerRef :: pid() | atom().

Get the current population (raw individuals).

 get_population_snapshot(ServerRef)

 -spec get_population_snapshot(ServerRef) -> {ok, population_snapshot()} when ServerRef :: pid() | atom().

Get population snapshot from the strategy.

 get_stats(ServerRef)

 -spec get_stats(ServerRef) -> {ok, Stats} when ServerRef :: pid() | atom(), Stats :: map().

Get current training statistics.

 start_link(Config)

 -spec start_link(Config) -> {ok, pid()} | {error, term()} when Config :: neuro_config().

Start the neuroevolution server with given configuration.

 start_link(Config, Options)

 -spec start_link(Config, Options) -> {ok, pid()} | {error, term()}
 when Config :: neuro_config(), Options :: proplists:proplist().

Start the neuroevolution server with configuration and options.
Options: - {id, Id} - Server identifier (default: make_ref()) - {name, Name} - Register with given name

 start_training(ServerRef)

 -spec start_training(ServerRef) -> {ok, started | already_running} when ServerRef :: pid() | atom().

Start the evolutionary training process.

 stop_training(ServerRef)

 -spec stop_training(ServerRef) -> ok when ServerRef :: pid() | atom().

Stop the evolutionary training process.

 update_config(ServerRef, Params)

 -spec update_config(ServerRef, Params) -> {ok, map()}
 when ServerRef :: pid() | atom(), Params :: #{atom() => number()}.

Update configuration dynamically (used by external meta-controllers).
Allows updating hyperparameters like mutation_rate, mutation_strength, and selection_ratio between generations. This is used by the Elixir Liquid Conglomerate meta-controller to feed its recommendations into the Erlang neuroevolution server.

neuroevolution_speciation

NEAT-style speciation for neuroevolution.
This module implements speciation - grouping individuals into species based on genetic similarity. Species enable niching, allowing diverse strategies to coexist and explore different fitness peaks without competing directly.
[bookmark: Compatibility_Distance]Compatibility Distance
For fixed-topology networks (same structure, different weights), compatibility is measured as the average absolute weight difference: distance(A, B) = (1/N) * sum(|w_a_i - w_b_i|)
Individuals with distance below the compatibility threshold belong to the same species.
[bookmark: Species_Lifecycle]Species Lifecycle
After evaluation, individuals are assigned to species. Each species gets offspring quota proportional to average fitness. Within each species, top performers are selected. Breeding is primarily within species, rarely between. Species without improvement may be eliminated.
[bookmark: Dynamic_Threshold]Dynamic Threshold
The compatibility threshold adjusts dynamically to maintain the target number of species. Too many species increases threshold (merging similar species), too few decreases it (splitting diverse species).

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 speciation_config/0

 species/0

 species_event/0

 species_id/0

 Functions

 adjust_compatibility_threshold(CurrentThreshold, Config, ActualSpeciesCount)

 Dynamically adjust compatibility threshold to maintain target species count.

 assign_species(Individual, Species, Config, NextSpeciesId)

 Assign a single individual to a species.

 breed_species(Species, AllSpecies, Config, NumOffspring)

 Breed offspring within/between species.

 calculate_offspring_quotas(Species, TotalOffspring)

 Calculate offspring quota for each species based on relative fitness.

 compatibility_distance(Ind1, Ind2)

 Calculate compatibility distance between two individuals.

 compatibility_distance(Ind1, Ind2, Config)

 Calculate NEAT compatibility distance with config.

 eliminate_stagnant_species(Species, Config, Generation)

 Eliminate species that have been stagnant too long.

 get_individual_species(IndId, Species)

 Get the species ID for an individual.

 get_species_by_id(Id, Species)

 Get species by ID.

 select_within_species(Species, Config)

 Select survivors within a species.

 speciate(Population, CurrentSpecies, Config)

 Assign all individuals in population to species.

 species_summary(Species)

 Generate a summary of species for visualization/logging.

 update_species_fitness(Species, Population)

 Update fitness statistics for all species after evaluation.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species/0

 -type species() ::
 #species{id :: species_id(),
 representative :: individual(),
 members :: [individual_id()],
 best_fitness :: fitness(),
 best_fitness_ever :: fitness(),
 generation_created :: generation(),
 age :: non_neg_integer(),
 stagnant_generations :: non_neg_integer(),
 offspring_quota :: non_neg_integer()}.

 species_event/0

 -type species_event() ::
 #species_event{generation :: generation(),
 species_id :: species_id(),
 event_type ::
 species_created | species_extinct | species_stagnant | champion_emerged,
 details :: map()}.

 species_id/0

 -type species_id() :: pos_integer().

 Functions

 adjust_compatibility_threshold(CurrentThreshold, Config, ActualSpeciesCount)

 -spec adjust_compatibility_threshold(float(), speciation_config(), non_neg_integer()) -> float().

Dynamically adjust compatibility threshold to maintain target species count.

 assign_species(Individual, Species, Config, NextSpeciesId)

 -spec assign_species(individual(), [species()], speciation_config(), species_id()) ->
 {[species()], [species_event()], species_id()}.

Assign a single individual to a species.
Compares the individual to each species' representative. If compatible with an existing species, joins it. Otherwise, creates a new species.

 breed_species(Species, AllSpecies, Config, NumOffspring)

 -spec breed_species(species(), [species()], speciation_config(), pos_integer()) ->
 [{individual_id(), individual_id()}].

Breed offspring within/between species.
Primarily breeds within species. Occasionally (based on interspecies_mating_rate) breeds between different species.

 calculate_offspring_quotas(Species, TotalOffspring)

 -spec calculate_offspring_quotas([species()], pos_integer()) -> [species()].

Calculate offspring quota for each species based on relative fitness.
Species with higher average fitness get more offspring slots. This implements fitness sharing / explicit fitness sharing.

 compatibility_distance(Ind1, Ind2)

 -spec compatibility_distance(individual(), individual()) -> float().

Calculate compatibility distance between two individuals.
Uses NEAT-style distance when genomes are available: delta = (c1 * E / N) + (c2 * D / N) + (c3 * W) Where E=excess genes, D=disjoint genes, N=genome size, W=avg weight diff
Falls back to weight-only distance for fixed-topology (no genome).

 compatibility_distance(Ind1, Ind2, Config)

 -spec compatibility_distance(individual(), individual(), speciation_config()) -> float().

Calculate NEAT compatibility distance with config.
Uses speciation config coefficients for the NEAT formula.

 eliminate_stagnant_species(Species, Config, Generation)

 -spec eliminate_stagnant_species([species()], speciation_config(), generation()) ->
 {[species()], [species_event()]}.

Eliminate species that have been stagnant too long.
Stagnant species (no fitness improvement for many generations) are removed to make room for new exploration.

 get_individual_species(IndId, Species)

 -spec get_individual_species(individual_id(), [species()]) -> {ok, species_id()} | not_found.

Get the species ID for an individual.

 get_species_by_id(Id, Species)

 -spec get_species_by_id(species_id(), [species()]) -> {ok, species()} | not_found.

Get species by ID.

 select_within_species(Species, Config)

 -spec select_within_species(species(), speciation_config()) -> {[individual_id()], [individual_id()]}.

Select survivors within a species.
Applies elitism within the species - top performers survive.

 speciate(Population, CurrentSpecies, Config)

 -spec speciate([individual()], [species()], speciation_config()) ->
 {[species()], [species_event()], species_id()}.

Assign all individuals in population to species.
This is the main speciation entry point. Called after evaluation to organize the population into species clusters.

 species_summary(Species)

 -spec species_summary([species()]) -> [map()].

Generate a summary of species for visualization/logging.

 update_species_fitness(Species, Population)

 -spec update_species_fitness([species()], [individual()]) -> [species()].

Update fitness statistics for all species after evaluation.

neuroevolution_stats

Statistics calculation for neuroevolution.
This module provides utility functions for calculating population statistics such as average, min, max fitness, and standard deviation.

 Summary

 Types

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 metrics/0

 network/0

 Functions

 avg_fitness(Population)

 Calculate average fitness of a population.

 fitness_std_dev(Population)

 Calculate standard deviation of fitness.

 max_fitness(Population)

 Find maximum fitness in a population.

 min_fitness(Population)

 Find minimum fitness in a population.

 population_summary(Population)

 Generate a summary of population statistics.

 Types

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 metrics/0

 -type metrics() :: map().

 network/0

 -type network() :: term().

 Functions

 avg_fitness(Population)

 -spec avg_fitness(Population) -> AvgFitness when Population :: [individual()], AvgFitness :: float().

Calculate average fitness of a population.

 fitness_std_dev(Population)

 -spec fitness_std_dev(Population) -> StdDev when Population :: [individual()], StdDev :: float().

Calculate standard deviation of fitness.

 max_fitness(Population)

 -spec max_fitness(Population) -> MaxFitness when Population :: [individual()], MaxFitness :: float().

Find maximum fitness in a population.

 min_fitness(Population)

 -spec min_fitness(Population) -> MinFitness when Population :: [individual()], MinFitness :: float().

Find minimum fitness in a population.

 population_summary(Population)

 -spec population_summary(Population) -> Summary when Population :: [individual()], Summary :: map().

Generate a summary of population statistics.
Uses tweann_nif:fitness_stats/1 for NIF-accelerated computation of min, max, mean, and std_dev in a single pass when available.

nif_network

NIF-accelerated network operations for macula-neuroevolution.
This module provides high-performance network evaluation using Rust NIFs from macula_tweann. When the NIF is available, operations are 50-100x faster than pure Erlang.
[bookmark: Features]Features
- Network compilation for fast repeated evaluation - Batch evaluation (multiple inputs, same network) - NIF-accelerated compatibility distance for speciation - LTC/CfC neuron support for temporal processing - Automatic fallback to pure Erlang when NIF unavailable
[bookmark: Usage]Usage
%% Compile a network for fast evaluation {ok, CompiledNet} = nif_network:compile(Network),
%% Evaluate (50-100x faster than pure Erlang) Outputs = nif_network:evaluate(CompiledNet, Inputs),
%% Batch evaluate (even more efficient) OutputsList = nif_network:evaluate_batch(CompiledNet, InputsList).

 Summary

 Types

 compiled_network/0

 Functions

 compatibility_distance(Genome1, Genome2, Config)

 Calculate NEAT compatibility distance using NIF.

 compatibility_distance(Genome1, Genome2, C1, C2, C3)

 Calculate compatibility distance with explicit coefficients.

 compile(Network)

 Compile a network for fast NIF evaluation.

 compile_feedforward(InputSize, HiddenLayers, OutputSize)

 Compile a feedforward network directly from topology.

 evaluate(CompiledNetwork, Inputs)

 Evaluate a compiled network with given inputs.

 evaluate_batch(CompiledNetwork, InputsList)

 Evaluate a compiled network with multiple input sets.

 evaluate_cfc(Input, State, Tau, Bound)

 Evaluate CfC (Closed-form Continuous-time) neuron.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 Batch CfC evaluation for time series.

 is_nif_available()

 Check if NIF acceleration is available.

 Types

 compiled_network/0

 -type compiled_network() ::
 #compiled_network{ref :: reference() | undefined,
 fallback :: term(),
 input_count :: pos_integer(),
 output_count :: pos_integer(),
 use_nif :: boolean()}.

 Functions

 compatibility_distance(Genome1, Genome2, Config)

 -spec compatibility_distance(Genome1 :: [tuple()], Genome2 :: [tuple()], Config :: tuple()) -> float().

Calculate NEAT compatibility distance using NIF.
Uses the NIF-accelerated distance calculation when available. Falls back to pure Erlang genome_crossover when not.

 compatibility_distance(Genome1, Genome2, C1, C2, C3)

 -spec compatibility_distance(Genome1 :: [tuple()],
 Genome2 :: [tuple()],
 C1 :: float(),
 C2 :: float(),
 C3 :: float()) ->
 float().

Calculate compatibility distance with explicit coefficients.

 compile(Network)

 -spec compile(Network :: term()) -> {ok, compiled_network()} | {error, term()}.

Compile a network for fast NIF evaluation.
Takes a network from network_evaluator and compiles it to the NIF format for fast repeated evaluation. If NIF is unavailable, returns a wrapper that uses pure Erlang evaluation.

 compile_feedforward(InputSize, HiddenLayers, OutputSize)

 -spec compile_feedforward(InputSize :: pos_integer(),
 HiddenLayers :: [pos_integer()],
 OutputSize :: pos_integer()) ->
 {ok, compiled_network()} | {error, term()}.

Compile a feedforward network directly from topology.
Creates and compiles a feedforward network in one step. More efficient than create_feedforward + compile separately.

 evaluate(CompiledNetwork, Inputs)

 -spec evaluate(CompiledNetwork :: compiled_network(), Inputs :: [float()]) -> [float()].

Evaluate a compiled network with given inputs.
Uses NIF evaluation when available (50-100x faster), otherwise falls back to pure Erlang network_evaluator.

 evaluate_batch(CompiledNetwork, InputsList)

 -spec evaluate_batch(CompiledNetwork :: compiled_network(), InputsList :: [[float()]]) -> [[float()]].

Evaluate a compiled network with multiple input sets.
More efficient than calling evaluate/2 multiple times when evaluating the same network with different inputs.

 evaluate_cfc(Input, State, Tau, Bound)

 -spec evaluate_cfc(Input :: float(), State :: float(), Tau :: float(), Bound :: float()) ->
 {float(), float()}.

Evaluate CfC (Closed-form Continuous-time) neuron.
Fast closed-form approximation of LTC dynamics. Suitable for temporal/sequential processing tasks.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 -spec evaluate_cfc_batch(Inputs :: [float()], InitialState :: float(), Tau :: float(), Bound :: float()) ->
 [{float(), float()}].

Batch CfC evaluation for time series.
Evaluates a sequence of inputs, maintaining state between steps.

 is_nif_available()

 -spec is_nif_available() -> boolean().

Check if NIF acceleration is available.
Returns true if the Rust NIF library is loaded and functional. When false, all operations use pure Erlang fallbacks.

novelty_strategy

Novelty Search evolution strategy.
Novelty Search replaces fitness-based selection with novelty-based selection. Instead of selecting for the fittest individuals, it selects for those with the most novel behaviors - behaviors that are different from both the current population and an archive of previously seen behaviors.
This approach is particularly effective for: - Deceptive fitness landscapes where fitness gradients lead to local optima - Open-ended exploration where diverse solutions are valuable - Problems where the path to the solution is not clear
[bookmark: Behavior_Descriptors]Behavior Descriptors
The evaluator must return a behavior descriptor in the metrics map: #{fitness => F, metrics => #{behavior => [float(), ...]}}
The behavior descriptor is a vector characterizing the individual's behavior. For example: - For a maze robot: final (x, y) position - For a game AI: action frequencies, states visited - For neural networks: activation patterns
[bookmark: Novelty_Calculation]Novelty Calculation
Novelty is the average distance to the k-nearest neighbors in behavior space. Neighbors come from both the current population and the archive.
novelty(ind) = avg(distance(ind, neighbor_i)) for i in 1..k
[bookmark: Hybrid_Mode]Hybrid Mode
When include_fitness=true and fitness_weight > 0, selection is based on: score = (1 - fitness_weight) * novelty + fitness_weight * fitness

 Summary

 Types

 behavior_descriptor/0

 birth_origin/0

 death_reason/0

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 individual_summary/0

 island_id/0

 lifecycle_event/0

 meta_inputs/0

 meta_params/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 niche_id/0

 novelty_params/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species_id/0

 strategy_action/0

 strategy_result/0

 strategy_state/0

 timestamp/0

 Functions

 apply_meta_params(Params, Novelty_state)

 Apply meta-controller parameter adjustments.

 get_meta_inputs(Novelty_state)

 Get inputs for the meta-controller.

 get_population_snapshot(Novelty_state)

 Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Novelty_state)

 Handle an individual evaluation result.

 init(Config)

 Initialize the novelty search strategy.

 tick(Novelty_state)

 Periodic tick - not heavily used in novelty strategy.

 Types

 behavior_descriptor/0

 -type behavior_descriptor() :: {individual_id(), [float()]}.

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 meta_inputs/0

 -type meta_inputs() :: [float()].

 meta_params/0

 -type meta_params() ::
 #{mutation_rate => float(),
 mutation_strength => float(),
 selection_ratio => float(),
 migration_rate => float(),
 novelty_weight => float(),
 atom() => number()}.

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 niche_id/0

 -type niche_id() :: term().

 novelty_params/0

 -type novelty_params() ::
 #novelty_params{archive_size :: pos_integer(),
 archive_probability :: float(),
 k_nearest :: pos_integer(),
 include_fitness :: boolean(),
 fitness_weight :: float(),
 novelty_threshold :: float(),
 behavior_dimensions :: pos_integer() | undefined}.

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species_id/0

 -type species_id() :: pos_integer().

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 strategy_result/0

 -type strategy_result() ::
 {Actions :: [strategy_action()], Events :: [lifecycle_event()], NewState :: strategy_state()}.

 strategy_state/0

 -type strategy_state() :: term().

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Functions

 apply_meta_params(Params, Novelty_state)

 -spec apply_meta_params(Params :: meta_params(),
 State ::
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}) ->
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}.

Apply meta-controller parameter adjustments.

 get_meta_inputs(Novelty_state)

 -spec get_meta_inputs(State ::
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}) ->
 meta_inputs().

Get inputs for the meta-controller.

 get_population_snapshot(Novelty_state)

 -spec get_population_snapshot(State ::
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}) ->
 population_snapshot().

Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, Novelty_state)

 -spec handle_evaluation_result(IndividualId :: individual_id(),
 FitnessResult :: map(),
 State ::
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}) ->
 strategy_result().

Handle an individual evaluation result.
Accumulates behavior descriptors, computes novelty scores when all are evaluated, then performs novelty-based selection and breeding.

 init(Config)

 -spec init(Config :: map()) ->
 {ok,
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()},
 [lifecycle_event()]} |
 {error, term()}.

Initialize the novelty search strategy.
Expects config map with: - neuro_config - the full neuroevolution config - strategy_params - optional novelty_params record or map - network_factory - optional module for network creation

 tick(Novelty_state)

 -spec tick(State ::
 #novelty_state{config :: neuro_config(),
 params :: novelty_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 generation :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 archive :: [behavior_descriptor()],
 best_novelty :: float(),
 avg_novelty :: float(),
 best_fitness :: float(),
 archive_adds :: non_neg_integer()}) ->
 strategy_result().

Periodic tick - not heavily used in novelty strategy.

red_team_archive

ETS-based Red Team archive for competitive coevolution.
[bookmark: NAMING_CONVENTION]NAMING CONVENTION
Red Team = CHAMPIONS / Hall of Fame / Elite Archive These are the "good guys" - networks that have proven themselves worthy. The naming follows the "Red Queen" hypothesis where the Red Queen (champion) sets the pace that challengers must match.
[bookmark: Purpose]Purpose
Maintains the Red Team (champion archive) - elite networks that the Blue Team (evolving challengers) must compete against. Creates an arms race dynamic where both teams must continuously improve.
[bookmark: Red_Team_(Champion)_Strategy]Red Team (Champion) Strategy
- Promotion: High-performing Blue Team members are promoted to Red Team - Fitness tracking: Champions accumulate fitness based on wins vs challengers - Age decay: Older champions have reduced selection probability - Size limit: Archive maintains maximum size, evicting weakest champions - Weighted sampling: Fitness and recency affect selection probability
[bookmark: Immigration]Immigration
Top Red Team champions can immigrate back to Blue Team, bringing proven strategies into the evolving challenger population.
[bookmark: Mesh-Native_Design]Mesh-Native Design
This module is designed for eventual mesh distribution: - Phase 1 (current): Local ETS storage - Phase 2: CRDT-based conflict resolution for multi-node sync - Phase 3: Macula PubSub for mesh-wide propagation

 Summary

 Types

 archive_config/0

 archive_id/0

 red_team_member/0

 Functions

 add(Id, Member)

 Add a network to the Red Team. Returns ok if added, rejected if it didn't meet criteria.

 add(Id, Member, FitnessThreshold)

 Add a network with explicit fitness threshold check.

 clear(Id)

 Clear all members from the Red Team.

 export_crdt(Id)

 Export Red Team state as CRDT-compatible format. For future mesh sync.

 get_member(Id, MemberId)

 Get a specific Red Team member by ID.

 get_top(Id, Count)

 Get top N Red Team members by fitness. Used for immigration to Blue Team.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 merge_crdt(Id, CrdtData)

 Merge a remote CRDT state into local Red Team. For future mesh sync.

 prune(Id, KeepCount)

 Prune Red Team to keep only top N by fitness.

 sample(Id)

 Sample a random Red Team member for competition. Uses weighted sampling based on fitness and recency.

 sample(Id, Options)

 Sample with options. Options: strategy - random | weighted (default: weighted) prefer_recent - boolean (default: true)

 size(Id)

 Get current Red Team size.

 start_link(Id)

 Start the Red Team archive with a given ID.

 start_link(Id, Config)

 Start the Red Team archive with ID and configuration.

 stats(Id)

 Get Red Team statistics.

 stop(Id)

 Stop the Red Team archive process.

 terminate(Reason, State)

 update_fitness(Id, MemberId, FitnessDelta)

 Update fitness for a Red Team member after competition. Called when a Red Team member competes against Blue Team.

 Types

 archive_config/0

 -type archive_config() ::
 #{max_size => pos_integer(), min_fitness_percentile => float(), age_decay_ms => pos_integer()}.

 archive_id/0

 -type archive_id() :: atom() | {atom(), term()}.

 red_team_member/0

 -type red_team_member() ::
 #{id := binary(),
 network := map(),
 fitness := float(),
 generation := non_neg_integer(),
 added_at := integer(),
 wins := non_neg_integer(),
 losses := non_neg_integer(),
 origin => blue_team | red_team | imported,
 node_id => binary()}.

 Functions

 add(Id, Member)

 -spec add(archive_id(), red_team_member()) -> ok | rejected.

Add a network to the Red Team. Returns ok if added, rejected if it didn't meet criteria.

 add(Id, Member, FitnessThreshold)

 -spec add(archive_id(), red_team_member(), float()) -> ok | rejected.

Add a network with explicit fitness threshold check.

 clear(Id)

 -spec clear(archive_id()) -> ok.

Clear all members from the Red Team.

 export_crdt(Id)

 -spec export_crdt(archive_id()) -> binary().

Export Red Team state as CRDT-compatible format. For future mesh sync.

 get_member(Id, MemberId)

 -spec get_member(archive_id(), binary()) -> {ok, red_team_member()} | {error, not_found}.

Get a specific Red Team member by ID.

 get_top(Id, Count)

 -spec get_top(archive_id(), pos_integer()) -> {ok, [red_team_member()]} | empty.

Get top N Red Team members by fitness. Used for immigration to Blue Team.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(_)

 merge_crdt(Id, CrdtData)

 -spec merge_crdt(archive_id(), binary()) -> ok.

Merge a remote CRDT state into local Red Team. For future mesh sync.

 prune(Id, KeepCount)

 -spec prune(archive_id(), pos_integer()) -> ok.

Prune Red Team to keep only top N by fitness.

 sample(Id)

 -spec sample(archive_id()) -> {ok, red_team_member()} | empty.

Sample a random Red Team member for competition. Uses weighted sampling based on fitness and recency.

 sample(Id, Options)

 -spec sample(archive_id(), map()) -> {ok, red_team_member()} | empty.

Sample with options. Options: strategy - random | weighted (default: weighted) prefer_recent - boolean (default: true)

 size(Id)

 -spec size(archive_id()) -> non_neg_integer().

Get current Red Team size.

 start_link(Id)

 -spec start_link(archive_id()) -> {ok, pid()} | {error, term()}.

Start the Red Team archive with a given ID.

 start_link(Id, Config)

 -spec start_link(archive_id(), archive_config()) -> {ok, pid()} | {error, term()}.

Start the Red Team archive with ID and configuration.

 stats(Id)

 -spec stats(archive_id()) ->
 #{count := non_neg_integer(),
 max_size := pos_integer(),
 avg_fitness := float(),
 max_fitness := float(),
 min_fitness := float(),
 generation_range := {non_neg_integer(), non_neg_integer()}}.

Get Red Team statistics.

 stop(Id)

 -spec stop(archive_id()) -> ok.

Stop the Red Team archive process.

 terminate(Reason, State)

 update_fitness(Id, MemberId, FitnessDelta)

 -spec update_fitness(archive_id(), binary(), float()) -> ok | {error, not_found}.

Update fitness for a Red Team member after competition. Called when a Red Team member competes against Blue Team.

regulatory_silo

Regulatory Silo - Gene expression and module activation.
Part of the Liquid Conglomerate v2 architecture. The Regulatory Silo manages: Gene expression states Module activation/deactivation Epigenetic marks Context-dependent expression Dormant capability management
[bookmark: Time_Constant]Time Constant
τ = 45 (slow adaptation for regulatory dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: context_awareness to task: Context sensitivity level expression_flexibility to cultural: Expression adaptability dormant_potential to competitive: Unexpressed capabilities expression_cost to morphological: Cost of gene expression
Incoming: context_complexity from task: Environmental complexity expression_stage from developmental: Developmental expression phase environmental_context from ecological: Environmental complexity efficiency_requirement from economic: Efficiency targets

 Summary

 Functions

 activate_module(Pid, ModuleId)

 add_epigenetic_mark(Pid, GeneId, MarkType)

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 deactivate_module(Pid, ModuleId)

 emit_cross_silo_signals(State)

 get_expression(Pid, IndividualId)

 get_params(Pid)

 get_regulatory_stats(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_expression(Pid, IndividualId, GeneExpressionMap)

 Functions

 activate_module(Pid, ModuleId)

 -spec activate_module(pid(), term()) -> ok.

 add_epigenetic_mark(Pid, GeneId, MarkType)

 -spec add_epigenetic_mark(pid(), term(), atom()) -> ok.

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 deactivate_module(Pid, ModuleId)

 -spec deactivate_module(pid(), term()) -> ok.

 emit_cross_silo_signals(State)

 get_expression(Pid, IndividualId)

 -spec get_expression(pid(), term()) -> {ok, map()} | not_found.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_regulatory_stats(Pid)

 -spec get_regulatory_stats(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

 update_expression(Pid, IndividualId, GeneExpressionMap)

 -spec update_expression(pid(), term(), map()) -> ok.

resource_l0_actuators

Resource Silo L0 Actuators - Denormalizes and applies TWEANN outputs.
Part of the Liquid Conglomerate v2 architecture. This module takes the normalized output vector from the L0 TWEANN and converts it into actual control signals that affect system behavior.
[bookmark: Responsibilities]Responsibilities
1. Convert TWEANN outputs (0.0-1.0) to target ranges 2. Apply outputs to neuroevolution_server and other targets 3. Apply archive GC pressure to opponent_archive (self-play) 4. Emit cross-silo signals to Task Silo 5. Track applied values for debugging/monitoring
[bookmark: Actuators_(10_total)]Actuators (10 total)
Resource control actuators (1-8): - max_concurrent_evaluations, evaluation_batch_size - gc_trigger_threshold, pause_threshold, throttle_intensity - max_evals_per_individual, task_silo_pressure_signal, gc_aggressiveness
Self-play archive actuator (9): - archive_gc_pressure: Force archive cleanup under memory pressure (0=none, 1=aggressive)
Timeout control actuator (10): - evaluation_timeout: Worker timeout in ms (1000=fast kill, 10000=patient)
[bookmark: Usage]Usage
%% Start the actuator controller {ok, Pid} = resource_l0_actuators:start_link(Config),
%% Apply TWEANN output vector resource_l0_actuators:apply_outputs(Pid, OutputVector),
%% Get current actuator values Values = resource_l0_actuators:get_actuator_values(Pid), %% Returns: #{max_concurrent_evaluations => 15, ...}

 Summary

 Functions

 apply_output_vector(OutputVector)

 Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 Get current denormalized actuator values.

 get_actuator_values(Pid)

 Get current denormalized actuator values (specific server).

 get_raw_outputs()

 Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 Start the actuator controller with default configuration.

 start_link(Config)

 Start the actuator controller with custom configuration.

 terminate(Reason, State)

 Functions

 apply_output_vector(OutputVector)

 -spec apply_output_vector([float()]) -> ok.

Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 -spec apply_output_vector(pid(), [float()]) -> ok.

Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 -spec apply_outputs(map()) -> ok.

Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 -spec apply_outputs(pid(), map()) -> ok.

Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 -spec get_actuator_values() -> map().

Get current denormalized actuator values.

 get_actuator_values(Pid)

 -spec get_actuator_values(pid()) -> map().

Get current denormalized actuator values (specific server).

 get_raw_outputs()

 -spec get_raw_outputs() -> [float()].

Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 -spec get_raw_outputs(pid()) -> [float()].

Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with custom configuration.

 terminate(Reason, State)

resource_l0_morphology

Resource Silo L0 Morphology - TWEANN sensor/actuator definitions.
Part of the Liquid Conglomerate v2 architecture. Defines the neural network morphology for the Resource Silo's L0 reactive controller.
[bookmark: Architecture]Architecture
L0 is a TWEANN (Topology and Weight Evolving Artificial Neural Network) that: - Takes 15 sensor inputs (13 resource + 2 self-play archive) - Produces 10 actuator outputs (8 resource + 1 archive control + 1 timeout control) - Has 8 hyperparameters that L1 can tune - Has 5 L1 hyperparameters that L2 can tune
[bookmark: Time_Constant]Time Constant
tau_L0 = 5 seconds (fast adaptation for resource management)

 Summary

 Functions

 actuator_count()

 Number of actuators (neural network outputs).

 actuator_names()

 Ordered list of actuator names.

 actuator_spec(_)

 Get specification for an actuator.

 get_l0_bounds()

 Get bounds for L0 hyperparameters.

 get_l0_defaults()

 Get default values for L0 hyperparameters.

 get_l1_bounds()

 Get bounds for L1 hyperparameters.

 get_l1_defaults()

 Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 List of L1 hyperparameter names.

 sensor_count()

 Number of sensors (neural network inputs).

 sensor_names()

 Ordered list of sensor names.

 sensor_spec(_)

 Get specification for a sensor.

 tau_l0()

 L0 time constant - 5 seconds for reactive resource control.

 tau_l1()

 L1 time constant - 30 seconds for tactical adaptation.

 tau_l2()

 L2 time constant - 5 minutes for strategic learning.

 Functions

 actuator_count()

 -spec actuator_count() -> pos_integer().

Number of actuators (neural network outputs).

 actuator_names()

 -spec actuator_names() -> [atom()].

Ordered list of actuator names.

 actuator_spec(_)

 -spec actuator_spec(atom()) -> map() | undefined.

Get specification for an actuator.
Returns a map with: - name: Actuator name - range: {Min, Max} target range (for denormalization) - target: What system this affects - description: Human-readable description

 get_l0_bounds()

 -spec get_l0_bounds() -> map().

Get bounds for L0 hyperparameters.

 get_l0_defaults()

 -spec get_l0_defaults() -> map().

Get default values for L0 hyperparameters.

 get_l1_bounds()

 -spec get_l1_bounds() -> map().

Get bounds for L1 hyperparameters.

 get_l1_defaults()

 -spec get_l1_defaults() -> map().

Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 -spec l0_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 -spec l0_hyperparameters() -> [atom()].

List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 -spec l1_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 -spec l1_hyperparameters() -> [atom()].

List of L1 hyperparameter names.
Note: These are called "meta-parameters" from L1's perspective, but "hyperparameters" from L2's perspective.

 sensor_count()

 -spec sensor_count() -> pos_integer().

Number of sensors (neural network inputs).

 sensor_names()

 -spec sensor_names() -> [atom()].

Ordered list of sensor names.

 sensor_spec(_)

 -spec sensor_spec(atom()) -> map() | undefined.

Get specification for a sensor.
Returns a map with: - name: Sensor name - range: {Min, Max} normalized range - source: Where the data comes from - description: Human-readable description

 tau_l0()

 -spec tau_l0() -> pos_integer().

L0 time constant - 5 seconds for reactive resource control.

 tau_l1()

 -spec tau_l1() -> pos_integer().

L1 time constant - 30 seconds for tactical adaptation.

 tau_l2()

 -spec tau_l2() -> pos_integer().

L2 time constant - 5 minutes for strategic learning.

resource_l0_sensors

Resource Silo L0 Sensors - Collects and normalizes sensor inputs for TWEANN.
Part of the Liquid Conglomerate v2 architecture. This module collects raw system metrics and transforms them into normalized inputs for the L0 TWEANN.
[bookmark: Responsibilities]Responsibilities
1. Collect raw metrics from resource_monitor and other sources 2. Compute derived metrics (velocities, ratios) 3. Normalize all values to appropriate ranges for TWEANN input 4. Handle cross-silo input signals 5. Maintain state for velocity calculations
[bookmark: Usage]Usage
%% Start the sensor collector {ok, Pid} = resource_l0_sensors:start_link(Config),
%% Get current sensor vector (ordered list) SensorVector = resource_l0_sensors:get_sensor_vector(Pid), %% Returns: [0.45, 0.12, 0.33, ...] (13 values)
%% Get sensor map (named values) SensorMap = resource_l0_sensors:get_sensors(Pid), %% Returns: #{memory_pressure => 0.45, memory_velocity => 0.12, ...}

 Summary

 Functions

 get_sensor_vector()

 Get ordered sensor vector for TWEANN input.

 get_sensor_vector(Pid)

 Get ordered sensor vector from specific server.

 get_sensors()

 Get named sensor map.

 get_sensors(Pid)

 Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_realm(Realm)

 Set the realm for event publishing.

 start_link()

 Start the sensor collector with default configuration.

 start_link(Config)

 Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_archive_memory_stats(Stats)

 Update archive memory statistics from opponent_archive.

 update_cross_silo_signal(SignalName, Value)

 Update cross-silo signal from another silo.

 update_evaluation_metrics(CurrentConcurrency, Throughput)

 Update evaluation metrics from neuroevolution_server.

 Functions

 get_sensor_vector()

 -spec get_sensor_vector() -> [float()].

Get ordered sensor vector for TWEANN input.
Returns a list of 15 float values in the order defined by resource_l0_morphology:sensor_names/0.

 get_sensor_vector(Pid)

 -spec get_sensor_vector(pid()) -> [float()].

Get ordered sensor vector from specific server.

 get_sensors()

 -spec get_sensors() -> map().

Get named sensor map.

 get_sensors(Pid)

 -spec get_sensors(pid()) -> map().

Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_realm(Realm)

 -spec set_realm(binary()) -> ok.

Set the realm for event publishing.
Use this to dynamically update the realm when a training session starts. Events will be published to the topic for the specified realm.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_archive_memory_stats(Stats)

 -spec update_archive_memory_stats(map()) -> ok.

Update archive memory statistics from opponent_archive.
Expected keys in Stats map: - archive_memory_bytes: Memory used by archive entries - crdt_state_bytes: Memory used by CRDT sync state - total_entries: Number of archive entries

 update_cross_silo_signal(SignalName, Value)

 -spec update_cross_silo_signal(atom(), float()) -> ok.

Update cross-silo signal from another silo.

 update_evaluation_metrics(CurrentConcurrency, Throughput)

 -spec update_evaluation_metrics(non_neg_integer(), float()) -> ok.

Update evaluation metrics from neuroevolution_server.

resource_monitor

System resource monitoring for adaptive neuroevolution.
This module provides system resource metrics that can be used as inputs to the LTC meta-controller, allowing it to adapt evolution hyperparameters based on current memory and CPU pressure.
[bookmark: Metrics_Provided]Metrics Provided
Raw metrics: - memory_total: Total VM memory usage (bytes) - memory_processes: Memory used by processes (bytes) - memory_binary: Binary memory (bytes) - often the culprit in leaks - scheduler_utilization: Average CPU utilization (0.0 - 1.0) - process_count: Number of processes in the VM - message_queue_len: Total message queue length across monitored processes
Normalized metrics (for LTC input): - memory_pressure: 0.0 (plenty of memory) to 1.0 (critical) - cpu_pressure: 0.0 (idle) to 1.0 (saturated) - process_pressure: 0.0 (few processes) to 1.0 (at limit)
[bookmark: Usage]Usage
%% Get raw metrics #{memory_total := Mem} = resource_monitor:get_metrics(),
%% Get normalized metrics for LTC input #{memory_pressure := MemP, cpu_pressure := CpuP} = resource_monitor:get_normalized_metrics(), LtcInputs = [MemP, CpuP, ...]

 Summary

 Functions

 check_health()

 Perform health check and return status.

 get_memory_limit()

 Get the memory limit for the system.

 get_metrics()

 Get current system resource metrics (raw values).

 get_normalized_metrics()

 Get normalized metrics for LTC input (0.0 to 1.0 range).

 is_memory_critical()

 Check if memory usage is at critical level (>90%).

 is_memory_high()

 Check if memory usage is at high level (>70%).

 Functions

 check_health()

 -spec check_health() -> map().

Perform health check and return status.
Returns a map with health status and any warnings/alerts.

 get_memory_limit()

 -spec get_memory_limit() -> pos_integer().

Get the memory limit for the system.
Attempts to detect from: 1. MACULA_MEMORY_LIMIT environment variable (bytes) 2. Container cgroup limits 3. System total memory 4. Default fallback (8GB)

 get_metrics()

 -spec get_metrics() -> map().

Get current system resource metrics (raw values).
Returns a map with various resource measurements.

 get_normalized_metrics()

 -spec get_normalized_metrics() -> map().

Get normalized metrics for LTC input (0.0 to 1.0 range).
These are suitable for direct use as neural network inputs.

 is_memory_critical()

 -spec is_memory_critical() -> boolean().

Check if memory usage is at critical level (>90%).

 is_memory_high()

 -spec is_memory_high() -> boolean().

Check if memory usage is at high level (>70%).

resource_silo

Resource Silo - System stability controller for neuroevolution.
Part of the Liquid Conglomerate v2 architecture. The Resource Silo monitors system resources and provides recommended parameters to maintain stability.
[bookmark: Operating_Modes]Operating Modes
The Resource Silo can operate in two modes:
training: Full control with aggressive resource management (default) - 1 second sample interval - Can pause training on critical memory pressure - Can trigger GC on high memory usage
inference: Lightweight monitoring for production inference - 5 second sample interval (reduced overhead) - Never pauses (should_pause always returns false) - No forced GC (prioritizes latency) - Still publishes events for observability
[bookmark: Hierarchical_Levels]Hierarchical Levels
L0 (Emergency): Hard limits, GC triggers, pause if critical - ALWAYS ACTIVE L1 (Reactive): Adjust concurrency based on current pressure L2 (Predictive): Learn resource patterns, anticipate needs (future)
[bookmark: Time_Constant]Time Constant
tau = 5 (fast adaptation for system stability)

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 force_gc()

 Force garbage collection on all processes.

 get_mode()

 Get the current operating mode.

 get_recommendations()

 Get recommendations from the registered server.

 get_recommendations(Pid)

 Get recommended parameters based on current resource state.

 get_state()

 Get current silo state from the registered server.

 get_state(Pid)

 Get current silo state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_enabled_levels(Pid, Levels)

 Set which levels are enabled.

 set_mode(Mode)

 Set the operating mode (training or inference).

 should_pause()

 Check pause status from registered server.

 should_pause(Pid)

 Check if evolution should pause due to resource pressure.

 start_link()

 Start the resource silo with default configuration.

 start_link(Config)

 Start the resource silo with custom configuration.

 terminate(Reason, State)

 Functions

 code_change(OldVsn, State, Extra)

 force_gc()

 -spec force_gc() -> ok.

Force garbage collection on all processes.

 get_mode()

 -spec get_mode() -> training | inference.

Get the current operating mode.

 get_recommendations()

 -spec get_recommendations() -> map().

Get recommendations from the registered server.

 get_recommendations(Pid)

 -spec get_recommendations(pid()) -> map().

Get recommended parameters based on current resource state.
Returns a map with: - max_concurrent: Recommended max concurrent evaluations - action: continue | throttle | pause - memory_pressure: Current memory pressure (0.0-1.0) - cpu_pressure: Current CPU pressure (0.0-1.0) - reason: Explanation for the recommendation

 get_state()

 -spec get_state() -> map().

Get current silo state from the registered server.

 get_state(Pid)

 -spec get_state(pid()) -> map().

Get current silo state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_enabled_levels(Pid, Levels)

 -spec set_enabled_levels(pid(), [l0 | l1 | l2]) -> ok.

Set which levels are enabled.

 set_mode(Mode)

 -spec set_mode(training | inference) -> ok.

Set the operating mode (training or inference).
In inference mode: - should_pause() always returns false (never block inference) - Longer sample interval (5s vs 1s) - force_gc has no effect (don't interfere with inference latency) - Still publishes monitoring events for observability

 should_pause()

 -spec should_pause() -> boolean().

Check pause status from registered server.

 should_pause(Pid)

 -spec should_pause(pid()) -> boolean().

Check if evolution should pause due to resource pressure.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the resource silo with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the resource silo with custom configuration.
Options: - enabled_levels: [l0, l1, l2] (default: [l0, l1]) - base_concurrency: Base concurrent evaluations (default: 10) - memory_high_threshold: Memory pressure for throttling (default: 0.7) - memory_critical_threshold: Memory pressure for pausing (default: 0.9) - cpu_high_threshold: CPU pressure for throttling (default: 0.9) - sample_interval: Metrics sample interval in ms (default: 1000)

 terminate(Reason, State)

signal_router

Signal Router for Domain-to-Silo Communication.
Routes domain signals (emitted by domain_signals behaviour implementations) to the appropriate silos based on signal category.
[bookmark: Architecture]Architecture
Domain signals flow from external applications to internal silos:
Domain App (swai-node, etc.) │ ├── domain_signals:emit_signals/2 │ ▼ signal_router:route/1 │ ├── ecological signals → ecological_silo ├── competitive signals → competitive_silo ├── cultural signals → cultural_silo └── ... (13 silo categories)
The router uses lc_cross_silo infrastructure to deliver signals, treating the domain as a special "domain" source silo.
[bookmark: Usage]Usage
Called by the evaluation loop after each evaluation:
Signals = DomainModule:emit_signals(DomainState, Metrics), signal_router:route(Signals).

 Summary

 Functions

 emit_from_domain(DomainState, Metrics)

 Emit signals from domain state using the registered domain module.

 get_domain_module()

 Get the registered domain module.

 register_domain_module(Module)

 Register the domain module implementing domain_signals behaviour.

 route(Signals)

 Route a list of domain signals to their destination silos.

 route_signal(InvalidSignal)

 Route a single domain signal to its destination silo.

 Functions

 emit_from_domain(DomainState, Metrics)

 -spec emit_from_domain(DomainState :: term(), Metrics :: map()) -> ok | {error, term()}.

Emit signals from domain state using the registered domain module.
Convenience function that: 1. Gets the registered domain module 2. Calls emit_signals/2 on it 3. Routes the resulting signals

 get_domain_module()

 -spec get_domain_module() -> {ok, module()} | {error, not_registered}.

Get the registered domain module.

 register_domain_module(Module)

 -spec register_domain_module(module()) -> ok.

Register the domain module implementing domain_signals behaviour.
Called during application startup to configure signal emission.

 route(Signals)

 -spec route([domain_signals:signal()]) -> ok.

Route a list of domain signals to their destination silos.
Each signal is a tuple: {Category, Name, Value} Category determines which silo receives the signal.

 route_signal(InvalidSignal)

 -spec route_signal(domain_signals:signal()) -> ok.

Route a single domain signal to its destination silo.

silo_events

Silo Event Publishing for Liquid Conglomerate.
Part of the Liquid Conglomerate v2 event-driven architecture. This module provides topic definitions and publishing helpers for cross-silo communication.
[bookmark: Event-Driven_Architecture]Event-Driven Architecture
Instead of direct lc_cross_silo:emit() calls (imperative push), silos now publish events to topics. Interested parties subscribe and react.
[bookmark: Topic_Hierarchy]Topic Hierarchy
silo.SILONAME.signals - Cross-silo signals from a specific silo silo.SILONAME.lifecycle - Silo lifecycle events (activated, deactivated) silo.aggregated.signals - Aggregated view from lc_cross_silo

 Summary

 Types

 lifecycle_event/0

 signal_name/0

 signal_value/0

 silo_name/0

 Functions

 all_silo_names()

 Get all silo names in the Liquid Conglomerate.

 lifecycle_topic(SiloName)

 Get the lifecycle topic for a silo.

 publish_lifecycle(SiloName, LifecycleEvent)

 Publish a silo lifecycle event.

 publish_recommendations(SiloName, Recommendations)

 Publish recommendations from a silo.

 publish_signal(FromSilo, SignalName, Value)

 Publish a single signal from a silo.

 publish_signals(FromSilo, Signals)

 Publish multiple signals from a silo.

 recommendations_topic(SiloName)

 Get the recommendations topic for a silo.

 signal_topic(SiloName)

 Get the signal topic for a silo.

 subscribe_to_all_silos()

 Subscribe the calling process to signals from all silos.

 subscribe_to_all_silos(Pid)

 Subscribe a specific process to signals from all silos.

 subscribe_to_recommendations(SiloName)

 Subscribe the calling process to recommendations from a specific silo.

 subscribe_to_recommendations(SiloName, Pid)

 Subscribe a specific process to recommendations from a silo.

 subscribe_to_silo(SiloName)

 Subscribe the calling process to signals from a specific silo.

 subscribe_to_silo(SiloName, Pid)

 Subscribe a specific process to signals from a silo.

 unsubscribe_from_recommendations(SiloName)

 Unsubscribe from a specific silo's recommendations.

 unsubscribe_from_silo(SiloName)

 Unsubscribe from a specific silo's signals.

 Types

 lifecycle_event/0

 -type lifecycle_event() :: activated | deactivated | config_changed.

 signal_name/0

 -type signal_name() :: atom().

 signal_value/0

 -type signal_value() :: number().

 silo_name/0

 -type silo_name() ::
 task | resource | distribution | temporal | competitive | social | cultural | ecological |
 morphological | developmental | regulatory | economic | communication.

 Functions

 all_silo_names()

 -spec all_silo_names() -> [silo_name()].

Get all silo names in the Liquid Conglomerate.

 lifecycle_topic(SiloName)

 -spec lifecycle_topic(silo_name()) -> binary().

Get the lifecycle topic for a silo.
Returns: binary "silo.NAME.lifecycle"

 publish_lifecycle(SiloName, LifecycleEvent)

 -spec publish_lifecycle(silo_name(), lifecycle_event()) -> ok.

Publish a silo lifecycle event.
Used for silo activation, deactivation, and configuration changes.

 publish_recommendations(SiloName, Recommendations)

 -spec publish_recommendations(silo_name(), map()) -> ok.

Publish recommendations from a silo.
Used for event-driven read models. Silos publish their recommendations whenever they change, and consumers cache the latest values locally. This replaces blocking get_recommendations() calls with cached lookups.
Event format (map with keys): event_type - binary "silo_recommendations" timestamp - millisecond timestamp silo - silo name atom recommendations - map of recommendation data
Silo usage: Call publish_recommendations/2 when recommendations change.
Consumer usage: Subscribe via subscribe_to_recommendations/1, then handle {silo_recommendations, SiloName, Recs} messages in handle_info.

 publish_signal(FromSilo, SignalName, Value)

 -spec publish_signal(silo_name(), signal_name(), signal_value()) -> ok.

Publish a single signal from a silo.
Event format (map with keys): event_type - binary "silo_signal" timestamp - millisecond timestamp from - source silo name signal - signal name atom value - numeric signal value

 publish_signals(FromSilo, Signals)

 -spec publish_signals(silo_name(), #{signal_name() => signal_value()}) -> ok.

Publish multiple signals from a silo.
More efficient than multiple single publishes. Event format (map with keys): event_type - binary "silo_signals" timestamp - millisecond timestamp from - source silo name signals - map of signal_name to value

 recommendations_topic(SiloName)

 -spec recommendations_topic(silo_name()) -> binary().

Get the recommendations topic for a silo.
Returns: binary "silo.NAME.recommendations"

 signal_topic(SiloName)

 -spec signal_topic(silo_name()) -> binary().

Get the signal topic for a silo.
Returns: binary "silo.NAME.signals"

 subscribe_to_all_silos()

 -spec subscribe_to_all_silos() -> ok.

Subscribe the calling process to signals from all silos.

 subscribe_to_all_silos(Pid)

 -spec subscribe_to_all_silos(pid()) -> ok.

Subscribe a specific process to signals from all silos.

 subscribe_to_recommendations(SiloName)

 -spec subscribe_to_recommendations(silo_name()) -> ok.

Subscribe the calling process to recommendations from a specific silo.
Events are delivered as: {silo_recommendations, SiloName, RecommendationsMap}

 subscribe_to_recommendations(SiloName, Pid)

 -spec subscribe_to_recommendations(silo_name(), pid()) -> ok.

Subscribe a specific process to recommendations from a silo.

 subscribe_to_silo(SiloName)

 -spec subscribe_to_silo(silo_name()) -> ok.

Subscribe the calling process to signals from a specific silo.

 subscribe_to_silo(SiloName, Pid)

 -spec subscribe_to_silo(silo_name(), pid()) -> ok.

Subscribe a specific process to signals from a silo.

 unsubscribe_from_recommendations(SiloName)

 -spec unsubscribe_from_recommendations(silo_name()) -> ok.

Unsubscribe from a specific silo's recommendations.

 unsubscribe_from_silo(SiloName)

 -spec unsubscribe_from_silo(silo_name()) -> ok.

Unsubscribe from a specific silo's signals.

social_silo

Social Silo - Reputation, coalitions, and social networks.
Part of the Liquid Conglomerate v2 architecture. The Social Silo manages: Reputation tracking and dynamics Coalition formation and stability Social network structure and metrics Mentoring relationships Reciprocity and cooperation patterns
[bookmark: Time_Constant]Time Constant
τ = 25 (medium adaptation for social dynamics)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: selection_influence to task: Social selection weight norm_transmission to cultural: Norm propagation rate coalition_structure to competitive: Coalition organization level trust_network to communication: Trust network density
Incoming: selection_pressure from task: Selection intensity coalition_competition from competitive: Inter-coalition rivalry trust_signal from communication: Communication trust level information_sharing from cultural: Information flow rate

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 dissolve_coalition(Pid, CoalitionId)

 emit_cross_silo_signals(State)

 form_coalition(Pid, CoalitionId, MemberIds)

 get_coalition(Pid, CoalitionId)

 get_params(Pid)

 get_reputation(Pid, IndividualId)

 get_silo_type()

 get_social_metrics(Pid)

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_interaction(Pid, FromId, ToId, InteractionType)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_reputation(Pid, IndividualId, Delta)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 dissolve_coalition(Pid, CoalitionId)

 -spec dissolve_coalition(pid(), term()) -> ok | not_found.

 emit_cross_silo_signals(State)

 form_coalition(Pid, CoalitionId, MemberIds)

 -spec form_coalition(pid(), term(), [term()]) -> {ok, term()} | {error, term()}.

 get_coalition(Pid, CoalitionId)

 -spec get_coalition(pid(), term()) -> {ok, map()} | not_found.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_reputation(Pid, IndividualId)

 -spec get_reputation(pid(), term()) -> {ok, float()} | not_found.

 get_silo_type()

 get_social_metrics(Pid)

 -spec get_social_metrics(pid()) -> map().

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_interaction(Pid, FromId, ToId, InteractionType)

 -spec record_interaction(pid(), term(), term(), atom()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

 update_reputation(Pid, IndividualId, Delta)

 -spec update_reputation(pid(), term(), float()) -> ok.

species_registry

Species Registry - Manages multiple species for coevolution.
The registry maintains a collection of species that coevolve in a shared environment. Each species has its own population, topology, and fitness function.
[bookmark: Overview]Overview
 ┌───┐
 │ Species Registry │
 ├───┤
 │ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
 │ │ Forager │ │ Predator│ │Scavenger│ │
 │ │ Pop:100 │ │ Pop:30 │ │ Pop:20 │ │
 │ └────┬────┘ └────┬────┘ └────┬────┘ │
 │ │ │ │ │
 │ ┌────┴────────────┴────────────┴────┐ │
 │ │ Shared Environment │ │
 │ └───────────────────────────────────┘ │
 └───┘
[bookmark: Usage]Usage
 %% Create registry with multiple species
 {ok, Registry} = species_registry:new(#{
 species => [forager_species, predator_species],
 population_sizes => #{forager => 100, predator => 30},
 environment => hex_arena_env
 }).

 %% Get all species
 Species = species_registry:list_species(Registry).

 %% Create bridge for a specific species
 {ok, Bridge} = species_registry:create_bridge(Registry, forager).
See also: agent_species, coevolution_trainer.

 Summary

 Types

 registry/0

 species_entry/0

 Functions

 create_bridge(Registry, SpeciesId)

 Creates a new bridge for a species.

 get_all_populations(Registry)

 Gets all populations keyed by species ID.

 get_bridge(Registry, SpeciesId)

 Gets or creates a bridge for a species.

 get_config(Registry, SpeciesId)

 Gets species configuration.

 get_population(Registry, SpeciesId)

 Gets the population for a species.

 get_population_size(Registry, SpeciesId)

 Gets population size for a species.

 get_species(Registry, SpeciesId)

 Gets a species entry by ID.

 get_subspecies(Registry, SpeciesId)

 Gets subspecies assignments for a species.

 list_species(Registry)

 Lists all registered species IDs.

 new(Options)

 Creates a new species registry.

 register_species(Registry, Module)

 Registers a new species in the registry.

 set_population(Registry, SpeciesId, Population)

 Sets the population (network IDs) for a species.

 total_population(Registry)

 Returns total population across all species.

 unregister_species(Registry, SpeciesId)

 Unregisters a species from the registry.

 update_subspecies(Registry, SpeciesId, SubspeciesMap)

 Updates subspecies assignments for a species.

 Types

 registry/0

 -type registry() ::
 #{species := #{agent_species:species_id() => species_entry()},
 environment := module(),
 population_sizes := #{agent_species:species_id() => pos_integer()},
 subspecies := #{agent_species:subspecies_id() => [term()]}}.

 species_entry/0

 -type species_entry() ::
 #{module := module(),
 config := agent_species:species_config(),
 bridge := agent_bridge:validated_bridge() | undefined,
 population := [term()],
 subspecies_map := #{non_neg_integer() => [term()]}}.

 Functions

 create_bridge(Registry, SpeciesId)

 -spec create_bridge(Registry, SpeciesId) -> {ok, Bridge} | {error, Reason}
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 Bridge :: agent_bridge:validated_bridge(),
 Reason :: term().

Creates a new bridge for a species.

 get_all_populations(Registry)

 -spec get_all_populations(Registry) -> #{agent_species:species_id() => [term()]}
 when Registry :: registry().

Gets all populations keyed by species ID.

 get_bridge(Registry, SpeciesId)

 -spec get_bridge(Registry, SpeciesId) -> {ok, Bridge} | {error, Reason}
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 Bridge :: agent_bridge:validated_bridge(),
 Reason :: term().

Gets or creates a bridge for a species.

 get_config(Registry, SpeciesId)

 -spec get_config(Registry, SpeciesId) -> {ok, Config} | {error, not_found}
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 Config :: agent_species:species_config().

Gets species configuration.

 get_population(Registry, SpeciesId)

 -spec get_population(Registry, SpeciesId) -> [term()]
 when Registry :: registry(), SpeciesId :: agent_species:species_id().

Gets the population for a species.

 get_population_size(Registry, SpeciesId)

 -spec get_population_size(Registry, SpeciesId) -> pos_integer()
 when Registry :: registry(), SpeciesId :: agent_species:species_id().

Gets population size for a species.

 get_species(Registry, SpeciesId)

 -spec get_species(Registry, SpeciesId) -> {ok, Entry} | {error, not_found}
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 Entry :: species_entry().

Gets a species entry by ID.

 get_subspecies(Registry, SpeciesId)

 -spec get_subspecies(Registry, SpeciesId) -> #{non_neg_integer() => [term()]}
 when Registry :: registry(), SpeciesId :: agent_species:species_id().

Gets subspecies assignments for a species.

 list_species(Registry)

 -spec list_species(Registry) -> [agent_species:species_id()] when Registry :: registry().

Lists all registered species IDs.

 new(Options)

 -spec new(Options) -> {ok, Registry} | {error, Reason}
 when
 Options ::
 #{species := [module()],
 environment := module(),
 population_sizes => #{atom() => pos_integer()}},
 Registry :: registry(),
 Reason :: term().

Creates a new species registry.
Options:
	species - List of species modules (required)
	environment - Shared environment module (required)
	population_sizes - Map of species_id => size (optional)

 register_species(Registry, Module)

 -spec register_species(Registry, Module) -> {ok, NewRegistry} | {error, Reason}
 when
 Registry :: registry(),
 Module :: module(),
 NewRegistry :: registry(),
 Reason :: term().

Registers a new species in the registry.

 set_population(Registry, SpeciesId, Population)

 -spec set_population(Registry, SpeciesId, Population) -> registry()
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 Population :: [term()].

Sets the population (network IDs) for a species.

 total_population(Registry)

 -spec total_population(Registry) -> non_neg_integer() when Registry :: registry().

Returns total population across all species.

 unregister_species(Registry, SpeciesId)

 -spec unregister_species(Registry, SpeciesId) -> {ok, NewRegistry} | {error, not_found}
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 NewRegistry :: registry().

Unregisters a species from the registry.

 update_subspecies(Registry, SpeciesId, SubspeciesMap)

 -spec update_subspecies(Registry, SpeciesId, SubspeciesMap) -> registry()
 when
 Registry :: registry(),
 SpeciesId :: agent_species:species_id(),
 SubspeciesMap :: #{non_neg_integer() => [term()]}.

Updates subspecies assignments for a species.

steady_state_strategy

Steady-state evolution strategy implementation.
Unlike generational evolution which replaces the entire population each generation, steady-state evolution replaces only a few individuals at a time. This provides a continuous evolutionary pressure with no distinct generations.
Key characteristics: - After each evaluation, 1-N individuals may be replaced - No distinct generations - continuous replacement - Maintains population diversity through gradual change - Age tracking for victim selection

 Summary

 Types

 birth_origin/0

 death_reason/0

 fitness/0

 generation/0

 genome/0

 individual/0

 individual_id/0

 individual_summary/0

 island_id/0

 lifecycle_event/0

 metrics/0

 mutation_config/0

 network/0

 neuro_config/0

 niche_id/0

 population_snapshot/0

 self_play_config/0

 speciation_config/0

 species_id/0

 steady_state_params/0

 strategy_action/0

 timestamp/0

 Functions

 apply_meta_params(MetaParams, Ss_state)

 Apply parameter updates from meta-controller.

 get_meta_inputs(Ss_state)

 Get normalized inputs for meta-controller.

 get_population_snapshot(Ss_state)

 Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, State)

 Handle an individual evaluation result.

 init(Config)

 Initialize the steady-state strategy.

 terminate(Reason, Ss_state)

 Clean up when strategy terminates.

 tick(Ss_state)

 Periodic tick for continuous operations.

 Types

 birth_origin/0

 -type birth_origin() :: initial | crossover | mutation | migration | insertion.

 death_reason/0

 -type death_reason() ::
 selection_pressure | stagnation | age_limit | niche_competition | migration |
 population_limit | extinction.

 fitness/0

 -type fitness() :: float() | undefined.

 generation/0

 -type generation() :: non_neg_integer().

 genome/0

 -type genome() ::
 #genome{connection_genes ::
 [#connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}],
 input_count :: non_neg_integer(),
 hidden_count :: non_neg_integer(),
 output_count :: non_neg_integer()}.

 individual/0

 -type individual() ::
 #individual{id :: individual_id(),
 network :: network(),
 genome :: genome() | undefined,
 parent1_id :: individual_id() | undefined,
 parent2_id :: individual_id() | undefined,
 fitness :: fitness(),
 metrics :: metrics(),
 generation_born :: generation(),
 birth_evaluation :: non_neg_integer(),
 max_age :: pos_integer(),
 is_survivor :: boolean(),
 is_offspring :: boolean()}.

 individual_id/0

 -type individual_id() :: term().

 individual_summary/0

 -type individual_summary() ::
 #{id := individual_id(),
 fitness := fitness(),
 is_survivor => boolean(),
 is_offspring => boolean(),
 species_id => species_id(),
 age => non_neg_integer()}.

 island_id/0

 -type island_id() :: pos_integer() | atom().

 lifecycle_event/0

 -type lifecycle_event() ::
 #individual_born{id :: individual_id(),
 parent_ids :: [individual_id()],
 timestamp :: timestamp(),
 origin :: birth_origin(),
 metadata :: map()} |
 #individual_died{id :: individual_id(),
 reason :: death_reason(),
 final_fitness :: float() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #individual_evaluated{id :: individual_id(),
 fitness :: float(),
 metrics :: map(),
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_emerged{species_id :: species_id(),
 founder_id :: individual_id(),
 parent_species_id :: species_id() | undefined,
 timestamp :: timestamp(),
 metadata :: map()} |
 #species_extinct{species_id :: species_id(),
 reason :: stagnation | empty | merged | eliminated,
 final_stats :: map(),
 timestamp :: timestamp()} |
 #cohort_evaluated{generation :: pos_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: pos_integer(),
 timestamp :: timestamp()} |
 #breeding_complete{generation :: pos_integer(),
 survivor_count :: non_neg_integer(),
 eliminated_count :: non_neg_integer(),
 offspring_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #generation_advanced{generation :: pos_integer(),
 previous_best_fitness :: float(),
 previous_avg_fitness :: float(),
 population_size :: pos_integer(),
 species_count :: non_neg_integer(),
 timestamp :: timestamp()} |
 #steady_state_replacement{replaced_ids :: [individual_id()],
 offspring_ids :: [individual_id()],
 best_fitness :: float() | undefined,
 avg_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #island_migration{individual_id :: individual_id(),
 from_island :: island_id(),
 to_island :: island_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #island_topology_changed{islands :: [island_id()],
 connections :: [{island_id(), island_id()}],
 change_type :: island_added | island_removed | connection_changed,
 timestamp :: timestamp()} |
 #niche_discovered{niche_id :: niche_id(),
 behavior_descriptor :: [float()],
 individual_id :: individual_id(),
 fitness :: float(),
 timestamp :: timestamp()} |
 #niche_updated{niche_id :: niche_id(),
 old_individual_id :: individual_id(),
 new_individual_id :: individual_id(),
 old_fitness :: float(),
 new_fitness :: float(),
 improvement :: float(),
 timestamp :: timestamp()} |
 #archive_updated{size :: non_neg_integer(),
 coverage :: float(),
 qd_score :: float(),
 updates_since_last :: non_neg_integer(),
 timestamp :: timestamp()} |
 #competitor_updated{competitor_id :: term(),
 change_type :: generation_advanced | champion_changed | strategy_shift,
 champion_fitness :: float() | undefined,
 timestamp :: timestamp()} |
 #arms_race_event{event_type :: fitness_surge | counter_adaptation | stalemate | breakthrough,
 populations :: [term()],
 metrics :: map(),
 timestamp :: timestamp()} |
 #competition_result{competitors :: [individual_id()],
 scores :: [{individual_id(), float()}],
 winner_id :: individual_id() | draw,
 competition_type ::
 tournament | round_robin | elimination | ranked_match | team_vs_team,
 metadata :: map(),
 timestamp :: timestamp()} |
 #capability_emerged{capability_id :: term(),
 description :: binary(),
 exhibitors :: [individual_id()],
 timestamp :: timestamp()} |
 #complexity_increased{metric :: genome_size | network_depth | behavior_repertoire | term(),
 old_value :: number(),
 new_value :: number(),
 increase_pct :: float(),
 timestamp :: timestamp()} |
 #progress_checkpoint{total_evaluations :: non_neg_integer(),
 evaluations_since_last :: non_neg_integer(),
 cohort :: non_neg_integer(),
 best_fitness :: float(),
 avg_fitness :: float(),
 worst_fitness :: float(),
 population_size :: non_neg_integer(),
 species_count :: pos_integer(),
 improvement :: float(),
 elapsed_ms :: non_neg_integer(),
 evals_per_second :: float(),
 checkpoint_interval :: non_neg_integer(),
 timestamp :: timestamp()} |
 #environment_changed{environment_id :: term(),
 change_type ::
 difficulty_increased | difficulty_decreased | task_shifted |
 condition_changed | curriculum_advanced,
 description :: binary(),
 metrics :: map(),
 timestamp :: timestamp()} |
 #individual_aged_out{id :: individual_id(),
 final_age :: pos_integer(),
 final_fitness :: float(),
 lifetime_stats ::
 #{total_evaluations := non_neg_integer(),
 avg_fitness := float(),
 best_fitness := float(),
 offspring_count := non_neg_integer()},
 timestamp :: timestamp()}.

 metrics/0

 -type metrics() :: map().

 mutation_config/0

 -type mutation_config() ::
 #mutation_config{weight_mutation_rate :: float(),
 weight_perturb_rate :: float(),
 weight_perturb_strength :: float(),
 add_node_rate :: float(),
 add_connection_rate :: float(),
 toggle_connection_rate :: float(),
 add_sensor_rate :: float(),
 add_actuator_rate :: float(),
 mutate_neuron_type_rate :: float(),
 mutate_time_constant_rate :: float()}.

 network/0

 -type network() :: term().

 neuro_config/0

 -type neuro_config() ::
 #neuro_config{population_size :: pos_integer(),
 evaluations_per_individual :: pos_integer(),
 selection_ratio :: float(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 reservoir_mutation_rate :: float() | undefined,
 reservoir_mutation_strength :: float() | undefined,
 readout_mutation_rate :: float() | undefined,
 readout_mutation_strength :: float() | undefined,
 topology_mutation_config :: mutation_config() | undefined,
 max_evaluations :: pos_integer() | infinity,
 max_generations :: pos_integer() | infinity,
 target_fitness :: float() | undefined,
 network_topology :: {pos_integer(), [pos_integer()], pos_integer()},
 evaluator_module :: module(),
 evaluator_options :: map(),
 event_handler :: {module(), term()} | undefined,
 meta_controller_config :: term() | undefined,
 speciation_config :: speciation_config() | undefined,
 self_play_config :: self_play_config() | undefined,
 realm :: binary(),
 publish_events :: boolean(),
 evaluation_mode :: direct | distributed | mesh,
 mesh_config :: map() | undefined,
 evaluation_timeout :: pos_integer(),
 max_concurrent_evaluations :: pos_integer() | undefined,
 strategy_config :: term() | undefined,
 lc_chain_config :: term() | undefined,
 checkpoint_interval :: pos_integer() | undefined,
 checkpoint_config :: map() | undefined}.

 niche_id/0

 -type niche_id() :: term().

 population_snapshot/0

 -type population_snapshot() ::
 #{size := non_neg_integer(),
 individuals := [individual_summary()],
 best_fitness := fitness(),
 avg_fitness := fitness(),
 worst_fitness := fitness(),
 species_count => non_neg_integer(),
 generation => pos_integer(),
 extra => map()}.

 self_play_config/0

 -type self_play_config() ::
 #self_play_config{enabled :: boolean(),
 archive_size :: pos_integer(),
 archive_threshold :: float() | auto,
 min_fitness_percentile :: float()}.

 speciation_config/0

 -type speciation_config() ::
 #speciation_config{enabled :: boolean(),
 compatibility_threshold :: float(),
 c1_excess :: float(),
 c2_disjoint :: float(),
 c3_weight_diff :: float(),
 target_species :: pos_integer(),
 threshold_adjustment_rate :: float(),
 min_species_size :: pos_integer(),
 max_stagnation :: non_neg_integer(),
 species_elitism :: float(),
 interspecies_mating_rate :: float()}.

 species_id/0

 -type species_id() :: pos_integer().

 steady_state_params/0

 -type steady_state_params() ::
 #steady_state_params{replacement_count :: pos_integer(),
 parent_selection :: tournament | fitness_proportional | random,
 victim_selection :: worst | oldest | random | tournament,
 tournament_size :: pos_integer(),
 mutation_rate :: float(),
 mutation_strength :: float(),
 default_max_age :: non_neg_integer(),
 max_age_mutation_rate :: float(),
 max_age_mutation_strength :: float()}.

 strategy_action/0

 -type strategy_action() ::
 {create_individual, ParentIds :: [individual_id()], Metadata :: map()} |
 {remove_individual, individual_id(), Reason :: death_reason()} |
 {evaluate_individual, individual_id()} |
 {evaluate_batch, [individual_id()]} |
 {update_config, ConfigUpdates :: map()} |
 {migrate_individual, individual_id(), ToIsland :: island_id()} |
 {update_archive, ArchiveUpdate :: term()} |
 {emit_event, lifecycle_event()} |
 noop.

 timestamp/0

 -type timestamp() :: erlang:timestamp().

 Functions

 apply_meta_params(MetaParams, Ss_state)

 -spec apply_meta_params(MetaParams :: map(),
 State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}) ->
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}.

Apply parameter updates from meta-controller.

 get_meta_inputs(Ss_state)

 -spec get_meta_inputs(State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}) ->
 [float()].

Get normalized inputs for meta-controller.

 get_population_snapshot(Ss_state)

 -spec get_population_snapshot(State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}) ->
 population_snapshot().

Get a snapshot of the current population state.

 handle_evaluation_result(IndividualId, FitnessResult, State)

 -spec handle_evaluation_result(IndividualId, FitnessResult, State) -> Result
 when
 IndividualId :: individual_id(),
 FitnessResult :: #{fitness := float(), metrics => map()},
 State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined},
 Result ::
 {[strategy_action()],
 [lifecycle_event()],
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map ::
 #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}}.

Handle an individual evaluation result.
In steady-state, each evaluation may trigger immediate replacement.

 init(Config)

 -spec init(Config :: map()) ->
 {ok,
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined},
 [lifecycle_event()]}.

Initialize the steady-state strategy.

 terminate(Reason, Ss_state)

 -spec terminate(Reason :: term(),
 State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}) ->
 ok.

Clean up when strategy terminates.

 tick(Ss_state)

 -spec tick(State ::
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}) ->
 {[strategy_action()],
 [lifecycle_event()],
 #ss_state{config :: neuro_config(),
 params :: steady_state_params(),
 network_factory :: module(),
 population :: [individual()],
 population_map :: #{individual_id() => individual()},
 population_size :: pos_integer(),
 evaluated_count :: non_neg_integer(),
 total_evaluations :: non_neg_integer(),
 best_fitness_ever :: float(),
 ages :: #{individual_id() => non_neg_integer()},
 checkpoint_interval :: pos_integer(),
 evals_since_checkpoint :: non_neg_integer(),
 start_time :: erlang:timestamp() | undefined}}.

Periodic tick for continuous operations.
Steady-state can use ticks for age-based culling. Each individual has its own max_age - culling compares individual age against their personal max_age threshold.

task_l0_actuators

Task Silo L0 Actuators - Denormalizes and applies TWEANN outputs.
Part of the Liquid Conglomerate v2 architecture. This module takes the normalized output vector from the L0 TWEANN and converts it into actual evolution parameters that control the neuroevolution process.
[bookmark: Responsibilities]Responsibilities
1. Convert TWEANN outputs (0.0-1.0) to evolution parameter ranges 2. Apply outputs to neuroevolution_server (evolution params) 3. Apply outputs to opponent_archive (self-play archive params) 4. Handle delta outputs (population_size_delta, compatibility_threshold_delta, archive_max_size_delta) 5. Track applied values for debugging/monitoring
[bookmark: Actuators_(20_total)]Actuators (20 total)
Evolution actuators (1-12): - mutation_rate, mutation_strength, selection_ratio - add_node_rate, add_connection_rate, delete_connection_rate - weight_perturb_vs_replace, crossover_rate, interspecies_crossover_rate - elitism_count, population_size_delta, compatibility_threshold_delta
Layer-specific mutation actuators (13-16): - reservoir_mutation_rate: Hidden layer mutation probability - reservoir_mutation_strength: Hidden layer weight perturbation strength - readout_mutation_rate: Output layer mutation probability - readout_mutation_strength: Output layer weight perturbation strength
Self-play archive actuators (17-20): - archive_threshold_percentile: Entry threshold for adding to archive - archive_sampling_temperature: Opponent selection strategy (0=uniform, 1=fitness-weighted) - archive_prune_ratio: Keep top X% when pruning (0.5-1.0) - archive_max_size_delta: Adjust archive max size (-5 to +5)
[bookmark: Usage]Usage
%% Start the actuator controller {ok, Pid} = task_l0_actuators:start_link(Config),
%% Apply TWEANN output vector task_l0_actuators:apply_output_vector(OutputVector),
%% Get current actuator values Values = task_l0_actuators:get_actuator_values(), %% Returns: #{mutation_rate => 0.15, crossover_rate => 0.7, ...}

 Summary

 Functions

 apply_output_vector(OutputVector)

 Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 Get current denormalized actuator values.

 get_actuator_values(Pid)

 Get current denormalized actuator values (specific server).

 get_evolution_params()

 Get evolution parameters ready for neuroevolution_server.

 get_evolution_params(Pid)

 Get evolution parameters (specific server).

 get_raw_outputs()

 Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 Start the actuator controller with default configuration.

 start_link(Config)

 Start the actuator controller with custom configuration.

 terminate(Reason, State)

 Functions

 apply_output_vector(OutputVector)

 -spec apply_output_vector([float()]) -> ok.

Apply TWEANN output vector (ordered list).

 apply_output_vector(Pid, OutputVector)

 -spec apply_output_vector(pid(), [float()]) -> ok.

Apply TWEANN output vector (specific server).

 apply_outputs(OutputMap)

 -spec apply_outputs(map()) -> ok.

Apply TWEANN outputs as a map.

 apply_outputs(Pid, OutputMap)

 -spec apply_outputs(pid(), map()) -> ok.

Apply TWEANN outputs as a map (specific server).

 get_actuator_values()

 -spec get_actuator_values() -> map().

Get current denormalized actuator values.

 get_actuator_values(Pid)

 -spec get_actuator_values(pid()) -> map().

Get current denormalized actuator values (specific server).

 get_evolution_params()

 -spec get_evolution_params() -> map().

Get evolution parameters ready for neuroevolution_server.

 get_evolution_params(Pid)

 -spec get_evolution_params(pid()) -> map().

Get evolution parameters (specific server).

 get_raw_outputs()

 -spec get_raw_outputs() -> [float()].

Get raw TWEANN outputs (before denormalization).

 get_raw_outputs(Pid)

 -spec get_raw_outputs(pid()) -> [float()].

Get raw TWEANN outputs (specific server).

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the actuator controller with custom configuration.

 terminate(Reason, State)

task_l0_defaults

Task Silo L0: Safe Default Parameters.
Part of the Liquid Conglomerate v2 Task Silo. Provides safe, conservative default parameters that are always active and never disabled.
[bookmark: Purpose]Purpose
L0 serves as the fallback baseline when L1/L2 are disabled or fail. These defaults are designed to be safe across a wide range of problems: - Moderate mutation rates (not too aggressive, not too conservative) - Balanced selection pressure - Conservative topology mutation (when enabled)
[bookmark: Usage]Usage
%% Get default parameters Defaults = task_l0_defaults:get_defaults(), MutationRate = maps:get(mutation_rate, Defaults).
%% Clamp a value to safe bounds SafeRate = task_l0_defaults:clamp(mutation_rate, 0.8). % Returns 0.5 (max)
%% Apply bounds to a full parameter map SafeParams = task_l0_defaults:apply_bounds(UnsafeParams).

 Summary

 Functions

 apply_bounds(Params)

 Apply bounds to all parameters in a map.

 clamp(Param, Value)

 Clamp a value to its safe bounds.

 get_bound(Param)

 Get bounds for a specific parameter.

 get_bounds()

 Get parameter bounds (min, max).

 get_defaults()

 Get default parameter values.

 merge_with_defaults(Params)

 Merge provided parameters with defaults.

 Functions

 apply_bounds(Params)

 -spec apply_bounds(map()) -> map().

Apply bounds to all parameters in a map.
Any parameter with defined bounds is clamped to [min, max]. Parameters without defined bounds are passed through unchanged.

 clamp(Param, Value)

 -spec clamp(atom(), number()) -> number().

Clamp a value to its safe bounds.
Returns the value constrained to [min, max] for the given parameter. Returns the value unchanged if no bounds are defined.

 get_bound(Param)

 -spec get_bound(atom()) -> {float(), float()} | undefined.

Get bounds for a specific parameter.

 get_bounds()

 -spec get_bounds() -> map().

Get parameter bounds (min, max).
These bounds ensure parameters stay within safe, meaningful ranges regardless of what L1/L2 recommend.

 get_defaults()

 -spec get_defaults() -> map().

Get default parameter values.
These are safe starting values for neuroevolution that work across a wide range of problem domains.

 merge_with_defaults(Params)

 -spec merge_with_defaults(map()) -> map().

Merge provided parameters with defaults.
Missing parameters are filled in from defaults. All parameters are then clamped to safe bounds.

task_l0_morphology

Task Silo L0 Morphology - TWEANN sensor/actuator definitions.
Part of the Liquid Conglomerate v2 architecture. Defines the neural network morphology for the Task Silo's L0 hyperparameter controller.
[bookmark: Architecture]Architecture
L0 is a TWEANN (Topology and Weight Evolving Artificial Neural Network) that: - Takes 21 sensor inputs (16 evolution + 5 self-play archive) - Produces 20 actuator outputs (12 evolution + 4 layer-specific + 4 archive) - Has 12 hyperparameters that L1 can tune (8 evolution + 4 archive) - Has 7 L1 hyperparameters that L2 can tune
[bookmark: Time_Constant]Time Constant
tau_L0 = 1000 evaluations (adaptation rate for evolution control)
Note: The system uses evaluation-centric timing, not discrete generations. All time constants are expressed in evaluation counts.

 Summary

 Functions

 actuator_count()

 Number of actuators (neural network outputs). 12 evolution + 4 layer-specific mutation + 4 self-play archive = 20

 actuator_names()

 Ordered list of actuator names.

 actuator_spec(_)

 Get specification for an actuator.

 get_l0_bounds()

 Get bounds for L0 hyperparameters.

 get_l0_defaults()

 Get default values for L0 hyperparameters.

 get_l1_bounds()

 Get bounds for L1 hyperparameters.

 get_l1_defaults()

 Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 List of L1 hyperparameter names.

 sensor_count()

 Number of sensors (neural network inputs).

 sensor_names()

 Ordered list of sensor names.

 sensor_spec(_)

 Get specification for a sensor.

 tau_l0()

 L0 time constant - 1000 evaluations for hyperparameter adaptation. With population ~100, this is roughly 10 evaluation cycles.

 tau_l1()

 L1 time constant - 5000 evaluations for tactical adaptation. With population ~100, this is roughly 50 evaluation cycles.

 tau_l2()

 L2 time constant - 10000 evaluations for strategic learning. With population ~100, this is roughly 100 evaluation cycles.

 Functions

 actuator_count()

 -spec actuator_count() -> pos_integer().

Number of actuators (neural network outputs). 12 evolution + 4 layer-specific mutation + 4 self-play archive = 20

 actuator_names()

 -spec actuator_names() -> [atom()].

Ordered list of actuator names.

 actuator_spec(_)

 -spec actuator_spec(atom()) -> map() | undefined.

Get specification for an actuator.

 get_l0_bounds()

 -spec get_l0_bounds() -> map().

Get bounds for L0 hyperparameters.

 get_l0_defaults()

 -spec get_l0_defaults() -> map().

Get default values for L0 hyperparameters.

 get_l1_bounds()

 -spec get_l1_bounds() -> map().

Get bounds for L1 hyperparameters.

 get_l1_defaults()

 -spec get_l1_defaults() -> map().

Get default values for L1 hyperparameters.

 l0_hyperparameter_spec(_)

 -spec l0_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L0 hyperparameter.

 l0_hyperparameters()

 -spec l0_hyperparameters() -> [atom()].

List of L0 hyperparameter names.

 l1_hyperparameter_spec(_)

 -spec l1_hyperparameter_spec(atom()) -> map() | undefined.

Get specification for an L1 hyperparameter.

 l1_hyperparameters()

 -spec l1_hyperparameters() -> [atom()].

List of L1 hyperparameter names.
Note: These are called "meta-parameters" from L1's perspective, but "hyperparameters" from L2's perspective.

 sensor_count()

 -spec sensor_count() -> pos_integer().

Number of sensors (neural network inputs).

 sensor_names()

 -spec sensor_names() -> [atom()].

Ordered list of sensor names.

 sensor_spec(_)

 -spec sensor_spec(atom()) -> map() | undefined.

Get specification for a sensor.

 tau_l0()

 -spec tau_l0() -> pos_integer().

L0 time constant - 1000 evaluations for hyperparameter adaptation. With population ~100, this is roughly 10 evaluation cycles.

 tau_l1()

 -spec tau_l1() -> pos_integer().

L1 time constant - 5000 evaluations for tactical adaptation. With population ~100, this is roughly 50 evaluation cycles.

 tau_l2()

 -spec tau_l2() -> pos_integer().

L2 time constant - 10000 evaluations for strategic learning. With population ~100, this is roughly 100 evaluation cycles.

task_l0_sensors

Task Silo L0 Sensors - Collects and normalizes sensor inputs for TWEANN.
Part of the Liquid Conglomerate v2 architecture. This module collects evolution statistics and transforms them into normalized inputs for the L0 hyperparameter-tuning TWEANN.
[bookmark: Responsibilities]Responsibilities
1. Collect evolution statistics from neuroevolution_server 2. Compute derived metrics (velocities, trends) 3. Normalize all values to appropriate ranges for TWEANN input 4. Handle cross-silo input signals 5. Maintain state for velocity and trend calculations
[bookmark: Usage]Usage
%% Start the sensor collector {ok, Pid} = task_l0_sensors:start_link(Config),
%% Update with new evolution stats (called by neuroevolution_server) task_l0_sensors:update_stats(Pid, Stats),
%% Get current sensor vector (ordered list) SensorVector = task_l0_sensors:get_sensor_vector(Pid), %% Returns: [0.82, 0.65, 0.12, ...] (16 values)

 Summary

 Functions

 get_sensor_vector()

 Get ordered sensor vector for TWEANN input.

 get_sensor_vector(Pid)

 Get ordered sensor vector from specific server.

 get_sensors()

 Get named sensor map.

 get_sensors(Pid)

 Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_realm(Realm)

 Set the realm for event publishing.

 start_link()

 Start the sensor collector with default configuration.

 start_link(Config)

 Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_archive_stats(Stats)

 Update archive statistics from opponent_archive.

 update_cross_silo_signal(SignalName, Value)

 Update cross-silo signal from another silo.

 update_crossover_success(Success)

 Record a crossover outcome (success or failure).

 update_mutation_impact(FitnessChange)

 Record a mutation impact (fitness change).

 update_stats(Stats)

 Update with new evolution statistics.

 update_stats(Pid, Stats)

 Update with new evolution statistics (specific server).

 Functions

 get_sensor_vector()

 -spec get_sensor_vector() -> [float()].

Get ordered sensor vector for TWEANN input.
Returns a list of 21 float values in the order defined by task_l0_morphology:sensor_names/0.

 get_sensor_vector(Pid)

 -spec get_sensor_vector(pid()) -> [float()].

Get ordered sensor vector from specific server.

 get_sensors()

 -spec get_sensors() -> map().

Get named sensor map.

 get_sensors(Pid)

 -spec get_sensors(pid()) -> map().

Get named sensor map from specific server.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 set_realm(Realm)

 -spec set_realm(binary()) -> ok.

Set the realm for event publishing.
Use this to dynamically update the realm when a training session starts. Events will be published to the topic for the specified realm.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the sensor collector with custom configuration.

 terminate(Reason, State)

 update_archive_stats(Stats)

 -spec update_archive_stats(map()) -> ok.

Update archive statistics from opponent_archive.
Expected keys in Stats map: - size: current archive size - max_size: maximum archive size - avg_fitness: average fitness in archive - fitness_variance: fitness variance in archive - avg_generation: average generation of entries (for staleness)

 update_cross_silo_signal(SignalName, Value)

 -spec update_cross_silo_signal(atom(), float()) -> ok.

Update cross-silo signal from another silo.

 update_crossover_success(Success)

 -spec update_crossover_success(boolean()) -> ok.

Record a crossover outcome (success or failure).

 update_mutation_impact(FitnessChange)

 -spec update_mutation_impact(float()) -> ok.

Record a mutation impact (fitness change).

 update_stats(Stats)

 -spec update_stats(map()) -> ok.

Update with new evolution statistics.

 update_stats(Pid, Stats)

 -spec update_stats(pid(), map()) -> ok.

Update with new evolution statistics (specific server).

task_silo

Task Silo - Evolution optimization controller for neuroevolution.
Part of the Liquid Conglomerate v2 architecture. The Task Silo optimizes evolution hyperparameters to maximize fitness improvement.
[bookmark: Hierarchical_Levels]Hierarchical Levels
- L0 (Defaults): Safe starting parameters - ALWAYS ACTIVE - L1 (Tactical): Per-generation adjustments based on recent fitness - L2 (Strategic): Multi-generation learning via LTC network (future)
[bookmark: Time_Constant]Time Constant
τ = 50 (slow adaptation for stable evolution)
[bookmark: Usage]Usage
%% Start task silo {ok, Pid} = task_silo:start_link(#{ enabled_levels => [l0, l1], stagnation_threshold => 5 }),
%% Get recommended parameters after a generation Stats = #{best_fitness => 0.85, improvement => 0.02, stagnation => 0}, #{mutation_rate := MR} = task_silo:get_recommendations(Pid, Stats).

 Summary

 Types

 l2_guidance/0

 Functions

 code_change(OldVsn, State, Extra)

 get_recommendations(Pid)

 Get recommendations from the registered server using cached state.

 get_recommendations(Pid, Stats)

 Get recommended parameters based on current evolution state.

 get_state(Pid)

 Get current silo state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 reset(Pid)

 Reset the silo state (for new training session).

 set_enabled_levels(Pid, Levels)

 Set which levels are enabled.

 set_l2_guidance(Pid, Guidance)

 Set L2 guidance from meta_controller.

 start_link()

 Start the task silo with default configuration.

 start_link(Config)

 Start the task silo with custom configuration.

 terminate(Reason, State)

 update_stats(Pid, Stats)

 Update internal state with generation statistics.

 Types

 l2_guidance/0

 -type l2_guidance() ::
 #l2_guidance{aggression_factor :: float(),
 exploration_step :: float(),
 stagnation_sensitivity :: float(),
 topology_aggression :: float(),
 exploitation_weight :: float(),
 adaptation_momentum :: float(),
 warning_threshold :: float(),
 intervention_threshold :: float(),
 critical_threshold :: float(),
 velocity_window_size :: pos_integer(),
 memory_high_threshold :: float(),
 memory_critical_threshold :: float(),
 cpu_high_threshold :: float(),
 pressure_scale_factor :: float(),
 min_scale_factor :: float(),
 pressure_change_threshold :: float(),
 generation :: non_neg_integer()}.

 Functions

 code_change(OldVsn, State, Extra)

 get_recommendations(Pid)

 -spec get_recommendations(pid()) -> map().

Get recommendations from the registered server using cached state.

 get_recommendations(Pid, Stats)

 -spec get_recommendations(pid(), map()) -> map().

Get recommended parameters based on current evolution state.
Stats should include: - best_fitness: Current best fitness - avg_fitness: Average population fitness - improvement: Fitness improvement from last generation - generation: Current generation number
Returns a map of recommended hyperparameters.

 get_state(Pid)

 -spec get_state(pid()) -> map().

Get current silo state for debugging/monitoring.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Config)

 reset(Pid)

 -spec reset(pid()) -> ok.

Reset the silo state (for new training session).

 set_enabled_levels(Pid, Levels)

 -spec set_enabled_levels(pid(), [l0 | l1 | l2]) -> ok.

Set which levels are enabled.

 set_l2_guidance(Pid, Guidance)

 -spec set_l2_guidance(pid(), l2_guidance()) -> ok.

Set L2 guidance from meta_controller.
Called by meta_controller to update the L1 control parameters. This is the L2→L1 communication channel.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Start the task silo with default configuration.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

Start the task silo with custom configuration.
Options: - enabled_levels: [l0, l1, l2] (default: [l0, l1]) - stagnation_threshold: Generations without improvement before boosting (default: 5) - history_size: Number of generations to track (default: 20)

 terminate(Reason, State)

 update_stats(Pid, Stats)

 -spec update_stats(pid(), map()) -> ok.

Update internal state with generation statistics.

temporal_silo

Temporal Silo - Episode timing and temporal control for neuroevolution.
Part of the Liquid Conglomerate v2 architecture. The Temporal Silo manages: Episode length control (min/max/target) Early termination detection Evaluation timeouts Learning rate scheduling Reaction time budgets
[bookmark: Time_Constant]Time Constant
τ = 10 (fast adaptation for responsive timing control)
[bookmark: Cross-Silo_Signals]Cross-Silo Signals
Outgoing: time_pressure to task: Temporal constraint urgency convergence_status to resource: Progress toward convergence episode_efficiency to economic: Cost efficiency of episodes critical_period_timing to developmental: Timing in developmental windows
Incoming: stagnation_severity from task: Evolution stagnation level budget_available from economic: Computation budget available network_latency from distribution: Network delay factor

 Summary

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 emit_silo_events(EventType, State)

 Emit silo events for persistence (zero-config).

 get_params(Pid)

 get_silo_type()

 get_state(Pid)

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_early_termination(Pid)

 record_reaction_time(Pid, ReactionTimeMs)

 record_timeout(Pid)

 reset(Pid)

 start_link()

 start_link(Config)

 terminate(Reason, State)

 update_episode(Pid, EpisodeLength, FinalFitness)

 Functions

 apply_actuators(Actuators, State)

 collect_sensors(State)

 compute_reward(State)

 emit_cross_silo_signals(State)

 emit_silo_events(EventType, State)

Emit silo events for persistence (zero-config).
Events are automatically persisted if macula_neuroevolution_esdb is available. If not, this is a no-op.

 get_params(Pid)

 -spec get_params(pid()) -> map().

 get_silo_type()

 get_state(Pid)

 -spec get_state(pid()) -> map().

 get_time_constant()

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_cross_silo_signals(Signals, State)

 handle_info(Info, State)

 init(Config)

 init_silo(Config)

 record_early_termination(Pid)

 -spec record_early_termination(pid()) -> ok.

 record_reaction_time(Pid, ReactionTimeMs)

 -spec record_reaction_time(pid(), pos_integer()) -> ok.

 record_timeout(Pid)

 -spec record_timeout(pid()) -> ok.

 reset(Pid)

 -spec reset(pid()) -> ok.

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | ignore | {error, term()}.

 terminate(Reason, State)

 update_episode(Pid, EpisodeLength, FinalFitness)

 -spec update_episode(pid(), non_neg_integer(), float()) -> ok.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

