

 macula_neuroevolution_esdb

 v0.3.0

 Table of contents

 	Overview

 	Changelog

 	
 Modules

 	esdb_lineage_backend

 macula-neuroevolution-esdb

Bridge library between macula-neuroevolution lineage tracking and erl-esdb-gater.
[image: Hex.pm]
[image: Documentation]
Overview
This library provides an implementation of the neuroevolution_lineage_events behaviour using erl-esdb-gater as the event store backend. It enables persistent genealogy tracking for evolved neural networks.
Performance Design
Lineage tracking NEVER blocks the evolution loop:
	persist_event/persist_batch return immediately (fire-and-forget)
	I/O happens asynchronously in spawned processes
	Errors are logged, not propagated
	Under extreme load, events may be lost (acceptable trade-off)

Architecture
macula-neuroevolution macula-neuroevolution-esdb erl-esdb-gater
+---------------------+ +------------------------+ +-----------------+
neuroevolution_		esdb_lineage_backend		esdb_gater_api
lineage_events	<------	(fire-and-forget)	------>	append_events
(behaviour)		spawn -> write		(async)
+---------------------+ +------------------------+ +-----------------+
Installation
Add to your rebar.config:
{deps, [
 {macula_neuroevolution_esdb, "~> 0.1.0"}
]}.
Usage
Initialize the Backend
Config = #{store_id => my_lineage_store},
{ok, State} = esdb_lineage_backend:init(Config).
Persist Lineage Events (Fire-and-Forget)
%% Single event - returns immediately
Event = #{
 event_type => offspring_born,
 individual_id => <<"ind-001">>,
 parent_ids => [<<"ind-000">>],
 generation => 1
},
ok = esdb_lineage_backend:persist_event(Event, State).

%% Batch of events - returns immediately
Events = [
 #{event_type => fitness_evaluated, individual_id => <<"ind-001">>, fitness => 0.85},
 #{event_type => mutation_applied, individual_id => <<"ind-001">>, mutation_type => weight_perturb}
],
ok = esdb_lineage_backend:persist_batch(Events, State).
Read Events (For Recovery Only)
%% WARNING: This blocks! Only use for recovery/replay, not during evolution.
StreamId = <<"individual-ind-001">>,
Opts = #{from => 0, limit => 100, direction => forward},
{ok, Events} = esdb_lineage_backend:read_stream(StreamId, Opts, State).
Subscribe to Events
%% Subscribe to individual's events (for projections)
StreamId = <<"individual-ind-001">>,
ok = esdb_lineage_backend:subscribe(StreamId, self(), State).

%% Receive events
receive
 {lineage_event, StreamId, Event} ->
 handle_event(Event)
end.
Stream Routing
Events are automatically routed to streams based on entity type:
	Event Types	Stream Pattern
	Birth, death, fitness, mutations	individual-{id}
	Speciation, lineage divergence	species-{id}
	Generation, capacity events	population-{id}
	Coalition lifecycle	coalition-{id}

Supported Events
Individual Events
	offspring_born, pioneer_spawned, clone_produced, immigrant_arrived
	individual_culled, lifespan_expired, individual_perished
	individual_matured, fertility_waned
	fitness_evaluated, fitness_improved, fitness_declined, champion_crowned
	mutation_applied, neuron_added, neuron_removed
	connection_added, connection_removed, weight_perturbed
	knowledge_transferred, skill_imitated, behavior_cloned
	weights_grafted, structure_seeded, mentor_assigned, mentorship_concluded
	mark_acquired, mark_inherited, mark_decayed

Species Events
	lineage_diverged, species_emerged, lineage_ended, lineage_merged

Population Events
	generation_completed, population_initialized, population_terminated
	stagnation_detected, breakthrough_achieved
	carrying_capacity_reached, catastrophe_occurred

Coalition Events
	coalition_formed, coalition_dissolved, coalition_joined

Dependencies
	macula_neuroevolution ~> 0.18.2
	erl_esdb_gater ~> 0.6.4

License
Apache License 2.0

 Changelog

All notable changes to macula-neuroevolution-esdb will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased

0.2.0 - 2025-12-23
Summary
Dependency Update - Align with macula-neuroevolution v0.18.2 release.
Changed
	Updated macula_neuroevolution dependency to ~> 0.18.2
	Added publish-to-hex.sh script for streamlined releases

0.1.0 - 2025-12-23
Summary
Initial Release - Bridge library between macula-neuroevolution lineage tracking and erl-esdb-gater.
Added
esdb_lineage_backend.erl
Implementation of neuroevolution_lineage_events behaviour with:
	Fire-and-forget persistence - persist_event/2 and persist_batch/2 return immediately, I/O happens asynchronously via spawned processes
	Stream routing - Events automatically routed to streams based on entity type:	individual-{id} - Birth, death, fitness, mutation events
	species-{id} - Speciation, lineage divergence/merge
	population-{id} - Generation, capacity events
	coalition-{id} - Coalition lifecycle

	Read operations - read_stream/3 for recovery/replay
	Pub/Sub integration - subscribe/3 and unsubscribe/3 via esdb_channel_server

Supported Event Types
Individual Events:
	Birth: offspring_born, pioneer_spawned, clone_produced, immigrant_arrived
	Death: individual_culled, lifespan_expired, individual_perished
	Lifecycle: individual_matured, fertility_waned
	Fitness: fitness_evaluated, fitness_improved, fitness_declined, champion_crowned
	Mutation: mutation_applied, neuron_added, neuron_removed, connection_added, connection_removed, weight_perturbed
	Knowledge: knowledge_transferred, skill_imitated, behavior_cloned, weights_grafted, structure_seeded, mentor_assigned, mentorship_concluded
	Epigenetic: mark_acquired, mark_inherited, mark_decayed

Species Events:
	lineage_diverged, species_emerged, lineage_ended, lineage_merged

Population Events:
	generation_completed, population_initialized, population_terminated
	stagnation_detected, breakthrough_achieved, carrying_capacity_reached, catastrophe_occurred

Coalition Events:
	coalition_formed, coalition_dissolved, coalition_joined

Dependencies
	macula_neuroevolution ~> 0.18.2
	erl_esdb_gater ~> 0.6.4

esdb_lineage_backend

ESDB backend for neuroevolution lineage tracking.
Implements the neuroevolution_lineage_events behaviour using erl-esdb-gater for event persistence.
[bookmark: Performance_Design]Performance Design
This backend is designed to NEVER block the evolution loop:
- persist_event/persist_batch spawn async writers - Returns immediately, I/O happens in background - Errors are logged, not propagated (fire-and-forget) - Under extreme load, events may be lost (acceptable)
[bookmark: Stream_Routing]Stream Routing
Events are routed to streams based on entity type:
- individual-{id} : Birth, death, fitness, mutation events - species-{id} : Speciation, lineage divergence/merge - population-{id} : Generation, capacity, catastrophe events - coalition-{id} : Coalition lifecycle events - lc-{realm}.{silo} : Liquid Conglomerate silo events

 Summary

 Types

 state/0

 Functions

 event_to_stream(Event)

 Route an event to its target stream based on event type. LC silo events (with 'silo' key) are routed to lc-REALM.SILO streams.

 init(Config)

 Initialize the backend with configuration.

 persist_batch(Events, State)

 Persist a batch of events (fire-and-forget). Spawns async writer and returns immediately.

 persist_event(Event, State)

 Persist a single event (fire-and-forget). Spawns async writer and returns immediately.

 read_stream(StreamId, Opts, State)

 Read events from a stream. This MAY block - only use for recovery/replay, not during evolution.

 subscribe(StreamId, Pid, State)

 Subscribe to new events on a stream.

 unsubscribe(StreamId, Pid, State)

 Unsubscribe from a stream.

 Types

 state/0

 -type state() :: #state{store_id :: atom()}.

 Functions

 event_to_stream(Event)

 -spec event_to_stream(map()) -> binary().

Route an event to its target stream based on event type. LC silo events (with 'silo' key) are routed to lc-REALM.SILO streams.

 init(Config)

 -spec init(map()) -> {ok, state()} | {error, term()}.

Initialize the backend with configuration.
Required config keys: - store_id: atom() - The erl-esdb store identifier

 persist_batch(Events, State)

 -spec persist_batch([map()], state()) -> ok.

Persist a batch of events (fire-and-forget). Spawns async writer and returns immediately.

 persist_event(Event, State)

 -spec persist_event(map(), state()) -> ok.

Persist a single event (fire-and-forget). Spawns async writer and returns immediately.

 read_stream(StreamId, Opts, State)

 -spec read_stream(binary(), map(), state()) -> {ok, [map()]} | {error, term()}.

Read events from a stream. This MAY block - only use for recovery/replay, not during evolution.

 subscribe(StreamId, Pid, State)

 -spec subscribe(binary(), pid(), state()) -> ok | {error, term()}.

Subscribe to new events on a stream.

 unsubscribe(StreamId, Pid, State)

 -spec unsubscribe(binary(), pid(), state()) -> ok | {error, term()}.

Unsubscribe from a stream.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

