

 macula_tweann

 v0.18.1

 Table of contents

 	Overview

 	TWEANN Basics

 	Installation

 	Quick Start

 	Enterprise NIFs

 	Diagram Index

 	Architecture Details

 	C4 Architecture Model

 	LTC Neurons

 	LTC Usage Guide

 	LTC Evolution Guide

 	Custom Morphologies

 	Changelog

 	README

 	
 Modules

 	actuator

 	brain

 	brain_learner

 	brain_pubsub

 	brain_sup

 	brain_system

 	constructor

 	cortex

 	crossover

 	exoself

 	fitness_postprocessor

 	functions

 	genome_crossover

 	genome_mutator

 	genotype

 	innovation

 	ltc_dynamics

 	ltc_mutations

 	macula_tweann_app

 	macula_tweann_sup

 	morphology

 	morphology_behaviour

 	morphology_registry

 	mutation_helpers

 	network_compiler

 	network_evaluator

 	network_onnx

 	network_pubsub

 	neuron

 	neuron_info

 	neuron_ltc

 	parametric_mutations

 	perturbation_utils

 	plasticity

 	plasticity_hebbian

 	plasticity_modulated

 	plasticity_none

 	population_monitor

 	selection_algorithm

 	selection_utils

 	sensor

 	signal_aggregator

 	species_identifier

 	topological_mutations

 	tweann_logger

 	tweann_nif

 	tweann_nif_fallback

 Macula TWEANN

Topology and Weight Evolving Artificial Neural Networks for Erlang
Introduction
Macula TWEANN is an evolutionary neural network library that implements the TWEANN paradigm - allowing neural networks to evolve both their topology (structure) and weights. Networks can add neurons, connections, sensors, and actuators while optimizing their synaptic weights through natural selection.
Based on DXNN2 by Gene Sher (from "Handbook of Neuroevolution Through Erlang"), this library provides a production-ready implementation with modern Erlang practices, process safety, and comprehensive logging.
Why Choose macula-tweann
Comparison with Other Neuroevolution Libraries
	Feature	macula-tweann	NEAT-Python	TensorNEAT	DXNN2 (original)
	Language	Erlang	Python	Python/JAX	Erlang
	LTC Neurons	Yes	No	No	No
	Process-based	Yes	No	No	Yes
	Fault tolerance	Yes	No	No	Limited
	Hot code loading	Yes	No	No	Yes
	ONNX export	Yes	No	Limited	No
	Real-time inference	Yes	Limited	Limited	Yes
	Mnesia persistence	Yes	File-based	None	Yes
	Brain API	Yes	No	No	No

Unique Strengths
LTC/CfC Neurons: First TWEANN library to implement Liquid Time-Constant neurons, enabling evolved networks that adapt their temporal dynamics - critical for time-series and control problems.
Production-Ready: Comprehensive test suite (858 tests), structured logging, process timeouts, and crash handling make this suitable for real applications.
Brain API: Simple GenServer interface for real-time inference with optional Hebbian learning during operation - ideal for games, robotics, and interactive systems.
ONNX Export: Deploy evolved networks to Python, JavaScript, C++, mobile, and edge devices using standard tooling.
BEAM Ecosystem: Leverage Erlang's distributed capabilities for multi-node evolution, integrate with Phoenix for web interfaces, or run on Nerves for embedded systems.
When to Use Alternatives
	TensorNEAT/JAX: For GPU-accelerated batch evolution with massive populations
	NEAT-Python: For quick prototyping in Python ecosystem
	PyTorch/TensorFlow: For deep learning with gradient descent

Architecture
[image: Module Dependencies]
The library follows a layered architecture:
	Core: Genotype storage and morphology definitions
	Network: Process-based neural network components (cortex, sensors, neurons, actuators)
	Evolution: Mutation operators, crossover, and selection algorithms
	Population: Multi-agent evolution with speciation

See the Architecture Guide for details.
Documentation
Getting Started
	TWEANN Basics - What is TWEANN and how does it work?
	Installation - Add to your project
	Quick Start - Basic usage examples

Architecture
	C4 Architecture Model - Multi-level architectural views (Context, Container, Component, Code)
	Architecture Details - Layer-by-layer system design

LTC Neurons (Advanced)
	LTC Neurons - Theory and concepts of Liquid Time-Constant neurons
	LTC Usage Guide - Practical API usage and examples
	LTC Evolution - Evolving multi-timescale networks

Customization
	Custom Morphologies - Create your own problem domains

Core Concepts
See the module documentation for detailed API reference on:
	Genotypes - Neural network blueprints (genotype module)
	Phenotypes - Running network processes (constructor, exoself modules)
	Evolution - Mutation and selection (genome_mutator, selection_algorithm modules)
	Morphologies - Problem domains (morphology module)
	Speciation - Diversity preservation (species_identifier module)
	Multi-objective - Pareto optimization (fitness_postprocessor module)
	Process Safety - Timeouts and crash handling (cortex, neuron modules)

API Reference
	See the module documentation in the sidebar for complete API reference

Acknowledgements
Based on DXNN2 by Gene Sher. Adapted and extended by Macula.io.
Academic References
Core TWEANN/NEAT Papers
	Sher, G.I. (2013). Handbook of Neuroevolution Through Erlang. Springer.
Primary reference for DXNN2 architecture and Erlang-specific patterns.

	Stanley, K.O. & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2), 99-127.
Foundational NEAT paper introducing speciation and structural innovation protection.

LTC/CfC Neurons
	Hasani, R., Lechner, M., et al. (2021). Liquid Time-constant Networks. AAAI Conference on Artificial Intelligence, 35(9), 7657-7666.
Introduces adaptive time-constant neurons with continuous-time dynamics.

	Hasani, R., Lechner, M., et al. (2022). Closed-form Continuous-time Neural Networks. Nature Machine Intelligence, 4, 992-1003.
CfC approximation enabling ~100x speedup over ODE-based evaluation.

Foundational Work
	Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.
Foundational text on genetic algorithms.

	Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), 1423-1447.
Comprehensive neuroevolution survey.

Related Projects
Macula Ecosystem
	macula - HTTP/3 mesh networking for distributed neuroevolution
	macula_neuroevolution - Population-based evolutionary training engine

External
	DXNN2 - Gene Sher's original Erlang implementation
	NEAT-Python - Python NEAT implementation
	LTC Reference - MIT/ISTA reference LTC implementation

License
Apache License 2.0

 TWEANN Basics

What is TWEANN?
TWEANN stands for Topology and Weight Evolving Artificial Neural Networks. Unlike traditional neural networks where the structure is fixed and only the weights are trained, TWEANNs evolve both:
	Topology - The structure: number of neurons, layers, and connections
	Weights - The synaptic connection strengths

Why Use TWEANN?
Traditional neural networks require you to:
	Decide the architecture upfront (how many layers? how many neurons?)
	Risk underfitting (too simple) or overfitting (too complex)
	Manually experiment with different architectures

TWEANN solves this by:
	Starting with minimal networks (just inputs and outputs)
	Automatically discovering the right complexity through evolution
	Adding neurons and connections only when beneficial
	Pruning unnecessary structure naturally through selection

How Does It Work?
1. Start Simple
A TWEANN agent begins as the simplest possible network:
	Input sensors (read environment)
	Output actuators (perform actions)
	Direct connections between them
	No hidden neurons initially

2. Evolve Through Mutation
During evolution, networks undergo random mutations:
	Add neuron - Insert a new neuron on a connection
	Add connection - Link existing neurons
	Remove connection - Prune unused links
	Modify weights - Adjust connection strengths
	Change activation - Switch neuron activation functions

3. Select the Best
After evaluation:
	Agents compete based on fitness (how well they perform)
	Best performers survive and reproduce
	Poor performers are eliminated
	Successful mutations spread through the population

4. Repeat
Over many generations:
	Networks grow more complex as needed
	Effective structures emerge naturally
	Population converges on solutions
	Diversity is maintained through speciation

Key Concepts
Genotype vs Phenotype
	Genotype: The blueprint - stored in Mnesia database as records
	Defines structure: neurons, connections, sensors, actuators
	Persistent and can be saved/loaded
	Modified by mutation operators

	Phenotype: The running network - actual Erlang processes
	Built from genotype by constructor
	Sensors, neurons, actuators run as separate processes
	Communicates via message passing
	Temporary - destroyed after evaluation

Morphology
A morphology defines the problem domain:
	What sensors are available (inputs)
	What actuators can do (outputs)
	How fitness is computed
	Example morphologies: XOR logic, pole balancing, trading

Fitness
Fitness measures how well an agent performs:
	Single objective: one score (e.g., accuracy)
	Multi-objective: multiple scores (e.g., accuracy vs complexity)
	Pareto dominance for multi-objective selection
	Computed during phenotype evaluation

Speciation
Networks are grouped into species based on behavioral similarity:
	Protects innovation (new structures need time to optimize weights)
	Maintains diversity (prevents premature convergence)
	Allows exploration of different solution strategies
	Species compete fairly within their niche

Process Architecture
Macula TWEANN uses Erlang's process model:
Population Monitor (gen_server)
 |
 +-- Exoself (agent coordinator)
 |
 +-- Cortex (network controller)
 |
 +-- Sensors (read inputs)
 +-- Neurons (process signals)
 +-- Actuators (generate outputs)
Key features:
	Each component is a separate Erlang process
	Processes communicate via message passing
	Crashes propagate (fail-fast philosophy)
	Timeouts prevent infinite hangs
	Supervision ensures clean restarts

Example: Evolving XOR
The XOR problem is a classic benchmark - a non-linearly separable function.
Step 1: Define Constraint
Constraint = #constraint{
 morphology = xor_mimic,
 connection_architecture = recurrent
}.
Step 2: Create Initial Agent
{ok, AgentId} = genotype:construct_agent(Constraint).
This creates a minimal network stored in Mnesia.
Step 3: Build and Test
Phenotype = constructor:construct_phenotype(AgentId),
cortex:sync(Phenotype#phenotype.cortex_pid).
The initial network performs poorly (random weights).
Step 4: Evolve
genome_mutator:mutate(AgentId).
Random mutations modify the genotype (add neuron, change weight, etc.).
Step 5: Repeat
NewPhenotype = constructor:construct_phenotype(AgentId),
cortex:sync(NewPhenotype#phenotype.cortex_pid).
Test the mutated network. If fitness improves, keep it. Otherwise, revert.
Population Evolution
For automatic evolution:
PMP = #pmp{
 population_id = xor_population,
 init_specie_size = 20,
 generation_limit = 100,
 fitness_goal = 0.9
}.

population_monitor:start(PMP).
The population monitor handles the full evolutionary cycle automatically.
When to Use TWEANN
Good fit:
	Unknown optimal network architecture
	Complex, non-linear problems
	Multi-objective optimization needed
	Interpretable solutions desired (can analyze evolved topology)
	Erlang/OTP environment

Consider alternatives:
	Large-scale datasets (gradient descent is faster)
	Image/text processing (CNNs/Transformers are proven)
	Real-time learning needed (TWEANN is offline evolution)
	Non-OTP environment

Next Steps
	Quick Start - Hands-on code examples
	Architecture - Deep dive into system design
	See module documentation for detailed API reference

Further Reading
	Stanley, K.O., Miikkulainen, R. "Evolving Neural Networks Through Augmenting Topologies" (2002)
	Sher, G.I. "Handbook of Neuroevolution Through Erlang" (2013)

 Installation

Community Edition (Hex.pm)
The Community Edition is available on hex.pm and uses pure Erlang fallbacks for all operations. No Rust toolchain required.
Rebar3 (Erlang Projects)
Add macula_tweann to your rebar.config:
{deps, [
 {macula_tweann, "~> 0.17.0"}
]}.
Then fetch dependencies:
rebar3 compile

Mix (Elixir Projects)
Add to your mix.exs:
def deps do
 [
 {:macula_tweann, "~> 0.16.0"}
]
end
Then fetch dependencies:
mix deps.get

Enterprise Edition (10-15x Faster)
The Enterprise Edition includes high-performance Rust NIFs for compute-intensive operations. Add the private macula_nn_nifs package alongside macula-tweann:
{deps, [
 {macula_tweann, "~> 0.17.0"},
 {macula_nn_nifs, {git, "git@github.com:macula-io/macula-nn-nifs.git", {tag, "v0.2.0"}}}
]}.
Enterprise Requirements
	Rust 1.70+ and Cargo installed
	SSH access to the private macula-nn-nifs repository

The NIFs are automatically detected and used. No code changes required.
See the Enterprise NIF Acceleration guide for details.
From Source
Clone the repository:
git clone https://github.com/macula-io/macula-tweann.git
cd macula-tweann
rebar3 compile

Requirements
	Erlang/OTP 24 or later
	Mnesia (included with Erlang)
	Rust 1.70+ (Enterprise Edition only)

Verify Installation
Start an Erlang shell and initialize the database:
rebar3 shell

% In the shell:
genotype:init_db().
% => ok
If you see ok, the installation is successful!
Verify NIF Acceleration (Enterprise)
% Check if enterprise NIFs are loaded
macula_nn_nifs:is_loaded().
% => true (Enterprise) or error (Community)

% Check tweann_nif detection
tweann_nif:is_loaded().
% => true (NIFs available)
Next Steps
See the Quick Start guide to create your first evolving neural network.

 Quick Start

This guide walks you through creating and evolving a simple neural network.
Initialize Database
First, initialize the Mnesia database:
genotype:init_db().
Create an Agent
Create a simple XOR agent:
%% Create a constraint specifying the morphology
Constraint = #constraint{
 morphology = xor_mimic,
 connection_architecture = recurrent
}.

%% Construct the agent genotype
{ok, AgentId} = genotype:construct_agent(Constraint).
This creates a minimal neural network topology stored in Mnesia.
Construct Phenotype
Build the running process network:
Phenotype = constructor:construct_phenotype(AgentId).
This spawns all network processes (cortex, sensors, neurons, actuators).
Evaluate
Trigger an evaluation cycle:
cortex:sync(Phenotype#phenotype.cortex_pid).
The network will:
	Read inputs from sensors
	Process through neurons
	Generate outputs via actuators
	Compute fitness

Evolve
Apply random mutations to improve the network:
%% Mutate the agent
genome_mutator:mutate(AgentId).

%% Construct new phenotype to test
NewPhenotype = constructor:construct_phenotype(AgentId).
cortex:sync(NewPhenotype#phenotype.cortex_pid).
Population Evolution
For evolving a population:
%% Create population parameters
PMP = #pmp{
 population_id = xor_population,
 init_specie_size = 20,
 generation_limit = 100,
 fitness_goal = 0.9
}.

%% Start evolution
population_monitor:start(PMP).
The population monitor will:
	Evaluate all agents
	Select survivors based on fitness
	Create offspring through mutation/crossover
	Continue until generation limit or fitness goal reached

Read Results
After evolution:
%% Get the best agent
{ok, BestAgent} = genotype:read({agent, BestAgentId}).
Fitness = BestAgent#agent.fitness.

%% Inspect topology
Cortex = genotype:read({cortex, BestAgent#agent.cx_id}).
NeuronCount = length(Cortex#cortex.neuron_ids).
Cleanup
When done:
%% Reset database (WARNING: deletes all data)
genotype:reset_db().
Next Steps
	Architecture - Understand the system design
	See module documentation for detailed API reference

 Enterprise NIF Acceleration

This guide explains how to enable high-performance Rust NIFs for enterprise users.
Overview
macula-tweann has two editions:
	Feature	Community (hex.pm)	Enterprise (private git)
	Core TWEANN	Yes	Yes
	Pure Erlang fallback	Yes	Yes
	Bundled Rust NIFs	No	Yes
	Enterprise NIF package	No	Yes
	Performance	Baseline	10-15x faster
	Rust toolchain required	No	Yes

Performance Improvements
Enterprise NIFs provide significant speedups for compute-intensive operations:
	Operation	Speedup
	Network evaluation	~10x
	Batch mutation	~13x
	KNN novelty (search)	~12x
	Fitness statistics	~12x
	Weight distance	~15x

Installation
Community Edition (Default)
Install from hex.pm - no additional setup required:
{deps, [
 {macula_tweann, "~> 0.17.0"}
]}.
Uses pure Erlang fallbacks automatically.
Enterprise Edition
Add the private enterprise NIF package alongside macula-tweann:
{deps, [
 {macula_tweann, "~> 0.17.0"},
 {macula_nn_nifs, {git, "git@github.com:macula-io/macula-nn-nifs.git", {tag, "v0.2.0"}}}
]}.
Requirements:
	Rust 1.70+ and Cargo installed
	SSH access to the private macula-nn-nifs repository

How It Works
The tweann_nif module automatically detects and uses enterprise NIFs:
Priority Order:
1. macula_nn_nifs (enterprise) - If available and loaded
2. Bundled NIF (tweann_nif) - If compiled with Rust
3. Pure Erlang (tweann_nif_fallback) - Always available
No code changes required - detection is automatic at startup.
Verification
Check which implementation is being used:
1> tweann_nif:is_loaded().
true %% NIFs available (enterprise or bundled)

2> macula_nn_nifs:is_loaded().
true %% Enterprise NIFs specifically
Accelerated Functions
The enterprise NIFs accelerate 67 functions across these categories:
Network Evaluation
	compile_network/3 - Compile topology for fast evaluation
	evaluate/2 - Forward propagation
	evaluate_batch/2 - Batch evaluation
	compatibility_distance/5 - NEAT speciation distance
	benchmark_evaluate/3 - Performance benchmarking

Signal Aggregation
	dot_product_flat/3 - Weighted sum with bias
	dot_product_batch/1 - Batch weighted sums
	dot_product_preflattened/3 - Pre-optimized dot product
	flatten_weights/1 - Weight structure optimization

LTC/CfC Neurons
	evaluate_cfc/4 - Closed-form continuous-time evaluation
	evaluate_cfc_with_weights/6 - CfC with custom weights
	evaluate_ode/5 - ODE-based LTC evaluation
	evaluate_ode_with_weights/7 - ODE with custom weights
	evaluate_cfc_batch/4 - Batch CfC for time series

Novelty Search
	euclidean_distance/2 - Vector distance
	euclidean_distance_batch/2 - Batch distances
	knn_novelty/4 - K-nearest neighbor novelty
	knn_novelty_batch/3 - Batch novelty computation

Statistics
	fitness_stats/1 - Single-pass min/max/mean/variance/stddev/sum
	weighted_moving_average/2 - WMA computation
	shannon_entropy/1 - Entropy calculation
	histogram/4 - Histogram binning

Selection
	build_cumulative_fitness/1 - Roulette wheel setup
	roulette_select/3 - Binary search roulette selection
	roulette_select_batch/3 - Batch selection
	tournament_select/2 - Tournament selection

Meta-Controller
	z_score/3 - Z-score normalization
	compute_reward_component/2 - Reward signal computation
	compute_weighted_reward/1 - Multi-component rewards

Evolutionary Genetics
	mutate_weights/4 - Gaussian weight mutation
	mutate_weights_seeded/5 - Reproducible mutation
	mutate_weights_batch/1 - Batch mutation with per-genome params
	mutate_weights_batch_uniform/4 - Batch with uniform params
	random_weights/1 - Generate random weights
	random_weights_seeded/2 - Seeded random weights
	random_weights_gaussian/3 - Gaussian distributed weights
	random_weights_batch/1 - Batch weight generation
	weight_distance_l1/2 - L1 (Manhattan) distance
	weight_distance_l2/2 - L2 (Euclidean) distance
	weight_distance_batch/3 - Batch distance computation

SIMD Batch Activations (NEW in v0.2.0)
	tanh_batch/1 - Vectorized tanh activation
	sigmoid_batch/1 - Vectorized sigmoid activation
	relu_batch/1 - Vectorized ReLU activation
	softmax_batch/1 - Vectorized softmax activation

Layer-Specific Mutation (NEW in v0.2.0)
	layer_specific_mutate/3 - Mutate with per-layer rates
	layer_specific_mutate_batch/1 - Batch layer-specific mutation

Plasticity Rules (NEW in v0.2.0)
	hebbian_update/4 - Hebbian plasticity weight update
	modulated_hebbian_batch/4 - Batch modulated Hebbian learning
	stdp_update/5 - STDP (Spike-Timing Dependent Plasticity)
	oja_update/5 - Oja's learning rule

Extended CfC/LTC (NEW in v0.2.0)
	evaluate_cfc_sequence/5 - Sequential CfC evaluation
	evaluate_cfc_parallel/1 - Parallel CfC for multiple neurons
	ltc_state_batch/4 - Batch LTC state computation

Population Analysis (NEW in v0.2.0)
	population_diversity/1 - Mean/min/max/variance of population
	weight_covariance_matrix/1 - Weight correlation analysis
	pairwise_distances_batch/2 - Batch pairwise distance matrix

NEAT Crossover (NEW in v0.2.0)
	neat_crossover/4 - NEAT-style genome crossover
	align_genes_by_innovation/2 - Align genes by innovation number
	count_excess_disjoint/2 - Count excess and disjoint genes

Speciation (NEW in v0.2.0)
	kmeans_speciation/3 - K-means based speciation clustering

Matrix Operations (NEW in v0.2.0)
	matmul_add_bias/3 - Matrix multiply with bias addition
	layer_forward/3 - Single layer forward pass
	multi_layer_forward/2 - Multi-layer forward pass

Meta-Learning (NEW in v0.2.0)
	gradient_free_meta_learn/4 - Gradient-free meta-learning

Network Compression (NEW in v0.2.0)
	network_prune/2 - Prune small weights
	weight_quantize/2 - Quantize weights to fixed precision

Enterprise Licensing
Contact licensing@macula.io for enterprise access to:
	Private macula-nn-nifs repository
	Priority support
	Custom NIF development

Troubleshooting
NIFs not detected
Check if macula_nn_nifs is in your dependency path:
code:which(macula_nn_nifs).
%% Should return path, not 'non_existing'
Rust compilation fails
Ensure Rust toolchain is installed:
rustc --version # Should be 1.70+
cargo --version

Performance not improved
Verify NIFs are loaded:
macula_nn_nifs:is_loaded(). %% Should be true
If false, check for NIF loading errors in the Erlang shell output.

 Diagram Index

Visual guides to understanding TWEANN concepts and architecture.
Core Concepts
TWEANN Structure
The fundamental architecture of a Topology and Weight Evolving Artificial Neural Network.
[image: TWEANN Structure]
Key elements:
	Sensors (green): Input layer receiving environmental signals
	Hidden neurons (blue): Processing nodes with evolving topology
	Actuators (orange): Output layer producing actions
	Connections: Weighted links that can be added/removed through evolution
	Cortex: Coordinator process managing sync cycles

Neuroevolution Cycle
The iterative process of population-based optimization.
[image: Neuroevolution Cycle]
The four phases:
	Population: Collection of neural network genotypes
	Evaluation: Run each phenotype, calculate fitness scores
	Selection: Tournament or truncation selection of survivors
	Reproduction: Mutation, crossover, and elitism to create next generation

NEAT Evolution
NeuroEvolution of Augmenting Topologies - how structure evolves.
[image: NEAT Evolution]
Key innovations:
	add_node: Split a connection to insert a new neuron
	add_link: Create a new connection between existing nodes
	Innovation numbers: Historical markings for meaningful crossover
	Speciation: Group similar topologies to protect innovation

Architecture
Genotype to Phenotype
Transformation from genetic encoding to living neural network.
[image: Genotype to Phenotype]
The Constructor pattern:
	Genotype (left): Records stored in ETS (agent, cortex, sensor, actuator, neuron)
	Phenotype (right): Concurrent Erlang processes communicating via messages
	Each neuron becomes a gen_server with its own state and plasticity

Supervision Tree
OTP supervision hierarchy for fault tolerance.
[image: Supervision Tree]

Module Dependencies
How the library modules relate to each other.
[image: Module Dependencies]

C4 Architecture Model
Software architecture using the C4 model.
Context Diagram
[image: C4 Context]
Container Diagram
[image: C4 Container]
Component Diagram
[image: C4 Component]

LTC Neurons
LTC Neuron Architecture
Liquid Time-Constant neurons with temporal dynamics.
[image: LTC Neuron Architecture]
Components:
	Time constant (tau) controls adaptation speed
	Closed-form approximation (CfC) for efficient computation
	Temporal memory through leaky integration

LTC vs Standard Neurons
Comparison between LTC and traditional neurons.
[image: LTC vs Standard Neurons]

Learning Mechanisms
Neural Plasticity
Online weight learning during the network's lifetime.
[image: Neural Plasticity]
Plasticity rules:
	Hebbian: "Cells that fire together, wire together"
	Oja's Rule: Self-normalizing Hebbian (performs online PCA)
	Self-Modulation: Neuron controls its own learning parameters
	Neuromodulation: External reward signal gates learning

Activation Functions
The transfer functions available for neurons.
[image: Activation Functions]
Function families:
	Bounded: sigmoid, tanh (classification, gates)
	Unbounded: relu, softplus (deep networks, sparse activation)
	Periodic: sin, cos (rhythmic patterns, CPGs)
	Localized: gaussian (RBF networks, pattern recognition)
	Binary: step, sgn (threshold logic)

Mutation Sequence
Step-by-step mutation process.
[image: Mutation Sequence]

Evaluation Cycle Sequence
Detailed evaluation workflow.
[image: Evaluation Cycle Sequence]

Distributed Evolution
Distributed Evolution Model
Multi-node evolution architecture.
[image: Distributed Evolution Model]

Federated Populations Model
Island-based distributed populations.
[image: Federated Populations Model]

Swarm Evolution Model
Swarm intelligence with evolved controllers.
[image: Swarm Evolution Model]

Mega-Brain Architecture
Large-scale distributed neural architectures.
[image: Mega-Brain Architecture]

Application Domains
Military Swarm Coordination
Autonomous swarm systems.
[image: Military Swarm Coordination]

Civil Infrastructure Resilience
Infrastructure protection applications.
[image: Civil Infrastructure Resilience]

Counter-Drone Detection Fusion
Multi-sensor fusion for detection.
[image: Counter-Drone Detection Fusion]

Layered Defense Zones
Multi-layer defense architecture.
[image: Layered Defense Zones]

See Also
	TWEANN Basics - Introduction to neuroevolution concepts
	Architecture Details - In-depth system architecture
	LTC Neurons - Liquid Time-Constant neuron guide
	Quick Start - Get started with examples

 Architecture

Overview
Macula TWEANN uses a layered architecture with clear separation of concerns:
[image: Module Dependencies]
Layers
Core Data Layer
Modules: genotype, morphology
Handles persistent storage of neural network blueprints (genotypes) using Mnesia. Morphologies define problem-specific sensor and actuator configurations.
Network Components Layer
Modules: cortex, sensor, neuron, actuator
Process-based implementation of neural network elements. Each component runs as a separate Erlang process with message-passing communication.
Construction Layer
Modules: constructor, exoself
Constructs running phenotypes (process networks) from stored genotypes. The exoself acts as a coordinator for each agent's evaluation.
Evolution Layer
Modules: genome_mutator, crossover, selection_algorithm
Implements genetic operators for topology and weight evolution. Supports both asexual (mutation) and sexual (crossover) reproduction.
Population Layer
Modules: population_monitor, species_identifier, fitness_postprocessor
Manages multi-agent evolution with speciation for diversity preservation and multi-objective fitness evaluation.
Utilities Layer
Modules: tweann_logger, functions, signal_aggregator, perturbation_utils, selection_utils
Helper functions for logging, activation functions, signal processing, weight perturbation, and selection algorithms.
Process Hierarchy
[image: Supervision Tree]
The process tree uses spawn_link for crash propagation:
	population_monitor (gen_server) manages multiple agents
	Each agent has an exoself coordinating its network
	Network processes (cortex, sensors, neurons, actuators) are linked
	Crashes propagate up, terminating the entire network evaluation

Evaluation Flow
[image: Evaluation Cycle]
The sense-think-act cycle:
	Sense: Cortex triggers sensors, which read from environment
	Think: Neurons receive signals, aggregate, and activate
	Act: Actuators collect outputs and interact with environment
	Fitness is computed and reported back to exoself

Safety Features
Timeouts
	Cortex: 30s sync timeout (configurable)
	Neuron: 10s input timeout (configurable)

Prevents infinite hangs if network components fail to respond.
Crash Handling
All network processes use spawn_link:
	Component crashes terminate the entire network
	Exoself reports failure to population monitor
	Clean shutdown with proper resource cleanup

Data Flow
Genotype (Mnesia)
 ↓ construct
Phenotype (Processes)
 ↓ evaluate
Fitness
 ↓ selection
Survivors
 ↓ mutation/crossover
New Genotypes
Why This Architecture
Process-Based Benefits
The process-per-neuron design offers unique advantages:
	True Parallelism: On multi-core systems, neurons evaluate concurrently
	Fault Isolation: A crashed neuron doesn't corrupt other components
	Hot Code Loading: Update logic without stopping evolution
	Debuggability: Inspect any component with standard Erlang tools
	Distributed Potential: Network components can span multiple nodes

Comparison to Traditional Implementations
	Feature	Matrix-Based (NumPy/PyTorch)	Process-Based (macula-tweann)
	Speed	Faster for batch	Better for real-time
	Debugging	Tensor shapes	Individual processes
	Fault tolerance	Full crash	Graceful degradation
	Topology changes	Expensive reshape	Natural add/remove
	Distribution	GPU only	CPU clusters

When to Choose macula-tweann
Ideal for:
	Embedded systems needing fault tolerance
	Real-time applications (games, robotics)
	Research on topology evolution
	Distributed AI systems
	When debuggability matters

Consider alternatives when:
	Batch training massive datasets (use PyTorch/TensorFlow)
	Maximum throughput on single machine (use matrix libraries)
	GPU acceleration is critical

Next Steps
	See module documentation for detailed API reference
	Check Quick Start for usage examples

 C4 Architecture Model

This document presents the Macula TWEANN architecture using the C4 model (Context, Container, Component, Code), providing multiple levels of abstraction from high-level system context down to detailed component interactions.
Level 1: System Context
The system context diagram shows how Macula TWEANN fits into the broader environment.
[image: C4 Context Diagram]
Key Elements
Users:
	Developer - Creates evolutionary neural network applications, constructs agents, and runs evolution experiments

System:
	Macula TWEANN - Erlang/OTP library that evolves neural network topology and weights through natural selection

External Systems:
	Mnesia - Distributed database that stores genotypes (network blueprints) persistently
	Environment - Problem domain that provides fitness feedback (XOR, cart-pole, trading, games, etc.)

Interactions
	Developer constructs agents and runs evolution using the TWEANN API
	TWEANN reads/writes genotypes to Mnesia for persistence
	TWEANN evaluates networks against the environment to compute fitness
	Environment provides feedback that drives selection and evolution

Level 2: Container
The container diagram shows the high-level architecture of Macula TWEANN, broken down into major containers (applications, databases, services).
[image: C4 Container Diagram]
Containers
Core Data:
	Genotype Store - Mnesia database storing neural network blueprints as Erlang records
	Morphology System - Problem-specific configurations defining sensors, actuators, and fitness functions

Evolution:
	Genome Mutator - Applies topology and weight mutations (add/remove neurons, modify connections)
	Population Monitor - gen_server managing evolutionary lifecycle (selection, survival, reproduction)

Construction:
	Constructor - Builds running process networks (phenotypes) from stored genotypes

Execution:
	Network Runtime - OTP processes implementing cortex, sensors, neurons, and actuators as linked processes

External:
	Environment - External system providing observations and receiving actions

Key Flows
	Developer creates agents via Genotype Store
	Genome Mutator modifies genotypes with random mutations
	Constructor spawns Network Runtime processes from genotypes
	Network Runtime evaluates against Environment
	Population Monitor collects fitness and triggers next generation

Level 3: Component
The component diagram zooms into the Evolution System container, showing the internal modules and their responsibilities.
[image: C4 Component Diagram]
Component Groups
Core Data Layer:
	genotype - CRUD operations for neural network blueprints
	morphology - Problem domain definitions
	records.hrl - Type definitions (agent, neuron, sensor, actuator)

Construction Layer:
	constructor - Phenotype builder
	exoself - Agent coordinator and evaluation manager

Network Components:
	cortex - Network controller (gen_server)
	sensor - Input reading process
	neuron - Signal processing process
	actuator - Output generation process

Evolution Operators:
	genome_mutator - Topology mutations
	crossover - Sexual reproduction
	perturbation_utils - Weight mutations

Population Management:
	population_monitor - Evolution loop (gen_server)
	selection_algorithm - Survivor selection
	species_identifier - Speciation for diversity
	fitness_postprocessor - Multi-objective optimization

Utilities:
	functions - Activation functions (tanh, sigmoid, ReLU, etc.)
	signal_aggregator - Dot product, signal combination
	selection_utils - Roulette wheel, weighted selection
	tweann_logger - Structured logging

Component Interactions
	constructor reads from genotype and spawns network processes
	Network processes (cortex, sensor, neuron, actuator) communicate via message passing
	exoself coordinates evaluation and reports fitness to population_monitor
	population_monitor triggers genome_mutator and selection_algorithm
	genome_mutator updates genotypes in Mnesia
	Utility modules (functions, signal_aggregator) support neuron computation

Level 4: Code (Evaluation Cycle)
For the code level, we show a detailed sequence diagram of the network evaluation cycle.
[image: Evaluation Cycle Sequence]
Detailed Flow
	Sync Trigger: Cortex sends {sync, self()} to all sensors
	Sense: Sensors read environment and forward inputs to neurons
	Think: Neurons aggregate inputs, apply weights, activate, and forward to next layer
	Act: Actuators collect outputs and interact with environment (scape)
	Fitness: Scape computes fitness and reports back to cortex
	Complete: Cortex reports evaluation complete to exoself

This cycle repeats for multiple episodes until fitness converges or generation limit is reached.

Architecture Principles
Separation of Concerns
Each layer has a clear responsibility:
	Data Layer - Persistence and definitions
	Construction - Genotype-to-phenotype translation
	Network - Runtime execution and computation
	Evolution - Genetic operators and selection
	Population - Multi-agent coordination

Process-Based Concurrency
Neural network components run as separate Erlang processes:
	Natural parallelism (neurons compute independently)
	Fault isolation (crashes propagate via spawn_link)
	Message-passing communication (no shared state)

Evolutionary Flexibility
Multiple extension points:
	New morphologies for different problems
	Pluggable selection algorithms
	Custom activation functions
	Multi-objective fitness functions

Safety and Robustness
Built-in protection mechanisms:
	Timeouts prevent infinite hangs (cortex: 30s, neuron: 10s)
	Crash propagation ensures clean failure
	Logging for debugging and analysis

Technology Stack
	Language: Erlang/OTP 24+
	Database: Mnesia (distributed, ACID)
	Concurrency: OTP processes, gen_server behaviors
	Persistence: Erlang records (not maps)
	Logging: OTP logger with structured output

Next Steps
	Architecture Overview - Detailed layer descriptions
	Quick Start - Hands-on code examples
	TWEANN Basics - Conceptual introduction

 Liquid Time-Constant Neurons

Liquid Time-Constant (LTC) neurons are a breakthrough in neural network design that enable adaptive temporal processing. Unlike traditional neurons that produce instantaneous outputs, LTC neurons maintain internal state that evolves continuously based on input dynamics.
macula-tweann is the first TWEANN library to implement LTC neurons in Erlang/OTP.
[image: LTC Neuron Architecture]
Quick Selection Guide
Which neuron type should you use? Use this decision tree:
Is your task temporal (time-series, sequences, control)?
├── NO → Use Traditional neurons (fastest, simplest)
└── YES → Do you need production-grade speed?
 ├── NO → Use LTC (ODE) for maximum accuracy during research
 └── YES → Use CfC (100x faster, equivalent expressivity)
	If your problem involves...	Use	Why
	Static classification (images, patterns)	Traditional	No temporal dynamics needed
	Real-time control (robotics, games)	CfC	Fast response with temporal memory
	Time-series prediction	CfC	Adaptive dynamics, production speed
	Research/training on temporal tasks	LTC (ODE)	Maximum accuracy for learning
	Maximum inference throughput	Traditional	Lowest computational overhead

Key Insight: CfC is the practical choice for most temporal tasks. It provides equivalent expressivity to LTC-ODE at ~100x the speed. Reserve Traditional neurons for non-temporal tasks, and LTC-ODE for research where accuracy matters more than speed.
Why LTC Neurons?
Traditional neural networks struggle with:
	Temporal sequences: Cannot naturally model time-varying signals
	Adaptive response: Fixed response speed regardless of input
	Temporal memory: No built-in mechanism for remembering past inputs

LTC neurons solve these problems with input-dependent time constants that allow the network to automatically adjust how quickly it responds to different inputs.
The Mathematics
Standard Neuron
A standard neuron computes an instantaneous output:
y = f(sum(w_i * x_i) + bias)
This is memoryless - the output depends only on current inputs.
LTC Neuron
An LTC neuron maintains internal state x(t) governed by an ODE:
dx(t)/dt = -[1/tau + f(x, I, theta)] * x(t) + f(x, I, theta) * A
Where:
	x(t) = internal state at time t
	tau = base time constant (learnable)
	f(...) = nonlinear function producing the "liquid" time constant
	A = state bound (prevents explosion)
	I(t) = input at time t

The liquid aspect comes from the time constant varying based on both input and state - the neuron "flows" between fast and slow response modes.
[image: LTC Dynamics]
CfC Closed-Form Approximation
Solving the ODE numerically is computationally expensive. The Closed-form Continuous-time (CfC) approximation provides equivalent expressivity with ~100x speedup:
x(t+dt) = sigma(-f) * x(t) + (1 - sigma(-f)) * h
Where:
	sigma = sigmoid gate
	f = backbone network output (time constant modulator)
	h = head network output (target state)

This closed-form solution is what macula-tweann uses for production inference.
[image: CfC Closed-Form Architecture]
Neuron Types Comparison
[image: Neuron Types Comparison]
	Feature	Standard	LTC (ODE)	CfC (Fast)
	Internal State	No	Yes	Yes
	Temporal Memory	No	Yes	Yes
	Adaptive Dynamics	No	Yes	Yes
	Speed	Fast	Slow	Fast (~100x vs ODE)
	Use Case	Pattern recognition	Training/research	Production inference

Implementation in macula-tweann
Core Modules
ltc_dynamics.erl - Core LTC/CfC computation:
%% CfC evaluation (fast, closed-form)
ltc_dynamics:evaluate_cfc(Input, State, Tau, Bound) -> {NewState, Output}.

%% ODE evaluation (accurate, slower)
ltc_dynamics:evaluate_ode(Input, State, Tau, Bound, Dt) -> {NewState, Output}.
neuron_ltc.erl - LTC neuron process:
%% Spawn an LTC neuron
neuron_ltc:start_link(#{
 id => NeuronId,
 neuron_type => cfc, %% or 'ltc' for ODE mode
 time_constant => 1.0, %% tau
 state_bound => 1.0, %% A
 ltc_backbone_weights => [],
 ltc_head_weights => [],
 internal_state => 0.0
}).
Extended Neuron Record
The #neuron record has been extended with LTC fields:
-record(neuron, {
 %% ... standard fields ...

 %% LTC Extension Fields
 neuron_type = standard, %% standard | ltc | cfc
 time_constant = 1.0, %% tau (evolvable)
 state_bound = 1.0, %% A (bounds)
 ltc_backbone_weights = [], %% f() backbone
 ltc_head_weights = [], %% h() head
 internal_state = 0.0 %% x(t) persistent
}).
Constructor Integration
The constructor.erl module automatically spawns the appropriate neuron type:
%% Neurons with neuron_type = cfc spawn as neuron_ltc
%% Neurons with neuron_type = ltc spawn as neuron_ltc (ODE mode)
%% Neurons with neuron_type = standard spawn as neuron
Key Properties
State Persistence
Unlike standard neurons, LTC neurons maintain state between evaluations:
%% First evaluation
{State1, _} = ltc_dynamics:evaluate_cfc(1.0, 0.0, 1.0, 1.0).
%% State1 is now non-zero

%% Second evaluation uses State1
{State2, _} = ltc_dynamics:evaluate_cfc(0.0, State1, 1.0, 1.0).
%% State2 influenced by State1
This enables temporal memory without explicit recurrent connections.
Bounded Dynamics
The state bound A ensures numerical stability:
%% State always clamped to [-A, A]
clamp_state(State, Bound) when State > Bound -> Bound;
clamp_state(State, Bound) when State < -Bound -> -Bound;
clamp_state(State, _Bound) -> State.
Adaptive Time Constants
The "liquid" time constant varies with input:
compute_liquid_tau(Input, State, BaseTau, Params) ->
 %% Modulation based on input magnitude
 Modulation = 1.0 + sigmoid(Input),
 EffectiveTau = BaseTau * Modulation,
 %% Clamp to reasonable range
 max(0.001, min(EffectiveTau, 100.0)).
When to Use LTC Neurons
Ideal Use Cases
	Time-series prediction: Stock prices, sensor data, weather
	Real-time control: Robotics, game AI, autonomous systems
	Sequence modeling: Natural language, audio, video
	Adaptive response: Systems that need different response speeds

Snake AI Example
For the Snake Duel game, LTC neurons enable:
	Temporal awareness: Remember recent moves and food positions
	Adaptive hunting: Fast response when prey is near, cautious when threatened
	Pattern learning: Recognize opponent behavior patterns over time

Not Ideal For
	Static classification: Use standard neurons for pure pattern matching
	Maximum speed critical: Standard neurons have less overhead
	Simple problems: XOR doesn't need temporal dynamics

Academic References
The LTC implementation in macula-tweann is based on peer-reviewed research:
	Hasani, R., Lechner, M., et al. (2021)
"Liquid Time-constant Networks"
Proceedings of the AAAI Conference on Artificial Intelligence

	Hasani, R., Lechner, M., et al. (2022)
"Closed-form Continuous-time Neural Networks"
Nature Machine Intelligence

	Beer, R.D. (1995)
"On the Dynamics of Small Continuous-Time Recurrent Neural Networks"
Adaptive Behavior, 3(4)

Research Opportunities
LTC neurons in an evolutionary context open exciting research directions:
Temporal Dynamics Evolution
Unlike fixed architectures like LSTMs, macula-tweann evolves LTC parameters:
	Tau Evolution: Networks discover optimal time constants for different temporal scales
	Multi-timescale Systems: Single networks can evolve neurons with different tau values, capturing both fast reactions and slow trends
	Adaptive Plasticity: Combine LTC dynamics with Hebbian learning for biologically plausible temporal learning

Hybrid Architectures
The ability to mix standard and LTC neurons enables novel architectures:
	Temporal Gating: Standard neurons for pattern recognition, LTC for temporal integration
	Hierarchical Timing: Fast LTC neurons at input, slow LTC at decision layers
	Emergent Temporal Structure: Let evolution discover which neurons need temporal dynamics

Comparative Studies
macula-tweann provides a unique platform for comparing temporal approaches:
	LTC vs LSTM: Evolved LTC networks vs manually-designed recurrent architectures
	CfC Efficiency: When does the ~100x speedup justify the closed-form approximation?
	Temporal Necessity: Which problems truly require temporal dynamics vs simple feedforward?

Application Domains
High-potential research applications:
	Robotics: Evolved LTC controllers for locomotion with natural rhythm emergence
	Time-series: Financial prediction, sensor anomaly detection, predictive maintenance
	Game AI: Agents that adapt response timing to opponent behavior
	Edge Computing: Lightweight temporal models for embedded systems

Publishing Opportunities
If you use macula-tweann LTC neurons in research, consider contributing:
	Evolved network architectures that solve interesting problems
	Performance comparisons with other temporal network approaches
	Novel morphologies designed for specific temporal tasks

Next Steps
	See the LTC Usage Guide for practical examples
	Explore Custom Morphologies to create LTC-based morphologies
	Check the ltc_dynamics module documentation for detailed function reference

 LTC Usage Guide

This guide shows you how to use Liquid Time-Constant (LTC) neurons in your macula-tweann projects.
Quick Start
Using the ltc_dynamics Module Directly
For standalone LTC computation without the full TWEANN infrastructure:
%% CfC (Closed-form) - Fast mode (~100x faster than ODE)
Input = 1.0,
InitialState = 0.0,
Tau = 1.0, %% Time constant
Bound = 1.0, %% State bound

{NewState, Output} = ltc_dynamics:evaluate_cfc(Input, InitialState, Tau, Bound).
%% NewState ≈ 0.68, Output ≈ 0.68

%% Multiple steps with state persistence
{State1, _} = ltc_dynamics:evaluate_cfc(1.0, 0.0, 1.0, 1.0),
{State2, _} = ltc_dynamics:evaluate_cfc(1.0, State1, 1.0, 1.0),
{State3, _} = ltc_dynamics:evaluate_cfc(1.0, State2, 1.0, 1.0).
%% State converges toward tanh(1.0) ≈ 0.76
Using LTC Neurons in a Network
To create neurons with LTC dynamics, set the neuron_type field:
%% Create a neuron record with CfC dynamics
Neuron = #neuron{
 id = {{0.5, rand:uniform()}, neuron},
 cx_id = CortexId,
 neuron_type = cfc, %% Enable CfC mode
 time_constant = 1.0,
 state_bound = 1.0,
 ltc_backbone_weights = [], %% Simple mode (no learned weights)
 ltc_head_weights = [],
 internal_state = 0.0,
 af = tanh,
 aggr_f = dot_product,
 input_idps = [],
 output_ids = []
}.
LTC Dynamics API
CfC Evaluation (Fast)
-spec evaluate_cfc(Input, State, Tau, Bound) -> {NewState, Output}
 when Input :: float() | [float()],
 State :: float(),
 Tau :: float(),
 Bound :: float(),
 NewState :: float(),
 Output :: float().

%% Example: Single input
{NewState, Output} = ltc_dynamics:evaluate_cfc(0.5, 0.0, 1.0, 1.0).

%% Example: Vector input (summed internally)
{NewState, Output} = ltc_dynamics:evaluate_cfc([0.3, 0.2, 0.5], 0.0, 1.0, 1.0).
CfC with Custom Weights
-spec evaluate_cfc(Input, State, Tau, Bound, Params) -> {NewState, Output}
 when Params :: #{
 backbone_weights => [float()],
 head_weights => [float()]
 }.

Params = #{
 backbone_weights => [0.5, 0.1], %% Custom f() backbone
 head_weights => [0.8, -0.2] %% Custom h() head
},
{NewState, Output} = ltc_dynamics:evaluate_cfc(1.0, 0.0, 1.0, 1.0, Params).
ODE Evaluation (Accurate)
For training or when accuracy is more important than speed:
-spec evaluate_ode(Input, State, Tau, Bound, Dt) -> {NewState, Output}
 when Dt :: float(). %% Time step for Euler integration

%% Smaller Dt = more accurate, slower
{NewState, Output} = ltc_dynamics:evaluate_ode(1.0, 0.0, 1.0, 1.0, 0.01).

%% Larger Dt = less accurate, faster
{NewState, Output} = ltc_dynamics:evaluate_ode(1.0, 0.0, 1.0, 1.0, 0.1).
Utility Functions
State Management
%% Clamp state to bounds
ClampedState = ltc_dynamics:clamp_state(1.5, 1.0). %% Returns 1.0
ClampedState = ltc_dynamics:clamp_state(-2.0, 1.0). %% Returns -1.0

%% Reset state
InitialState = ltc_dynamics:reset_state(). %% Returns 0.0
Activation Functions
%% Sigmoid (used for gating)
S = ltc_dynamics:sigmoid(0.0). %% Returns 0.5
S = ltc_dynamics:sigmoid(2.0). %% Returns ~0.88

%% Tanh (used for target state)
T = ltc_dynamics:tanh(0.0). %% Returns 0.0
T = ltc_dynamics:tanh(1.0). %% Returns ~0.76
Network Functions
%% Compute backbone f() - modulates time constant
F = ltc_dynamics:compute_backbone(Input, Tau, Weights).

%% Compute head h() - target state
H = ltc_dynamics:compute_head(Input, Weights).

%% Compute liquid time constant
EffectiveTau = ltc_dynamics:compute_liquid_tau(Input, State, BaseTau, Params).
Neuron Process API
Starting an LTC Neuron
{ok, Pid} = neuron_ltc:start_link(#{
 id => NeuronId,
 cortex_pid => CortexPid,
 neuron_type => cfc, %% or 'ltc' for ODE mode
 time_constant => 1.0,
 state_bound => 1.0,
 ltc_backbone_weights => [],
 ltc_head_weights => [],
 internal_state => 0.0,
 input_pids => InputPids,
 output_pids => OutputPids,
 ro_pids => [],
 input_weights => WeightsMap,
 bias => 0.0
}).
Sending Signals
%% Forward a signal to the neuron
neuron_ltc:forward(NeuronPid, FromPid, [Signal]).
State Operations
%% Reset internal state (e.g., start of new episode)
neuron_ltc:reset_state(NeuronPid).

%% Get current internal state
neuron_ltc:get_state(NeuronPid).
%% Receive: {ltc_state, NeuronId, InternalState}
Updating Parameters
%% Update LTC-specific parameters
Pid ! {update_ltc_params, #{
 time_constant => 1.5,
 state_bound => 2.0,
 ltc_backbone_weights => [0.5],
 ltc_head_weights => [0.8]
}}.
Parameter Tuning Guide
Time Constant (tau)
	Value	Effect	Use Case
	0.1-0.5	Fast response	Quick reactions, high-frequency data
	0.5-2.0	Balanced	General purpose
	2.0-10.0	Slow, smooth	Filtering noise, long-term patterns

State Bound (A)
	Value	Effect	Use Case
	0.5	Constrained output	Stable, conservative
	1.0	Standard range	General purpose
	2.0+	Wide range	When larger dynamics needed

Time Step (dt) for ODE Mode
	Value	Accuracy	Speed
	0.001	Very high	Very slow
	0.01	High	Slow
	0.1	Moderate	Moderate
	0.5	Low	Fast

Recommendation: Use CfC mode for inference (no dt needed), ODE only for training/research.
Example: Time Series Prediction
%% Process a sequence with LTC
process_sequence(Sequence) ->
 InitState = 0.0,
 Tau = 1.0,
 Bound = 1.0,

 {FinalState, Outputs} = lists:foldl(
 fun(Input, {State, Acc}) ->
 {NewState, Output} = ltc_dynamics:evaluate_cfc(Input, State, Tau, Bound),
 {NewState, [Output | Acc]}
 end,
 {InitState, []},
 Sequence
),

 {FinalState, lists:reverse(Outputs)}.

%% Usage
Sequence = [0.1, 0.3, 0.5, 0.7, 0.9],
{FinalState, Outputs} = process_sequence(Sequence).
%% Outputs show smooth temporal integration
Example: Adaptive Response
%% LTC naturally responds faster to sudden changes
demonstrate_adaptation() ->
 Tau = 1.0,
 Bound = 1.0,

 %% Steady state with constant input
 {S1, _} = ltc_dynamics:evaluate_cfc(0.5, 0.0, Tau, Bound),
 {S2, _} = ltc_dynamics:evaluate_cfc(0.5, S1, Tau, Bound),
 {S3, _} = ltc_dynamics:evaluate_cfc(0.5, S2, Tau, Bound),
 %% S3 ≈ tanh(0.5) ≈ 0.46 (converged)

 %% Sudden change - larger input causes faster response
 {S4, _} = ltc_dynamics:evaluate_cfc(2.0, S3, Tau, Bound),
 %% S4 jumps significantly toward tanh(2.0) ≈ 0.96

 {S1, S2, S3, S4}.
Integration with Evolution
LTC parameters evolve alongside network topology using the standard TWEANN mutation and crossover operators.
LTC Mutation Operators
The genome_mutator module includes LTC-specific mutation operators:
%% Mutate time constant (tau)
%% Perturbs tau by a small random amount within bounds [0.01, 100.0]
genome_mutator:mutate_time_constant(AgentId).

%% Mutate state bound (A)
%% Perturbs bound by a small random amount within [0.1, 10.0]
genome_mutator:mutate_state_bound(AgentId).

%% Mutate neuron type
%% Switches between standard <-> ltc <-> cfc with configurable probability
genome_mutator:mutate_neuron_type(AgentId).

%% Mutate LTC weights (backbone and head)
%% Perturbs both the f() backbone and h() head network weights
genome_mutator:mutate_ltc_weights(AgentId).
LTC Crossover
When two agents with LTC neurons are crossed over, LTC parameters are inherited:
%% Crossover inherits LTC parameters from fitter parent (or random if equal)
%% Parameters inherited: neuron_type, time_constant, state_bound,
%% ltc_backbone_weights, ltc_head_weights, internal_state

%% Example: crossover preserves LTC dynamics
{ok, ChildId} = crossover:crossover(ParentA_Id, ParentB_Id).
%% Child neurons inherit LTC parameters from parents
LTC-Aware Speciation
The species identification system considers LTC parameters when computing compatibility distance:
%% Calculate LTC-specific distance between two agents
LtcDistance = species_identifier:calculate_ltc_distance(AgentA_Id, AgentB_Id).

%% Combined distance (behavioral + LTC)
%% Default weights: 70% behavioral, 30% LTC
CombinedDistance = species_identifier:calculate_combined_distance(
 AgentA_Id, AgentB_Id,
 0.7, %% Behavioral weight
 0.3 %% LTC weight
).
The LTC distance is computed from:
	ltc_ratio: Proportion of LTC neurons in the network
	avg_tau: Average time constant across LTC neurons
	avg_bound: Average state bound
	tau_std: Standard deviation of tau values (diversity measure)

Rust NIF Acceleration
LTC evaluation is accelerated via Rust NIFs for high-throughput applications:
%% CfC evaluation via Rust NIF (~100x faster than pure Erlang ODE)
{NewState, Output} = tweann_nif:evaluate_cfc(Input, State, Tau, Bound).

%% CfC with custom weights via NIF
{NewState, Output} = tweann_nif:evaluate_cfc_with_weights(
 Input, State, Tau, Bound, BackboneWeights, HeadWeights
).

%% ODE evaluation via NIF (when accuracy is needed)
{NewState, Output} = tweann_nif:evaluate_ode(Input, State, Tau, Bound, Dt).

%% Batch CfC evaluation (process entire sequences efficiently)
Results = tweann_nif:evaluate_cfc_batch(InputSequence, InitialState, Tau, Bound).
%% Returns: [{State1, Output1}, {State2, Output2}, ...]
Performance Tips
	Use CfC mode for inference - 100x faster than ODE
	Use Rust NIFs for production - tweann_nif:evaluate_cfc/4 for maximum throughput
	Batch evaluations when possible - Use tweann_nif:evaluate_cfc_batch/4 for sequences
	Reset state between episodes - Prevents state leakage across training episodes
	Tune tau per application - Different tasks need different dynamics

Troubleshooting
State Explosion
If outputs become very large:
	Check that state_bound is set appropriately
	Verify inputs are normalized
	Consider reducing tau

Slow Convergence
If the network takes too long to respond:
	Decrease tau for faster dynamics
	Use CfC mode instead of ODE
	Check that inputs are scaled properly

NaN/Inf Values
If you see NaN or Inf:
	The clamp function should prevent this
	Check for division by zero in custom weights
	Ensure tau is always positive (minimum 0.001)

Next Steps
	Read LTC Neurons Concepts for theory
	See Custom Morphologies to create LTC-based morphologies
	Check the ltc_dynamics module documentation for complete function reference

 LTC Evolution Guide

This guide explains how evolution discovers optimal LTC parameters, enabling networks to develop multi-timescale processing automatically.
Why Evolve LTC Parameters?
Without LTC evolution, all LTC neurons use the same fixed parameters (tau=1.0, A=1.0). This limits the network to a single response timescale.
With LTC evolution, each neuron can develop its own temporal dynamics:
	Evolved tau	Behavior	Use Case
	0.01 - 0.1	Ultra-fast reflexes	Collision avoidance, immediate threats
	0.1 - 1.0	Quick response	Recent events, short-term tracking
	1.0 - 10.0	Balanced	General processing, pattern recognition
	10.0 - 100.0	Slow integration	Trends, long-term context, planning

Mutation Operators
Four LTC-specific mutation operators are included in the default mutation set:
mutate_neuron_type (probability: 5)
Switches a random neuron between types:
standard <-> ltc <-> cfc
This allows evolution to discover which neurons benefit from temporal dynamics. Some neurons may stay standard (pure pattern matching), while others evolve to LTC/CfC (temporal processing).
%% Apply manually (usually done automatically during evolution)
ltc_mutations:mutate_neuron_type(AgentId).
mutate_time_constant (probability: 20)
Perturbs the time constant (tau) of a random LTC/CfC neuron:
	Bounds: 0.001 to 100.0
	Method: Multiplicative perturbation (keeps tau positive)

%% Tau controls response speed
%% Lower tau = faster response, less memory
%% Higher tau = slower response, more memory
ltc_mutations:mutate_time_constant(AgentId).
mutate_state_bound (probability: 10)
Perturbs the state bound (A) of a random LTC/CfC neuron:
	Bounds: 0.1 to 10.0
	Method: Multiplicative perturbation (keeps A positive)

%% State bound controls output range
%% Internal state is clamped to [-A, A]
ltc_mutations:mutate_state_bound(AgentId).
mutate_ltc_weights (probability: 30)
Perturbs the backbone and head network weights:
%% Backbone weights control the f() function (time constant modulation)
%% Head weights control the h() function (target state)
ltc_mutations:mutate_ltc_weights(AgentId).
Phenotype Benefits
When LTC parameters evolve, networks develop specialized temporal processing:
Multi-Timescale Processing
Different neurons evolve different tau values, enabling simultaneous processing at multiple timescales:
Input Signal
 |
 +---> [tau=0.1] ---> Fast layer (immediate reactions)
 |
 +---> [tau=1.0] ---> Medium layer (recent context)
 |
 +---> [tau=10.0] --> Slow layer (trends, planning)
 |
 v
 Output (combines all timescales)
Emergent Memory Horizons
LTC internal state decays based on tau. Different tau values create different memory windows:
	tau	Approximate Memory	What It Remembers
	0.1	~100ms	Last few frames
	1.0	~1s	Recent events
	10	~10s	Medium-term patterns
	100	~100s	Long-term context

Evolution discovers which parts of the network need memory and how much.
Natural Signal Filtering
Tau acts as a frequency filter:
	Low tau = high-pass filter (responds to fast changes, ignores slow drift)
	High tau = low-pass filter (smooths noise, tracks trends)

A network might evolve:
	Low-tau neurons watching for sudden movements (predator detection)
	High-tau neurons tracking overall position trends (navigation)

Hybrid Architecture Discovery
Evolution decides which neurons should be LTC:
	Neurons that benefit from temporal processing evolve to LTC/CfC
	Neurons that do pure pattern matching stay standard

This creates efficient networks that only pay the LTC computational cost where needed.
Domain Examples
Snake Game
Vision Sensors
 |
 +---> [tau=0.05, cfc] --> Wall proximity (ultra-fast reflex)
 |
 +---> [tau=0.5, cfc] --> Food tracking (recent positions)
 |
 +---> [tau=5.0, cfc] --> Opponent behavior (patterns)
 |
 +---> [tau=50, cfc] --> Territory control (strategy)
 |
 v
 Movement Actions
Cart-Pole Balancing
Pole Angle + Velocity
 |
 +---> [tau=0.1, cfc] --> Balance correction (immediate)
 |
 +---> [tau=2.0, cfc] --> Position drift (short-term)
 |
 +---> [tau=20, cfc] --> Energy efficiency (long-term)
 |
 v
 Force Output
Trading
Price Stream
 |
 +---> [tau=0.01, cfc] --> Tick reaction
 |
 +---> [tau=1.0, cfc] --> Minute patterns
 |
 +---> [tau=60, cfc] --> Hour trends
 |
 +---> [tau=1440, cfc] --> Daily context
 |
 v
 Trade Decision
Configuration
Default Mutation Probabilities
In records.hrl, the default constraint includes:
mutation_operators = [
 %% ... topological mutations ...

 %% LTC mutations - enable multi-timescale evolution
 {mutate_neuron_type, 5}, % Switch between standard/ltc/cfc
 {mutate_time_constant, 20}, % Perturb tau (response speed)
 {mutate_state_bound, 10}, % Perturb state bound A
 {mutate_ltc_weights, 30} % Perturb backbone/head weights
]
Custom Probabilities
Create a custom constraint to adjust LTC mutation rates:
Constraint = #constraint{
 morphology = my_morphology,
 mutation_operators = [
 %% Increase LTC mutation rates for temporal tasks
 {mutate_neuron_type, 10}, % More type switching
 {mutate_time_constant, 40}, % More tau tuning
 {mutate_state_bound, 20}, % More bound tuning
 {mutate_ltc_weights, 50}, % More weight tuning

 %% Standard mutations
 {add_neuron, 20},
 {add_outlink, 20},
 {mutate_weights, 50}
]
}.
Disable LTC Evolution
If you want fixed LTC parameters (no evolution):
Constraint = #constraint{
 morphology = my_morphology,
 mutation_operators = [
 %% Only standard mutations
 {add_neuron, 40},
 {add_outlink, 40},
 {mutate_weights, 100}
 %% No LTC mutations
]
}.
Best Practices
Start with Mixed Population
Initialize some neurons as LTC and some as standard:
%% In your morphology, create neurons with varying types
Neurons = [
 #neuron{neuron_type = standard, ...},
 #neuron{neuron_type = cfc, time_constant = 0.5, ...},
 #neuron{neuron_type = cfc, time_constant = 5.0, ...}
].
This gives evolution a head start on discovering useful timescales.
Appropriate Tau Bounds
The default bounds (0.001 to 100.0) work for most applications. Adjust if needed:
%% In ltc_mutations.erl:perturb_time_constant/2
NewTau = clamp(CurrentTau * (1.0 + Delta), 0.001, 100.0).
For faster-than-realtime simulation, you might want tighter bounds.
Monitor Evolved Tau Distribution
Track the distribution of tau values in your population:
get_tau_distribution(AgentId) ->
 Agent = genotype:dirty_read({agent, AgentId}),
 Cortex = genotype:dirty_read({cortex, Agent#agent.cx_id}),
 TauValues = [begin
 N = genotype:dirty_read({neuron, NId}),
 case N#neuron.neuron_type of
 standard -> undefined;
 _ -> N#neuron.time_constant
 end
 end || NId <- Cortex#cortex.neuron_ids],
 [T || T <- TauValues, T /= undefined].
If all neurons converge to similar tau values, the task may not need multi-timescale processing.
Reset State Between Episodes
For episodic tasks, reset LTC state at episode boundaries:
%% Reset all LTC neurons in network
reset_ltc_states(CortexPid) ->
 cortex:reset_ltc_states(CortexPid).
This prevents state leakage between episodes.
Biological Analogy
LTC evolution mimics how biological neural circuits evolved different time constants:
	Brain Region	Typical Timescale	Function
	Brainstem reflexes	milliseconds	Immediate survival responses
	Motor cortex	100s of ms	Movement coordination
	Prefrontal cortex	seconds to minutes	Planning, working memory
	Hippocampus	hours to days	Memory consolidation

Evolution discovered that different computations need different timescales. LTC evolution lets artificial networks discover the same principle.
Academic References
LTC evolution is inspired by research on evolved plasticity and temporal processing:
	Hasani et al. (2021) - Liquid Time-constant Networks
	Soltoggio et al. (2008) - Evolutionary advantages of neuromodulated plasticity
	Beer (1995) - Dynamics of continuous-time recurrent neural networks
	Clune et al. (2013) - Evolutionary origins of modularity

Next Steps
	See LTC Neurons for the mathematical foundations
	See LTC Usage Guide for practical API usage
	See Custom Morphologies to create LTC-based morphologies

 Creating Custom Morphologies

This guide explains how to create custom morphologies for macula-tweann v0.9.0+.
What is a Morphology?
A morphology defines the sensory inputs and motor outputs for a neural network problem domain. It specifies:
	What sensors the network can use to perceive its environment
	What actuators the network can use to affect its environment
	The vector length (number of values) each sensor/actuator provides

Quick Start
1. Create a Module
Create a new Erlang module that implements the morphology_behaviour:
-module(my_morphology).
-behaviour(morphology_behaviour).
-include_lib("macula_tweann/include/records.hrl").

-export([get_sensors/1, get_actuators/1]).

%% Required callbacks
get_sensors(my_problem) ->
 [#sensor{
 name = my_sensor,
 type = standard,
 scape = {private, my_scape},
 vl = 3, % 3 input values
 parameters = [],
 fanout_ids = [],
 generation = 0
 }];
get_sensors(_) ->
 error(invalid_morphology).

get_actuators(my_problem) ->
 [#actuator{
 name = my_actuator,
 type = standard,
 scape = {private, my_scape},
 vl = 2, % 2 output values
 parameters = [],
 fanin_ids = [],
 generation = 0
 }];
get_actuators(_) ->
 error(invalid_morphology).
2. Register Your Morphology
Before using your morphology, register it with the morphology registry:
ok = morphology_registry:register(my_problem, my_morphology).
3. Use It
Now you can create agents with your custom morphology:
Constraint = #constraint{
 morphology = my_problem,
 neural_afs = [tanh],
 neural_pfns = [none],
 neural_aggr_fs = [dot_product]
},
AgentId = genotype:construct_Agent(SpecieId, AgentId, Constraint).
Morphology Behaviour Callbacks
get_sensors/1
Returns a list of #sensor{} records for the given morphology name.
Sensor Record Fields:
	name (atom) - Unique identifier for this sensor
	type (standard | ...) - Sensor type

	scape ({private|public, atom()}) - Scape this sensor reads from
	vl (integer) - Vector length (number of input values)
	parameters (list) - Configuration parameters
	fanout_ids ([id()]) - Leave empty, set by genotype
	generation (integer) - Set to 0
	cx_id (id()) - Leave undefined, set by genotype
	id (id()) - Leave undefined, set by genotype

get_actuators/1
Returns a list of #actuator{} records for the given morphology name.
Actuator Record Fields:
	name (atom) - Unique identifier for this actuator
	type (standard | ...) - Actuator type

	scape ({private|public, atom()}) - Scape this actuator writes to
	vl (integer) - Vector length (number of output values)
	parameters (list) - Configuration parameters
	fanin_ids ([id()]) - Leave empty, set by genotype
	generation (integer) - Set to 0
	cx_id (id()) - Leave undefined, set by genotype
	id (id()) - Leave undefined, set by genotype

Examples
Example 1: Simple Classification
A morphology for binary classification with 10 features:
-module(morphology_classifier).
-behaviour(morphology_behaviour).
-include_lib("macula_tweann/include/records.hrl").

-export([get_sensors/1, get_actuators/1]).

get_sensors(binary_classifier) ->
 [#sensor{
 name = classifier_input,
 type = standard,
 scape = {private, classifier_sim},
 vl = 10, % 10 feature inputs
 parameters = [],
 fanout_ids = [],
 generation = 0
 }];
get_sensors(_) -> error(invalid_morphology).

get_actuators(binary_classifier) ->
 [#actuator{
 name = classifier_output,
 type = standard,
 scape = {private, classifier_sim},
 vl = 1, % Single binary output
 parameters = [],
 fanin_ids = [],
 generation = 0
 }];
get_actuators(_) -> error(invalid_morphology).
Example 2: Multi-Sensor Morphology
A morphology with multiple sensor types:
-module(morphology_robot).
-behaviour(morphology_behaviour).
-include_lib("macula_tweann/include/records.hrl").

-export([get_sensors/1, get_actuators/1]).

get_sensors(robot) ->
 [
 % Distance sensors
 #sensor{
 name = distance_sensors,
 type = standard,
 scape = {private, robot_sim},
 vl = 5,
 parameters = [],
 fanout_ids = [],
 generation = 0
 },
 % Camera input
 #sensor{
 name = camera,
 type = standard,
 scape = {private, robot_sim},
 vl = 100, % 10x10 pixel grid
 parameters = [10, 10],
 fanout_ids = [],
 generation = 0
 },
 % Battery level
 #sensor{
 name = battery,
 type = standard,
 scape = {private, robot_sim},
 vl = 1,
 parameters = [],
 fanout_ids = [],
 generation = 0
 }
];
get_sensors(_) -> error(invalid_morphology).

get_actuators(robot) ->
 [
 % Motor control
 #actuator{
 name = motors,
 type = standard,
 scape = {private, robot_sim},
 vl = 2, % Left and right motor speeds
 parameters = [],
 fanin_ids = [],
 generation = 0
 }
];
get_actuators(_) -> error(invalid_morphology).
Example 3: Supporting Multiple Morphologies
One module can support multiple related morphologies:
-module(morphology_game).
-behaviour(morphology_behaviour).
-include_lib("macula_tweann/include/records.hrl").

-export([get_sensors/1, get_actuators/1]).

%% Player morphology
get_sensors(player) ->
 [#sensor{
 name = game_state,
 type = standard,
 scape = {private, game_sim},
 vl = 20,
 parameters = [],
 fanout_ids = [],
 generation = 0
 }];

%% Enemy morphology
get_sensors(enemy) ->
 [#sensor{
 name = game_state,
 type = standard,
 scape = {private, game_sim},
 vl = 15, % Different perception
 parameters = [],
 fanout_ids = [],
 generation = 0
 }];

get_sensors(_) -> error(invalid_morphology).

%% Same actuators for both
get_actuators(Morphology) when Morphology =:= player; Morphology =:= enemy ->
 [#actuator{
 name = game_action,
 type = standard,
 scape = {private, game_sim},
 vl = 4, % Up, down, left, right
 parameters = [],
 fanin_ids = [],
 generation = 0
 }];
get_actuators(_) -> error(invalid_morphology).
Then register both morphologies:
ok = morphology_registry:register(player, morphology_game),
ok = morphology_registry:register(enemy, morphology_game).
Registry API
morphology_registry:register/2
Register a morphology implementation:
ok = morphology_registry:register(MorphologyName, ModuleName).
Returns:
	ok on success
	{error, {module_not_loaded, Module}} if module doesn't exist
	{error, {missing_callback, Callback, Arity}} if behaviour not implemented

morphology_registry:unregister/1
Remove a morphology registration:
ok = morphology_registry:unregister(MorphologyName).
morphology_registry:get/1
Get the implementing module for a morphology:
{ok, Module} = morphology_registry:get(MorphologyName).
{error, not_found} = morphology_registry:get(unknown).
morphology_registry:list_all/0
List all registered morphologies:
Names = morphology_registry:list_all(). % [atom()]
morphology_registry:is_registered/1
Check if a morphology is registered:
true = morphology_registry:is_registered(my_problem).
false = morphology_registry:is_registered(unknown).
Scapes
Sensors and actuators connect to "scapes" - the environments they interact with.
Scape Format
{Visibility, ScapeName}
Where:
	Visibility is private or public
	ScapeName is an atom identifying the scape module/process

Private Scapes
Private scapes are used for problem-specific simulations:
scape = {private, my_sim}
The scape name should match your simulation module name.
Public Scapes
Public scapes are shared across multiple agents:
scape = {public, shared_environment}
Application Lifecycle
In Your Application
% In your application start/2
start(_StartType, _StartArgs) ->
 % Ensure macula_tweann is started
 {ok, _} = application:ensure_all_started(macula_tweann),

 % Register your morphologies
 ok = morphology_registry:register(my_problem, my_morphology),
 ok = morphology_registry:register(another_problem, another_morphology),

 % Start your supervisor
 my_sup:start_link().
In Tests
setup() ->
 application:ensure_all_started(macula_tweann),
 morphology_registry:register(test_morph, test_morphology),
 genotype:init_db().

teardown(_) ->
 morphology_registry:unregister(test_morph),
 genotype:reset_db().
Example Morphologies
See examples/ directory for complete working examples:
	examples/xor/ - XOR function learning
	examples/pole_balancing/ - Cart-pole balancing
	examples/forex/ - Forex trading agent
	examples/flatland/ - Prey/predator simulation

To use example morphologies in your project:
% Register the examples you need
ok = morphology_registry:register(xor_mimic, morphology_xor),
ok = morphology_registry:register(pole_balancing, morphology_pole_balancing),
ok = morphology_registry:register(forex_trader, morphology_forex),
ok = morphology_registry:register(prey, morphology_flatland),
ok = morphology_registry:register(predator, morphology_flatland).
Best Practices
	One Module Per Domain - Group related morphologies in one module
	Meaningful Names - Use descriptive sensor/actuator names
	Document VL - Comment why you chose specific vector lengths
	Error Handling - Always handle invalid morphology names
	Registration - Register morphologies at application startup
	Testing - Test your morphology with actual agent construction

Troubleshooting
Error: morphology_not_registered
You forgot to register your morphology:
ok = morphology_registry:register(my_problem, my_morphology).
Error: missing_callback
Your module doesn't implement the behaviour correctly. Ensure:
-behaviour(morphology_behaviour).
-export([get_sensors/1, get_actuators/1]).
Error: module_not_loaded
The module doesn't exist or isn't compiled. Check:
	Module file exists
	Module is in code path
	Module compiles without errors

Sensors/Actuators Not Found
Make sure your morphology name matches exactly:
% Registration
morphology_registry:register(my_problem, my_morphology)

% Usage - MUST MATCH
#constraint{morphology = my_problem, ...}

% Implementation - MUST MATCH
get_sensors(my_problem) -> ...
Migration from Pre-v0.9.0
If you were using the old hardcoded morphology system:
Before (< v0.9.0):
% Morphologies were hardcoded in morphology.erl
Constraint = #constraint{morphology = xor_mimic, ...}
After (>= v0.9.0):
% Register first
ok = morphology_registry:register(xor_mimic, morphology_xor),

% Then use
Constraint = #constraint{morphology = xor_mimic, ...}
Version History
	v0.9.0 - Introduced morphology behaviour and registry system
	v0.8.x and earlier - Hardcoded morphologies in morphology.erl

 Changelog

All notable changes to the macula-tweann project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
Planned
	See individual version documents for detailed planning

0.16.0 - 2025-12-23
Summary
Enterprise NIF Package Support - Added automatic detection and integration with the separate macula_nn_nifs enterprise package, providing 10-15x performance improvements for compute-intensive operations.
Added
Enterprise NIF Detection
	tweann_nif.erl: Automatic detection of enterprise NIF package	Checks for macula_nn_nifs module at startup
	Uses persistent_term for cached implementation lookup
	Priority: macula_nn_nifs (enterprise) > bundled NIF > pure Erlang fallback
	Zero code changes required - detection is automatic

Documentation
	guides/enterprise-nifs.md: New comprehensive guide for enterprise NIFs	Performance comparison table (10-15x speedups)
	Installation instructions for Community vs Enterprise editions
	Complete list of 44 accelerated functions across 8 categories
	Verification and troubleshooting sections

	guides/installation.md: Updated with Enterprise Edition section	Clear separation of Community and Enterprise installation
	Enterprise requirements (Rust 1.70+, SSH access)
	NIF verification examples

Changed
	rebar.config: Added enterprise-nifs.md to ex_doc extras

Enterprise NIF Package
The macula_nn_nifs package (v0.1.0) is now available as a separate enterprise-only repository:
	44 Rust NIF functions for compute-intensive operations
	Categories: Network Evaluation, Signal Aggregation, LTC/CfC, Novelty Search, Statistics, Selection, Meta-Controller, Evolutionary Genetics
	98 unit tests with full coverage
	Apache-2.0 license (enterprise license required for commercial use)

Test Results
	593 tests passing
	Dialyzer clean

0.15.3 - 2025-12-23
Summary
Memory Leak Prevention - Fixed NIF ResourceArc memory accumulation during evolution by switching to lazy compilation and adding explicit memory management functions.
Changed
Network Evaluator Memory Management
	network_evaluator.erl: Lazy NIF compilation to prevent memory leaks	create_feedforward/3,4 no longer auto-compiles for NIF
	set_weights/2 no longer auto-compiles for NIF
	NIF compilation is now opt-in via compile_for_nif/1
	Networks use pure Erlang evaluation by default (fallback path)
	Rationale: During breeding, set_weights/2 is called for EVERY offspring. Eager compilation created millions of ResourceArc references that accumulated unboundedly, causing memory to grow without bound across generations.

Added
	network_evaluator.erl: New memory management functions	strip_compiled_ref/1 - Remove compiled_ref to release NIF memory
	compile_for_nif/1 - Explicit opt-in for NIF compilation
	Usage: Call strip_compiled_ref/1 before storing networks in archives, events, or long-term storage to prevent ResourceArc accumulation.

Fixed
	population_monitor.erl: Changed "Generation" to "Cohort" in log messages	Aligns with terminology used elsewhere in the codebase

Test Results
	593 tests passing
	Dialyzer clean

0.15.2 - 2025-12-12
Summary
Documentation Enhancement - Added comprehensive visual diagram index and consolidated all SVG assets into unified assets/ directory.
Added
	guides/diagram-index.md: New visual guide indexing all 25 SVG diagrams
	Core Concepts: TWEANN structure, neuroevolution cycle, NEAT evolution
	Architecture: Genotype/phenotype, supervision tree, C4 model
	LTC Neurons: Architecture and comparison diagrams
	Learning Mechanisms: Plasticity, activation functions, mutation sequences
	Distributed Evolution: Multi-node, federated, swarm models
	Application Domains: Military, civil, defense scenarios

	New educational SVG diagrams in assets/:
	tweann-structure.svg - Core TWEANN architecture (sensors → hidden → actuators)
	neuroevolution-cycle.svg - The evolutionary optimization loop
	neat-evolution.svg - NEAT topology mutations and speciation
	genotype-phenotype.svg - Constructor pattern transformation
	neural-plasticity.svg - Online learning mechanisms (Hebbian, Oja, etc.)
	activation-functions.svg - Comparison of activation functions

Changed
	rebar.config: Consolidated assets configuration	Single assets path: {assets, #{"assets" => "assets"}}
	Added diagram-index.md to ex_doc extras
	Removed redundant design_docs/diagrams from hex files

Documentation
	All 25 SVG diagrams now in unified assets/ directory
	Visual diagram index for easier navigation in hexdocs
	Educational descriptions for each diagram category

0.15.1 - 2025-12-12
Summary
Community vs Enterprise Edition - NIF compilation hooks are now disabled by default in the hex.pm package. The Community Edition uses pure Erlang fallbacks, while Enterprise Edition users can enable Rust NIF acceleration from source.
Changed
	rebar.config: NIF compilation hooks commented out for hex.pm package	Community Edition (hex.pm) uses pure Erlang fallbacks
	Enterprise Edition users can uncomment hooks to enable NIF acceleration
	No Rust toolchain required for Community Edition users

	README.md: Added "Community vs Enterprise Edition" section documenting the two editions

Documentation
	Clear documentation of feature differences between editions
	Instructions for Enterprise users to enable NIF acceleration
	Contact information for enterprise licensing

0.15.0 - 2025-12-12
Summary
NIF Acceleration Phase 2 Release - Major NIF expansion with 18 new functions for novelty search, fitness statistics, selection, and reward computation. Includes complete pure Erlang fallback module for portability without Rust toolchain.
Added
Distance and KNN Functions (Novelty Search)
	native/src/lib.rs: New NIF functions for novelty search	euclidean_distance/2 - Distance between two behavior vectors
	euclidean_distance_batch/2 - Batch distance calculation sorted by distance
	knn_novelty/4 - K-nearest neighbor novelty score
	knn_novelty_batch/3 - Batch kNN novelty for entire population

Statistics Functions
	native/src/lib.rs: Vectorized fitness statistics	fitness_stats/1 - Single-pass (min, max, mean, variance, std_dev, sum)
	weighted_moving_average/2 - Exponential decay weighted average
	shannon_entropy/1 - Entropy calculation for diversity metrics
	histogram/4 - Histogram binning for distribution analysis

Selection Functions
	native/src/lib.rs: Selection acceleration	build_cumulative_fitness/1 - Build cumulative array for roulette wheel
	roulette_select/3 - O(log n) binary search roulette selection
	roulette_select_batch/3 - Batch roulette selection
	tournament_select/2 - Tournament selection

Reward and Meta-Controller Functions
	native/src/lib.rs: LC v2 reward computation	z_score/3 - Z-score normalization
	compute_reward_component/2 - Component computation with sigmoid normalization
	compute_weighted_reward/1 - Weighted sum of reward components

Weight/Genome Utilities
	native/src/lib.rs: Weight structure optimization	flatten_weights/1 - Flatten nested weight structure avoiding intermediate lists
	dot_product_preflattened/3 - Dot product on pre-flattened arrays

Test Coverage
	test/unit/tweann_nif_v2_tests.erl: 42 new tests for all NIF functions	Distance and kNN tests
	Statistics function tests
	Selection function tests
	Reward computation tests
	Performance sanity tests

Changed
	src/tweann_nif.erl: Added exports and stubs for 18 new functions
	src/tweann_nif.erl: Rewritten with try-catch fallback pattern for portability
	All new NIFs use DirtyCpu scheduler for long-running operations

Pure Erlang Fallback Module
	src/tweann_nif_fallback.erl: NEW - Complete Erlang implementations of all NIFs	Full fallback for all 30+ NIF functions
	Automatic fallback when NIF not loaded (no Rust compilation required)
	Enables library use on any Erlang/OTP system without Rust toolchain
	Helper functions: sigmoid, clamp, apply_activation

Fixed
	src/genome_mutator.erl: Substrate mutations (add_cpp, add_cep) now log warning instead of silent no-op
	src/genotype.erl:343: Removed misleading TODO - link_FromElementToElement is fully implemented
	src/genotype.erl:498: Implemented update_fingerprint using species_identifier:create_fingerprint/1
	src/network_evaluator.erl: Documented feedforward approximation limitation with recommendation to use tweann_nif:compile_network/3 for exact topology evaluation

Performance Targets
	Euclidean distance batch: 30-100x speedup for novelty search
	kNN novelty: 50-200x speedup for behavior distance calculations
	Fitness statistics: 5-10x speedup for single-pass computation
	Roulette selection: 5-15x speedup with O(log n) binary search

Test Results
	593 tests passing (includes 42 new NIF v2 tests)
	Dialyzer clean
	All fallback functions verified working

0.14.0 - 2025-12-12
Summary
Documentation Cleanup Release - Archived legacy release docs and vision documents to streamline hexdocs.
Changed
	Moved version-specific release docs (v0.1.0 through v1.0.0) to archive/releases/
	Moved vision/addendum documents to archive/vision/ (for future macula-vision repo)
	Updated rebar.config to exclude archive/ from hex package
	Removed broken hexdocs links from guides
	Streamlined documentation for cleaner hexdocs experience

Removed
	Removed duplicate addendum files from guides/ (now only in archive)
	Removed FUTURE_OPTIMIZATION.md and RELEASE_STRATEGY.md (superseded)
	Removed CODE_QUALITY_REVIEW_v0.10.0.md (superseded)

Test Results
	801 tests passing
	Dialyzer clean

0.13.0 - 2025-12-07
Summary
Memory Optimization & NIF Acceleration Release - Major performance and stability improvements with 4x memory reduction target and 10-50x speedup on hot paths.
Added
NIF Acceleration (Phase 3)
	native/src/lib.rs: New NIF functions	dot_product_flat/3 - Flat array dot product for signal aggregation
	dot_product_batch/1 - Batch dot product with dirty scheduler
	Added schedule = "DirtyCpu" to evaluate_batch to prevent blocking

	tweann_nif.erl: Erlang wrappers for new NIFs

Signal Aggregation Optimization (Phase 4)
	signal_aggregator.erl: NIF-accelerated aggregation	dot_product_nif/2 - NIF-backed dot product with Erlang fallback
	flatten_for_nif/2 - Convert nested weight structure to flat arrays

	neuron.erl: Pre-compiled weight matrices	compiled_weights field in state record
	compile_weights_for_nif/4 - Pre-compile at init/link time
	flatten_signals/2, aggregate_compiled/3 - Fast path evaluation
	Weights recompiled on {update_weights, ...} and {link, input_weights, ...}

Benchmark Suite (Phase 5)
	test/benchmark/bench_common.erl: Benchmark utilities	measure_time/1,2 - Execution timing in microseconds
	measure_memory/1 - Memory delta measurement
	run_trials/3, run_trials_gc/3 - Multiple trial execution
	calc_stats/1 - Statistical analysis (min, max, avg, median, std)
	format_bytes/1, format_time/1 - Human-readable formatting

	test/benchmark/bench_forward_pass.erl: Network evaluation benchmarks	Small/medium/large/XOR network tests
	Batch evaluation benchmarks
	Memory usage measurements

	test/benchmark/bench_nif_vs_erlang.erl: NIF comparison benchmarks	dot_product NIF vs Erlang comparison
	Flat dot product benchmarks
	Batch dot product benchmarks

Changed
Memory Architecture (Phase 2)
	genotype.erl: Replaced Mnesia with ETS	11 tables migrated from Mnesia RAM to ETS
	Faster startup, lower overhead
	Same semantics, simpler implementation

	innovation.erl: Migrated to atomics/counters	counters module for innovation numbers
	persistent_term for counter reference storage
	Eliminated Mnesia dependency

	genotype.erl: Generation-based cleanup	cleanup_old_agents/1 - Remove agents older than N generations
	cap_evo_hist/2 - Limit evo_hist to last 50 mutations
	clear_dead_pool/1 - Clear dead_pool each generation

Process Lifecycle Fixes (Phase 1)
	neuron.erl: Fixed infinite timeout loop	Exit after 3 consecutive timeouts (was infinite loop)
	MAX_TIMEOUT_COUNT = 3 constant
	Notifies cortex on timeout termination

	population_monitor.erl: Reduced timeout 60s → 5s
	cortex.erl: Synchronous termination	Wait for child processes before exit
	Monitor-based termination tracking

	exoself.erl: Race condition fix on shutdown
	All process modules: Added catch-all receive clauses	Prevents mailbox bloat from unexpected messages
	Logs warnings for debugging

Network Evaluator (Phase 3)
	network_evaluator.erl: NIF integration	Added compiled_ref field to network record
	maybe_compile_for_nif/1 - Compile network for NIF at creation
	evaluate/2 uses NIF when compiled_ref is available
	set_weights/2 recompiles for NIF after weight changes

	network_onnx.erl: Fixed for new record format	Handles both 3-tuple and 4-tuple network records

Configuration
	rebar.config:	Enabled NIF build hooks (were commented out)
	Added test/benchmark to extra_src_dirs

Fixed
	Zombie neuron processes from infinite timeout loop
	Orphaned child processes on cortex termination
	Mailbox bloat from unhandled messages
	Memory growth from unbounded evo_hist
	Memory growth from persistent dead_pool

Performance Targets
	Memory: 2-4 GB → 500 MB - 1 GB (4x reduction)
	Forward pass: 5-10x faster with NIF for dot_product
	Generation time: 4-6x faster with NIF acceleration

Test Results
	801 tests passing (10 new benchmark tests)
	Dialyzer clean
	Documentation links validated

Dependencies
	No new dependencies
	Rust NIF uses existing rustler setup

0.12.0 - 2025-12-07
Summary
Complete Topology Evolution & Test Coverage Release - NEAT-style topology evolution with innovation tracking, comprehensive test coverage (791 tests), and enhanced documentation.
Added
Topology Evolution (NEAT-Style)
	innovation.erl (~200 lines): Innovation number tracking for structural mutations
	init/0, reset/0 - Initialize/reset innovation tracking
	get_or_create_link_innovation/2 - Track link additions
	get_or_create_node_innovation/2 - Track node additions
	Mnesia persistence for innovation history

	genome_crossover.erl (~250 lines): Variable-topology crossover
	crossover/3 - NEAT-style crossover with gene alignment
	align_genomes/2 - Align genes by innovation number
	compatibility_distance/3 - Species distance calculation
	Matching, disjoint, and excess gene handling

	topological_mutations.erl enhancements:
	add_sensor/2 - Add sensor to existing network
	add_actuator/2 - Add actuator to existing network
	Innovation number assignment for all structural changes

Comprehensive Test Coverage
	198 new tests bringing total to 791 tests
	New test files:	functions_tests.erl - 76 tests for activation functions
	morphology_tests.erl - 25 tests for morphology system
	brain_system_tests.erl - 28 tests for brain API
	network_evaluator_tests.erl - 27 tests for synchronous evaluation
	network_onnx_tests.erl - 21 tests for ONNX export
	app_tests.erl - 21 tests for application modules

Documentation Enhancements
	SVG Diagrams: Created professional diagrams
	assets/ltc-neuron-architecture.svg - LTC neuron diagram
	assets/module-dependencies.svg - Module architecture
	guides/assets/planetary-mesh-vision.svg - Distributed vision

	Research Opportunities: Added to ltc-neurons.md
	Temporal dynamics evolution
	Hybrid architecture research
	Application domain suggestions

	Value Sections: Added competitive comparisons
	"Why Choose macula-tweann" in overview.md
	"Why This Architecture" in architecture.md
	Comparison tables with alternatives

Tooling
	validate-docs.sh: Link validation script	SVG reference checking
	Markdown link validation
	ASCII diagram detection
	CI-ready exit codes

Changed
	Version bumped from 0.11.3 to 0.12.0
	README test count updated to 791
	Replaced ASCII diagram in vision guide with SVG

Fixed
	Broken SVG links in README.md (created missing assets)
	ASCII diagram in vision-distributed-mega-brain.md replaced with SVG

Academic References
	NEAT paper (Stanley & Miikkulainen, 2002) referenced in innovation.erl and genome_crossover.erl

Test Results
	791 tests passing
	Dialyzer clean
	All documentation links validated

0.11.2 - 2025-12-06
Summary
Documentation Link Fixes - Fixed all internal documentation links to use .md extensions.
Fixed
	Converted all .html links to .md in guides (ex_doc converts automatically)
	Fixed custom_morphologies.html -> custom-morphologies.md
	Fixed api-reference.html -> removed (use module docs in sidebar)
	Fixed ltc_dynamics.html -> removed (use module docs directly)
	Added scripts/fix-html-links.sh utility script

0.11.1 - 2025-12-06
Summary
Documentation Alignment Release - Fixed release documentation structure and versioning.
Fixed
	Renamed v0.10.0-optimized.md to FUTURE_OPTIMIZATION.md (content was mismatched)
	Created proper v0.10.0-ltc-neurons.md release document
	Updated rebar.config ex_doc to point to correct files

Added
	v0.10.0-ltc-neurons.md - Comprehensive release document for LTC neurons feature

0.11.0 - 2025-12-06
Summary
ONNX Export & Documentation Release - Export trained networks to ONNX format for inference in Python, JavaScript, and other frameworks.
Added
ONNX Export
	network_onnx.erl (~200 lines): Export evolved networks to ONNX format	export/2 - Export network to ONNX binary file
	to_onnx/1 - Convert network to ONNX protobuf structure
	Supports feedforward networks with standard activation functions
	Compatible with ONNX Runtime, PyTorch, TensorFlow

Documentation
	Academic references added to README.md and guides/overview.md
	Hasani et al. (2021) - Liquid Time-constant Networks
	Hasani et al. (2022) - Closed-form Continuous-time Neural Networks
	Stanley & Miikkulainen (2002) - NEAT
	Sher (2012) - Handbook of Neuroevolution Through Erlang (DXNN2)

	scripts/check-links.sh: Documentation link quality checker

Fixed
	Broken DXNN2 reference link in v0.3.1-architectural-alignment.md

Test Results
	270+ tests passing
	Dialyzer clean

0.10.0 - 2025-12-03
Summary
Liquid Time-Constant (LTC) Neurons Release - First TWEANN library with LTC/CfC neuron support in Erlang/OTP.
LTC neurons enable adaptive temporal processing with input-dependent time constants. This is a major feature release that extends macula-tweann with continuous-time neural dynamics based on peer-reviewed research.
Added
Core LTC Modules
	ltc_dynamics.erl (~380 lines): Core LTC/CfC computation engine
	evaluate_cfc/4,5 - CfC closed-form evaluation (~100x faster than ODE)
	evaluate_ode/5,6 - ODE-based evaluation (Euler integration)
	compute_backbone/3 - Time constant modulation network
	compute_head/2 - Target state computation
	compute_liquid_tau/4 - Adaptive time constant calculation
	clamp_state/2, reset_state/0 - State management utilities
	Full EDoc with academic references

	neuron_ltc.erl (~280 lines): LTC-specific neuron process
	Full process lifecycle with internal state persistence
	CfC and ODE modes supported
	Reset/get state operations
	LTC parameter update support

LTC Evolution Support (genome_mutator.erl)
	mutate_neuron_type/1 - Switch neurons between standard/ltc/cfc modes
	mutate_time_constant/1 - Perturb tau (base time constant)
	mutate_state_bound/1 - Perturb state bound A
	mutate_ltc_weights/1 - Perturb backbone/head network weights
	select_ltc_neuron/1 - Helper to select LTC/CfC neurons

Rust NIF LTC Support (native/src/lib.rs)
	evaluate_cfc/4 - Fast CfC evaluation in Rust
	evaluate_cfc_with_weights/6 - CfC with custom backbone/head weights
	evaluate_ode/5 - ODE-based evaluation in Rust
	evaluate_ode_with_weights/7 - ODE with custom weights
	evaluate_cfc_batch/4 - Batch CfC evaluation for time series

Extended Records
	records.hrl: Extended #neuron record with LTC fields
	neuron_type (standard | ltc | cfc)

	time_constant (τ - base time constant)
	state_bound (A - prevents state explosion)
	ltc_backbone_weights - f() backbone network
	ltc_head_weights - h() head network
	internal_state - x(t) persistent state

	types.hrl: New LTC type specifications
	neuron_type(), time_constant(), state_bound()
	internal_state(), time_step()
	ltc_backbone_weights(), ltc_head_weights()
	ltc_params() map type

Documentation
	guides/ltc-neurons.md: Comprehensive LTC concepts guide
	Mathematical foundations (LTC ODE, CfC closed-form)
	Neuron types comparison table
	Implementation details and key properties
	Use cases and academic references

	guides/ltc-usage-guide.md: Practical usage guide
	API reference with examples
	Parameter tuning guide
	Time series processing examples
	Troubleshooting section

	design_docs/diagrams/ltc-neuron-architecture.svg: Architecture diagram

	design_docs/diagrams/ltc-vs-standard-neurons.svg: Comparison diagram

Changed
	constructor.erl: Extended to spawn LTC neurons
	spawn_neuron_by_type/2 dispatches based on neuron_type
	spawn_standard_neuron/2 for standard neurons
	spawn_ltc_neuron/3 for ltc/cfc neurons

	README.md: Updated with LTC as primary feature

	rebar.config: Added LTC guides to ex_doc configuration

Performance
	CfC evaluation: ~100x faster than ODE-based LTC
	State bounded dynamics prevent numerical overflow
	Configurable time constants for different response speeds

Academic References
	Hasani, R., Lechner, M., et al. (2021). "Liquid Time-constant Networks." AAAI 2021.
	Hasani, R., Lechner, M., et al. (2022). "Closed-form Continuous-time Neural Networks." Nature Machine Intelligence.

Test Results
	468 tests passing (including 68 new LTC tests: 45 core + 11 mutation + 12 NIF)
	Dialyzer clean (1 pre-existing warning)

Migration from DXNN2
Key Differences
	Naming: All cryptic abbreviations replaced
	idps -> weighted_inputs
	af -> activation_function
	pf -> plasticity_function
	vl -> vector_length

	State Management: Records instead of parameter lists
	cortex: 10 parameters -> cortex_state record
	neuron: 14 parameters -> neuron_state record
	exoself: 24 parameters -> exoself_state record

	Error Handling: Structured errors instead of exit()
	exit("ERROR...") -> {error, {type, reason}}

	APIs: Modern OTP
	now() -> erlang:monotonic_time()
	random -> rand

Migration Steps
	Update type imports from types.hrl
	Update record field names
	Update function return types for error cases
	Update time-related code
	Run test suite to verify

References
	design_docs/DXNN2_CODEBASE_ANALYSIS.md - DXNN2 original codebase analysis (internal)
	design_docs/README.md - Refactoring principles (internal)

 macula-tweann

Topology and Weight Evolving Artificial Neural Networks for Erlang
[image: Hex.pm]
[image: Documentation]
[image: License]
[image: Buy Me A Coffee]
Evolutionary neural networks that evolve both topology and weights, now with Liquid Time-Constant (LTC) neurons for adaptive temporal processing. Based on DXNN2 by Gene Sher.
Highlights
	First TWEANN library with LTC neurons in Erlang/OTP
	CfC closed-form approximation - ~100x faster than ODE-based LTC
	Rust NIF acceleration - Optional 30-200x speedup for fitness statistics, novelty search, selection
	Pure Erlang fallback - Works on any system without Rust toolchain
	Hybrid networks - Mix standard and LTC neurons in the same network
	Production ready - Comprehensive logging, error handling, and process safety

Quick Start
%% Add to rebar.config
{deps, [{macula_tweann, "~> 0.17.0"}]}.

%% Create and evolve a standard network
genotype:init_db(),
Constraint = #constraint{morphology = xor_mimic},
{ok, AgentId} = genotype:construct_agent(Constraint),
genome_mutator:mutate(AgentId).

%% Use LTC dynamics directly
{NewState, Output} = ltc_dynamics:evaluate_cfc(Input, State, Tau, Bound).
LTC Neurons
Liquid Time-Constant neurons enable adaptive temporal processing with input-dependent time constants:
[image: LTC Architecture]
%% CfC evaluation (fast, closed-form)
{State1, _} = ltc_dynamics:evaluate_cfc(1.0, 0.0, 1.0, 1.0),
{State2, _} = ltc_dynamics:evaluate_cfc(1.0, State1, 1.0, 1.0).
%% State persists between evaluations - temporal memory!
Key equations:
	LTC ODE: dx/dt = -[1/τ + f(x,I,θ)]·x + f(x,I,θ)·A
	CfC: x(t+Δt) = σ(-f)·x(t) + (1-σ(-f))·h (100x faster)

See the LTC Neurons Guide for details.
Documentation
	Installation - Add to your project
	Quick Start - Basic usage
	LTC Neurons - Temporal dynamics
	LTC Usage Guide - Practical examples
	Architecture - System design
	Full Documentation - All guides and module docs

Features
Neural Network Evolution
	Topology Evolution: Networks add/remove neurons and connections
	Weight Evolution: Synaptic weights optimized through selection
	Speciation: Behavioral diversity preservation (NEAT-style)
	Multi-objective: Pareto dominance optimization

LTC/CfC Neurons
	Temporal Memory: Neurons maintain persistent internal state
	Adaptive Dynamics: Input-dependent time constants
	CfC Mode: ~100x faster than ODE-based evaluation
	Hybrid Networks: Mix standard and LTC neurons

Production Quality
	Process Safety: Timeouts and crash handling
	Comprehensive Logging: Structured logging throughout
	Rust NIF (optional): High-performance network evaluation
	Mnesia Storage: Persistent genotype storage

Community vs Enterprise Edition
This library is available in two editions:
	Feature	Community (hex.pm)	Enterprise
	TWEANN topology evolution	Yes	Yes
	LTC/CfC neurons	Yes	Yes
	Weight evolution	Yes	Yes
	Speciation	Yes	Yes
	Rust NIF acceleration	No (pure Erlang)	Yes (30-200x faster)
	Source code	Hex package only	Full repository

Community Edition
The hex.pm package uses pure Erlang implementations for all algorithms. This is fully functional and suitable for:
	Learning and experimentation
	Small to medium populations (< 1000 individuals)
	Development and prototyping

%% Check if NIFs are available
tweann_nif:is_loaded(). %% Returns false on Community Edition
Enterprise Edition
Enterprise users with full source access can enable Rust NIF acceleration by:
	Installing Rust toolchain (rustup.rs)
	Uncommenting NIF hooks in rebar.config
	Building from source

NIF-accelerated functions include:
	fitness_stats/1 - Population statistics (30x faster)
	tournament_select/2 - Selection (50x faster)
	roulette_select/3 - Selection (40x faster)
	knn_novelty/4 - Novelty search (200x faster)
	evaluate/2 - Network forward pass (100x faster)

Contact Macula.io for enterprise licensing.
Architecture
[image: Module Dependencies]
Process-based neural networks with evolutionary operators. See Architecture Guide for details.
Testing
rebar3 eunit # Unit tests (858 tests)
rebar3 dialyzer # Static analysis
rebar3 ex_doc # Generate documentation

Academic References
TWEANN/NEAT
	Sher, G.I. (2013). Handbook of Neuroevolution Through Erlang. Springer.
	Primary reference for DXNN2 architecture and Erlang implementation patterns.

	Stanley, K.O. & Miikkulainen, R. (2002). Evolving Neural Networks through Augmenting Topologies. Evolutionary Computation, 10(2), 99-127.
	Foundational NEAT paper introducing speciation and structural innovation protection.

	Stanley, K.O. (2004). Efficient Evolution of Neural Network Topologies. Proceedings of the 2002 Congress on Evolutionary Computation (CEC).
	Complexity analysis and efficiency improvements for topology evolution.

LTC/CfC Neurons
	Hasani, R., Lechner, M., et al. (2021). Liquid Time-constant Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9), 7657-7666.
	Introduces adaptive time-constant neurons with continuous-time dynamics.

	Hasani, R., Lechner, M., et al. (2022). Closed-form Continuous-time Neural Networks. Nature Machine Intelligence, 4, 992-1003.
	CfC closed-form approximation enabling ~100x speedup over ODE-based LTC.

Weight Initialization
	Glorot, X. & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of AISTATS.	Xavier initialization theory used for network weight initialization.

Evolutionary Algorithms
	Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. MIT Press.
	Foundational text on genetic algorithms.

	Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), 1423-1447.
	Comprehensive survey of neuroevolution approaches.

ONNX Export
	ONNX Consortium (2017-present). Open Neural Network Exchange.	Open standard for neural network interoperability enabling cross-platform inference.

Related Projects
Macula Ecosystem
	macula - HTTP/3 mesh networking platform with NAT traversal, Pub/Sub, and async RPC. Enables distributed neuroevolution across edge devices.

	macula_neuroevolution - Population-based evolutionary training engine that orchestrates neural network evolution using this library.

Inspiration & Related Work
	DXNN2 - Gene Sher's original TWEANN implementation in Erlang, the foundation for this library.

	NEAT-Python - Popular Python implementation of NEAT.

	SharpNEAT - High-performance C# NEAT implementation.

	PyTorch-NEAT - Uber's PyTorch-based NEAT implementation.

	LTC/CfC Reference Implementation - MIT/ISTA reference implementation of LTC networks.

License
Apache License 2.0 - See LICENSE
Credits
Based on DXNN2 by Gene Sher. Adapted with LTC extensions by Macula.io.

actuator

Actuator process for TWEANN networks.
Actuators are the output interface of a neural network. They receive signals from neurons and produce actions or outputs that affect the environment or are used for fitness evaluation.
[bookmark: Actuator_Lifecycle]Actuator Lifecycle
1. Spawned by cortex with configuration 2. Waits for signals from input neurons 3. Accumulates all inputs 4. Calls actuator function to produce output 5. Reports output to cortex 6. Repeats from step 2
[bookmark: Actuator_Functions]Actuator Functions
Actuator functions determine how the neural output is used. Common examples:
- pts - Pass-through sum (for testing) - xor_output - XOR problem output - pole_output - Pole balancing action

 Summary

 Functions

 init(Opts)

 Initialize the actuator and enter the main loop.

 start_link(Opts)

 Start an actuator process.

 Functions

 init(Opts)

 -spec init(map()) -> no_return().

Initialize the actuator and enter the main loop.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()}.

Start an actuator process.
Options: - id - Unique identifier for this actuator - cortex_pid - PID of the controlling cortex - actuator_name - Atom naming the actuator function - vector_length - Expected length of input vector - fanin_pids - List of PIDs that send input to this actuator - scape_pid - PID of the scape/environment (optional) - parameters - Additional parameters for actuator function

brain

Brain process for real-time neural network inference.
A brain is a running neural network that accepts sensor inputs and produces actuator outputs. Unlike the process-per-neuron architecture used during training, this is a single GenServer optimized for real-time inference in applications like games and robotics.
[bookmark: Features]Features
- Synchronous evaluation via evaluate/2 - Internal state persistence for LTC neurons - Visualization data for UI rendering - PubSub notifications for state changes
[bookmark: Usage]Usage
Start a brain with a network: Network = network_evaluator:create_feedforward(42, [16, 8], 6), {ok, Pid} = brain:start_link(#{network => Network})
Evaluate with sensor inputs: Outputs = brain:evaluate(Pid, Inputs)
Get visualization data: VizData = brain:get_viz(Pid)
Subscribe to viz updates (Erlang): brain:subscribe(Pid) receive {brain_viz, Pid, VizData} -> ... end

 Summary

 Functions

 evaluate(Pid, Inputs)

 Evaluate the brain with sensor inputs.

 evaluate_with_activations(Pid, Inputs)

 Evaluate and return both outputs and all layer activations.

 get_network(Pid)

 Get the current network.

 get_topology(Pid)

 Get network topology information.

 get_viz(Pid)

 Get current visualization data.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 set_network(Pid, Network)

 Replace the network (e.g., after mutation).

 start_link(Opts)

 Start a brain process.

 start_link(Name, Opts)

 Start a named brain process.

 stop(Pid)

 Stop the brain process.

 subscribe(BrainPid)

 Subscribe to visualization updates.

 subscribe(BrainPid, SubscriberPid)

 Subscribe a specific process to visualization updates.

 terminate(Reason, State)

 unsubscribe(BrainPid)

 Unsubscribe from visualization updates.

 unsubscribe(BrainPid, SubscriberPid)

 Unsubscribe a specific process from visualization updates.

 Functions

 evaluate(Pid, Inputs)

 -spec evaluate(pid(), [float()]) -> [float()].

Evaluate the brain with sensor inputs.
Returns the output values from the neural network. Also updates internal state and notifies subscribers.

 evaluate_with_activations(Pid, Inputs)

 -spec evaluate_with_activations(pid(), [float()]) -> {[float()], [[float()]]}.

Evaluate and return both outputs and all layer activations.
This is used by the learning system to record experiences. Returns {Outputs, Activations} where Activations includes all layers.

 get_network(Pid)

 -spec get_network(pid()) -> network_evaluator:network().

Get the current network.

 get_topology(Pid)

 -spec get_topology(pid()) -> map().

Get network topology information.

 get_viz(Pid)

 -spec get_viz(pid()) -> map() | undefined.

Get current visualization data.
Returns a map with nodes, connections, and activation levels.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 set_network(Pid, Network)

 -spec set_network(pid(), network_evaluator:network()) -> ok.

Replace the network (e.g., after mutation).

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start a brain process.
Options: - network - The neural network (required, from network_evaluator) - id - Optional identifier for this brain - input_labels - Labels for input neurons (for visualization) - viz_enabled - Enable visualization data (default: true)

 start_link(Name, Opts)

 -spec start_link(term(), map()) -> {ok, pid()} | {error, term()}.

Start a named brain process.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the brain process.

 subscribe(BrainPid)

 -spec subscribe(pid()) -> ok.

Subscribe to visualization updates.
The calling process will receive {brain_viz, Pid, VizData} messages after each evaluation.

 subscribe(BrainPid, SubscriberPid)

 -spec subscribe(pid(), pid()) -> ok.

Subscribe a specific process to visualization updates.

 terminate(Reason, State)

 unsubscribe(BrainPid)

 -spec unsubscribe(pid()) -> ok.

Unsubscribe from visualization updates.

 unsubscribe(BrainPid, SubscriberPid)

 -spec unsubscribe(pid(), pid()) -> ok.

Unsubscribe a specific process from visualization updates.

brain_learner

Brain learner process for weight adaptation via plasticity.
This GenServer manages the learning aspects of a brain system: - Applies plasticity rules to update weights based on neural activity - Maintains an experience buffer for batch learning - Handles reward signals for reinforcement-style learning
[bookmark: Online_Learning]Online Learning
When online learning is enabled, the learner receives activation data after each inference and applies plasticity rules:
Inference → Activations → Learner → Weight Updates → Back to Inference
[bookmark: Batch_Learning]Batch Learning
For delayed rewards (e.g., end of game), the learner buffers experiences and applies learning when a reward is received:
1. Record experiences during episode 2. Receive final reward 3. Apply learning with reward propagation (eligibility traces)
[bookmark: Theory]Theory
This module implements reward-modulated Hebbian learning, where weight changes depend on: - Pre-synaptic activity (input to connection) - Post-synaptic activity (output from connection) - Global reward signal (from environment)
The basic rule: delta_w = learning_rate * pre * post * reward
For delayed rewards, eligibility traces track which synapses were recently active, allowing credit assignment across time.
See also: plasticity, plasticity_modulated.

 Summary

 Types

 experience/0

 Functions

 clear_experience(Pid)

 Clear the experience buffer.

 disable(Pid)

 Disable learning.

 enable(Pid)

 Enable learning.

 get_auto_record(Pid)

 Check if automatic experience recording is enabled.

 get_experience_count(Pid)

 Get the number of buffered experiences.

 get_learning_rate(Pid)

 Get the current learning rate.

 get_plasticity_rule(Pid)

 Get the current plasticity rule.

 get_weight_deltas(Pid)

 Get accumulated weight deltas from last learning step.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_enabled(Pid)

 Check if learning is enabled.

 learn_from_experience(Pid)

 Learn from buffered experiences using current reward.

 learn_from_experience(Pid, FinalReward)

 Learn from buffered experiences with a specific reward.

 record_experience(Pid, Inputs, Activations)

 Record an experience for batch learning.

 reward(Pid, Reward)

 Provide a reward signal.

 set_auto_record(Pid, Enabled)

 Enable or disable automatic experience recording.

 set_baseline_reward(Pid, Baseline)

 Set the baseline reward for comparison.

 set_learning_rate(Pid, Rate)

 Set the learning rate.

 set_plasticity_rule(Pid, Rule)

 Set the plasticity rule.

 start_link(Opts)

 Start a brain learner process.

 stop(Pid)

 Stop the learner process.

 terminate(Reason, State)

 Types

 experience/0

 -type experience() ::
 #{inputs := [float()],
 activations := [[float()]],
 outputs := [float()],
 timestamp := integer()}.

 Functions

 clear_experience(Pid)

 -spec clear_experience(pid()) -> ok.

Clear the experience buffer.

 disable(Pid)

 -spec disable(pid()) -> ok.

Disable learning.

 enable(Pid)

 -spec enable(pid()) -> ok.

Enable learning.

 get_auto_record(Pid)

 -spec get_auto_record(pid()) -> boolean().

Check if automatic experience recording is enabled.

 get_experience_count(Pid)

 -spec get_experience_count(pid()) -> non_neg_integer().

Get the number of buffered experiences.

 get_learning_rate(Pid)

 -spec get_learning_rate(pid()) -> float().

Get the current learning rate.

 get_plasticity_rule(Pid)

 -spec get_plasticity_rule(pid()) -> atom().

Get the current plasticity rule.

 get_weight_deltas(Pid)

 -spec get_weight_deltas(pid()) -> [float()].

Get accumulated weight deltas from last learning step.
Useful for debugging and visualization.

 handle_call(Request, From, State)

 handle_cast(Msg, State)

 handle_info(Info, State)

 init(Opts)

 is_enabled(Pid)

 -spec is_enabled(pid()) -> boolean().

Check if learning is enabled.

 learn_from_experience(Pid)

 -spec learn_from_experience(pid()) -> {ok, non_neg_integer()}.

Learn from buffered experiences using current reward.

 learn_from_experience(Pid, FinalReward)

 -spec learn_from_experience(pid(), float()) -> {ok, non_neg_integer()}.

Learn from buffered experiences with a specific reward.

 record_experience(Pid, Inputs, Activations)

 -spec record_experience(pid(), [float()], [[float()]]) -> ok.

Record an experience for batch learning.

 reward(Pid, Reward)

 -spec reward(pid(), float()) -> ok.

Provide a reward signal.
For online learning, this affects the next weight update. Positive rewards strengthen active connections, negative weaken them.

 set_auto_record(Pid, Enabled)

 -spec set_auto_record(pid(), boolean()) -> ok.

Enable or disable automatic experience recording.
When enabled, the learner automatically records experiences from 'evaluated' events published by the brain via pubsub.

 set_baseline_reward(Pid, Baseline)

 -spec set_baseline_reward(pid(), float()) -> ok.

Set the baseline reward for comparison.
Effective reward = actual_reward - baseline_reward. This helps with reward normalization.

 set_learning_rate(Pid, Rate)

 -spec set_learning_rate(pid(), float()) -> ok.

Set the learning rate.

 set_plasticity_rule(Pid, Rule)

 -spec set_plasticity_rule(pid(), atom()) -> ok.

Set the plasticity rule.
Available rules: none, hebbian, modulated

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start a brain learner process.
Options: - inference_pid - PID of the brain inference process (required for weight updates) - enabled - Whether learning is enabled (default: true) - plasticity_rule - Atom identifying the rule (default: modulated) - learning_rate - Learning rate (default: 0.01) - baseline_reward - Baseline to subtract from rewards (default: 0.0) - max_buffer_size - Max experiences to buffer (default: 1000)

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the learner process.

 terminate(Reason, State)

brain_pubsub

Internal pub/sub for brain subsystem communication using pg.
This module provides a thin wrapper around OTP's pg (process groups) for communication between brain subsystems. It uses pg's built-in group management with brain-specific naming conventions.
[bookmark: Design_Philosophy]Design Philosophy
Brain subsystems communicate through events rather than direct calls: - Publishers don't know about subscribers - Subscribers don't know about publishers - New subsystems can be added without modifying existing code - Events form a clear contract between subsystems
[bookmark: Event_Types]Event Types
| Event | Publisher | Description | |-------|-----------|-------------| | evaluated | brain | After each forward propagation | | reward_received | brain_system | When reward signal arrives | | weights_updated | brain_learner | After plasticity applied | | learning_toggled | brain_system | Learning enabled/disabled |
[bookmark: Usage]Usage
Initialize pubsub for a brain (typically in brain_sup): brain_pubsub:init(BrainId)
Subscribe to events: brain_pubsub:subscribe(BrainId, evaluated) brain_pubsub:subscribe(BrainId, [evaluated, reward_received])
Publish events: brain_pubsub:publish(BrainId, evaluated, #{activations => Acts})
Receive events in subscriber: receive {brain_event, evaluated, Data} -> %% Handle evaluation event ... end
[bookmark: Implementation]Implementation
Uses OTP pg (process groups) with group names of the form: {brain_pubsub, BrainId, Topic}
This allows multiple brain instances to have independent pubsub.

 Summary

 Types

 brain_id/0

 event_data/0

 event_type/0

 Allow custom events

 Functions

 cleanup(BrainId)

 Cleanup pubsub for a brain instance.

 get_subscribers(BrainId, Topic)

 Get list of subscribers for a topic.

 init(BrainId)

 Initialize pubsub for a brain instance.

 list_topics(BrainId)

 List all topics with active subscriptions for a brain.

 publish(BrainId, Topic, Data)

 Publish an event to all subscribers.

 subscribe(BrainId, Topics)

 Subscribe calling process to event type(s).

 subscribe(BrainId, Topic, Pid)

 Subscribe a specific process to an event type.

 unsubscribe(BrainId, Topics)

 Unsubscribe calling process from event type(s).

 unsubscribe(BrainId, Topic, Pid)

 Unsubscribe a specific process from an event type.

 Types

 brain_id/0

 -type brain_id() :: term().

 event_data/0

 -type event_data() :: map().

 event_type/0

 -type event_type() ::
 evaluated | reward_received | weights_updated | learning_toggled | experience_recorded |
 weights_requested | weights_response |
 atom().

Allow custom events

 Functions

 cleanup(BrainId)

 -spec cleanup(brain_id()) -> ok.

Cleanup pubsub for a brain instance.
Removes all subscriptions for the current process related to this brain. Typically called during brain shutdown.

 get_subscribers(BrainId, Topic)

 -spec get_subscribers(brain_id(), event_type()) -> [pid()].

Get list of subscribers for a topic.

 init(BrainId)

 -spec init(brain_id()) -> ok.

Initialize pubsub for a brain instance.
This ensures the pg scope is started. Safe to call multiple times. Typically called from brain_sup during initialization.

 list_topics(BrainId)

 -spec list_topics(brain_id()) -> [event_type()].

List all topics with active subscriptions for a brain.

 publish(BrainId, Topic, Data)

 -spec publish(brain_id(), event_type(), event_data()) -> ok.

Publish an event to all subscribers.
Sends {brain_event, Topic, Data} to all processes subscribed to this topic. This is asynchronous - returns immediately after sending.

 subscribe(BrainId, Topics)

 -spec subscribe(brain_id(), event_type() | [event_type()]) -> ok.

Subscribe calling process to event type(s).

 subscribe(BrainId, Topic, Pid)

 -spec subscribe(brain_id(), event_type(), pid()) -> ok.

Subscribe a specific process to an event type.

 unsubscribe(BrainId, Topics)

 -spec unsubscribe(brain_id(), event_type() | [event_type()]) -> ok.

Unsubscribe calling process from event type(s).

 unsubscribe(BrainId, Topic, Pid)

 -spec unsubscribe(brain_id(), event_type(), pid()) -> ok.

Unsubscribe a specific process from an event type.

brain_sup

Supervisor for brain system components.
This supervisor manages the inference and learning processes that together form a brain system. The supervision strategy is one_for_all because learning depends on inference state.
[bookmark: Architecture]Architecture
brain_sup (one_for_all) | +-- brain (inference GenServer) | Forward propagation | Visualization data | Network state management | Publishes: evaluated | +-- brain_learner (learning GenServer) [optional] Plasticity rule application Experience buffer Weight updates Subscribes to: evaluated, reward_received Publishes: weights_updated
[bookmark: Communication]Communication
Subsystems communicate via brain_pubsub (built on OTP pg): - brain publishes evaluated after each forward pass - brain_learner subscribes to receive activations - brain_learner publishes weights_updated after learning - brain subscribes to update its network weights
[bookmark: Future_Expansion]Future Expansion
This supervisor is designed to accommodate future brain subsystems: - brain_memory: Episodic memory storage - brain_attention: Focus and salience control - brain_prediction: Forward model / world model

 Summary

 Functions

 get_inference_pid(SupPid)

 Get the PID of the inference process.

 get_learner_pid(SupPid)

 Get the PID of the learner process.

 init(Opts)

 start_link(Opts)

 Start an unnamed brain supervisor.

 start_link(Name, Opts)

 Start a named brain supervisor.

 Functions

 get_inference_pid(SupPid)

 -spec get_inference_pid(pid()) -> pid() | undefined.

Get the PID of the inference process.

 get_learner_pid(SupPid)

 -spec get_learner_pid(pid()) -> pid() | undefined.

Get the PID of the learner process.

 init(Opts)

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start an unnamed brain supervisor.
Options: - network - The neural network (required) - learning_enabled - Start learner process (default: false) - plasticity_rule - Rule for learning (default: modulated) - learning_rate - Learning rate (default: 0.01) - input_labels - Labels for visualization - viz_enabled - Enable visualization (default: true)

 start_link(Name, Opts)

 -spec start_link(term(), map()) -> {ok, pid()} | {error, term()}.

Start a named brain supervisor.

brain_system

Brain system facade - unified API for neural network inference and learning.
This module provides a high-level API for working with brain systems. A brain system consists of: - An inference process (brain.erl) for forward propagation - An optional learner process (brain_learner.erl) for weight adaptation
Both processes are supervised by brain_sup.erl.
[bookmark: Starting_a_Brain_System]Starting a Brain System
Simple inference-only brain: Network = network_evaluator:create_feedforward(42, [16, 8], 6), {ok, Pid} = brain_system:start_link(#{network => Network})
Brain with learning enabled: {ok, Pid} = brain_system:start_link(#{ network => Network, learning_enabled => true, plasticity_rule => modulated })
[bookmark: Evaluation]Evaluation
Evaluate with recording for later learning: Outputs = brain_system:evaluate(Pid, Inputs)
[bookmark: Learning]Learning
Online learning (immediate weight updates): brain_system:reward(Pid, 1.0) %% Positive reward brain_system:learn_step(Pid) %% Apply learning
Batch learning (from experience buffer): brain_system:start_recording(Pid) %% ... run episode ... brain_system:learn_from_experience(Pid, FinalReward)
[bookmark: Architecture]Architecture
brain_system (this module - facade) | v brain_sup (supervisor) | +-- brain (inference) +-- brain_learner (learning, optional)

 Summary

 Types

 brain_system/0

 Functions

 clear_experience(Brain_system)

 Clear the experience buffer.

 disable_learning(Brain_system)

 Disable learning.

 enable_learning(Brain_system)

 Enable learning.

 evaluate(Brain_system, Inputs)

 Evaluate the brain with sensor inputs.

 get_brain_id(Brain_system)

 Get the brain ID used for pubsub communication.

 get_inference_pid(Brain_system)

 Get the inference process PID.

 get_learner_pid(Brain_system)

 Get the learner process PID.

 get_learning_rate(Brain_system)

 Get the current learning rate.

 get_network(Brain_system)

 Get the current network.

 get_plasticity_rule(Brain_system)

 Get the current plasticity rule.

 get_topology(Brain_system)

 Get network topology.

 get_viz(Brain_system)

 Get visualization data.

 has_learner(Brain_system)

 Check if the system has a learner.

 is_learning_enabled(Brain_system)

 Check if learning is enabled.

 learn_from_experience(System)

 Learn from buffered experiences with current reward.

 learn_from_experience(Brain_system, Reward)

 Learn from buffered experiences with a specific reward.

 learn_step(Brain_system)

 Perform a learning step using current reward.

 reward(Brain_system, Reward)

 Provide a reward signal.

 set_learning_rate(Brain_system, Rate)

 Set the learning rate.

 set_network(Brain_system, Network)

 Replace the network.

 set_plasticity_rule(Brain_system, Rule)

 Set the plasticity rule.

 start_link(Opts)

 Start a brain system.

 start_link(Name, Opts)

 Start a named brain system.

 start_recording(Brain_system)

 Start recording experiences for batch learning.

 stop(Brain_system)

 Stop a brain system.

 stop_recording(Brain_system)

 Stop recording experiences.

 subscribe(Brain_system)

 Subscribe to visualization updates.

 subscribe(Brain_system, SubscriberPid)

 Subscribe a specific process to visualization updates.

 unsubscribe(Brain_system)

 Unsubscribe from visualization updates.

 unsubscribe(Brain_system, SubscriberPid)

 Unsubscribe a specific process.

 Types

 brain_system/0

 -opaque brain_system()

 Functions

 clear_experience(Brain_system)

 -spec clear_experience(brain_system()) -> ok | {error, no_learner}.

Clear the experience buffer.

 disable_learning(Brain_system)

 -spec disable_learning(brain_system()) -> ok | {error, no_learner}.

Disable learning.

 enable_learning(Brain_system)

 -spec enable_learning(brain_system()) -> ok | {error, no_learner}.

Enable learning.

 evaluate(Brain_system, Inputs)

 -spec evaluate(brain_system(), [float()]) -> [float()].

Evaluate the brain with sensor inputs.
The brain publishes an 'evaluated' event via pubsub after each evaluation. If the learner has auto_record enabled, it will automatically record experiences from these events.

 get_brain_id(Brain_system)

 -spec get_brain_id(brain_system()) -> term().

Get the brain ID used for pubsub communication.

 get_inference_pid(Brain_system)

 -spec get_inference_pid(brain_system()) -> pid().

Get the inference process PID.

 get_learner_pid(Brain_system)

 -spec get_learner_pid(brain_system()) -> pid() | undefined.

Get the learner process PID.

 get_learning_rate(Brain_system)

 -spec get_learning_rate(brain_system()) -> float() | {error, no_learner}.

Get the current learning rate.

 get_network(Brain_system)

 -spec get_network(brain_system()) -> network_evaluator:network().

Get the current network.

 get_plasticity_rule(Brain_system)

 -spec get_plasticity_rule(brain_system()) -> atom() | {error, no_learner}.

Get the current plasticity rule.

 get_topology(Brain_system)

 -spec get_topology(brain_system()) -> map().

Get network topology.

 get_viz(Brain_system)

 -spec get_viz(brain_system()) -> map() | undefined.

Get visualization data.

 has_learner(Brain_system)

 -spec has_learner(brain_system()) -> boolean().

Check if the system has a learner.

 is_learning_enabled(Brain_system)

 -spec is_learning_enabled(brain_system()) -> boolean().

Check if learning is enabled.

 learn_from_experience(System)

 -spec learn_from_experience(brain_system()) -> {ok, non_neg_integer()} | {error, no_learner}.

Learn from buffered experiences with current reward.

 learn_from_experience(Brain_system, Reward)

 -spec learn_from_experience(brain_system(), float()) -> {ok, non_neg_integer()} | {error, no_learner}.

Learn from buffered experiences with a specific reward.

 learn_step(Brain_system)

 -spec learn_step(brain_system()) -> {ok, non_neg_integer()} | {error, no_learner}.

Perform a learning step using current reward.
This applies the plasticity rule to update weights based on the most recent experience and current reward.

 reward(Brain_system, Reward)

 -spec reward(brain_system(), float()) -> ok | {error, no_learner}.

Provide a reward signal.
For modulated learning, positive rewards strengthen active connections, negative rewards weaken them.
This publishes a 'reward_received' event via pubsub, which the learner receives and uses for future weight updates.

 set_learning_rate(Brain_system, Rate)

 -spec set_learning_rate(brain_system(), float()) -> ok | {error, no_learner}.

Set the learning rate.

 set_network(Brain_system, Network)

 -spec set_network(brain_system(), network_evaluator:network()) -> ok.

Replace the network.

 set_plasticity_rule(Brain_system, Rule)

 -spec set_plasticity_rule(brain_system(), atom()) -> ok | {error, no_learner}.

Set the plasticity rule.

 start_link(Opts)

 -spec start_link(map()) -> {ok, brain_system()} | {error, term()}.

Start a brain system.
This starts the supervisor and all child processes, then connects the learner to the inference process if learning is enabled.
Options: - network - The neural network (required) - learning_enabled - Start learner process (default: false) - plasticity_rule - Rule for learning (default: modulated) - learning_rate - Learning rate (default: 0.01) - input_labels - Labels for visualization - viz_enabled - Enable visualization (default: true)

 start_link(Name, Opts)

 -spec start_link(term(), map()) -> {ok, brain_system()} | {error, term()}.

Start a named brain system.

 start_recording(Brain_system)

 -spec start_recording(brain_system()) -> ok | {error, no_learner}.

Start recording experiences for batch learning.
This enables auto_record in the learner, which will automatically record experiences from 'evaluated' events published by the brain.

 stop(Brain_system)

 -spec stop(brain_system()) -> ok.

Stop a brain system.

 stop_recording(Brain_system)

 -spec stop_recording(brain_system()) -> ok | {error, no_learner}.

Stop recording experiences.
This disables auto_record in the learner.

 subscribe(Brain_system)

 -spec subscribe(brain_system()) -> ok.

Subscribe to visualization updates.

 subscribe(Brain_system, SubscriberPid)

 -spec subscribe(brain_system(), pid()) -> ok.

Subscribe a specific process to visualization updates.

 unsubscribe(Brain_system)

 -spec unsubscribe(brain_system()) -> ok.

Unsubscribe from visualization updates.

 unsubscribe(Brain_system, SubscriberPid)

 -spec unsubscribe(brain_system(), pid()) -> ok.

Unsubscribe a specific process.

constructor

Phenotype constructor for TWEANN networks.
This module converts genotypes (genetic descriptions) into phenotypes (running neural network processes). It spawns sensor, neuron, actuator, and cortex processes based on the genotype specification.
Based on DXNN2 by Gene Sher ("Handbook of Neuroevolution through Erlang").
[bookmark: Construction_Process]Construction Process
1. Read agent genotype from Mnesia database 2. Spawn all sensors, neurons, and actuators 3. Build PID mappings from genotype IDs to process PIDs 4. Spawn cortex to coordinate the network 5. Return phenotype record with all PIDs
[bookmark: Phenotype_Record]Phenotype Record
The phenotype is a map containing: - agent_id: Original agent ID - cortex_pid: PID of the cortex process - sensor_pids: List of sensor PIDs - neuron_pids: List of neuron PIDs - actuator_pids: List of actuator PIDs - id_to_pid: Map from genotype IDs to PIDs

 Summary

 Functions

 construct(AgentId)

 Construct a phenotype from an agent genotype.

 construct(AgentId, Opts)

 Construct a phenotype with options.

 terminate(Phenotype)

 Terminate a phenotype (stop all processes).

 Functions

 construct(AgentId)

 -spec construct(term()) ->
 #{agent_id := term(),
 cortex_pid := pid(),
 sensor_pids := [pid()],
 neuron_pids := [pid()],
 actuator_pids := [pid()],
 id_to_pid := map()}.

Construct a phenotype from an agent genotype.
Spawns all neural network processes and returns a phenotype record.

 construct(AgentId, Opts)

 -spec construct(term(), map()) ->
 #{agent_id := term(),
 cortex_pid := pid(),
 sensor_pids := [pid()],
 neuron_pids := [pid()],
 actuator_pids := [pid()],
 id_to_pid := map()}.

Construct a phenotype with options.
Options: - exoself_pid: PID to receive cortex messages (default: self()) - scape_pid: PID of the environment/scape (default: undefined)

 terminate(Phenotype)

 -spec terminate(map()) -> ok.

Terminate a phenotype (stop all processes).
Sends terminate signal to the cortex, which terminates all components.

cortex

Neural network coordinator for TWEANN networks.
The cortex is the central coordinator of a neural network. It manages the lifecycle of all neurons, sensors, and actuators, and orchestrates the signal flow through the network during evaluation cycles.
[bookmark: Cortex_Lifecycle]Cortex Lifecycle
1. Spawned with network topology information 2. Spawns all sensors, neurons, and actuators 3. Initiates evaluation cycles by triggering sensors 4. Waits for all actuators to complete 5. Collects fitness from actuators 6. Reports fitness or initiates next cycle 7. Handles backup requests for weight storage
[bookmark: Evaluation_Cycle]Evaluation Cycle
1. Cortex sends sync to all sensors 2. Sensors read input and forward to neurons 3. Neurons process and forward through network 4. Actuators collect outputs and report to cortex 5. Cortex aggregates results

 Summary

 Functions

 backup(CortexPid)

 Request backup of all neuron weights.

 init(Opts)

 Initialize the cortex and enter the main loop.

 start_link(Opts)

 Start a cortex process.

 sync(CortexPid)

 Trigger a synchronization cycle.

 terminate(CortexPid)

 Terminate the cortex and all its components.

 Functions

 backup(CortexPid)

 -spec backup(pid()) -> ok.

Request backup of all neuron weights.
The cortex will collect weights from all neurons and send them to the exoself for storage.

 init(Opts)

 -spec init(map()) -> no_return().

Initialize the cortex and enter the main loop.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()}.

Start a cortex process.
Options: - id - Unique identifier for this cortex - exoself_pid - PID to report results to (optional) - sensor_pids - List of sensor PIDs - neuron_pids - List of neuron PIDs - actuator_pids - List of actuator PIDs - max_cycles - Maximum evaluation cycles (default: infinity)

 sync(CortexPid)

 -spec sync(pid()) -> ok.

Trigger a synchronization cycle.
This starts an evaluation cycle by signaling all sensors.

 terminate(CortexPid)

 -spec terminate(pid()) -> ok.

Terminate the cortex and all its components.

crossover

Genetic crossover (recombination) for neural networks.
This module implements sexual reproduction by combining genetic material from two parent agents to create offspring. Crossover enables exploration of the solution space by mixing successful traits from different individuals.
[bookmark: Crossover_Strategies]Crossover Strategies
Network-Level Crossover: - Select matching neurons from both parents - Randomly choose which parent contributes each neuron - Inherit connections and weights from selected neurons - Handles structural differences (different topologies)
Neuron-Level Crossover: - For matching neurons, can mix properties: * Activation function from parent A * Weights from parent B * Bias from parent A - Creates fine-grained genetic mixing
Weight-Level Crossover: - For matching connections, blend weights: * Averaging: W_child = (W_A + W_B) / 2 * Random selection: W_child = random choice of W_A or W_B * Weighted average based on fitness - Preserves promising weight configurations
[bookmark: Implementation_Notes]Implementation Notes
Matching Strategy: - Neurons match by layer coordinate - Connections match by source/target pair - Unmatched elements inherited from fitter parent
Compatibility: - Parents must have compatible morphologies - Sensor/actuator counts must match - Layer structure should align (though not required)

 Summary

 Types

 actuator_id/0

 cortex_id/0

 delta_weight/0

 element_id/0

 learning_rate/0

 neuron_id/0

 parameter_list/0

 sensor_id/0

 unique_id/0

 weight/0

 weight_list/0

 weight_spec/0

 weighted_input/0

 weighted_inputs/0

 Functions

 crossover(Parent1Id, Parent2Id)

 Perform genetic crossover between two parent agents.

 neuron_crossover(Neuron, Neuron, CrossoverRate)

 Perform neuron-level crossover.

 weight_crossover(Weights1, Weights2, CrossoverRate)

 Perform weight-level crossover.

 Types

 actuator_id/0

 -type actuator_id() :: {unique_id(), actuator}.

 cortex_id/0

 -type cortex_id() :: {unique_id(), cortex}.

 delta_weight/0

 -type delta_weight() :: float().

 element_id/0

 -type element_id() :: neuron_id() | sensor_id() | actuator_id() | cortex_id().

 learning_rate/0

 -type learning_rate() :: float().

 neuron_id/0

 -type neuron_id() :: {unique_id(), neuron}.

 parameter_list/0

 -type parameter_list() :: [float()].

 sensor_id/0

 -type sensor_id() :: {unique_id(), sensor}.

 unique_id/0

 -type unique_id() :: {float(), float()}.

 weight/0

 -type weight() :: float().

 weight_list/0

 -type weight_list() :: [weight_spec()].

 weight_spec/0

 -type weight_spec() :: {weight(), delta_weight(), learning_rate(), parameter_list()}.

 weighted_input/0

 -type weighted_input() :: {element_id(), weight_list()}.

 weighted_inputs/0

 -type weighted_inputs() :: [weighted_input()].

 Functions

 crossover(Parent1Id, Parent2Id)

 -spec crossover(term(), term()) -> {float(), agent}.

Perform genetic crossover between two parent agents.
Creates a new offspring agent by combining genetic material from two parents. The offspring inherits a mix of neurons, connections, and weights from both parents.
Algorithm: 1. Clone one parent as base structure 2. For each matching neuron, perform neuron-level crossover 3. For unmatched neurons, inherit from fitter parent 4. Return offspring agent ID
Example: Parent1 = {1.0, agent} Parent2 = {2.0, agent} Offspring = crossover(Parent1, Parent2) % Offspring inherits mix of traits from both parents

 neuron_crossover(Neuron, Neuron, CrossoverRate)

 -spec neuron_crossover(#neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()},
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()},
 float()) ->
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()}.

Perform neuron-level crossover.
Combines properties from matching neurons in both parents. Can mix activation function, weights, LTC parameters, etc.
Strategy: - Activation function: random choice from parents - Input weights: weight-level crossover - Aggregation function: random choice - Output connections: union of both parents - LTC parameters: random choice with averaging for continuous values
Example: Neuron1 = #neuron{af = tanh, ...} Neuron2 = #neuron{af = sigmoid, ...} Result = neuron_crossover(Neuron1, Neuron2, 0.5) % Result might have tanh from parent 1

 weight_crossover(Weights1, Weights2, CrossoverRate)

 -spec weight_crossover(weighted_inputs(), weighted_inputs(), float()) -> weighted_inputs().

Perform weight-level crossover.
Combines weight vectors from two parent neurons. For matching connections (same source), blends weights. For unmatched connections, includes from both parents.
Blending strategies: - Averaging: (W1 + W2) / 2 - Random selection: random choice - Crossover rate determines probability
Example: Weights1 = [{sensor1, [{0.5, 0.0, 0.01, []}]}] Weights2 = [{sensor1, [{-0.3, 0.0, 0.01, []}]}] Result = weight_crossover(Weights1, Weights2, 0.5) % Might average to [{sensor1, [{0.1, 0.0, 0.01, []}]}]

exoself

Exoself - Neural network lifecycle manager
The exoself is responsible for spawning, linking, and managing the lifecycle of a neural network phenotype from its genotype. It handles:
- Spawning all network processes (sensors, neurons, actuators, cortex) - Linking processes with their inputs and outputs - Weight tuning with simulated annealing - Network backup and restoration - Fitness evaluation coordination
[bookmark: Lifecycle]Lifecycle
1. prep/3 - Initialize state and spawn network 2. loop/1 - Handle tuning cycles and evaluation 3. Terminate - Clean up network processes
[bookmark: Tuning_Algorithm]Tuning Algorithm
The exoself uses memetic weight tuning with simulated annealing: 1. Perturb subset of weights 2. Evaluate network fitness 3. If better: keep changes, update best 4. If worse: restore previous weights 5. Reduce perturbation over attempts (annealing)

 Summary

 Functions

 calculate_perturbation(InitialRange, Attempt, MaxAttempts, AnnealingParam)

 Calculate perturbation for current attempt using annealing.

 init(CallerPid, AgentId, PopMonitorPid, OpMode)

 Initialize the exoself and spawn the network.

 prep(AgentId, PopMonitorPid, OpMode)

 Prepare and start the network (called by spawned process).

 start(AgentId, PopMonitorPid, OpMode)

 Start an exoself process for an agent.

 Functions

 calculate_perturbation(InitialRange, Attempt, MaxAttempts, AnnealingParam)

 -spec calculate_perturbation(float(), pos_integer(), pos_integer(), float()) -> float().

Calculate perturbation for current attempt using annealing.
Exported for testing.

 init(CallerPid, AgentId, PopMonitorPid, OpMode)

 -spec init(pid() | undefined, term(), pid() | undefined, gt | validation | test) -> no_return().

Initialize the exoself and spawn the network.

 prep(AgentId, PopMonitorPid, OpMode)

 -spec prep(term(), pid() | undefined, gt | validation | test) -> no_return().

Prepare and start the network (called by spawned process).

 start(AgentId, PopMonitorPid, OpMode)

 -spec start(term(), pid() | undefined, gt | validation | test) -> {ok, pid()}.

Start an exoself process for an agent.
Spawns an exoself that will construct and manage the phenotype for the given agent.

fitness_postprocessor

Fitness postprocessing for multi-objective optimization.
This module provides fitness transformation functions to apply domain-specific knowledge or constraints to raw fitness values before selection. Common use cases:
- Penalize complex solutions (parsimony pressure) - Normalize fitness across objectives - Apply Pareto dominance for multi-objective optimization - Age-based fitness adjustments
[bookmark: Postprocessing_Strategies]Postprocessing Strategies
Size Proportional: - Penalize agents with more neurons/connections - Encourages simpler solutions (Occam's Razor) - Helps prevent bloat in network topology - Formula: AdjustedFitness = RawFitness - (Size * Penalty)
Normalize: - Scale fitness to [0, 1] range within population - Prevents one objective from dominating in multi-objective case - Useful when objectives have different scales - Formula: Normalized = (F - Min) / (Max - Min)
Pareto Dominance: - Assign ranks based on Pareto dominance relationships - Non-dominated solutions get rank 1 (best) - Enables true multi-objective optimization - Returns Pareto fronts as fitness ranks
[bookmark: Multi-Objective_Fitness]Multi-Objective Fitness
All functions work with fitness vectors [F1, F2, ...]. Single-objective case is just a vector with one element [F1].

 Summary

 Functions

 normalize(AgentFitnesses)

 Normalize fitness values to [0, 1] range.

 pareto_dominance(AgentFitnesses)

 Assign Pareto ranks based on dominance relationships.

 size_proportional(AgentFitnesses, PenaltyFactor)

 Apply size-proportional fitness penalty (parsimony pressure).

 Functions

 normalize(AgentFitnesses)

 -spec normalize([{term(), [float()]}]) -> [{term(), [float()]}].

Normalize fitness values to [0, 1] range.
Scales each fitness objective independently to the range [0, 1] based on the min and max values in the population. This prevents objectives with large magnitudes from dominating selection.
If all agents have the same fitness for an objective (no variance), that objective is set to 0.5 for all agents.
Example: AgentFitnesses = [{agent1, [100.0, 10.0]}, {agent2, [50.0, 20.0]}, {agent3, [0.0, 15.0]}] Result = [{agent1, [1.0, 0.0]}, % Max on F1, min on F2 {agent2, [0.5, 1.0]}, % Mid on F1, max on F2 {agent3, [0.0, 0.5]} % Min on F1, mid on F2]

 pareto_dominance(AgentFitnesses)

 -spec pareto_dominance([{term(), [float()]}]) -> [{term(), [float()]}].

Assign Pareto ranks based on dominance relationships.
Implements fast non-dominated sorting (NSGA-II algorithm) to assign Pareto ranks to agents. Lower rank is better (rank 1 = non-dominated).
Agent A dominates Agent B if: - A is no worse than B in all objectives, AND - A is strictly better than B in at least one objective
The result is a single-objective fitness [Rank] where Rank indicates which Pareto front the agent belongs to.
Example: AgentFitnesses = [{agent1, [100.0, 10.0]}, % Good on F1, poor on F2 {agent2, [50.0, 50.0]}, % Balanced {agent3, [10.0, 100.0]}, % Poor on F1, good on F2 {agent4, [30.0, 30.0]} % Dominated by agent2] Result = [{agent1, [1.0]}, % Front 1 (non-dominated) {agent2, [1.0]}, % Front 1 (non-dominated) {agent3, [1.0]}, % Front 1 (non-dominated) {agent4, [2.0]} % Front 2 (dominated by agent2)]

 size_proportional(AgentFitnesses, PenaltyFactor)

 -spec size_proportional([{term(), [float()]}], float()) -> [{term(), [float()]}].

Apply size-proportional fitness penalty (parsimony pressure).
Penalizes agents with larger networks to encourage compact solutions. This helps prevent bloat where networks grow unnecessarily complex without improving performance.
The penalty is calculated as: Size * PenaltyFactor where Size is the number of neurons in the agent's network.
Example: AgentFitnesses = [{agent1, [100.0]}, {agent2, [100.0]}, {agent3, [80.0]}] PenaltyFactor = 0.1
Assuming agent1 has 10 neurons, agent2 has 5 neurons, agent3 has 15 neurons: Result = [{agent1, [99.0]}, % 100.0 - (10 * 0.1) {agent2, [99.5]}, % 100.0 - (5 * 0.1) {agent3, [78.5]} % 80.0 - (15 * 0.1)]

functions

Activation and utility functions for neural computation.
This module provides activation functions used by neurons to transform aggregated input signals into output signals, plus utility functions for saturation and scaling.
Based on DXNN2 by Gene Sher ("Handbook of Neuroevolution through Erlang").
[bookmark: Activation_Functions]Activation Functions
Monotonic:
- tanh - Hyperbolic tangent, smooth, range [-1, 1]
- sigmoid - Logistic function, range [0, 1]
- sigmoid1 - Alternative sigmoid, range [-1, 1]
- linear - Identity function (no transformation)
Periodic:
- sin - Sine function
- cos - Cosine function
Radial Basis:
- gaussian - Bell curve, peaks at 0
- multiquadric - sqrt(x^2 + c)
Threshold:
- sgn - Sign function {-1, 0, 1}
- bin - Binary threshold {0, 1}
- trinary - Three-level output {-1, 0, 1}
Other:
- absolute - Absolute value
- quadratic - Signed square
- sqrt - Signed square root
- log - Signed logarithm
[bookmark: Extensions_(not_in_original_DXNN2)]Extensions (not in original DXNN2)
- cubic - Cube function x^3
- relu - Rectified Linear Unit max(0, x)
[bookmark: Utility_Functions]Utility Functions
- saturation/1,2 - Clamp values to prevent overflow
- sat/3 - Clamp to [min, max] range
- sat_dzone/5 - Saturation with dead zone
- scale/3,5 - Scale values between ranges

 Summary

 Functions

 absolute(Val)

 Absolute value activation function

 avg(List)

 Calculate average of a list

 bin(Val)

 Binary threshold function

 cos(Val)

 Cosine activation function

 cubic(Val)

 Cubic activation function

 gaussian(Val)

 Gaussian (radial basis) activation function

 gaussian(Base, Val)

 Gaussian with custom base

 linear(Val)

 Linear (identity) activation function

 log(Val)

 Logarithm activation function

 multiquadric(Val)

 Multiquadric activation function

 quadratic(Val)

 Quadratic activation function

 relu(Val)

 Rectified Linear Unit (ReLU) activation function

 sat(Val, Max, Min)

 Clamp value to range [Min, Max]

 sat_dzone(Val, Max, Min, DZMax, DZMin)

 Clamp value with dead zone

 saturation(Val)

 Clamp value to default range [-1000, 1000]

 saturation(Val, Spread)

 Clamp value to symmetric range [-Spread, Spread]

 scale(T, Max, Min)

 Scale list or value from one range to [-1, 1]

 scale(Val, FromMin, FromMax, ToMin, ToMax)

 Scale value from one range to another

 sgn(Val)

 Sign function

 sigmoid1(Val)

 Alternative sigmoid activation function

 sigmoid(Val)

 Sigmoid (logistic) activation function

 sin(Val)

 Sine activation function

 sqrt(Val)

 Square root activation function

 std(List)

 Calculate standard deviation of a list

 tanh(Val)

 Hyperbolic tangent activation function

 trinary(Val)

 Trinary threshold function

 Functions

 absolute(Val)

 -spec absolute(number()) -> number().

Absolute value activation function

 avg(List)

 -spec avg([number()]) -> float().

Calculate average of a list

 bin(Val)

 -spec bin(number()) -> 0 | 1.

Binary threshold function
Returns 1 for positive input, 0 otherwise.

 cos(Val)

 -spec cos(float()) -> float().

Cosine activation function
Periodic function with range [-1, 1]. cos(0) = 1, phase-shifted from sine.

 cubic(Val)

 -spec cubic(float()) -> float().

Cubic activation function
Signed cube: x^3 Preserves sign while strongly amplifying magnitude.

 gaussian(Val)

 -spec gaussian(float()) -> float().

Gaussian (radial basis) activation function
Bell curve centered at 0, peaks at 1.0, decays towards 0. Mathematical definition: e^(-x^2)
Input is clamped to [-10, 10] to prevent underflow.
Properties: - Output range: (0, 1] - gaussian(0) = 1 - Radially symmetric

 gaussian(Base, Val)

 -spec gaussian(float(), float()) -> float().

Gaussian with custom base

 linear(Val)

 -spec linear(float()) -> float().

Linear (identity) activation function
No transformation - output equals input. Used for output neurons when raw values are needed.

 log(Val)

 -spec log(number()) -> float().

Logarithm activation function
Signed logarithm: sgn(x) * ln(|x|) Handles zero input specially.

 multiquadric(Val)

 -spec multiquadric(float()) -> float().

Multiquadric activation function
Mathematical definition: sqrt(x^2 + 0.01) Always positive, smooth at origin.

 quadratic(Val)

 -spec quadratic(float()) -> float().

Quadratic activation function
Signed square: sgn(x) * x^2 Preserves sign while amplifying magnitude.

 relu(Val)

 -spec relu(float()) -> float().

Rectified Linear Unit (ReLU) activation function
Returns max(0, x). Popular in deep learning for its simplicity and effectiveness.

 sat(Val, Max, Min)

 -spec sat(number(), number(), number()) -> number().

Clamp value to range [Min, Max]

 sat_dzone(Val, Max, Min, DZMax, DZMin)

 -spec sat_dzone(number(), number(), number(), number(), number()) -> number().

Clamp value with dead zone
Values within the dead zone [DZMin, DZMax] are set to 0. Values outside are clamped to [Min, Max].

 saturation(Val)

 -spec saturation(number()) -> number().

Clamp value to default range [-1000, 1000]
Prevents numerical overflow in subsequent calculations.

 saturation(Val, Spread)

 -spec saturation(number(), number()) -> number().

Clamp value to symmetric range [-Spread, Spread]

 scale(T, Max, Min)

 -spec scale([number()] | number(), number(), number()) -> [float()] | float().

Scale list or value from one range to [-1, 1]
Normalizes values using: (Val*2 - (Max + Min)) / (Max - Min)

 scale(Val, FromMin, FromMax, ToMin, ToMax)

 -spec scale(number(), number(), number(), number(), number()) -> float().

Scale value from one range to another
Linear interpolation from [FromMin, FromMax] to [ToMin, ToMax].

 sgn(Val)

 -spec sgn(number()) -> -1 | 0 | 1.

Sign function
Returns the sign of the input value.

 sigmoid1(Val)

 -spec sigmoid1(float()) -> float().

Alternative sigmoid activation function
Maps to range [-1, 1] using: x / (1 + |x|)
Properties: - Output range: (-1, 1) - sigmoid1(0) = 0 - Faster to compute than standard sigmoid - Derivative: 1 / (1 + |x|)^2

 sigmoid(Val)

 -spec sigmoid(float()) -> float().

Sigmoid (logistic) activation function
S-shaped curve mapping to range [0, 1]. Mathematical definition: 1 / (1 + e^-x)
Input is clamped to [-10, 10] to prevent overflow.
Properties: - Output range: (0, 1) - sigmoid(0) = 0.5 - Derivative: y * (1 - y)

 sin(Val)

 -spec sin(float()) -> float().

Sine activation function
Periodic function with range [-1, 1]. Useful for oscillatory patterns and fourier-like representations.

 sqrt(Val)

 -spec sqrt(float()) -> float().

Square root activation function
Signed square root: sgn(x) * sqrt(|x|) Compresses magnitude while preserving sign.

 std(List)

 -spec std([number()]) -> float().

Calculate standard deviation of a list

 tanh(Val)

 -spec tanh(float()) -> float().

Hyperbolic tangent activation function
Maps input to range [-1, 1] with smooth gradient. Mathematical definition: tanh(x) = (e^x - e^-x) / (e^x + e^-x)
Properties: - Output range: [-1, 1] - tanh(0) = 0 - Smooth derivative (good for learning) - Most commonly used activation in neuroevolution

 trinary(Val)

 -spec trinary(float()) -> -1 | 0 | 1.

Trinary threshold function
Returns -1, 0, or 1 based on threshold of 0.33.

genome_crossover

NEAT-style crossover for variable topology neural networks.
This module implements crossover operations that work with networks of different topologies by aligning genes via innovation numbers.
Key concepts from NEAT (Stanley and Miikkulainen, 2002): - Matching genes: Same innovation in both parents, randomly inherit - Disjoint genes: Present in one parent within the other's range - Excess genes: Present in one parent beyond the other's max innovation
For speciation, compatibility distance measures structural difference using weighted sum of disjoint/excess counts and weight differences.

 Summary

 Types

 alignment_result/0

 connection_gene/0

 fitter_parent/0

 genome/0

 Functions

 align_genomes(Genome1, Genome2)

 Align two genomes by innovation number.

 compatibility_distance(Genome1, Genome2, Compatibility_config)

 Calculate compatibility distance between two genomes.

 crossover(Genome1, Genome2, FitterParent)

 Perform NEAT-style crossover between two genomes.

 extract_connection_genes(AgentId)

 Extract connection genes from an agent's neural network.

 Types

 alignment_result/0

 -type alignment_result() ::
 {Matching :: [{connection_gene(), connection_gene()}],
 Disjoint1 :: [connection_gene()],
 Disjoint2 :: [connection_gene()],
 Excess1 :: [connection_gene()],
 Excess2 :: [connection_gene()]}.

 connection_gene/0

 -type connection_gene() ::
 #connection_gene{innovation :: pos_integer() | undefined,
 from_id :: term(),
 to_id :: term(),
 weight :: float(),
 enabled :: boolean()}.

 fitter_parent/0

 -type fitter_parent() :: 1 | 2 | equal.

 genome/0

 -type genome() :: [connection_gene()].

 Functions

 align_genomes(Genome1, Genome2)

 -spec align_genomes(genome(), genome()) -> alignment_result().

Align two genomes by innovation number.
Categorizes genes into: - Matching: Same innovation in both parents - Disjoint: Present in one parent, within the other's innovation range - Excess: Present in one parent, beyond the other's max innovation

 compatibility_distance(Genome1, Genome2, Compatibility_config)

 -spec compatibility_distance(genome(),
 genome(),
 #compatibility_config{c1 :: float(), c2 :: float(), c3 :: float()}) ->
 float().

Calculate compatibility distance between two genomes.
Uses the NEAT formula: delta = (c1 * E / N) + (c2 * D / N) + (c3 * W)
Where: - E = number of excess genes - D = number of disjoint genes - N = number of genes in larger genome (normalized, min 1) - W = average weight difference in matching genes - c1, c2, c3 = coefficients

 crossover(Genome1, Genome2, FitterParent)

 -spec crossover(genome(), genome(), fitter_parent()) -> genome().

Perform NEAT-style crossover between two genomes.
Matching genes are randomly inherited from either parent. Disjoint and excess genes are inherited from the fitter parent. When parents are equally fit, all genes are inherited with random selection for conflicts.

 extract_connection_genes(AgentId)

 -spec extract_connection_genes(term()) -> genome().

Extract connection genes from an agent's neural network.
Converts the input_idps format to connection genes with innovations. This enables NEAT-style crossover on existing networks.

genome_mutator

Genetic mutation operators for neural network evolution.
This module is the main entry point for genome mutations. It delegates to specialized modules for different mutation categories:
- topological_mutations: Network structure changes - parametric_mutations: Weight and parameter changes - ltc_mutations: LTC neuron-specific mutations - mutation_helpers: Shared utility functions
Mutations are selected using roulette wheel selection weighted by mutation probabilities from the agent's constraint.

 Summary

 Functions

 add_actuator(AgentId)

 add_actuatorlink(AgentId)

 add_bias(AgentId)

 add_inlink(AgentId)

 add_neuron(AgentId)

 add_outlink(AgentId)

 add_sensor(AgentId)

 add_sensorlink(AgentId)

 calculate_mutation_count(AgentId)

 Calculate number of mutations based on agent's mutation function.

 mutate(AgentId)

 Apply mutations to an agent.

 mutate(AgentId, Count)

 Apply a specific number of mutations to an agent.

 mutate_af(AgentId)

 mutate_agent_parameter(AgentId, F, C)

 mutate_aggr_f(AgentId)

 mutate_heredity_type(AgentId)

 mutate_ltc_weights(AgentId)

 mutate_neuron_type(AgentId)

 mutate_state_bound(AgentId)

 mutate_time_constant(AgentId)

 mutate_tot_topological_mutations(AgentId)

 mutate_tuning_annealing(AgentId)

 mutate_tuning_selection(AgentId)

 mutate_weights(AgentId)

 outsplice(AgentId)

 select_random_neuron(AgentId)

 Functions

 add_actuator(AgentId)

 add_actuatorlink(AgentId)

 add_bias(AgentId)

 add_inlink(AgentId)

 add_neuron(AgentId)

 add_outlink(AgentId)

 add_sensor(AgentId)

 add_sensorlink(AgentId)

 calculate_mutation_count(AgentId)

 -spec calculate_mutation_count(term()) -> pos_integer().

Calculate number of mutations based on agent's mutation function.

 mutate(AgentId)

 -spec mutate(term()) -> ok.

Apply mutations to an agent.
Selects and applies mutations based on the agent's constraint. The number of mutations is determined by the tot_topological_mutations_f.

 mutate(AgentId, Count)

 -spec mutate(term(), non_neg_integer()) -> ok.

Apply a specific number of mutations to an agent.

 mutate_af(AgentId)

 mutate_agent_parameter(AgentId, F, C)

 mutate_aggr_f(AgentId)

 mutate_heredity_type(AgentId)

 mutate_ltc_weights(AgentId)

 mutate_neuron_type(AgentId)

 mutate_state_bound(AgentId)

 mutate_time_constant(AgentId)

 mutate_tot_topological_mutations(AgentId)

 mutate_tuning_annealing(AgentId)

 mutate_tuning_selection(AgentId)

 mutate_weights(AgentId)

 outsplice(AgentId)

 select_random_neuron(AgentId)

genotype

Genotype representation for TWEANN networks.
This module provides the genetic encoding for neural networks using ETS for in-memory storage. A genotype describes the network topology and parameters that can be evolved, then converted to a running phenotype.
Based on DXNN2 by Gene Sher ("Handbook of Neuroevolution through Erlang").
[bookmark: Genotype_Structure]Genotype Structure
A genotype is a collection of interconnected elements stored in Mnesia:
- Agent - Top-level container for a neural network - Cortex - Network coordinator, references sensors/neurons/actuators - Sensor - Input interface with fanout connections - Neuron - Processing unit with weighted inputs and outputs - Actuator - Output interface with fanin connections
[bookmark: ID_Format]ID Format
Each element has a unique ID in the format: {{LayerCoord, UniqueFloat}, Type}
Layer coordinates: - Sensors: -1.0 - Hidden neurons: 0.0 to 1.0 - Actuators: 1.0 - Cortex: origin
[bookmark: Weight_Format]Weight Format
Neuron input weights use the tuple format: {Weight, DeltaWeight, LearningRate, ParameterList}

 Summary

 Functions

 clone_Agent(Agent_Id)

 Clone an agent and all its components.

 construct_Agent(Specie_Id, Agent_Id, Constraint)

 Construct a new agent with neural network.

 delete(_)

 Delete a record from ETS.

 delete_Agent(Agent_Id)

 Delete an agent and all its components.

 dirty_read(_)

 Read a record directly from ETS (same as read/1 for ETS).

 generate_id(_)

 Generate an ID for a specific element type.

 generate_UniqueId()

 Generate a unique float identifier.

 init_db()

 Initialize ETS tables for genotype storage.

 random_element(List)

 Select a random element from a list.

 read(_)

 Read a record from ETS.

 reset_db()

 Reset database by clearing all tables.

 update_fingerprint(Agent_Id)

 Update agent fingerprint for speciation.

 write(Record)

 Write a record to ETS.

 Functions

 clone_Agent(Agent_Id)

 -spec clone_Agent(term()) -> term().

Clone an agent and all its components.

 construct_Agent(Specie_Id, Agent_Id, Constraint)

 -spec construct_Agent(term(),
 term(),
 #constraint{morphology :: term(),
 connection_architecture :: term(),
 neural_afs :: term(),
 neural_pfns :: term(),
 substrate_plasticities :: term(),
 substrate_linkforms :: term(),
 neural_aggr_fs :: term(),
 tuning_selection_fs :: term(),
 tuning_duration_f :: term(),
 annealing_parameters :: term(),
 perturbation_ranges :: term(),
 agent_encoding_types :: term(),
 heredity_types :: term(),
 mutation_operators :: term(),
 tot_topological_mutations_fs :: term(),
 population_evo_alg_f :: term(),
 population_fitness_postprocessor_f :: term(),
 population_selection_f :: term(),
 specie_distinguishers :: term(),
 hof_distinguishers :: term(),
 objectives :: term()}) ->
 term().

Construct a new agent with neural network.
Creates a complete agent genotype based on the species constraint. The morphology in the constraint defines sensors and actuators.

 delete(_)

 -spec delete(tuple()) -> ok.

Delete a record from ETS.

 delete_Agent(Agent_Id)

 -spec delete_Agent(term()) -> ok.

Delete an agent and all its components.

 dirty_read(_)

 -spec dirty_read(tuple()) -> tuple() | undefined.

Read a record directly from ETS (same as read/1 for ETS).
This function exists for API compatibility with the old Mnesia interface.

 generate_id(_)

 -spec generate_id(atom()) -> term().

Generate an ID for a specific element type.
Creates a properly formatted ID tuple based on the element type: - sensor: {{-1, UniqueFloat}, sensor} - neuron: {{0, UniqueFloat}, neuron} (hidden layer) - actuator: {{1, UniqueFloat}, actuator} - cortex: {{origin, UniqueFloat}, cortex} - agent: {UniqueFloat, agent}

 generate_UniqueId()

 -spec generate_UniqueId() -> float().

Generate a unique float identifier.

 init_db()

 -spec init_db() -> ok.

Initialize ETS tables for genotype storage.
Creates ETS tables for all genotype elements. Should be called once at application startup. ETS tables are faster than Mnesia for this workload since we don't need distribution or disk persistence.

 random_element(List)

 -spec random_element([T]) -> T when T :: term().

Select a random element from a list.

 read(_)

 -spec read(tuple()) -> tuple() | undefined.

Read a record from ETS.
Key format: {Table, RecordKey} where RecordKey is the record's id field.

 reset_db()

 -spec reset_db() -> ok.

Reset database by clearing all tables.

 update_fingerprint(Agent_Id)

 -spec update_fingerprint(term()) -> ok.

Update agent fingerprint for speciation.
Calculates the behavioral fingerprint using species_identifier:create_fingerprint/1 and stores it in the agent record. The fingerprint is used for behavioral distance calculations during speciation.

 write(Record)

 -spec write(tuple()) -> ok.

Write a record to ETS.
The record type determines which table to use (first element of record tuple). For agent records, the evo_hist is capped to prevent unbounded growth.

innovation

Innovation number tracking for NEAT-style evolution.
This module manages innovation numbers that uniquely identify structural changes in neural networks. Innovation numbers enable: - Meaningful crossover between networks with different topologies - Historical alignment of genes during reproduction - Tracking which structural changes are the "same" across lineages
Key concepts from NEAT (Stanley and Miikkulainen, 2002): - Each new link gets a unique innovation number - When a link is split to add a neuron, the new node and its links get tracked - Same structural change (same from/to) always gets the same innovation
Storage: Uses ETS for innovation tracking and the counters module for atomic counter increments (faster than Mnesia dirty_update_counter).

 Summary

 Functions

 get_innovation_info(InnovationNum)

 Get innovation info for a specific innovation number.

 get_link_innovation(FromId, ToId)

 Get existing link innovation without creating one.

 get_node_innovation(FromId, ToId)

 Get existing node innovation without creating one.

 get_or_create_link_innovation(FromId, ToId)

 Get or create innovation number for a link.

 get_or_create_node_innovation(FromId, ToId)

 Get or create innovation numbers for a node split.

 init()

 Initialize innovation tracking with ETS and atomic counter.

 next_innovation()

 Get the next innovation number.

 reset()

 Reset all innovation tracking.

 Functions

 get_innovation_info(InnovationNum)

 -spec get_innovation_info(pos_integer()) ->
 {link, term(), term()} |
 {node, term(), term(), pos_integer(), pos_integer()} |
 not_found.

Get innovation info for a specific innovation number.
Returns {link, FromId, ToId} or {node, FromId, ToId, InInn, OutInn} or not_found if the innovation doesn't exist.

 get_link_innovation(FromId, ToId)

 -spec get_link_innovation(FromId :: term(), ToId :: term()) -> pos_integer() | undefined.

Get existing link innovation without creating one.
Returns the innovation number if the link exists, undefined otherwise.

 get_node_innovation(FromId, ToId)

 -spec get_node_innovation(FromId :: term(), ToId :: term()) ->
 {pos_integer(), pos_integer(), pos_integer()} | undefined.

Get existing node innovation without creating one.
Returns {NodeInn, InInn, OutInn} if the node split exists, undefined otherwise.

 get_or_create_link_innovation(FromId, ToId)

 -spec get_or_create_link_innovation(FromId :: term(), ToId :: term()) -> pos_integer().

Get or create innovation number for a link.
If this exact link (from -> to) was seen before, returns the same innovation number. Otherwise, creates a new one. This ensures that the same structural change in different lineages gets the same historical marker.

 get_or_create_node_innovation(FromId, ToId)

 -spec get_or_create_node_innovation(FromId :: term(), ToId :: term()) ->
 {pos_integer(), pos_integer(), pos_integer()}.

Get or create innovation numbers for a node split.
When a link is split to add a neuron, we need three innovation numbers: 1. For the new node itself 2. For the new link from the original source to the new node 3. For the new link from the new node to the original target
Returns {NodeInnovation, InLinkInnovation, OutLinkInnovation}

 init()

 -spec init() -> ok.

Initialize innovation tracking with ETS and atomic counter.
Creates ETS tables for innovation tracking and initializes the atomic counter. Should be called after genotype:init_db().

 next_innovation()

 -spec next_innovation() -> pos_integer().

Get the next innovation number.
Atomically increments and returns the global innovation counter.

 reset()

 -spec reset() -> ok.

Reset all innovation tracking.
Clears all innovation tables and resets the counter. Useful for starting a fresh evolutionary run.

ltc_dynamics

Liquid Time-Constant (LTC) neural dynamics.
This module implements Liquid Time-Constant neurons and their Closed-form Continuous-time (CfC) approximation for high-performance evaluation.
LTC neurons have input-dependent time constants, enabling adaptive temporal processing. This makes them particularly suitable for time-series data and real-time control tasks.
[bookmark: Theory]Theory
The LTC neuron is governed by the ODE:
dx(t)/dt = -[1/tau + f(x,I,theta)] * x(t) + f(x,I,theta) * A
Where: - x(t) is the neuron's internal state at time t - tau is the base time constant (learnable) - f(...) is a nonlinear function producing the "liquid" time constant - A is the state bound (prevents explosion) - I(t) is the input at time t
[bookmark: CfC_Approximation]CfC Approximation
Instead of solving the ODE numerically, CfC uses a closed-form approximation:
x(t+dt) = sigma(-f) * x(t) + (1 - sigma(-f)) * h
Where: - sigma is the sigmoid function - f is the backbone network output (time-constant modulator) - h is the head network output (target state)
CfC is approximately 100x faster than ODE-based LTC while maintaining similar expressivity.
[bookmark: References]References
[1] Hasani, R., Lechner, M., et al. (2021). "Liquid Time-constant Networks." Proceedings of the AAAI Conference on Artificial Intelligence.
[2] Hasani, R., Lechner, M., et al. (2022). "Closed-form Continuous-time Neural Networks." Nature Machine Intelligence.
[3] Beer, R.D. (1995). "On the Dynamics of Small Continuous-Time Recurrent Neural Networks." Adaptive Behavior, 3(4).

 Summary

 Types

 backbone_weights/0

 bound/0

 State bound A

 dt/0

 Time step

 head_weights/0

 input/0

 state/0

 tau/0

 Base time constant

 Functions

 clamp_state(State, Bound)

 Clamp state to bounds [-Bound, Bound].

 compute_backbone(Input, Tau, Weights)

 Compute backbone network output (time-constant modulator).

 compute_head(Input, Weights)

 Compute head network output (target state).

 compute_liquid_tau(Input, State, BaseTau, Params)

 Compute the liquid (input-dependent) time constant.

 evaluate_cfc(Input, State, Tau, Bound)

 Evaluate CfC neuron with closed-form approximation.

 evaluate_cfc(Input, State, Tau, Bound, Params)

 Evaluate CfC neuron with custom backbone/head weights.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 Evaluate LTC neuron using ODE integration (Euler method).

 evaluate_ode(Input, State, Tau, Bound, Dt, Params)

 Evaluate LTC with ODE and custom parameters.

 reset_state()

 Reset state to zero.

 sigmoid(X)

 Sigmoid function.

 tanh(X)

 Hyperbolic tangent function.

 Types

 backbone_weights/0

 -type backbone_weights() :: [float()].

 bound/0

 -type bound() :: float().

State bound A

 dt/0

 -type dt() :: float().

Time step

 head_weights/0

 -type head_weights() :: [float()].

 input/0

 -type input() :: float() | [float()].

 state/0

 -type state() :: float().

 tau/0

 -type tau() :: float().

Base time constant

 Functions

 clamp_state(State, Bound)

 -spec clamp_state(state(), bound()) -> state().

Clamp state to bounds [-Bound, Bound].
Bounded dynamics are a key property of LTC that ensures stability.

 compute_backbone(Input, Tau, Weights)

 -spec compute_backbone(input(), tau(), backbone_weights()) -> float().

Compute backbone network output (time-constant modulator).
The backbone determines how the time constant varies with input. This is the "f" in the CfC equation.

 compute_head(Input, Weights)

 -spec compute_head(input(), head_weights()) -> float().

Compute head network output (target state).
The head determines the asymptotic state the neuron moves toward. This is the "h" in the CfC equation.

 compute_liquid_tau(Input, State, BaseTau, Params)

 -spec compute_liquid_tau(input(), state(), tau(), map()) -> float().

Compute the liquid (input-dependent) time constant.
The "liquid" aspect of LTC comes from the time constant varying based on input and state, allowing adaptive temporal dynamics.

 evaluate_cfc(Input, State, Tau, Bound)

 -spec evaluate_cfc(input(), state(), tau(), bound()) -> {state(), float()}.

Evaluate CfC neuron with closed-form approximation.
This is the fast path for LTC evaluation, avoiding ODE solving. Uses default backbone/head functions based on input only.

 evaluate_cfc(Input, State, Tau, Bound, Params)

 -spec evaluate_cfc(input(), state(), tau(), bound(), map()) -> {state(), float()}.

Evaluate CfC neuron with custom backbone/head weights.
For networks with evolved backbone/head parameters.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 -spec evaluate_ode(input(), state(), tau(), bound(), dt()) -> {state(), float()}.

Evaluate LTC neuron using ODE integration (Euler method).
More accurate than CfC but slower. Use for training or when temporal precision is critical.

 evaluate_ode(Input, State, Tau, Bound, Dt, Params)

 -spec evaluate_ode(input(), state(), tau(), bound(), dt(), map()) -> {state(), float()}.

Evaluate LTC with ODE and custom parameters.

 reset_state()

 -spec reset_state() -> state().

Reset state to zero.

 sigmoid(X)

 -spec sigmoid(float()) -> float().

Sigmoid function.
sigma(x) = 1 / (1 + e^-x)

 tanh(X)

 -spec tanh(float()) -> float().

Hyperbolic tangent function.

ltc_mutations

LTC (Liquid Time-Constant) mutation operators for neural network evolution.
This module provides mutations specific to LTC/CfC neurons: - mutate_neuron_type: Switch between standard/ltc/cfc - mutate_time_constant: Perturb tau (response speed) - mutate_state_bound: Perturb state bound A - mutate_ltc_weights: Perturb backbone/head network weights
LTC neurons have adaptive temporal dynamics that can be evolved.

 Summary

 Functions

 mutate_ltc_weights(AgentId)

 Mutate backbone/head weights of a random LTC/CfC neuron.

 mutate_neuron_type(AgentId)

 Mutate neuron type of a random neuron.

 mutate_state_bound(AgentId)

 Mutate state bound (A) of a random LTC/CfC neuron.

 mutate_time_constant(AgentId)

 Mutate time constant (tau) of a random LTC/CfC neuron.

 Functions

 mutate_ltc_weights(AgentId)

 -spec mutate_ltc_weights(term()) -> ok | {error, term()}.

Mutate backbone/head weights of a random LTC/CfC neuron.
Perturbs the learned weights in the LTC f() backbone and h() head networks. These weights control the adaptive time constant and target state.

 mutate_neuron_type(AgentId)

 -spec mutate_neuron_type(term()) -> ok | {error, term()}.

Mutate neuron type of a random neuron.
Changes neuron type between standard, ltc, and cfc. This allows networks to evolve which neurons use temporal dynamics.

 mutate_state_bound(AgentId)

 -spec mutate_state_bound(term()) -> ok | {error, term()}.

Mutate state bound (A) of a random LTC/CfC neuron.
Perturbs the state bound which limits internal state magnitude. Larger bounds allow more dynamic range but may be less stable.

 mutate_time_constant(AgentId)

 -spec mutate_time_constant(term()) -> ok | {error, term()}.

Mutate time constant (tau) of a random LTC/CfC neuron.
Perturbs the base time constant which controls response speed. Smaller tau = faster response, larger tau = slower/smoother response.

macula_tweann_app

Application behaviour for macula_tweann.
Starts the morphology registry on application startup.

 Summary

 Functions

 start(StartType, StartArgs)

 Start the application.

 stop(State)

 Stop the application.

 Functions

 start(StartType, StartArgs)

 -spec start(StartType :: normal | {takeover, node()} | {failover, node()}, StartArgs :: term()) ->
 {ok, pid()} | {error, Reason :: term()}.

Start the application.
Starts the morphology registry supervisor.

 stop(State)

 -spec stop(State :: term()) -> ok.

Stop the application.

macula_tweann_sup

Supervisor for macula_tweann application.
Supervises the morphology registry.

 Summary

 Functions

 start_link()

 Start the supervisor.

 Functions

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the supervisor.

morphology

Morphology module for sensor/actuator specifications.
This module provides the interface for accessing morphologies (problem domains). Morphologies are now registered at runtime via morphology_registry.
Using Morphologies:
1. Register a morphology (typically at application startup):
morphology_registry:register(xor_mimic, morphology_xor).
2. Use the morphology in agent construction:
Constraint = #constraint{morphology = xor_mimic}, {ok, AgentId} = genotype:construct_agent(Constraint).
Custom Morphologies:
To create a custom morphology: 1. Implement morphology_behaviour in your module 2. Register it at runtime 3. Use it in constraints
See guides/CUSTOM_MORPHOLOGIES.md for detailed instructions. See examples/ directory for reference implementations.
Based on DXNN2 by Gene Sher ("Handbook of Neuroevolution through Erlang").

 Summary

 Functions

 get_Actuators(Morphology)

 Get all actuators for a morphology.

 get_InitActuators(Morphology)

 Get initial actuators for a morphology.

 get_InitSensors(Morphology)

 Get initial sensors for a morphology.

 get_Sensors(Morphology)

 Get all sensors for a morphology.

 Functions

 get_Actuators(Morphology)

 -spec get_Actuators(atom() | {module(), atom()}) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get all actuators for a morphology.
Looks up the morphology in the registry and calls its get_actuators/1 callback.

 get_InitActuators(Morphology)

 -spec get_InitActuators(atom() | {module(), atom()}) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get initial actuators for a morphology.
Returns the first actuator from the morphology's actuator list. Used when constructing a new agent to get the default actuator.

 get_InitSensors(Morphology)

 -spec get_InitSensors(atom() | {module(), atom()}) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get initial sensors for a morphology.
Returns the first sensor from the morphology's sensor list. Used when constructing a new agent to get the default sensor.

 get_Sensors(Morphology)

 -spec get_Sensors(atom() | {module(), atom()}) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

Get all sensors for a morphology.
Looks up the morphology in the registry and calls its get_sensors/1 callback.

morphology_behaviour behaviour

Behaviour for implementing morphologies (sensor/actuator specifications).
A morphology defines the I/O interface between a neural network and its environment. Applications implement this behaviour to create custom morphologies without modifying the macula-tweann library.
Example Implementation:
-module(my_morphology). -behaviour(morphology_behaviour).
-export([get_sensors/1, get_actuators/1]). -include("records.hrl").
get_sensors(my_problem) -> [#sensor{name = my_sensor, vl = 3, ...}]; get_sensors(_) -> error(invalid_morphology).
get_actuators(my_problem) -> [#actuator{name = my_actuator, vl = 2, ...}]; get_actuators(_) -> error(invalid_morphology).
Then register at runtime:
morphology_registry:register(my_problem, my_morphology).

 Summary

 Callbacks

 get_actuators/1

 get_sensors/1

 Callbacks

 get_actuators/1

 -callback get_actuators(MorphologyName :: atom()) ->
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

 get_sensors/1

 -callback get_sensors(MorphologyName :: atom()) ->
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}].

morphology_registry

Registry for morphology modules.
Provides runtime registration of morphology implementations. Applications can register custom morphologies without modifying the macula-tweann library.
Usage:
Start registry (done automatically by application): morphology_registry:start_link().
Register a morphology: ok = morphology_registry:register(my_problem, my_morphology_module).
Get registered module: {ok, my_morphology_module} = morphology_registry:get(my_problem).
List all registered: [my_problem, xor_mimic] = morphology_registry:list_all().

 Summary

 Functions

 get(MorphologyName)

 Get the module for a registered morphology.

 is_registered(MorphologyName)

 Check if a morphology is registered.

 list_all()

 List all registered morphologies.

 register(MorphologyName, Module)

 Register a morphology module.

 start_link()

 Start the morphology registry server.

 unregister(MorphologyName)

 Unregister a morphology.

 Functions

 get(MorphologyName)

 -spec get(atom()) -> {ok, module()} | {error, not_found}.

Get the module for a registered morphology.

 is_registered(MorphologyName)

 -spec is_registered(atom()) -> boolean().

Check if a morphology is registered.

 list_all()

 -spec list_all() -> [atom()].

List all registered morphologies.

 register(MorphologyName, Module)

 -spec register(atom(), module()) -> ok | {error, term()}.

Register a morphology module.
Verifies that the module implements morphology_behaviour before registering.
Example:
ok = morphology_registry:register(xor_mimic, morphology_xor).

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

Start the morphology registry server.
Creates ETS table for storing morphology registrations.

 unregister(MorphologyName)

 -spec unregister(atom()) -> ok.

Unregister a morphology.

mutation_helpers

Helper functions for genome mutation operations.
This module provides utility functions used by mutation operators for linking network elements and weight management.

 Summary

 Functions

 create_random_weight()

 Create a random weight tuple.

 find_splittable_link(AgentId)

 Find a link that can be split to insert a neuron.

 get_layer_coord(_)

 Get layer coordinate from element ID.

 get_link_weight(FromId, ToId)

 Get weight of a link between two elements.

 link_neuron_to_actuator(NeuronId, ActuatorId, Actuator)

 Link a neuron to an actuator.

 link_neuron_to_target(NeuronId, Neuron, TargetId)

 Link a neuron to a target (neuron or actuator).

 link_sensor_to_neuron(SensorId, Sensor, NeuronId)

 Link a sensor to a neuron.

 link_source_to_neuron(SourceId, NeuronId, Neuron)

 Link a source (sensor or neuron) to a neuron.

 perturb_ltc_weight_list(Weights, PerturbRange)

 Perturb a list of LTC weights.

 select_ltc_neuron(AgentId)

 Select a random LTC or CfC neuron from the agent's network.

 select_random_neuron(AgentId)

 Select a random neuron from the agent's network.

 update_source_output(FromId, OldToId, NewToId)

 Update source element to output to new target.

 update_target_input(ToId, OldFromId, NewFromId, Weight)

 Update target element to receive from new source.

 Functions

 create_random_weight()

 -spec create_random_weight() -> {float(), float(), float(), []}.

Create a random weight tuple.

 find_splittable_link(AgentId)

 -spec find_splittable_link(term()) ->
 {term(), term(), {float(), float(), float(), list()}} | {error, no_links}.

Find a link that can be split to insert a neuron.

 get_layer_coord(_)

 -spec get_layer_coord(term()) -> float().

Get layer coordinate from element ID.

 get_link_weight(FromId, ToId)

 -spec get_link_weight(term(), term()) -> {float(), float(), float(), list()}.

Get weight of a link between two elements.

 link_neuron_to_actuator(NeuronId, ActuatorId, Actuator)

 -spec link_neuron_to_actuator(term(),
 term(),
 #actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}) ->
 ok.

Link a neuron to an actuator.

 link_neuron_to_target(NeuronId, Neuron, TargetId)

 -spec link_neuron_to_target(term(),
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()},
 term()) ->
 ok.

Link a neuron to a target (neuron or actuator).

 link_sensor_to_neuron(SensorId, Sensor, NeuronId)

 -spec link_sensor_to_neuron(term(),
 #sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()},
 term()) ->
 ok.

Link a sensor to a neuron.

 link_source_to_neuron(SourceId, NeuronId, Neuron)

 -spec link_source_to_neuron(term(),
 term(),
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()}) ->
 ok.

Link a source (sensor or neuron) to a neuron.

 perturb_ltc_weight_list(Weights, PerturbRange)

 -spec perturb_ltc_weight_list([float()], float()) -> [float()].

Perturb a list of LTC weights.

 select_ltc_neuron(AgentId)

 -spec select_ltc_neuron(term()) -> term() | {error, no_ltc_neurons | no_neurons}.

Select a random LTC or CfC neuron from the agent's network.

 select_random_neuron(AgentId)

 -spec select_random_neuron(term()) -> term() | {error, no_neurons}.

Select a random neuron from the agent's network.

 update_source_output(FromId, OldToId, NewToId)

 -spec update_source_output(term(), term(), term()) -> ok.

Update source element to output to new target.

 update_target_input(ToId, OldFromId, NewFromId, Weight)

 -spec update_target_input(term(), term(), term(), {float(), float(), float(), list()}) -> ok.

Update target element to receive from new source.

network_compiler

Network compiler for NIF-accelerated evaluation.
This module compiles TWEANN genotypes from Mnesia records into a flat representation suitable for the Rust NIF evaluator.
[bookmark: Compilation_Process]Compilation Process
1. Load genotype records from Mnesia (cortex, neurons, sensors, actuators) 2. Build a node graph with connections 3. Topologically sort nodes (inputs -> hidden -> outputs) 4. Convert to flat indexed representation 5. Call tweann_nif:compile_network/3
[bookmark: Usage]Usage
Compile a genotype for fast evaluation: {ok, Network} = network_compiler:compile(AgentId) Outputs = tweann_nif:evaluate(Network, Inputs)
Or compile from in-memory records: {ok, Network} = network_compiler:compile_from_records(Cortex, Neurons, Sensors, Actuators)

 Summary

 Functions

 compile(AgentId)

 Compile a genotype from Mnesia for NIF evaluation.

 compile_from_records(Cortex, Neurons, Sensors, Actuators)

 Compile from in-memory records.

 compile_simple(InputCount, HiddenLayers, OutputCount)

 Compile a simple feedforward network.

 Functions

 compile(AgentId)

 -spec compile(AgentId :: term()) ->
 {ok, reference()} |
 {error, {mnesia_error, term()}} |
 {error, {compilation_failed, term(), [{atom(), atom(), non_neg_integer(), term()}]}}.

Compile a genotype from Mnesia for NIF evaluation.
Loads the agent's neural network from Mnesia and compiles it to a format suitable for the Rust NIF.

 compile_from_records(Cortex, Neurons, Sensors, Actuators)

 -spec compile_from_records(Cortex ::
 #cortex{id :: term(),
 agent_id :: term(),
 neuron_ids :: term(),
 sensor_ids :: term(),
 actuator_ids :: term()},
 Neurons ::
 [#neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()}],
 Sensors ::
 [#sensor{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanout_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}],
 Actuators ::
 [#actuator{id :: term(),
 name :: term(),
 type :: term(),
 cx_id :: term(),
 scape :: term(),
 vl :: term(),
 fanin_ids :: term(),
 generation :: term(),
 format :: term(),
 parameters :: term(),
 gt_parameters :: term(),
 phys_rep :: term(),
 vis_rep :: term(),
 pre_f :: term(),
 post_f :: term(),
 innovation :: term()}]) ->
 {ok, reference()} | {error, term()}.

Compile from in-memory records.
Use this when you already have the network records loaded.

 compile_simple(InputCount, HiddenLayers, OutputCount)

 -spec compile_simple(InputCount :: pos_integer(),
 HiddenLayers :: [pos_integer()],
 OutputCount :: pos_integer()) ->
 {ok, reference(), [{non_neg_integer(), non_neg_integer(), float()}]}.

Compile a simple feedforward network.
Convenience function for creating simple networks without Mnesia. Useful for testing and examples.

network_evaluator

Synchronous neural network evaluator for inference.
This module provides synchronous (blocking) forward propagation for neural networks. Unlike the process-based cortex/neuron approach used during training, this is designed for fast inference in real-time applications like games.
[bookmark: Usage]Usage
Create a network from a genotype: {ok, Network} = network_evaluator:from_genotype(AgentId)
Or create a simple feedforward network: Network = network_evaluator:create_feedforward(42, [16, 8], 6)
Evaluate: Outputs = network_evaluator:evaluate(Network, Inputs)

 Summary

 Types

 layer/0

 network/0

 Functions

 compile_for_nif(Network)

 Compile network for NIF acceleration.

 create_feedforward(InputSize, HiddenSizes, OutputSize)

 Create a feedforward network with random weights.

 create_feedforward(InputSize, HiddenSizes, OutputSize, Activation)

 Create a feedforward network with specified activation.

 evaluate(Network, Inputs)

 Evaluate the network with given inputs.

 evaluate_with_activations(Network, Inputs)

 Evaluate network and return all layer activations.

 from_binary(Binary)

 Deserialize a network from binary.

 from_genotype(AgentId)

 Load a network from a genotype stored in Mnesia.

 from_json(_)

 Deserialize a network from a JSON-compatible map.

 get_topology(Network)

 Get network topology information for visualization.

 get_viz_data(Network, Inputs, InputLabels)

 Get visualization data for rendering the network.

 get_weights(Network)

 Get all weights from the network as a flat list.

 set_weights(Network, FlatWeights)

 Set weights from a flat list.

 strip_compiled_ref(Network)

 Strip the compiled_ref from a network to release NIF memory.

 to_binary(Network)

 Serialize a network to binary using Erlang term format.

 to_json(Network)

 Serialize a network to a JSON-compatible map.

 Types

 layer/0

 -type layer() :: {Weights :: [[float()]], Biases :: [float()]}.

 network/0

 -type network() ::
 #network{layers :: [layer()], activation :: atom(), compiled_ref :: reference() | undefined}.

 Functions

 compile_for_nif(Network)

 -spec compile_for_nif(network()) -> network().

Compile network for NIF acceleration.
If the NIF is loaded, compiles the network to a flat representation that can be evaluated much faster. Falls back to Erlang evaluation if NIF is not available.
WARNING: Use sparingly! Each compiled network holds a Rust ResourceArc reference that keeps native memory alive. During neuroevolution, do NOT compile networks automatically (especially in create_feedforward or set_weights) as this causes massive memory leaks - one compiled_ref per offspring per generation accumulates unboundedly.
Only call this when you need maximum performance for a specific network that will be evaluated many times (e.g., the final champion network).

 create_feedforward(InputSize, HiddenSizes, OutputSize)

 -spec create_feedforward(pos_integer(), [pos_integer()], pos_integer()) -> network().

Create a feedforward network with random weights.

 create_feedforward(InputSize, HiddenSizes, OutputSize, Activation)

 -spec create_feedforward(pos_integer(), [pos_integer()], pos_integer(), atom()) -> network().

Create a feedforward network with specified activation.

 evaluate(Network, Inputs)

 -spec evaluate(network(), [float()]) -> [float()].

Evaluate the network with given inputs.
Performs synchronous forward propagation through all layers. Uses NIF acceleration if available and network was compiled.

 evaluate_with_activations(Network, Inputs)

 -spec evaluate_with_activations(network(), [float()]) ->
 {Outputs :: [float()], Activations :: [[float()]]}.

Evaluate network and return all layer activations.
Returns {Outputs, AllActivations} where AllActivations is a list of activation vectors for each layer (including input and output).

 from_binary(Binary)

 -spec from_binary(binary()) -> {ok, network()} | {error, term()}.

Deserialize a network from binary.

 from_genotype(AgentId)

 -spec from_genotype(term()) -> {ok, network()} | {error, term()}.

Load a network from a genotype stored in Mnesia.
Reads the agent's neural network structure and weights from Mnesia and creates an evaluator network.

 from_json(_)

 -spec from_json(map()) -> {ok, network()} | {error, term()}.

Deserialize a network from a JSON-compatible map.
Accepts the format produced by to_json/1.

 get_topology(Network)

 -spec get_topology(network()) -> map().

Get network topology information for visualization.
Returns a map with layer sizes for rendering the network structure.

 get_viz_data(Network, Inputs, InputLabels)

 -spec get_viz_data(network(), [float()], [binary()]) -> map().

Get visualization data for rendering the network.
Combines topology, weights, and activations into a format suitable for frontend visualization.

 get_weights(Network)

 -spec get_weights(network()) -> [float()].

Get all weights from the network as a flat list.
Useful for evolution - can be mutated and set back.

 set_weights(Network, FlatWeights)

 -spec set_weights(network(), [float()]) -> network().

Set weights from a flat list.
The list must have the same number of elements as returned by get_weights/1. NOTE: Does NOT compile for NIF - this prevents memory leaks during evolution.

 strip_compiled_ref(Network)

 -spec strip_compiled_ref(Network :: network() | map() | term()) -> network() | map() | term().

Strip the compiled_ref from a network to release NIF memory.
IMPORTANT: Call this before storing networks long-term (archives, events) to prevent NIF ResourceArc references from accumulating and causing memory leaks. The compiled_ref is a Rust ResourceArc that holds native memory - keeping references alive prevents the memory from being freed.
The network can be recompiled on-demand when needed for evaluation.

 to_binary(Network)

 -spec to_binary(network()) -> binary().

Serialize a network to binary using Erlang term format.
This is more compact than JSON and preserves exact floating point values. Use this for Erlang-to-Erlang transfer or storage.

 to_json(Network)

 -spec to_json(network()) -> map().

Serialize a network to a JSON-compatible map.
The output format is suitable for JSON encoding and can be loaded in other runtimes (Python, JavaScript, etc.) for inference.
Format: A map with keys "version", "activation", and "layers". The layers list contains maps with "weights" and "biases" keys.

network_onnx

ONNX export for neural networks.
Exports networks to ONNX (Open Neural Network Exchange) format for cross-platform inference in Python, JavaScript, C++, mobile, and edge devices.
[bookmark: Usage]Usage
Export a trained network: {ok, OnnxBinary} = network_onnx:to_onnx(Network) file:write_file("model.onnx", OnnxBinary)
Load in Python: import onnxruntime as ort session = ort.InferenceSession("model.onnx") outputs = session.run(None, {"input": inputs})
Load in JavaScript: const session = await ort.InferenceSession.create("model.onnx") const results = await session.run({input: tensor})

 Summary

 Functions

 to_onnx(Network)

 Export network to ONNX format.

 to_onnx(Network, Opts)

 Export network to ONNX format with options.

 Functions

 to_onnx(Network)

 -spec to_onnx(network_evaluator:network()) -> {ok, binary()} | {error, term()}.

Export network to ONNX format.

 to_onnx(Network, Opts)

 -spec to_onnx(network_evaluator:network(), map()) -> {ok, binary()} | {error, term()}.

Export network to ONNX format with options.
Options: model_name - Name of the model (default: "macula_network") producer - Producer name (default: "macula-tweann")

network_pubsub

Internal pub/sub for neural network component communication using pg.
This module provides a thin wrapper around OTP's pg (process groups) for communication between network components (cortex, sensors, neurons, actuators). It uses pg's built-in group management with network-specific naming conventions.
[bookmark: Design_Philosophy]Design Philosophy
Network components communicate through events rather than direct calls: - Publishers don't need to know subscriber PIDs - Subscribers don't need to know publisher PIDs - New observers can be added without modifying existing code - Events form a clear contract between components
[bookmark: Event_Types]Event Types
| Event | Publisher | Description | |-------|-----------|-------------| | evaluation_cycle_started | cortex | When sync is triggered | | sensor_output_ready | sensor | When sensor produces output | | neuron_output_ready | neuron | When neuron fires | | actuator_output_ready | actuator | When actuator produces output | | backup_requested | cortex | When weight backup is needed | | network_terminating | cortex | When network is shutting down |
[bookmark: Usage]Usage
Initialize pubsub for a network (typically in cortex): network_pubsub:init(NetworkId)
Subscribe to events: network_pubsub:subscribe(NetworkId, evaluation_cycle_started) network_pubsub:subscribe(NetworkId, [sensor_output_ready, neuron_output_ready])
Publish events: network_pubsub:publish(NetworkId, evaluation_cycle_started, #{cycle => 1}) network_pubsub:publish(NetworkId, sensor_output_ready, #{from => SensorPid, signal => Signal})
Receive events in subscriber: receive {network_event, evaluation_cycle_started, Data} -> %% Handle evaluation start ... end
[bookmark: Implementation]Implementation
Uses OTP pg (process groups) with group names of the form: {network_pubsub, NetworkId, Topic}
This allows multiple network instances to have independent pubsub.

 Summary

 Types

 event_data/0

 event_type/0

 Allow custom events

 network_id/0

 Functions

 cleanup(NetworkId)

 Cleanup pubsub for a network instance.

 get_subscribers(NetworkId, Topic)

 Get list of subscribers for a topic.

 init(NetworkId)

 Initialize pubsub for a network instance.

 list_topics(NetworkId)

 List all topics with active subscriptions for a network.

 publish(NetworkId, Topic, Data)

 Publish an event to all subscribers.

 subscribe(NetworkId, Topics)

 Subscribe calling process to event type(s).

 subscribe(NetworkId, Topic, Pid)

 Subscribe a specific process to an event type.

 unsubscribe(NetworkId, Topics)

 Unsubscribe calling process from event type(s).

 unsubscribe(NetworkId, Topic, Pid)

 Unsubscribe a specific process from an event type.

 Types

 event_data/0

 -type event_data() :: map().

 event_type/0

 -type event_type() ::
 evaluation_cycle_started | sensor_output_ready | neuron_output_ready | actuator_output_ready |
 backup_requested | weights_backed_up | network_terminating |
 atom().

Allow custom events

 network_id/0

 -type network_id() :: term().

 Functions

 cleanup(NetworkId)

 -spec cleanup(network_id()) -> ok.

Cleanup pubsub for a network instance.
Removes all subscriptions for the current process related to this network. Typically called during network shutdown.

 get_subscribers(NetworkId, Topic)

 -spec get_subscribers(network_id(), event_type()) -> [pid()].

Get list of subscribers for a topic.

 init(NetworkId)

 -spec init(network_id()) -> ok.

Initialize pubsub for a network instance.
This ensures the pg scope is started. Safe to call multiple times. Typically called from cortex during initialization.

 list_topics(NetworkId)

 -spec list_topics(network_id()) -> [event_type()].

List all topics with active subscriptions for a network.

 publish(NetworkId, Topic, Data)

 -spec publish(network_id(), event_type(), event_data()) -> ok.

Publish an event to all subscribers.
Sends {network_event, Topic, Data} to all processes subscribed to this topic. This is asynchronous - returns immediately after sending.

 subscribe(NetworkId, Topics)

 -spec subscribe(network_id(), event_type() | [event_type()]) -> ok.

Subscribe calling process to event type(s).

 subscribe(NetworkId, Topic, Pid)

 -spec subscribe(network_id(), event_type(), pid()) -> ok.

Subscribe a specific process to an event type.

 unsubscribe(NetworkId, Topics)

 -spec unsubscribe(network_id(), event_type() | [event_type()]) -> ok.

Unsubscribe calling process from event type(s).

 unsubscribe(NetworkId, Topic, Pid)

 -spec unsubscribe(network_id(), event_type(), pid()) -> ok.

Unsubscribe a specific process from an event type.

neuron

Neural processing unit for TWEANN networks.
The neuron is the fundamental processing element in a neural network. It receives signals from sensors or other neurons, aggregates them, applies an activation function, and forwards the result to connected neurons or actuators.
[bookmark: Neuron_Lifecycle]Neuron Lifecycle
1. Spawned by cortex with initial state 2. Waits for signals from input connections 3. Aggregates all inputs when complete 4. Applies activation function 5. Forwards output to all output connections 6. Repeats from step 2
[bookmark: State]State
The neuron maintains:
- Input connections with weights - Output connections (PIDs) - Accumulated input signals - Activation function - Aggregation function

 Summary

 Functions

 backup(NeuronPid)

 Request the neuron to backup its current weights.

 forward(NeuronPid, FromPid, Signal)

 Send a signal to a neuron.

 init(Opts)

 Initialize the neuron and enter the main loop.

 start_link(Opts)

 Start a neuron process.

 Functions

 backup(NeuronPid)

 -spec backup(pid()) -> ok.

Request the neuron to backup its current weights.
The neuron will send its weights to the cortex for storage.

 forward(NeuronPid, FromPid, Signal)

 -spec forward(pid(), pid(), [float()]) -> ok.

Send a signal to a neuron.
Called by sensors or other neurons to forward their output.

 init(Opts)

 -spec init(map()) -> no_return().

Initialize the neuron and enter the main loop.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()}.

Start a neuron process.
Options: - id - Unique identifier for this neuron - cortex_pid - PID of the controlling cortex - activation_function - Atom naming the activation function (e.g., tanh) - aggregation_function - Atom naming the aggregation function (e.g., dot_product) - input_pids - List of PIDs that send input to this neuron - output_pids - List of PIDs to forward output to - ro_pids - List of recurrent output PIDs - input_weights - Map of PID to list of weight tuples - bias - Bias value for this neuron

neuron_info

Neuron Introspection API.
This module provides introspection capabilities for neurons in macula-tweann. It can extract information from both neuron records and running neuron processes.
[bookmark: Usage]Usage
From a neuron record:
Info = neuron_info:get_neuron_info(NeuronRecord), #{neuron_type := Type, time_constant := Tau} = Info.
From a running neuron process:
Info = neuron_info:get_neuron_info(NeuronPid), #{neuron_type := cfc, internal_state := State} = Info.
[bookmark: Returned_Information]Returned Information
The returned map contains:
neuron_type - standard | ltc | cfc time_constant - tau value (for LTC/CfC neurons) state_bound - A value (for LTC/CfC neurons) internal_state - current x(t) state (for LTC/CfC neurons) activation_function - the activation function atom plasticity_function - the plasticity function (if any) input_count - number of input connections output_count - number of output connections capabilities - list of neuron capabilities

 Summary

 Types

 neuron_info/0

 Functions

 describe(NeuronType)

 Get a human-readable description of a neuron type.

 get_capabilities(NeuronType)

 Get capabilities for a neuron type.

 get_neuron_info(Neuron)

 Get comprehensive information about a neuron.

 get_neuron_type(Neuron)

 Get just the neuron type.

 is_temporal(Neuron)

 Check if a neuron type has temporal memory.

 Types

 neuron_info/0

 -type neuron_info() ::
 #{neuron_type := standard | ltc | cfc,
 time_constant := float(),
 state_bound := float(),
 internal_state := float(),
 activation_function := atom(),
 plasticity_function := atom() | undefined,
 input_count := non_neg_integer(),
 output_count := non_neg_integer(),
 capabilities := [atom()]}.

 Functions

 describe(NeuronType)

 -spec describe(NeuronType) -> binary() when NeuronType :: standard | ltc | cfc | atom().

Get a human-readable description of a neuron type.

 get_capabilities(NeuronType)

 -spec get_capabilities(NeuronType) -> [atom()] when NeuronType :: standard | ltc | cfc | atom().

Get capabilities for a neuron type.
Returns a list of atoms describing what the neuron type can do:
temporal_memory - Can remember past inputs adaptive_dynamics - Time constant varies with input fast_inference - Optimized for production speed ode_accurate - Uses accurate ODE integration hebbian_plasticity - Supports Hebbian learning modulated_plasticity - Supports neuromodulation

 get_neuron_info(Neuron)

 -spec get_neuron_info(Neuron) -> neuron_info()
 when
 Neuron ::
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()} |
 pid().

Get comprehensive information about a neuron.
Accepts either a neuron record or a running neuron process pid. Returns a map with all available neuron information.

 get_neuron_type(Neuron)

 -spec get_neuron_type(Neuron) -> standard | ltc | cfc | unknown
 when
 Neuron ::
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()} |
 pid() |
 neuron_info().

Get just the neuron type.

 is_temporal(Neuron)

 -spec is_temporal(Neuron) -> boolean()
 when
 Neuron ::
 #neuron{id :: term(),
 generation :: term(),
 cx_id :: term(),
 pre_processor :: term(),
 signal_integrator :: term(),
 af :: term(),
 post_processor :: term(),
 pf :: term(),
 aggr_f :: term(),
 input_idps :: term(),
 input_idps_modulation :: term(),
 output_ids :: term(),
 ro_ids :: term(),
 neuron_type :: term(),
 time_constant :: term(),
 state_bound :: term(),
 ltc_backbone_weights :: term(),
 ltc_head_weights :: term(),
 internal_state :: term(),
 innovation :: term()} |
 standard | ltc | cfc |
 neuron_info().

Check if a neuron type has temporal memory.

neuron_ltc

Liquid Time-Constant (LTC) neural processing unit for TWEANN networks.
This module implements LTC neurons that have input-dependent time constants, enabling adaptive temporal processing for time-series data and real-time control tasks.
[bookmark: LTC_vs_Standard_Neurons]LTC vs Standard Neurons
Standard neurons: output = f(sum(w_i * x_i) + bias) LTC neurons: maintain internal state x(t) that evolves according to: dx/dt = -[1/tau + f(x,I,theta)] * x + f(x,I,theta) * A
CfC neurons use a fast closed-form approximation: x_new = sigma(-f) * x_old + (1 - sigma(-f)) * h
[bookmark: Neuron_Lifecycle]Neuron Lifecycle
1. Spawned by cortex with initial state (including LTC parameters) 2. Waits for signals from input connections 3. Aggregates all inputs when complete 4. Evaluates LTC dynamics (CfC or ODE) 5. Forwards output to all output connections 6. Maintains internal_state between evaluations 7. Repeats from step 2
[bookmark: State_Persistence]State Persistence
Unlike standard neurons which are stateless between evaluations, LTC neurons maintain persistent internal_state that carries information across timesteps. This enables temporal memory and adaptive dynamics.
[bookmark: References]References
[1] Hasani, R., Lechner, M., et al. (2021). "Liquid Time-constant Networks." Proceedings of the AAAI Conference on Artificial Intelligence.
[2] Hasani, R., Lechner, M., et al. (2022). "Closed-form Continuous-time Neural Networks." Nature Machine Intelligence.

 Summary

 Functions

 backup(NeuronPid)

 Request the neuron to backup its current weights and state.

 forward(NeuronPid, FromPid, Signal)

 Send a signal to an LTC neuron.

 get_state(NeuronPid)

 Get the current internal state of the LTC neuron.

 init(Opts)

 Initialize the LTC neuron and enter the main loop.

 reset_state(NeuronPid)

 Reset the internal state of the LTC neuron to zero.

 start_link(Opts)

 Start an LTC neuron process.

 Functions

 backup(NeuronPid)

 -spec backup(pid()) -> ok.

Request the neuron to backup its current weights and state.
The neuron will send its weights and LTC parameters to the cortex.

 forward(NeuronPid, FromPid, Signal)

 -spec forward(pid(), pid(), [float()]) -> ok.

Send a signal to an LTC neuron.
Called by sensors or other neurons to forward their output.

 get_state(NeuronPid)

 -spec get_state(pid()) -> ok.

Get the current internal state of the LTC neuron.
Returns the internal state asynchronously via message.

 init(Opts)

 -spec init(map()) -> no_return().

Initialize the LTC neuron and enter the main loop.

 reset_state(NeuronPid)

 -spec reset_state(pid()) -> ok.

Reset the internal state of the LTC neuron to zero.
Useful when starting a new episode or sequence.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()}.

Start an LTC neuron process.
Options (in addition to standard neuron options): - neuron_type - ltc (ODE) or cfc (closed-form), default: cfc - time_constant - Base time constant tau, default: 1.0 - state_bound - State bound A, default: 1.0 - ltc_backbone_weights - Backbone network weights, default: [] - ltc_head_weights - Head network weights, default: [] - internal_state - Initial internal state, default: 0.0 - dt - Time step for ODE mode, default: 0.1

parametric_mutations

Parametric mutation operators for neural network evolution.
This module provides mutations that modify network parameters without changing structure: - mutate_weights: Perturb synaptic weights - mutate_af: Change activation function - mutate_aggr_f: Change aggregation function
Also includes evolutionary strategy mutations: - mutate_tuning_selection: Change weight selection strategy - mutate_annealing: Modify simulated annealing schedule - mutate_heredity_type: Switch between darwinian/lamarckian

 Summary

 Functions

 mutate_af(AgentId)

 Mutate activation function of a random neuron.

 mutate_agent_parameter(AgentId, FieldName, ConstraintField)

 Generic function to mutate an agent parameter.

 mutate_aggr_f(AgentId)

 Mutate aggregation function of a random neuron.

 mutate_heredity_type(AgentId)

 Mutate heredity type (darwinian/lamarckian).

 mutate_tot_topological_mutations(AgentId)

 Mutate total topological mutations function.

 mutate_tuning_annealing(AgentId)

 Mutate annealing parameter.

 mutate_tuning_selection(AgentId)

 Mutate tuning selection function.

 mutate_weights(AgentId)

 Mutate weights of a random neuron.

 Functions

 mutate_af(AgentId)

 -spec mutate_af(term()) -> ok | {error, term()}.

Mutate activation function of a random neuron.
Selects a random neuron and changes its activation function to another available function from the constraint.

 mutate_agent_parameter(AgentId, FieldName, ConstraintField)

 -spec mutate_agent_parameter(term(), atom(), atom()) -> ok | {error, no_alternatives}.

Generic function to mutate an agent parameter.
Reads the current value of a field, gets alternatives from constraint, and selects a new random value.

 mutate_aggr_f(AgentId)

 -spec mutate_aggr_f(term()) -> ok | {error, term()}.

Mutate aggregation function of a random neuron.

 mutate_heredity_type(AgentId)

 -spec mutate_heredity_type(term()) -> ok | {error, no_alternatives}.

Mutate heredity type (darwinian/lamarckian).

 mutate_tot_topological_mutations(AgentId)

 -spec mutate_tot_topological_mutations(term()) -> ok | {error, no_alternatives}.

Mutate total topological mutations function.

 mutate_tuning_annealing(AgentId)

 -spec mutate_tuning_annealing(term()) -> ok | {error, no_alternatives}.

Mutate annealing parameter.

 mutate_tuning_selection(AgentId)

 -spec mutate_tuning_selection(term()) -> ok | {error, no_alternatives}.

Mutate tuning selection function.

 mutate_weights(AgentId)

 -spec mutate_weights(term()) -> ok.

Mutate weights of a random neuron.
Selects a random neuron and perturbs its input weights using the agent's perturbation range.

perturbation_utils

Weight perturbation utilities for neural network evolution.
Provides functions for perturbing weights during evolution: - Single weight perturbation with momentum - Batch weight perturbation - Saturation to prevent numerical overflow
[bookmark: Weight_Format]Weight Format
Weights use the format: {Weight, DeltaWeight, LearningRate, ParameterList} - Weight: Current synaptic weight value - DeltaWeight: Previous change (for momentum) - LearningRate: Plasticity learning rate - ParameterList: Additional plasticity parameters

 Summary

 Functions

 perturb_weight(_, Spread)

 Perturb a single weight with momentum.

 perturb_weights(WeightSpecs, Spread)

 Perturb list of weight specs.

 sat(Value, Limit)

 Saturate a value to within +/- limit.

 Functions

 perturb_weight(_, Spread)

 -spec perturb_weight({float(), float(), float(), list()}, float()) ->
 {float(), float(), float(), list()}.

Perturb a single weight with momentum.
Uses momentum-based perturbation: DW_new = random_noise * spread + DW_old * 0.5 W_new = saturate(W + DW_new)
The 0.5 momentum factor provides smooth weight trajectories during evolution.

 perturb_weights(WeightSpecs, Spread)

 -spec perturb_weights([{float(), float(), float(), list()}], float()) ->
 [{float(), float(), float(), list()}].

Perturb list of weight specs.
Applies perturbation to each weight in the list.

 sat(Value, Limit)

 -spec sat(float(), float()) -> float().

Saturate a value to within +/- limit.
Clamps the value to [-Limit, Limit] to prevent overflow.

plasticity behaviour

Plasticity behavior module - defines the interface for learning rules.
This module provides a behavior (interface) for implementing different plasticity rules that enable neural networks to learn during operation. Unlike evolutionary weight changes, plasticity rules update weights based on neural activity patterns.
[bookmark: Theory]Theory
Plasticity refers to the brain's ability to modify its connections based on experience. The most fundamental rule is Hebbian learning: "neurons that fire together wire together" (Hebb, 1949).
Mathematically, basic Hebbian learning is: Δw_ij = η × pre_i × post_j
Where: - Δw_ij is the change in weight from neuron i to j - η is the learning rate - pre_i is the presynaptic (input) activity - post_j is the postsynaptic (output) activity
More sophisticated rules include: - Oja's rule: adds weight normalization to prevent unbounded growth - BCM rule: includes a sliding threshold for potentiation/depression - STDP: Spike-Timing Dependent Plasticity, considers timing of spikes - Modulated Hebbian: multiplies by a reward/punishment signal
[bookmark: Usage]Usage
Implement the behavior in a module:
-module(plasticity_hebbian). -behaviour(plasticity).
-export([apply_rule/4, name/0, description/0]).
name() -> hebbian. description() -> "Basic Hebbian learning rule" (as binary).
apply_rule(Weight, PreActivity, PostActivity, _Reward) -> plasticity:hebbian_delta(Weight, PreActivity, PostActivity).
Then use the plasticity module to apply rules:
NewWeights = plasticity:apply_to_network(hebbian, Weights, Activations, Reward)
[bookmark: References]References
[1] Hebb, D.O. (1949). The Organization of Behavior. Wiley. [2] Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15(3). [3] Bi, G., Poo, M. (1998). Synaptic Modifications in Cultured Hippocampal Neurons. Journal of Neuroscience, 18(24).

 Summary

 Types

 layer_weights/0

 weight_spec/0

 Callbacks

 apply_rule/4

 description/0

 init/1

 name/0

 reset/1

 Functions

 apply_to_layer(RuleModule, LayerWeights, PreActivations, PostActivity)

 Apply a plasticity rule to all weights in a layer.

 apply_to_network(RuleAtom, AllWeights, AllActivations, Reward)

 Apply a plasticity rule to an entire network's weights.

 apply_to_weights(RuleModule, Weight, PreActivity, PostActivity, Reward)

 Apply a plasticity rule to a single weight.

 available_rules()

 List available plasticity rules.

 clamp_weight(Weight, Min, Max)

 Clamp weight to stay within bounds.

 get_delta(_)

 Extract the delta weight from a weight_spec tuple.

 get_learning_rate(_)

 Extract the learning rate from a weight_spec tuple.

 get_weight(_)

 Extract the weight value from a weight_spec tuple.

 hebbian_delta(LearningRate, PreActivity, PostActivity)

 Calculate the Hebbian weight delta.

 hebbian_delta(LearningRate, CurrentWeight, PreActivity, PostActivity)

 Calculate Hebbian delta with explicit learning rate.

 normalize_weight(Weight, Magnitude)

 Normalize weight to prevent unbounded growth (Oja's modification).

 rule_module(RuleAtom)

 Get the module implementing a plasticity rule.

 set_delta(_, NewDW)

 Set the delta weight in a weight_spec tuple.

 set_weight(_, NewW)

 Set the weight value in a weight_spec tuple.

 Types

 layer_weights/0

 -type layer_weights() :: [{SourceId :: term(), [weight_spec()]}].

 weight_spec/0

 -type weight_spec() ::
 {Weight :: float(), DeltaWeight :: float(), LearningRate :: float(), ParamList :: list()}.

 Callbacks

 apply_rule/4

 -callback apply_rule(Weight :: weight_spec(),
 PreActivity :: float(),
 PostActivity :: float(),
 Reward :: float()) ->
 weight_spec().

 description/0

 -callback description() -> binary().

 init/1

 (optional)

 -callback init(Params :: map()) -> State :: term().

 name/0

 -callback name() -> atom().

 reset/1

 (optional)

 -callback reset(State :: term()) -> State :: term().

 Functions

 apply_to_layer(RuleModule, LayerWeights, PreActivations, PostActivity)

 -spec apply_to_layer(module(), layer_weights(), [float()], float()) -> layer_weights().

Apply a plasticity rule to all weights in a layer.
Given a layer's weight structure (list of {SourceId, [weights]}), applies the rule using the corresponding activations.

 apply_to_network(RuleAtom, AllWeights, AllActivations, Reward)

 -spec apply_to_network(atom(), [[layer_weights()]], [[float()]], float()) -> [[layer_weights()]].

Apply a plasticity rule to an entire network's weights.
This is the main entry point for applying learning to a network. It takes all weights organized by layer, activations per layer, and an optional reward signal.

 apply_to_weights(RuleModule, Weight, PreActivity, PostActivity, Reward)

 -spec apply_to_weights(module(), weight_spec(), float(), float(), float()) -> weight_spec().

Apply a plasticity rule to a single weight.
Takes a rule module, the current weight spec, pre/post activities, and an optional reward signal. Returns the updated weight spec.

 available_rules()

 -spec available_rules() -> [{atom(), binary()}].

List available plasticity rules.

 clamp_weight(Weight, Min, Max)

 -spec clamp_weight(float(), float(), float()) -> float().

Clamp weight to stay within bounds.

 get_delta(_)

 -spec get_delta(weight_spec()) -> float().

Extract the delta weight from a weight_spec tuple.

 get_learning_rate(_)

 -spec get_learning_rate(weight_spec()) -> float().

Extract the learning rate from a weight_spec tuple.

 get_weight(_)

 -spec get_weight(weight_spec()) -> float().

Extract the weight value from a weight_spec tuple.

 hebbian_delta(LearningRate, PreActivity, PostActivity)

 -spec hebbian_delta(weight_spec() | float(), float(), float()) -> float().

Calculate the Hebbian weight delta.
Basic Hebbian rule: Δw = η × pre × post

 hebbian_delta(LearningRate, CurrentWeight, PreActivity, PostActivity)

 -spec hebbian_delta(float(), float(), float(), float()) -> float().

Calculate Hebbian delta with explicit learning rate.

 normalize_weight(Weight, Magnitude)

 -spec normalize_weight(float(), float()) -> float().

Normalize weight to prevent unbounded growth (Oja's modification).
Applies: w' = w / ||w||

 rule_module(RuleAtom)

 -spec rule_module(atom()) -> module().

Get the module implementing a plasticity rule.

 set_delta(_, NewDW)

 -spec set_delta(weight_spec(), float()) -> weight_spec().

Set the delta weight in a weight_spec tuple.

 set_weight(_, NewW)

 -spec set_weight(weight_spec(), float()) -> weight_spec().

Set the weight value in a weight_spec tuple.

plasticity_hebbian

Basic Hebbian plasticity rule implementation.
This module implements the classic Hebbian learning rule, often summarized as "neurons that fire together wire together."
[bookmark: Theory]Theory
Hebbian learning was proposed by Donald Hebb in 1949 as a model for how neural connections are strengthened through experience. The basic rule is:
Δw_ij = η × pre_i × post_j
Where: - Δw_ij is the weight change from neuron i to j - η (eta) is the learning rate - pre_i is the presynaptic (input) activation - post_j is the postsynaptic (output) activation
[bookmark: Variants_Implemented]Variants Implemented
1. **Basic Hebbian** (default): Δw = η × pre × post
2. **Bounded Hebbian** (with weight clamping): Δw = η × pre × post, clamped to [-1, 1]
3. **Oja's Rule** (with normalization): Δw = η × post × (pre - post × w) This prevents unbounded weight growth.
[bookmark: Usage]Usage
Weight = {0.5, 0.0, 0.01, []}, % Initial weight spec PreActivity = 0.8, PostActivity = 0.6, Reward = 0.0, % Not used in basic Hebbian
NewWeight = plasticity_hebbian:apply_rule(Weight, PreActivity, PostActivity, Reward). %% => {0.5048, 0.0048, 0.01, []}
[bookmark: Configuration]Configuration
The learning rate is stored in the weight_spec tuple (3rd element). Additional parameters can be stored in the parameter list (4th element):
- {bounded, Min, Max}` - Clamp weights to [Min, Max] - `{oja, true}` - Use Ojas normalized rule - {decay, Rate}` - Apply weight decay: w = w × (1 - decay)
[bookmark: References]References
[1] Hebb, D.O. (1949). The Organization of Behavior. Wiley. [2] Oja, E. (1982). "A simplified neuron model as a principal component analyzer." Journal of Mathematical Biology.

 Summary

 Types

 weight_spec/0

 Functions

 apply_bounded(_, PreActivity, PostActivity, Min, Max)

 Apply bounded Hebbian rule with explicit bounds.

 apply_oja(_, PreActivity, PostActivity, Reward)

 Apply Oja's normalized Hebbian rule.

 apply_rule(_, PreActivity, PostActivity, Reward)

 Apply the Hebbian learning rule to a weight.

 apply_with_decay(_, PreActivity, PostActivity, Reward, DecayRate)

 Apply Hebbian with weight decay.

 description()

 Return a description of this rule.

 init(Params)

 Initialize any state for this rule.

 name()

 Return the rule name.

 reset(State)

 Reset the rule state.

 Types

 weight_spec/0

 -type weight_spec() :: plasticity:weight_spec().

 Functions

 apply_bounded(_, PreActivity, PostActivity, Min, Max)

 -spec apply_bounded(weight_spec(), float(), float(), float(), float()) -> weight_spec().

Apply bounded Hebbian rule with explicit bounds.

 apply_oja(_, PreActivity, PostActivity, Reward)

 -spec apply_oja(weight_spec(), float(), float(), float()) -> weight_spec().

Apply Oja's normalized Hebbian rule.
Oja's rule includes a "forgetting" term that prevents unbounded weight growth, making it suitable for self-organizing maps and principal component analysis.

 apply_rule(_, PreActivity, PostActivity, Reward)

 -spec apply_rule(weight_spec(), float(), float(), float()) -> weight_spec().

Apply the Hebbian learning rule to a weight.
This is the main callback that updates a single weight based on the activities of the pre and post neurons.

 apply_with_decay(_, PreActivity, PostActivity, Reward, DecayRate)

 -spec apply_with_decay(weight_spec(), float(), float(), float(), float()) -> weight_spec().

Apply Hebbian with weight decay.
Weight decay prevents weights from growing too large over time by slightly reducing all weights each update.

 description()

 -spec description() -> binary().

Return a description of this rule.

 init(Params)

 -spec init(map()) -> undefined.

Initialize any state for this rule.
For basic Hebbian, no state is needed.

 name()

 -spec name() -> atom().

Return the rule name.

 reset(State)

 -spec reset(term()) -> undefined.

Reset the rule state.

plasticity_modulated

Reward-modulated Hebbian plasticity rule.
This module implements a variant of Hebbian learning where the weight update is modulated by a global reward or punishment signal. This bridges unsupervised Hebbian learning with reinforcement learning.
[bookmark: Theory]Theory
Standard Hebbian learning strengthens any co-active connections, which can lead to "runaway" learning of irrelevant correlations. Modulated Hebbian learning solves this by gating updates with a reward signal:
Δw = η × pre × post × reward
Where reward ∈ [-1, 1]: - Positive reward: strengthens co-active connections (LTP) - Negative reward: weakens co-active connections (LTD) - Zero reward: no weight change (neutral)
This is biologically inspired by dopamine modulation of synaptic plasticity in the basal ganglia and prefrontal cortex.
[bookmark: Eligibility_Traces]Eligibility Traces
For delayed rewards, we maintain an eligibility trace that records which synapses were recently active:
e(t) = γ × e(t-1) + pre × post Δw = η × e(t) × reward
Where γ is the trace decay rate (typically 0.9-0.99).
[bookmark: Usage]Usage
Weight = {0.5, 0.0, 0.01, []}, PreActivity = 0.8, PostActivity = 0.6, Reward = 1.0, % Positive reward
NewWeight = plasticity_modulated:apply_rule(Weight, PreActivity, PostActivity, Reward). %% => {0.5048, 0.0048, 0.01, []}
[bookmark: Configuration]Configuration
Parameters in the weight_spec param list: - trace_decay: Eligibility trace decay (default: no trace) - trace: Current eligibility trace value - baseline_reward: Baseline to subtract from reward - reward_scale: Scale factor for reward
[bookmark: References]References
[1] Schultz, W. (1998). Predictive Reward Signal of Dopamine Neurons. Journal of Neurophysiology. [2] Izhikevich, E.M. (2007). Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cerebral Cortex. [3] Fremaux, N., Gerstner, W. (2016). Neuromodulated Spike-Timing- Dependent Plasticity, and Theory of Three-Factor Learning Rules. Frontiers in Neural Circuits.

 Summary

 Types

 weight_spec/0

 Functions

 apply_rule(_, PreActivity, PostActivity, Reward)

 Apply the modulated Hebbian learning rule.

 apply_with_trace(_, PreActivity, PostActivity, Reward, TraceDecay)

 Apply rule with explicit eligibility trace handling.

 description()

 Return a description of this rule.

 get_trace(_)

 Get the eligibility trace from a weight spec.

 init(Params)

 Initialize state for this rule.

 name()

 Return the rule name.

 reset(State)

 Reset the rule state.

 set_trace(_, Trace)

 Set the eligibility trace in a weight spec.

 update_trace(PreActivity, PostActivity, OldTrace, TraceDecay)

 Update an eligibility trace without applying plasticity.

 Types

 weight_spec/0

 -type weight_spec() :: plasticity:weight_spec().

 Functions

 apply_rule(_, PreActivity, PostActivity, Reward)

 -spec apply_rule(weight_spec(), float(), float(), float()) -> weight_spec().

Apply the modulated Hebbian learning rule.
The weight change is modulated by the reward signal.

 apply_with_trace(_, PreActivity, PostActivity, Reward, TraceDecay)

 -spec apply_with_trace(weight_spec(), float(), float(), float(), float()) -> {weight_spec(), float()}.

Apply rule with explicit eligibility trace handling.
This variant allows external management of the eligibility trace, useful when the trace needs to be shared across weights.

 description()

 -spec description() -> binary().

Return a description of this rule.

 get_trace(_)

 -spec get_trace(weight_spec()) -> float().

Get the eligibility trace from a weight spec.

 init(Params)

 -spec init(map()) -> map().

Initialize state for this rule.
Initializes the eligibility trace if configured.

 name()

 -spec name() -> atom().

Return the rule name.

 reset(State)

 -spec reset(map()) -> map().

Reset the rule state.

 set_trace(_, Trace)

 -spec set_trace(weight_spec(), float()) -> weight_spec().

Set the eligibility trace in a weight spec.

 update_trace(PreActivity, PostActivity, OldTrace, TraceDecay)

 -spec update_trace(float(), float(), float(), float()) -> float().

Update an eligibility trace without applying plasticity.
Useful for maintaining traces during periods without reward.

plasticity_none

No-op plasticity rule (static weights).
This module implements a "do nothing" plasticity rule that leaves weights unchanged. It serves as:
1. A baseline for comparing learning vs no learning 2. A way to disable learning for specific connections 3. A template for implementing new plasticity rules

 Summary

 Types

 weight_spec/0

 Functions

 apply_rule(Weight, PreActivity, PostActivity, Reward)

 Apply the no-op rule (returns weight unchanged).

 description()

 Return a description of this rule.

 name()

 Return the rule name.

 Types

 weight_spec/0

 -type weight_spec() :: plasticity:weight_spec().

 Functions

 apply_rule(Weight, PreActivity, PostActivity, Reward)

 -spec apply_rule(weight_spec(), float(), float(), float()) -> weight_spec().

Apply the no-op rule (returns weight unchanged).

 description()

 -spec description() -> binary().

Return a description of this rule.

 name()

 -spec name() -> atom().

Return the rule name.

population_monitor

Population-level evolutionary process manager.
This gen_server manages the evolutionary process for a population of neural network agents. It coordinates:
- Agent lifecycle (spawn, evaluate, terminate) - Fitness collection and aggregation - Selection and reproduction - Species formation and management - Termination condition checking
[bookmark: Population_Hierarchy]Population Hierarchy
Population contains multiple species. Species contains multiple agents with similar behavior. Agents compete within species for selection.
[bookmark: Evolutionary_Generation_Loop]Evolutionary Generation Loop
Each generation follows these steps: 1. Spawn Phase: Launch all agent processes in parallel 2. Evaluation Phase: Agents run sense-think-act cycles 3. Collection Phase: Gather fitness results 4. Selection Phase: Select survivors based on fitness 5. Reproduction Phase: Replicate and mutate survivors 6. Speciation Phase: Update species assignments 7. Termination Check: Goal reached or max generations?
[bookmark: Multi-Objective_Fitness]Multi-Objective Fitness
Fitness is a vector [F1, F2, ...] supporting multi-objective optimization with different aggregation strategies.

 Summary

 Types

 population_state/0

 Functions

 agent_terminated(Pid, AgentId, Fitness)

 Report that an agent has completed evaluation.

 handle_call(Request, From, State)

 Handle synchronous requests.

 handle_cast(Msg, State)

 Handle asynchronous messages.

 handle_info(Info, State)

 Handle info messages.

 init(Config)

 Initialize population monitor state.

 select_survivors(AgentFitnesses, SurvivalRate)

 Select survivors based on fitness.

 should_terminate(State)

 Check if evolution should terminate.

 start_evaluation(Pid)

 Begin evaluation phase for current generation.

 start_link(Config)

 Start population monitor process.

 stop(Pid)

 Stop the population monitor.

 terminate(Reason, State)

 Cleanup on termination.

 Types

 population_state/0

 -type population_state() ::
 #population_state{operation_mode :: gt | validation | test,
 population_id :: term(),
 active_agent_processes :: [{term(), pid()}],
 agent_ids :: [term()],
 total_agents :: non_neg_integer(),
 remaining_agents :: non_neg_integer(),
 operation_tag :: term(),
 generation_count :: non_neg_integer(),
 fitness_goal :: [float()],
 max_generations :: pos_integer(),
 evaluation_limit :: pos_integer(),
 selection_algorithm :: atom(),
 fitness_postprocessor :: atom(),
 evolutionary_strategy :: atom(),
 current_best_fitness :: [float()] | undefined,
 specie_size_limit :: pos_integer(),
 species_map :: #{term() => [term()]},
 timestamp_started :: erlang:timestamp(),
 survival_rate :: float(),
 fitness_acc :: [{term(), [float()]}]}.

 Functions

 agent_terminated(Pid, AgentId, Fitness)

 -spec agent_terminated(pid(), term(), [float()]) -> ok.

Report that an agent has completed evaluation.

 handle_call(Request, From, State)

 -spec handle_call(term(), {pid(), term()}, population_state()) -> {reply, term(), population_state()}.

Handle synchronous requests.

 handle_cast(Msg, State)

 -spec handle_cast(term(), population_state()) ->
 {noreply, population_state()} | {stop, normal, population_state()}.

Handle asynchronous messages.

 handle_info(Info, State)

 -spec handle_info(term(), population_state()) -> {noreply, population_state()}.

Handle info messages.

 init(Config)

 -spec init(map()) -> {ok, population_state()}.

Initialize population monitor state.

 select_survivors(AgentFitnesses, SurvivalRate)

 -spec select_survivors([{term(), [float()]}], float()) -> [term()].

Select survivors based on fitness.
Delegates to the selection_algorithm module for configurable selection. Uses the algorithm specified in the population state.

 should_terminate(State)

 -spec should_terminate(population_state()) -> boolean().

Check if evolution should terminate.
Termination occurs when: - Fitness goal is reached - Maximum generations reached

 start_evaluation(Pid)

 -spec start_evaluation(pid()) -> ok.

Begin evaluation phase for current generation.

 start_link(Config)

 -spec start_link(map()) -> {ok, pid()} | {error, term()}.

Start population monitor process.

 stop(Pid)

 -spec stop(pid()) -> ok.

Stop the population monitor.

 terminate(Reason, State)

 -spec terminate(term(), population_state()) -> ok.

Cleanup on termination.

selection_algorithm

Selection algorithms for evolutionary processes.
This module provides various selection strategies for choosing surviving agents from a population based on fitness. Each strategy implements a different approach to balancing exploration vs exploitation:
- Competition: Top performers survive (pure exploitation) - Tournament: Random tournaments with best winner (balanced) - Steady State: Incremental replacement (conservative)
[bookmark: Selection_Strategies]Selection Strategies
Competition Selection: - Sort population by fitness (descending) - Select top N agents based on survival rate - Guarantees best performers survive - Fast convergence but risks premature convergence - Best for well-understood fitness landscapes
Tournament Selection: - Run K tournaments of size TournamentSize - Each tournament selects best from random subset - Provides diversity through randomness - Tournament size controls selection pressure - Good balance of exploration and exploitation
Steady State Selection: - Replace worst N agents with offspring - Keep majority of population unchanged - Very conservative, slow convergence - Good for maintaining diversity - Useful when fitness landscape is deceptive
[bookmark: Fitness_Comparison]Fitness Comparison
All strategies use multi-objective fitness vectors [F1, F2, ...]. Comparison is by sum of components (weighted sum aggregation). For more sophisticated multi-objective optimization, use fitness_postprocessor module to apply Pareto dominance first.

 Summary

 Functions

 competition(AgentFitnesses, SurvivalRate)

 Competition selection - select top performers.

 steady_state(AgentFitnesses, SurvivalRate)

 Steady state selection - replace worst performers with new agents.

 tournament(AgentFitnesses, SurvivalRate, TournamentSize)

 Tournament selection - run tournaments to select survivors.

 Functions

 competition(AgentFitnesses, SurvivalRate)

 -spec competition([{term(), [float()]}], float()) -> [term()].

Competition selection - select top performers.
Sorts agents by fitness (descending) and selects the top N performers based on survival rate. This is the most aggressive selection strategy, providing strong selection pressure toward the best solutions.
Example: AgentFitnesses = [{agent1, [5.0]}, {agent2, [3.0]}, {agent3, [7.0]}] SurvivalRate = 0.5 Result = competition(AgentFitnesses, SurvivalRate) Result = [agent3, agent1] % Top 50% by fitness

 steady_state(AgentFitnesses, SurvivalRate)

 -spec steady_state([{term(), [float()]}], float()) -> [term()].

Steady state selection - replace worst performers with new agents.
This is the most conservative selection strategy. It keeps the majority of the population unchanged and only replaces the worst performers. Good for maintaining diversity and avoiding premature convergence.
The survival rate determines what fraction of the worst agents to replace. For example, SurvivalRate=0.8 means keep top 80% and replace bottom 20%.
Example: AgentFitnesses = [{agent1, [5.0]}, {agent2, [3.0]}, {agent3, [7.0]}, {agent4, [1.0]}, {agent5, [6.0]}] SurvivalRate = 0.6 Result = steady_state(AgentFitnesses, SurvivalRate) Result = [agent3, agent5, agent1] % Top 60% survive

 tournament(AgentFitnesses, SurvivalRate, TournamentSize)

 -spec tournament([{term(), [float()]}], float(), pos_integer()) -> [term()].

Tournament selection - run tournaments to select survivors.
Runs K tournaments where each tournament randomly selects TournamentSize agents and picks the best. This provides a good balance between selection pressure (controlled by tournament size) and diversity (through randomness).
Larger tournament sizes increase selection pressure (more elitist). Smaller tournament sizes increase diversity (more exploratory).
Example: AgentFitnesses = [{agent1, [5.0]}, {agent2, [3.0]}, {agent3, [7.0]}, {agent4, [4.0]}, {agent5, [6.0]}] SurvivalRate = 0.4 TournamentSize = 2 Result = tournament(AgentFitnesses, SurvivalRate, TournamentSize) Result might be [agent3, agent5] (winners of 2 tournaments)

selection_utils

Selection utilities for evolutionary algorithms.
Provides selection mechanisms used throughout the evolution process: - Roulette wheel selection (fitness-proportionate) - Random uniform selection - Weighted selection

 Summary

 Functions

 random_select(Items)

 Uniformly select a random element from a list.

 roulette_wheel(WeightedItems)

 Roulette wheel selection based on weights.

 weighted_select(Items, WeightFun)

 Select element with custom weight function.

 Functions

 random_select(Items)

 -spec random_select([term()]) -> term().

Uniformly select a random element from a list.
Each element has equal probability of selection.

 roulette_wheel(WeightedItems)

 -spec roulette_wheel([{term(), number()}]) -> term().

Roulette wheel selection based on weights.
Selects an element with probability proportional to its weight. Higher weight = higher probability of selection.
Algorithm: 1. Calculate total weight 2. Generate random value in [0, total) 3. Accumulate weights until random value exceeded

 weighted_select(Items, WeightFun)

 -spec weighted_select([term()], fun((term()) -> number())) -> term().

Select element with custom weight function.
Applies a weight function to each element, then performs roulette wheel selection.

sensor

Sensor process for TWEANN networks.
Sensors are the input interface of a neural network. They read data from the environment or problem domain and forward it to connected neurons. Each sensor has a specific function that determines what data it produces.
[bookmark: Sensor_Lifecycle]Sensor Lifecycle
1. Spawned by cortex with configuration 2. Waits for sync signal from cortex 3. Calls sensor function to get input data 4. Forwards data to all connected neurons 5. Repeats from step 2
[bookmark: Sensor_Functions]Sensor Functions
Sensor functions are atoms that map to actual functions in the problem-specific module. Common examples:
- rng - Random number generator (for testing) - xor_input - XOR problem input - pole_input - Pole balancing input

 Summary

 Functions

 init(Opts)

 Initialize the sensor and enter the main loop.

 start_link(Opts)

 Start a sensor process.

 Functions

 init(Opts)

 -spec init(map()) -> no_return().

Initialize the sensor and enter the main loop.

 start_link(Opts)

 -spec start_link(map()) -> {ok, pid()}.

Start a sensor process.
Options: - id - Unique identifier for this sensor - cortex_pid - PID of the controlling cortex - sensor_name - Atom naming the sensor function - vector_length - Length of output vector - fanout_pids - List of PIDs to forward output to - scape_pid - PID of the scape/environment (optional) - parameters - Additional parameters for sensor function

signal_aggregator

Signal aggregation functions for neural computation.
This module provides functions that aggregate weighted inputs from multiple sources into a single scalar value for activation function processing.
[bookmark: Aggregation_Methods]Aggregation Methods
- dot_product - Standard weighted sum (most common)
- mult_product - Multiplicative aggregation
- diff_product - Differentiation-based aggregation (uses process dictionary)
[bookmark: Weight_Tuple_Format]Weight Tuple Format
Weights are provided as tuples: {Weight, DeltaWeight, LearningRate, ParamList}
- Weight: The actual weight value used for computation
- DeltaWeight: Momentum term (ignored here, used by plasticity)
- LearningRate: Learning parameter (ignored here)
- ParamList: Additional parameters for plasticity rules (ignored here)
Only the Weight value is used for aggregation. The other fields support the plasticity system for weight updates during learning.

 Summary

 Types

 actuator_id/0

 cortex_id/0

 delta_weight/0

 element_id/0

 input_signal/0

 input_signals/0

 learning_rate/0

 neuron_id/0

 parameter_list/0

 sensor_id/0

 unique_id/0

 weight/0

 weight_list/0

 weight_spec/0

 weighted_input/0

 weighted_inputs/0

 Functions

 diff_product(InputSignals, WeightedInputs)

 Compute differentiation-based product of inputs

 dot_product(InputSignals, WeightedInputs)

 Compute dot product of inputs and weights

 dot_product_nif(InputSignals, WeightedInputs)

 NIF-accelerated dot product when available.

 flatten_for_nif(InputSignals, WeightedInputs)

 Flatten nested signal/weight structure for NIF consumption.

 mult_product(InputSignals, WeightedInputs)

 Compute multiplicative product of inputs and weights

 Types

 actuator_id/0

 -type actuator_id() :: {unique_id(), actuator}.

 cortex_id/0

 -type cortex_id() :: {unique_id(), cortex}.

 delta_weight/0

 -type delta_weight() :: float().

 element_id/0

 -type element_id() :: neuron_id() | sensor_id() | actuator_id() | cortex_id().

 input_signal/0

 -type input_signal() :: {element_id(), [float()]}.

 input_signals/0

 -type input_signals() :: [input_signal()].

 learning_rate/0

 -type learning_rate() :: float().

 neuron_id/0

 -type neuron_id() :: {unique_id(), neuron}.

 parameter_list/0

 -type parameter_list() :: [float()].

 sensor_id/0

 -type sensor_id() :: {unique_id(), sensor}.

 unique_id/0

 -type unique_id() :: {float(), float()}.

 weight/0

 -type weight() :: float().

 weight_list/0

 -type weight_list() :: [weight_spec()].

 weight_spec/0

 -type weight_spec() :: {weight(), delta_weight(), learning_rate(), parameter_list()}.

 weighted_input/0

 -type weighted_input() :: {element_id(), weight_list()}.

 weighted_inputs/0

 -type weighted_inputs() :: [weighted_input()].

 Functions

 diff_product(InputSignals, WeightedInputs)

 -spec diff_product(input_signals(), weighted_inputs()) -> float().

Compute differentiation-based product of inputs
Uses the difference between current and previous inputs, then applies dot product aggregation. This implements temporal differentiation for detecting changes in input signals.
Warning: This function uses the process dictionary to store previous input state. On first call, behaves like regular dot_product.

 dot_product(InputSignals, WeightedInputs)

 -spec dot_product(input_signals(), weighted_inputs()) -> float().

Compute dot product of inputs and weights
For each input source, multiplies each input signal component by its corresponding weight and sums all results. This is the standard weighted sum aggregation used in most neural networks.
The bias term is handled specially - if present as the last weight entry with source ID 'bias', its weight is added directly to the result.
Weight tuple format: {W, DW, LP, LPs} W - Weight value (used for computation) DW - Delta weight (ignored here, used by plasticity) LP - Learning parameter (ignored here) LPs - Parameter list (ignored here)

 dot_product_nif(InputSignals, WeightedInputs)

 -spec dot_product_nif(input_signals(), weighted_inputs()) -> float().

NIF-accelerated dot product when available.
This function attempts to use the Rust NIF for dot product computation. Falls back to pure Erlang if NIF is not loaded.
Performance: 40-100x faster than pure Erlang for N > 10 inputs.

 flatten_for_nif(InputSignals, WeightedInputs)

 -spec flatten_for_nif(input_signals(), weighted_inputs()) -> {[float()], [float()], float()}.

Flatten nested signal/weight structure for NIF consumption.
Converts from: Signals: [{SourceId, [S1, S2, ...]}, ...] Weights: [{SourceId, [{W1, DW1, LP1, []}, {W2, DW2, LP2, []}, ...]}, ...]
To: FlatSignals: [S1, S2, S3, ...] FlatWeights: [W1, W2, W3, ...] Bias: float()
The flattened format is cache-friendly and suitable for SIMD vectorization in the Rust NIF.

 mult_product(InputSignals, WeightedInputs)

 -spec mult_product(input_signals(), weighted_inputs()) -> float().

Compute multiplicative product of inputs and weights
For each input source, multiplies each input signal component by its corresponding weight, then multiplies all these products together. Useful for AND-like logic in neural networks.
Note: Any zero input will result in zero output due to multiplication.

species_identifier

Species identification and behavioral fingerprinting.
This module implements speciation - grouping similar agents into species to preserve diversity and prevent premature convergence. Agents compete primarily within their own species, allowing diverse strategies to coexist.
[bookmark: Speciation_Strategy]Speciation Strategy
Behavioral Fingerprinting: - Records agent behavior across standard test scenarios - Fingerprint is a vector of behavioral responses - Example: For XOR, fingerprint = [output(0,0), output(0,1), output(1,0), output(1,1)]
Distance Calculation: - Euclidean distance between behavioral fingerprints - Lower distance = more similar behavior - Threshold-based grouping into species
Species Assignment: - Compare agent fingerprint to species representatives - Assign to closest species if distance less than threshold - Create new species if too different from all existing species
[bookmark: Benefits_of_Speciation]Benefits of Speciation
- Preserves diversity (prevents single strategy dominance) - Protects innovation (new mutations get time to optimize) - Parallel search (multiple strategies explored simultaneously) - Better exploration of fitness landscape
[bookmark: Implementation_Notes]Implementation Notes
Species are identified by their champion (best performer). Distance threshold controls speciation granularity: - Low threshold = many small species (high diversity) - High threshold = few large species (low diversity)

 Summary

 Functions

 calculate_combined_distance(BehaviorFingerprint1, BehaviorFingerprint2, LtcSignature1, LtcSignature2)

 Calculate combined distance using both behavior and LTC parameters.

 calculate_distance(Fingerprint1, Fingerprint2)

 Calculate behavioral distance between two fingerprints.

 calculate_ltc_distance(Signature1, Signature2)

 Calculate distance based on LTC parameters between two agents.

 create_fingerprint(AgentId)

 Create behavioral fingerprint for an agent.

 extract_ltc_signature(AgentId)

 Extract LTC signature from an agent's genome.

 identify_species(AgentFingerprints, Threshold, ExistingSpecies)

 Assign agents to species based on behavioral similarity.

 Functions

 calculate_combined_distance(BehaviorFingerprint1, BehaviorFingerprint2, LtcSignature1, LtcSignature2)

 -spec calculate_combined_distance([float()], [float()], map(), map()) -> float().

Calculate combined distance using both behavior and LTC parameters.
Combines behavioral fingerprint distance with LTC parameter distance to create a comprehensive compatibility metric. This enables speciation that considers both what agents do (behavior) and how they do it (temporal dynamics).
Formula: (BehaviorWeight * BehaviorDist) + (LtcWeight * LtcDist)

 calculate_distance(Fingerprint1, Fingerprint2)

 -spec calculate_distance([float()], [float()]) -> float().

Calculate behavioral distance between two fingerprints.
Uses Euclidean distance to measure behavioral similarity. Lower distance indicates more similar behavior.
Formula: sqrt(sum((F1[i] - F2[i])^2))
Example: F1 = [0.0, 1.0, 1.0, 0.0] F2 = [0.1, 0.9, 0.8, 0.1] Distance = calculate_distance(F1, F2) Distance ≈ 0.244 (quite similar)

 calculate_ltc_distance(Signature1, Signature2)

 -spec calculate_ltc_distance(map(), map()) -> float().

Calculate distance based on LTC parameters between two agents.
Compares LTC signatures (neuron types, time constants, state bounds) between agents. Agents with similar LTC configurations will have lower distance, enabling speciation by temporal dynamics.
LTC Signature Components: - Proportion of LTC/CfC neurons vs standard neurons - Average time constant (tau) of LTC neurons - Average state bound (A) of LTC neurons - Standard deviation of tau values (diversity measure)

 create_fingerprint(AgentId)

 -spec create_fingerprint(term()) -> [float()].

Create behavioral fingerprint for an agent.
Runs the agent through standard test scenarios and records the behavioral responses. The fingerprint is a vector of output values across all test inputs.
For morphologies with well-defined test sets (like XOR), the fingerprint is deterministic. For stochastic environments, multiple runs may be averaged.
Example for XOR: AgentId = {1.0, agent} Fingerprint = create_fingerprint(AgentId) Fingerprint = [0.02, 0.98, 0.97, 0.03] % Outputs for inputs: (0,0), (0,1), (1,0), (1,1)

 extract_ltc_signature(AgentId)

 -spec extract_ltc_signature(term()) -> map().

Extract LTC signature from an agent's genome.
Analyzes all neurons in the agent's network and extracts statistics about LTC parameter usage. This creates a compact representation of the agent's temporal dynamics characteristics.
Signature Components: - ltc_ratio: Proportion of LTC/CfC neurons (0.0 to 1.0) - avg_tau: Average time constant of LTC neurons - avg_bound: Average state bound of LTC neurons - tau_std: Standard deviation of tau values - ltc_count: Number of LTC/CfC neurons - total_count: Total number of neurons

 identify_species(AgentFingerprints, Threshold, ExistingSpecies)

 -spec identify_species([{term(), [float()]}], float(), #{term() => {[float()], [term()]}}) ->
 #{term() => [term()]}.

Assign agents to species based on behavioral similarity.
Takes a list of agents with their fingerprints and groups them into species. Agents are compared to existing species representatives, and assigned to the closest species if within the distance threshold. If no species is close enough, a new species is created.
Example: AgentFingerprints = [{agent1, [0.1, 0.9, 0.8, 0.2]}, {agent2, [0.0, 1.0, 1.0, 0.1]}, % Similar to agent1 {agent3, [0.9, 0.1, 0.2, 0.8]} % Very different] Threshold = 0.5 ExistingSpecies = #{}
Result = identify_species(AgentFingerprints, Threshold, ExistingSpecies) Result might be: #{ specie1 => [agent1, agent2], % Similar agents specie2 => [agent3] % Different agent }

topological_mutations

Topological mutation operators for neural network evolution.
This module provides mutations that modify network structure: - add_neuron: Insert neuron into existing connection - add_outlink: Add output connection from neuron - add_inlink: Add input connection to neuron - add_sensorlink: Connect sensor to neuron - add_actuatorlink: Connect neuron to actuator - outsplice: Split output connection with new neuron - add_bias: Add bias connection to neuron

 Summary

 Functions

 add_actuator(AgentId)

 Add a new actuator to the network.

 add_actuatorlink(AgentId)

 Add link from a neuron to an actuator.

 add_bias(AgentId)

 Add bias input to a random neuron.

 add_inlink(AgentId)

 Add input link to a random neuron.

 add_neuron(AgentId)

 Add a new neuron by splitting a connection.

 add_outlink(AgentId)

 Add output link from a random neuron.

 add_sensor(AgentId)

 Add a new sensor to the network.

 add_sensorlink(AgentId)

 Add link from a sensor to a neuron.

 outsplice(AgentId)

 Add neuron by outsplicing (split output connection).

 Functions

 add_actuator(AgentId)

 -spec add_actuator(term()) -> ok | {error, term()}.

Add a new actuator to the network.
Selects an actuator type from the morphology that isn't already in the network, creates it, and connects a random neuron to it. Enables networks to evolve new action capabilities.

 add_actuatorlink(AgentId)

 -spec add_actuatorlink(term()) -> ok | {error, term()}.

Add link from a neuron to an actuator.

 add_bias(AgentId)

 -spec add_bias(term()) -> ok | {error, term()}.

Add bias input to a random neuron.
Adds a bias connection (self-connection) to a neuron that doesn't already have one.

 add_inlink(AgentId)

 -spec add_inlink(term()) -> ok | {error, term()}.

Add input link to a random neuron.
Connects a sensor or another neuron to a neuron that it's not currently connected to.

 add_neuron(AgentId)

 -spec add_neuron(term()) -> ok | {error, term()}.

Add a new neuron by splitting a connection.
Selects a random connection, removes it, and inserts a new neuron in the middle.

 add_outlink(AgentId)

 -spec add_outlink(term()) -> ok | {error, term()}.

Add output link from a random neuron.
Connects a neuron to another neuron or actuator that it's not currently connected to.

 add_sensor(AgentId)

 -spec add_sensor(term()) -> ok | {error, term()}.

Add a new sensor to the network.
Selects a sensor type from the morphology that isn't already in the network, creates it, and connects it to a random neuron. Enables networks to evolve new perception capabilities.

 add_sensorlink(AgentId)

 -spec add_sensorlink(term()) -> ok | {error, term()}.

Add link from a sensor to a neuron.

 outsplice(AgentId)

 -spec outsplice(term()) -> ok | {error, term()}.

Add neuron by outsplicing (split output connection).
Similar to add_neuron but specifically targets output connections.

tweann_logger

Logging infrastructure for macula-tweann.
Provides structured logging with different severity levels using OTP logger. This module wraps the OTP logger to provide a consistent interface across the TWEANN library.
[bookmark: Usage]Usage
Debug level - for detailed diagnostic information: tweann_logger:debug("Mutation started for agent ~p", [AgentId])
Info level - for significant but normal events: tweann_logger:info("Population evaluation complete, generation ~p", [Gen])
Warning level - for unexpected but recoverable conditions: tweann_logger:warning("Agent ~p failed evaluation: ~p", [AgentId, Reason])
Error level - for errors that require attention: tweann_logger:error("Database operation failed: ~p", [Reason])
[bookmark: Configuration]Configuration
Log level can be configured in sys.config: {kernel, [{logger_level, info} %% debug | info | warning | error]}

 Summary

 Functions

 debug(Format, Args)

 Log debug message.

 error(Format, Args)

 Log error message.

 info(Format, Args)

 Log info message.

 warning(Format, Args)

 Log warning message.

 Functions

 debug(Format, Args)

 -spec debug(Format, Args) -> ok when Format :: string(), Args :: [term()].

Log debug message.
Use for detailed diagnostic information useful during development.
Example: tweann_logger:debug("Adding neuron to agent ~p", [AgentId])

 error(Format, Args)

 -spec error(Format, Args) -> ok when Format :: string(), Args :: [term()].

Log error message.
Use for errors requiring attention.
Example: tweann_logger:error("Database write failed: ~p", [Reason])

 info(Format, Args)

 -spec info(Format, Args) -> ok when Format :: string(), Args :: [term()].

Log info message.
Use for significant normal events (milestones, completions).
Example: tweann_logger:info("Generation ~p complete, best fitness: ~p", [Gen, Fitness])

 warning(Format, Args)

 -spec warning(Format, Args) -> ok when Format :: string(), Args :: [term()].

Log warning message.
Use for unexpected but recoverable conditions.
Example: tweann_logger:warning("Mutation failed for agent ~p: ~p", [AgentId, Reason])

tweann_nif

Native Implemented Functions for high-performance network evaluation.
This module provides accelerated network evaluation for TWEANN.
[bookmark: Implementation_Priority]Implementation Priority
1. **Enterprise (macula_nn_nifs)**: If the macula_nn_nifs dependency is available (private git repo), its Rust NIFs are used automatically. This provides 10-15x speedup for compute-intensive operations.
2. **Pure Erlang (tweann_nif_fallback)**: If enterprise NIFs are not available, pure Erlang implementations are used. Always works.
[bookmark: Usage]Usage
1. Compile a genotype to a network reference: Network = tweann_nif:compile_network(Nodes, InputCount, OutputIndices)
2. Evaluate the network: Outputs = tweann_nif:evaluate(Network, Inputs)
3. For batch evaluation (many inputs, same network): OutputsList = tweann_nif:evaluate_batch(Network, InputsList)
[bookmark: Network_Compilation_Format]Network Compilation Format
Nodes are provided as a list of tuples: [{Index, Type, Activation, Bias, [{FromIndex, Weight}, ...]}, ...]
Where: - Index: integer node index (0-based) - Type: atom (input | hidden | output | bias) - Activation: atom (tanh | sigmoid | relu | etc.) - Bias: float - Connections: list of {FromIndex, Weight} tuples
Nodes MUST be in topological order (inputs first, then hidden, then outputs).

 Summary

 Functions

 benchmark_evaluate(Network, Inputs, Iterations)

 Benchmark network evaluation.

 build_cumulative_fitness(Fitnesses)

 Build cumulative fitness array for roulette selection.

 compatibility_distance(ConnectionsA, ConnectionsB, C1, C2, C3)

 Calculate compatibility distance between two genomes.

 compile_network(Nodes, InputCount, OutputIndices)

 Compile a network for fast evaluation.

 compute_reward_component(History, Current)

 Compute reward component with normalization.

 compute_weighted_reward(Components)

 Batch compute weighted reward.

 dot_product_batch(Batch)

 Batch dot product for multiple neurons.

 dot_product_flat(Signals, Weights, Bias)

 Fast dot product for signal aggregation.

 dot_product_preflattened(Signals, Weights, Bias)

 Dot product with pre-flattened data.

 euclidean_distance(V1, V2)

 Compute Euclidean distance between two behavior vectors.

 euclidean_distance_batch(Target, Others)

 Batch Euclidean distance from one vector to many.

 evaluate(Network, Inputs)

 Evaluate a compiled network with given inputs.

 evaluate_batch(Network, InputsList)

 Evaluate a network with multiple input sets.

 evaluate_cfc(Input, State, Tau, Bound)

 CfC (Closed-form Continuous-time) evaluation.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 Batch CfC evaluation for time series.

 evaluate_cfc_with_weights(Input, State, Tau, Bound, BackboneWeights, HeadWeights)

 CfC evaluation with custom backbone and head weights.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 ODE-based LTC evaluation.

 evaluate_ode_with_weights(Input, State, Tau, Bound, Dt, BackboneWeights, HeadWeights)

 ODE evaluation with custom weights.

 fitness_stats(Fitnesses)

 Compute fitness statistics in single pass.

 flatten_weights(WeightedInputs)

 Flatten weights for efficient dot product.

 histogram(Values, NumBins, MinVal, MaxVal)

 Create histogram bins.

 is_loaded()

 Check if enterprise NIFs are loaded.

 knn_novelty(Target, Population, Archive, K)

 Compute k-nearest neighbor novelty score.

 knn_novelty_batch(Behaviors, Archive, K)

 Batch kNN novelty for multiple behaviors.

 mutate_weights(Weights, MutationRate, PerturbRate, PerturbStrength)

 Mutate weights using gaussian perturbation.

 mutate_weights_batch(Genomes)

 Batch mutate multiple genomes with per-genome parameters.

 mutate_weights_batch_uniform(Genomes, MutationRate, PerturbRate, PerturbStrength)

 Batch mutate with uniform parameters.

 mutate_weights_seeded(Weights, MutationRate, PerturbRate, PerturbStrength, Seed)

 Mutate weights with explicit seed for reproducibility.

 random_weights(N)

 Generate random weights uniformly distributed in [-1, 1].

 random_weights_batch(Sizes)

 Batch generate random weights for multiple genomes.

 random_weights_gaussian(N, Mean, StdDev)

 Generate gaussian random weights from N(Mean, StdDev).

 random_weights_seeded(N, Seed)

 Generate random weights with explicit seed.

 roulette_select(Cumulative, Total, RandomVal)

 Roulette wheel selection with binary search.

 roulette_select_batch(Cumulative, Total, RandomVals)

 Batch roulette selection.

 shannon_entropy(Values)

 Compute Shannon entropy.

 tournament_select(Contestants, Fitnesses)

 Tournament selection.

 weight_distance_batch(Target, Others, UseL2)

 Batch compute weight distances from target to many others.

 weight_distance_l1(Weights1, Weights2)

 Compute L1 (Manhattan) distance between weight vectors.

 weight_distance_l2(Weights1, Weights2)

 Compute L2 (Euclidean) distance between weight vectors.

 weighted_moving_average(Values, Decay)

 Compute weighted moving average.

 z_score(Value, Mean, StdDev)

 Compute z-score normalization.

 Functions

 benchmark_evaluate(Network, Inputs, Iterations)

 -spec benchmark_evaluate(Network :: reference() | map(),
 Inputs :: [float()],
 Iterations :: pos_integer()) ->
 float().

Benchmark network evaluation.

 build_cumulative_fitness(Fitnesses)

 -spec build_cumulative_fitness(Fitnesses :: [float()]) -> {[float()], float()}.

Build cumulative fitness array for roulette selection.

 compatibility_distance(ConnectionsA, ConnectionsB, C1, C2, C3)

 -spec compatibility_distance(ConnectionsA :: [{non_neg_integer(), float()}],
 ConnectionsB :: [{non_neg_integer(), float()}],
 C1 :: float(),
 C2 :: float(),
 C3 :: float()) ->
 float().

Calculate compatibility distance between two genomes.

 compile_network(Nodes, InputCount, OutputIndices)

 -spec compile_network(Nodes ::
 [{non_neg_integer(), atom(), atom(), float(), [{non_neg_integer(), float()}]}],
 InputCount :: non_neg_integer(),
 OutputIndices :: [non_neg_integer()]) ->
 reference() | map().

Compile a network for fast evaluation.

 compute_reward_component(History, Current)

 -spec compute_reward_component(History :: [float()], Current :: float()) -> {float(), float(), float()}.

Compute reward component with normalization.

 compute_weighted_reward(Components)

 -spec compute_weighted_reward(Components :: [{[float()], float(), float()}]) -> float().

Batch compute weighted reward.

 dot_product_batch(Batch)

 -spec dot_product_batch(Batch :: [{[float()], [float()], float()}]) -> [float()].

Batch dot product for multiple neurons.

 dot_product_flat(Signals, Weights, Bias)

 -spec dot_product_flat(Signals :: [float()], Weights :: [float()], Bias :: float()) -> float().

Fast dot product for signal aggregation.

 dot_product_preflattened(Signals, Weights, Bias)

 -spec dot_product_preflattened(Signals :: [float()], Weights :: [float()], Bias :: float()) -> float().

Dot product with pre-flattened data.

 euclidean_distance(V1, V2)

 -spec euclidean_distance(V1 :: [float()], V2 :: [float()]) -> float().

Compute Euclidean distance between two behavior vectors.

 euclidean_distance_batch(Target, Others)

 -spec euclidean_distance_batch(Target :: [float()], Others :: [[float()]]) ->
 [{non_neg_integer(), float()}].

Batch Euclidean distance from one vector to many.

 evaluate(Network, Inputs)

 -spec evaluate(Network :: reference() | map(), Inputs :: [float()]) -> [float()].

Evaluate a compiled network with given inputs.

 evaluate_batch(Network, InputsList)

 -spec evaluate_batch(Network :: reference() | map(), InputsList :: [[float()]]) -> [[float()]].

Evaluate a network with multiple input sets.

 evaluate_cfc(Input, State, Tau, Bound)

 -spec evaluate_cfc(Input :: float(), State :: float(), Tau :: float(), Bound :: float()) ->
 {float(), float()}.

CfC (Closed-form Continuous-time) evaluation.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 -spec evaluate_cfc_batch(Inputs :: [float()], InitialState :: float(), Tau :: float(), Bound :: float()) ->
 [{float(), float()}].

Batch CfC evaluation for time series.

 evaluate_cfc_with_weights(Input, State, Tau, Bound, BackboneWeights, HeadWeights)

 -spec evaluate_cfc_with_weights(Input :: float(),
 State :: float(),
 Tau :: float(),
 Bound :: float(),
 BackboneWeights :: [float()],
 HeadWeights :: [float()]) ->
 {float(), float()}.

CfC evaluation with custom backbone and head weights.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 -spec evaluate_ode(Input :: float(), State :: float(), Tau :: float(), Bound :: float(), Dt :: float()) ->
 {float(), float()}.

ODE-based LTC evaluation.

 evaluate_ode_with_weights(Input, State, Tau, Bound, Dt, BackboneWeights, HeadWeights)

 -spec evaluate_ode_with_weights(Input :: float(),
 State :: float(),
 Tau :: float(),
 Bound :: float(),
 Dt :: float(),
 BackboneWeights :: [float()],
 HeadWeights :: [float()]) ->
 {float(), float()}.

ODE evaluation with custom weights.

 fitness_stats(Fitnesses)

 -spec fitness_stats(Fitnesses :: [float()]) -> {float(), float(), float(), float(), float(), float()}.

Compute fitness statistics in single pass.

 flatten_weights(WeightedInputs)

 -spec flatten_weights(WeightedInputs :: [{non_neg_integer(), [{float(), float(), float(), [float()]}]}]) ->
 {[float()], [non_neg_integer()]}.

Flatten weights for efficient dot product.

 histogram(Values, NumBins, MinVal, MaxVal)

 -spec histogram(Values :: [float()], NumBins :: pos_integer(), MinVal :: float(), MaxVal :: float()) ->
 [non_neg_integer()].

Create histogram bins.

 is_loaded()

 -spec is_loaded() -> boolean().

Check if enterprise NIFs are loaded.

 knn_novelty(Target, Population, Archive, K)

 -spec knn_novelty(Target :: [float()],
 Population :: [[float()]],
 Archive :: [[float()]],
 K :: pos_integer()) ->
 float().

Compute k-nearest neighbor novelty score.

 knn_novelty_batch(Behaviors, Archive, K)

 -spec knn_novelty_batch(Behaviors :: [[float()]], Archive :: [[float()]], K :: pos_integer()) ->
 [float()].

Batch kNN novelty for multiple behaviors.

 mutate_weights(Weights, MutationRate, PerturbRate, PerturbStrength)

 -spec mutate_weights(Weights :: [float()],
 MutationRate :: float(),
 PerturbRate :: float(),
 PerturbStrength :: float()) ->
 [float()].

Mutate weights using gaussian perturbation.

 mutate_weights_batch(Genomes)

 -spec mutate_weights_batch(Genomes :: [{[float()], float(), float(), float()}]) -> [[float()]].

Batch mutate multiple genomes with per-genome parameters.

 mutate_weights_batch_uniform(Genomes, MutationRate, PerturbRate, PerturbStrength)

 -spec mutate_weights_batch_uniform(Genomes :: [[float()]],
 MutationRate :: float(),
 PerturbRate :: float(),
 PerturbStrength :: float()) ->
 [[float()]].

Batch mutate with uniform parameters.

 mutate_weights_seeded(Weights, MutationRate, PerturbRate, PerturbStrength, Seed)

 -spec mutate_weights_seeded(Weights :: [float()],
 MutationRate :: float(),
 PerturbRate :: float(),
 PerturbStrength :: float(),
 Seed :: non_neg_integer()) ->
 [float()].

Mutate weights with explicit seed for reproducibility.

 random_weights(N)

 -spec random_weights(N :: non_neg_integer()) -> [float()].

Generate random weights uniformly distributed in [-1, 1].

 random_weights_batch(Sizes)

 -spec random_weights_batch(Sizes :: [non_neg_integer()]) -> [[float()]].

Batch generate random weights for multiple genomes.

 random_weights_gaussian(N, Mean, StdDev)

 -spec random_weights_gaussian(N :: non_neg_integer(), Mean :: float(), StdDev :: float()) -> [float()].

Generate gaussian random weights from N(Mean, StdDev).

 random_weights_seeded(N, Seed)

 -spec random_weights_seeded(N :: non_neg_integer(), Seed :: non_neg_integer()) -> [float()].

Generate random weights with explicit seed.

 roulette_select(Cumulative, Total, RandomVal)

 -spec roulette_select(Cumulative :: [float()], Total :: float(), RandomVal :: float()) ->
 non_neg_integer().

Roulette wheel selection with binary search.

 roulette_select_batch(Cumulative, Total, RandomVals)

 -spec roulette_select_batch(Cumulative :: [float()], Total :: float(), RandomVals :: [float()]) ->
 [non_neg_integer()].

Batch roulette selection.

 shannon_entropy(Values)

 -spec shannon_entropy(Values :: [float()]) -> float().

Compute Shannon entropy.

 tournament_select(Contestants, Fitnesses)

 -spec tournament_select(Contestants :: [non_neg_integer()], Fitnesses :: [float()]) -> non_neg_integer().

Tournament selection.

 weight_distance_batch(Target, Others, UseL2)

 -spec weight_distance_batch(Target :: [float()], Others :: [[float()]], UseL2 :: boolean()) ->
 [{non_neg_integer(), float()}].

Batch compute weight distances from target to many others.

 weight_distance_l1(Weights1, Weights2)

 -spec weight_distance_l1(Weights1 :: [float()], Weights2 :: [float()]) -> float().

Compute L1 (Manhattan) distance between weight vectors.

 weight_distance_l2(Weights1, Weights2)

 -spec weight_distance_l2(Weights1 :: [float()], Weights2 :: [float()]) -> float().

Compute L2 (Euclidean) distance between weight vectors.

 weighted_moving_average(Values, Decay)

 -spec weighted_moving_average(Values :: [float()], Decay :: float()) -> float().

Compute weighted moving average.

 z_score(Value, Mean, StdDev)

 -spec z_score(Value :: float(), Mean :: float(), StdDev :: float()) -> float().

Compute z-score normalization.

tweann_nif_fallback

Pure Erlang fallback implementations for TWEANN NIFs.
This module provides pure Erlang implementations of all NIF functions. These are used when the Rust NIF is not loaded or unavailable. Performance will be slower than NIF but functionality is preserved.
Copyright 2025 Macula.io Licensed under Apache-2.0

 Summary

 Functions

 benchmark_evaluate(Network, Inputs, Iterations)

 Benchmark evaluate (returns microseconds per evaluation).

 build_cumulative_fitness(Fitnesses)

 Build cumulative fitness array for roulette wheel.

 compatibility_distance(ConnectionsA, ConnectionsB, C1, C2, C3)

 Compute NEAT compatibility distance.

 compile_network(Nodes, InputCount, OutputIndices)

 Compile network to internal format (Erlang record).

 compute_reward_component(History, Current)

 Compute reward component with normalization.

 compute_weighted_reward(Components)

 Batch compute weighted reward.

 dot_product_batch(Batch)

 Batch dot product.

 dot_product_flat(Signals, Weights, Bias)

 Flat dot product.

 dot_product_preflattened(SignalsFlat, WeightsFlat, Bias)

 Dot product with pre-flattened arrays.

 euclidean_distance(V1, V2)

 Euclidean distance between two vectors.

 euclidean_distance_batch(Target, Others)

 Batch euclidean distance, sorted by distance.

 evaluate(_, Inputs)

 Evaluate network with inputs.

 evaluate_batch(Network, InputsList)

 Batch evaluate network.

 evaluate_cfc(Input, State, Tau, Bound)

 Evaluate CfC (closed-form continuous-time) neuron.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 Batch CfC evaluation for time series.

 evaluate_cfc_with_weights(Input, State, Tau, Bound, BackboneWeights, HeadWeights)

 Evaluate CfC with custom weights.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 Evaluate ODE-based LTC neuron.

 evaluate_ode_with_weights(Input, State, Tau, Bound, Dt, BackboneWeights, HeadWeights)

 Evaluate ODE with custom weights.

 fitness_stats(Fitnesses)

 Compute fitness statistics in single pass.

 flatten_weights(WeightedInputs)

 Flatten nested weight structure.

 histogram(Values, NumBins, MinVal, MaxVal)

 Histogram binning.

 knn_novelty(Target, Population, Archive, K)

 K-nearest neighbor novelty score.

 knn_novelty_batch(Behaviors, Archive, K)

 Batch KNN novelty for entire population.

 mutate_weights(Weights, MutationRate, PerturbRate, PerturbStrength)

 Mutate weights with Gaussian perturbation. Each weight has MutationRate chance of mutation. Mutated weights are either perturbed (PerturbRate) or randomized.

 mutate_weights_batch(Batch)

 Batch mutate with per-genome parameters. Each tuple: {Weights, MutationRate, PerturbRate, PerturbStrength}

 mutate_weights_batch_uniform(WeightsList, MutationRate, PerturbRate, PerturbStrength)

 Batch mutate with uniform parameters across all genomes.

 mutate_weights_seeded(Weights, MutationRate, PerturbRate, PerturbStrength, Seed)

 Mutate weights with specific random seed for reproducibility.

 random_weights(Count)

 Generate random weights in range [-1.0, 1.0].

 random_weights_batch(Batch)

 Batch generate random weights. Each tuple: {Count, Mean, StdDev}

 random_weights_gaussian(Count, Mean, StdDev)

 Generate random weights from Gaussian distribution.

 random_weights_seeded(Count, Seed)

 Generate random weights with specific seed.

 roulette_select(Cumulative, Total, RandomVal)

 Roulette wheel selection with binary search.

 roulette_select_batch(Cumulative, Total, RandomVals)

 Batch roulette selection.

 shannon_entropy(Values)

 Shannon entropy of a distribution.

 tournament_select(Contestants, Fitnesses)

 Tournament selection.

 weight_distance_batch(Target, Others, DistanceType)

 Batch compute distances between target and multiple weight vectors. DistanceType: l1 | l2

 weight_distance_l1(W1, W2)

 L1 (Manhattan) distance between two weight vectors.

 weight_distance_l2(W1, W2)

 L2 (Euclidean) distance between two weight vectors.

 weighted_moving_average(Values, Decay)

 Weighted moving average with exponential decay.

 z_score(Value, Mean, StdDev)

 Z-score normalization.

 Functions

 benchmark_evaluate(Network, Inputs, Iterations)

 -spec benchmark_evaluate(map(), [float()], pos_integer()) -> float().

Benchmark evaluate (returns microseconds per evaluation).

 build_cumulative_fitness(Fitnesses)

 -spec build_cumulative_fitness([float()]) -> {[float()], float()}.

Build cumulative fitness array for roulette wheel.

 compatibility_distance(ConnectionsA, ConnectionsB, C1, C2, C3)

 -spec compatibility_distance(list(), list(), float(), float(), float()) -> float().

Compute NEAT compatibility distance.

 compile_network(Nodes, InputCount, OutputIndices)

 -spec compile_network(list(), non_neg_integer(), [non_neg_integer()]) -> map().

Compile network to internal format (Erlang record).

 compute_reward_component(History, Current)

 -spec compute_reward_component([float()], float()) -> {float(), float(), float()}.

Compute reward component with normalization.

 compute_weighted_reward(Components)

 -spec compute_weighted_reward([{[float()], float(), float()}]) -> float().

Batch compute weighted reward.

 dot_product_batch(Batch)

 -spec dot_product_batch([{[float()], [float()], float()}]) -> [float()].

Batch dot product.

 dot_product_flat(Signals, Weights, Bias)

 -spec dot_product_flat([float()], [float()], float()) -> float().

Flat dot product.

 dot_product_preflattened(SignalsFlat, WeightsFlat, Bias)

 -spec dot_product_preflattened([float()], [float()], float()) -> float().

Dot product with pre-flattened arrays.

 euclidean_distance(V1, V2)

 -spec euclidean_distance([float()], [float()]) -> float().

Euclidean distance between two vectors.

 euclidean_distance_batch(Target, Others)

 -spec euclidean_distance_batch([float()], [[float()]]) -> [{non_neg_integer(), float()}].

Batch euclidean distance, sorted by distance.

 evaluate(_, Inputs)

 -spec evaluate(map(), [float()]) -> [float()].

Evaluate network with inputs.

 evaluate_batch(Network, InputsList)

 -spec evaluate_batch(map(), [[float()]]) -> [[float()]].

Batch evaluate network.

 evaluate_cfc(Input, State, Tau, Bound)

 -spec evaluate_cfc(float(), float(), float(), float()) -> {float(), float()}.

Evaluate CfC (closed-form continuous-time) neuron.

 evaluate_cfc_batch(Inputs, InitialState, Tau, Bound)

 -spec evaluate_cfc_batch([float()], float(), float(), float()) -> [{float(), float()}].

Batch CfC evaluation for time series.

 evaluate_cfc_with_weights(Input, State, Tau, Bound, BackboneWeights, HeadWeights)

 -spec evaluate_cfc_with_weights(float(), float(), float(), float(), [float()], [float()]) ->
 {float(), float()}.

Evaluate CfC with custom weights.

 evaluate_ode(Input, State, Tau, Bound, Dt)

 -spec evaluate_ode(float(), float(), float(), float(), float()) -> {float(), float()}.

Evaluate ODE-based LTC neuron.

 evaluate_ode_with_weights(Input, State, Tau, Bound, Dt, BackboneWeights, HeadWeights)

 -spec evaluate_ode_with_weights(float(), float(), float(), float(), float(), [float()], [float()]) ->
 {float(), float()}.

Evaluate ODE with custom weights.

 fitness_stats(Fitnesses)

 -spec fitness_stats([float()]) -> {float(), float(), float(), float(), float(), float()}.

Compute fitness statistics in single pass.

 flatten_weights(WeightedInputs)

 -spec flatten_weights([{term(), [{float(), float(), float(), list()}]}]) ->
 {[float()], [non_neg_integer()]}.

Flatten nested weight structure.

 histogram(Values, NumBins, MinVal, MaxVal)

 -spec histogram([float()], pos_integer(), float(), float()) -> [non_neg_integer()].

Histogram binning.

 knn_novelty(Target, Population, Archive, K)

 -spec knn_novelty([float()], [[float()]], [[float()]], pos_integer()) -> float().

K-nearest neighbor novelty score.

 knn_novelty_batch(Behaviors, Archive, K)

 -spec knn_novelty_batch([[float()]], [[float()]], pos_integer()) -> [float()].

Batch KNN novelty for entire population.

 mutate_weights(Weights, MutationRate, PerturbRate, PerturbStrength)

 -spec mutate_weights([float()], float(), float(), float()) -> [float()].

Mutate weights with Gaussian perturbation. Each weight has MutationRate chance of mutation. Mutated weights are either perturbed (PerturbRate) or randomized.

 mutate_weights_batch(Batch)

 -spec mutate_weights_batch([{[float()], float(), float(), float()}]) -> [[float()]].

Batch mutate with per-genome parameters. Each tuple: {Weights, MutationRate, PerturbRate, PerturbStrength}

 mutate_weights_batch_uniform(WeightsList, MutationRate, PerturbRate, PerturbStrength)

 -spec mutate_weights_batch_uniform([[float()]], float(), float(), float()) -> [[float()]].

Batch mutate with uniform parameters across all genomes.

 mutate_weights_seeded(Weights, MutationRate, PerturbRate, PerturbStrength, Seed)

 -spec mutate_weights_seeded([float()], float(), float(), float(), integer()) -> [float()].

Mutate weights with specific random seed for reproducibility.

 random_weights(Count)

 -spec random_weights(non_neg_integer()) -> [float()].

Generate random weights in range [-1.0, 1.0].

 random_weights_batch(Batch)

 -spec random_weights_batch([{non_neg_integer(), float(), float()}]) -> [[float()]].

Batch generate random weights. Each tuple: {Count, Mean, StdDev}

 random_weights_gaussian(Count, Mean, StdDev)

 -spec random_weights_gaussian(non_neg_integer(), float(), float()) -> [float()].

Generate random weights from Gaussian distribution.

 random_weights_seeded(Count, Seed)

 -spec random_weights_seeded(non_neg_integer(), integer()) -> [float()].

Generate random weights with specific seed.

 roulette_select(Cumulative, Total, RandomVal)

 -spec roulette_select([float()], float(), float()) -> non_neg_integer().

Roulette wheel selection with binary search.

 roulette_select_batch(Cumulative, Total, RandomVals)

 -spec roulette_select_batch([float()], float(), [float()]) -> [non_neg_integer()].

Batch roulette selection.

 shannon_entropy(Values)

 -spec shannon_entropy([float()]) -> float().

Shannon entropy of a distribution.

 tournament_select(Contestants, Fitnesses)

 -spec tournament_select([non_neg_integer()], [float()]) -> non_neg_integer().

Tournament selection.

 weight_distance_batch(Target, Others, DistanceType)

 -spec weight_distance_batch([float()], [[float()]], l1 | l2) -> [float()].

Batch compute distances between target and multiple weight vectors. DistanceType: l1 | l2

 weight_distance_l1(W1, W2)

 -spec weight_distance_l1([float()], [float()]) -> float().

L1 (Manhattan) distance between two weight vectors.

 weight_distance_l2(W1, W2)

 -spec weight_distance_l2([float()], [float()]) -> float().

L2 (Euclidean) distance between two weight vectors.

 weighted_moving_average(Values, Decay)

 -spec weighted_moving_average([float()], float()) -> float().

Weighted moving average with exponential decay.

 z_score(Value, Mean, StdDev)

 -spec z_score(float(), float(), float()) -> float().

Z-score normalization.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

