

 Magma

 v0.2.0

 [image: Logo]

 Table of contents

 	Changelog

 	User Guide

 	Introduction

 	Installation and setup

 	Transclusion Resolution

 	Custom Prompts and Prompt Execution

 	Creating and Understanding Magma Artefacts

 	Generating Complex Artefacts

 	Current Limitations and Roadmap

 	Modules

 	Magma

 	Magma.View

 	Magma.Vault

 	Magma.Vault.BaseVault

 	Magma.Vault.Migration

 	Magma.Vault.Version

 	Magma.Artefact.Prompt

 	Magma.Artefact.Version

 	Magma.Concept

 	Magma.Document

 	Magma.Prompt

 	Magma.PromptResult

 	Magma.DocumentStruct

 	Magma.DocumentStruct.Section

 	Magma.Matter

 	Magma.Matter.Module

 	Magma.Matter.Project

 	Magma.Artefact

 	Magma.Artefacts.Article

 	Magma.Artefacts.ModuleDoc

 	Magma.Artefacts.Readme

 	Magma.Artefacts.TableOfContents

 	Magma.Matter.Text

 	Magma.Matter.Text.Section

 	Magma.Text

 	Magma.Text.Preview

 	Magma.Generation

 	Magma.Generation.Manual

 	Magma.Generation.OpenAI

 	Magma.Config

 	Magma.Config.Artefact

 	Magma.Config.Document

 	Magma.Config.Matter

 	Magma.Config.System

 	Magma.Config.TextType

 	Magma.DocumentNotFound

 	Magma.InvalidDocumentType

 	Mix Tasks

 	mix magma.artefact.select_draft

 	mix magma.prompt.copy

 	mix magma.prompt.exec

 	mix magma.prompt.gen

 	mix magma.prompt.update

 	mix magma.text.assemble

 	mix magma.text.finalize

 	mix magma.text.new

 	mix magma.text.type.new

 	mix magma.vault.init

 	mix magma.vault.migrate

 	mix magma.vault.sync.code

Changelog

All notable changes to this project will be documented in this file.
This project adheres to Semantic Versioning and
Keep a CHANGELOG.

 v0.2.0 - 2023-12-15

 Added

	Mix task Mix.Tasks.Magma.Vault.Migrate (magma.vault.migrate) to migrate a
vault to a newer version
	Mix task Mix.Tasks.Magma.Text.Type.New (magma.text.type.new) to add
new custom text types.

 Changed

	The configuration was moved into special config documents in the vault.
These include in particular also the system prompts and default task prompts,
which means they can now be easily adopted without having to touch any
Elixir code.
	Magma.Artefact types are structs now, in order to support use cases
where multiple artefact instances of the same type for one concept should
be supported

 Fixed

	encoding issues with the "Copy to clipboard" button when the prompt contained
special characters

Compare v0.1.1...v0.2.0

 v0.1.1 - 2023-11-03

 Fixed

	a regression of the Mix.Tasks.Magma.Prompt.Copy Mix task

Compare v0.1.0...v0.1.1

 v0.1.0 - 2023-11-03

Initial release

Introduction

Magma is an environment designed to support developers in writing and executing complex prompts. Although it's primarily targeted at Elixir developers, the system's core concept of prompt composition via transclusions makes it a powerful tool even outside this context. Magma also provides a solution when you need to generate longer and more complex texts.
The project was born out of the need to overcome the limitations of simple chat interfaces, especially when using Language Models (LLMs) such as ChatGPT for prompts about complex software projects or for writing extensive texts. Some of the challenges include:
	 Limited editor capabilities of chat interfaces
	 The cumbersome process of composing prompts by copying and pasting project knowledge repeatedly, leading to outdated and duplicated fragments
	 The lack of efficient methods to manage and organize knowledge in chat interfaces

Magma addresses these issues by providing a comprehensive environment for project knowledge bases and prompt development. It capitalizes on Obsidian, a versatile tool for knowledge management, that works on top of a local folder of plain text Markdown files. Obsidian serves as the user interface for managing project knowledge and as an editor for producing documentation from the contained knowledge. For more details about Obsidian, please visit the Obsidian Help site.
Although Magma is designed for use with Obsidian, it's worth noting that since Obsidian documents are essentially Markdown documents, Magma could be used without Obsidian by manually using the Mix Tasks and a Markdown editor of your choice.
Info
In the first version of Magma, only the OpenAI API is supported for automatic prompt execution. However, the system is designed with an LLM adapter facility that allows for the implementation of other LLMs in the future. Additionally, manual prompt execution is supported, which can be used to execute the prompts with anything you want.

 The Basic Idea

The fundamental concept behind Magma is straightforward:
	You, the user, collect project-relevant knowledge in "Atomic Notes" within an Obsidian vault. Atomic notes are individual units of knowledge that focus on one specific idea or concept.

	Using transclusions — a concept borrowed from hypertext that allows for the insertion of the content of a document into another document — you can generate LLM prompts that contain the necessary knowledge for the LLM. Magma's transclusion resolution feature ensures that prompts consisting of transclusions are compiled into a proper prompt before execution.

	In addition to user-defined custom prompts, Magma also defines a system of documents for a predefined workflow with predefined (but editable) prompts for the generation of various documentation artefacts, such as ModuleDocs, project readme, etc., including longer texts, as user guides for example.

Installation and setup

This section provides instructions on how to install and setup Magma within an Elixir project.
Warning
Please note that Magma has only been tested with macOS so far. However, there is nothing that prevents it from running on other systems such as Windows and Linux. If you're using these, please read this issue.

Although primarily developed for Elixir projects, Magma can be useful in a variety of contexts. The following instructions assume you already have an Elixir project in which Magma will be installed. If you want to use Magma for general use cases, refer to the section, "Installation for non-Elixir devs" at the end.

 Installation in an existing Elixir project

Firstly, you need to set up the Magma Hex package as a development dependency in the mix.exs file of your project.
def deps do
 [
 {:magma, "~> 0.2", only: [:dev, :test]}
]
end
Warning
If you're running on Apple Silicon you might experience problems with Rambo. You'll have to switch to the GitHub master version until the next version is released. See this issue: https://github.com/jayjun/rambo/pull/13#issuecomment-1193371511

Magma relies on Pandoc, which needs to be installed separately. Make sure you have at least version 3.1.7. Refer to the Pandoc installation guide for more details.
To open the Magma Vault in Obsidian, you must have Obsidian is installed of course. We recommend using version 1.4 or above as links in the YAML frontmatter are properly supported from this version onward.
For best experience and control over the execution, Magma uses the OpenAI API. This requires adding the Openai.ex package to your mix.exs.
def deps do
 [
 {:magma, "~> 0.1", only: [:dev, :test]},
 {:openai, "~> 0.5", only: [:dev]}
]
end
You also need to set up your OpenAI API credentials in your config.exs. To avoid putting credentials in a file under version control, it is recommended to store them in environment variables as follows:
config :openai,
 api_key: {:system, "OPENAI_API_KEY"},
 organization_key: {:system, "OPENAI_ORGANIZATION_KEY"},
 http_options: [recv_timeout: 300_000]
Info
The default HTTP timeout is increased here, which is strongly recommended as Magma prompts can become quite large, resulting in lengthy executions especially with the GPT-4 model. For more details on the configuration options of Openai.ex refer to its README.

You can set these environment variables in an .envrc file in your project directory:
find it at https://platform.openai.com/account/api-keys
export OPENAI_API_KEY=your-api-key
find it at https://platform.openai.com/account/org-settings under "Organization ID"
export OPENAI_ORGANIZATION_KEY=your-org-key

 Magma vault creation

Create a new Magma vault for your project with the Mix.Tasks.Magma.Vault.Init Mix task:
$ mix magma.vault.init "Name of your project" [BaseVaultName]

You must specify a project name as the first mandatory parameter. As an optional second argument, you can specify the name of a BaseVault. A BaseVault is an Obsidian vault preconfigured with Obsidian themes and plugins. You can also specify the local path to a self-defined BaseVault. If no BaseVault is specified, the default BaseVault is used.
By default, a Magma vault is stored under the docs.magma directory within your project. This can be changed by configuring the dir application key of the magma app in config.exs:
config :magma,
 dir: "your_magma_vault/"
Warning
At the current state of the project, you can only change the name of directory here and not specify a completely separate directory outside the Elixir project. This is not supported yet.

You can also configure a set of tags to be added on all generated documents with the default_tags key in your config.exs:
config :magma,
 default_tags: ["magma-vault"]
Info
While Magma is primarily configured using specific config documents in the magma.config subdirectory of the Magma vault, including the default_tags through the Magma.system.config file, there are certain configuration options that should be set up in the application config. This ensures that the respective defaults are provided for the vault config files that are created during vault initialization. This is especially important when these settings are already utilized during vault initialization, such as the default_tags setting. It is used for the creation of all documents during vault initialization.

 Code sync

If you want to add documents for modules that were created after the initial vault creation, you can do so with the Mix.Tasks.Magma.Vault.Sync.Code Mix task:
$ mix magma.vault.sync.code

A code sync creates corresponding documents for the generation of Magma artefacts for all public and non-ignored modules. A module is ignored if it has a # Magma pragma: ignore comment at the beginning of its source code, or if it is marked as hidden (e.g. with @moduledoc false) and does not have a # Magma pragma: include comment at the beginning of its source code file.

 Installation for non-Elixir devs

Firstly, install Erlang and Elixir following this guide.
Then navigate to the directory where you want to create the Magma vault with your Markdown files and run the following command with the name of the directory and change into this directory.
$ mix new my_magma_vault
$ cd my_magma_vault

Now, you can continue with the "Installation in an existing Elixir project" above. Please note:
	After editing the deps in the mix.exs file, you need to fetch the specified dependencies: $ mix deps.get

	Since you're not interested in documenting code, add the --no-code-sync option during vault initialization: $ mix magma.vault.init "Name of your project" --no-code-sync

Transclusion Resolution

Transclusion is a fundamental concept in Magma, playing a crucial role in the generation of prompts for LLMs. This section aims to provide an understanding of transclusions, atomic notes, and the process of transclusion resolution in Magma.

 What are Transclusions?

Transclusions refer to the inclusion of a document or part of a document into another document by reference. Instead of directly copying the content, a directive or a piece of code is inserted, instructing the system to fetch and embed the original content. This method ensures that the content is maintained in a single place and displayed in multiple locations as needed.
The main advantages of transclusions are:
	 Dynamic Content Updating: Changes made to the original content are automatically reflected wherever the content has been transcluded, ensuring consistency.
	 Efficiency: Redundancy is reduced and storage space is saved as the same content doesn't need to be stored in multiple places.
	 Content Management: Single source of truth for content that might need to be displayed in multiple locations simplifies content management.

In Obsidian, transclusions are written as ![[Some Document]] or section transclusions as ![[Some Document#Some Section]].

 Importance of Atomic Notes

Atomic notes are small, self-contained notes that capture a single idea, topic, or piece of information. They are indispensable in systems where transclusions are used extensively, such as Magma. Here's why:
	Reusability: Atomic notes can be easily transcluded in various contexts without carrying over irrelevant information.
	Maintainability: Updates made in one place ensure that all transclusions of the note are up-to-date, thus maintaining consistency across the entire system.
	Composability: Atomic notes can be combined to construct more complex ideas or documents, allowing for flexible content creation.
	Clarity: Each atomic note serves a specific purpose and addresses a specific point, enhancing the overall clarity of the content system.

Since Obsidian (and Magma) also support transclusions of section, atomic notes not necessarily need to be stored all in separate documents, but can be grouped as sections in a document, much like files in folders, when it is useful.

 Transclusion Resolution in Magma

Transclusion resolution in Magma refers to the process of resolving an Obsidian transclusion by replacing it with the referenced content. This is crucial for the composition of LLM prompts, which are defined as compositions of transclusions that must be resolved before the LLM execution, since the LLM can't access the referenced content. The content of the referenced document or document section is not inserted unchanged, however. Instead, it undergoes the following processing steps:
	Comments (<!-- comment -->) are removed.
	Internal links are replaced with the target (or their display text when available) as plain text. (However, the style in which internal links are to be resolved can be customized via the link_resolution_style property of the Magma.system.config document. Permissible values there are: plain (default), emph, strong, underline.)
	Transclusions within the transcluded content itself are resolved recursively (unless it would result in an infinite recursion)
	If the transcluded content (after removing the comments), consists exclusively of a heading with no content below it, the transclusion is resolved with the empty string.
	The level of the transcluded sections is adjusted according to the current level at the point of the transclusion.

There are three kinds of transclusions in Magma which are resolved slightly differently:
	Inline transclusions: remove the leading header
	Custom header transclusions: replace the leading header
	Empty header transclusions: keep the leading header

Another difference between these transclusion resolution types is how they handle the prologue, i.e., text before the document title, on complete document transclusion resolutions. Both kinds of header transclusions omit prologue, while inline transclusions keep the prologue.
Warning
Unfortunately, the different types of transclusion are not visible in Obsidian, as the first heading is always displayed there. This can become confusing, especially with nested transclusions.

To better understand the differences between transclusion types, let's consider an example document:
Some text before the document title like this, is called prologue in Magma.

Some document

Id occaecat fugiat ea anim adipiscing.

Some Section

Aliqua ea reprehenderit aliquip aliquip laborum.
	 Inline transclusions stand alone in their own paragraph:

Dolor ad eiusmod, eu ea.

![[Some Document#Some Section]]

Culpa duis, ut id excepteur.
This will be resolved to this result:
Dolor ad eiusmod, eu ea.

Aliqua ea reprehenderit aliquip aliquip laborum.

Culpa duis, ut id excepteur.
	 Custom header transclusions are placed at the end of a header. The removed header is replaced with the one in this header.

Dolor ad eiusmod, eu ea.

Custom section title ![[Some Document#Some Section]]

Culpa duis, ut id excepteur.
This will be resolved to this result:
Dolor ad eiusmod, eu ea.

Custom section title

Aliqua ea reprehenderit aliquip aliquip laborum.

Culpa duis, ut id excepteur.
	 Empty header transclusions keep the original header of the transcluded content. They are written in a header like the custom header transclusion, but define no custom header title.

Dolor ad eiusmod, eu ea.

![[Some Document#Some Section]]

Culpa duis, ut id excepteur.
This will be resolved to this result:
Dolor ad eiusmod, eu ea.

Some Section

Aliqua ea reprehenderit aliquip aliquip laborum.

Culpa duis, ut id excepteur.
Warning
Intra-document transclusions, i.e., transclusions of sections inside the same document, are currently not supported due to a too coarse transclusion recursion detection. However, support for such transclusions is planned for the next version.

Custom Prompts and Prompt Execution

Apart from the predefined prompts for the generation of specific artefacts discussed in the following sections, Magma also provides a feature to create and execute custom prompts. We start with them to introduce prompt execution, which also applies to the more involved artefact prompts.

 Creating a Custom Prompt

In Magma, you can create a custom prompt either via the Mix task Mix.Tasks.Magma.Prompt.Gen:
$ mix magma.prompt.gen "Name of prompt"

or from within Obsidian using the command palette or the Cmd-Ctrl-P hotkey for the QuickAdd command "Custom Magma prompt". This triggers the same Mix task via the Obsidian ShellCommand plugin.
Warning
Just like the name of any Obsidian document, the name of the prompt document must be unique. A good practice is to stick to a common naming scheme for prompts, e.g., "Prompt for ...", to ensure that the prompt documents never conflict with non-prompt documents.

This process creates a Magma prompt document, a special type of Magma document. It is saved in the custom_prompt/ subdirectory of the Magma vault.
Magma documents
Magma documents are Markdown files with a particular structure and semantic rules specific to Magma.

Below is an example of a newly created custom prompt named "Example prompt":

magma_type: Prompt
magma_generation_type: OpenAI
magma_generation_params: {"model":"gpt-4","temperature":0.6}
created_at: 2023-12-04T16:32:39
tags: [magma-vault]
aliases: []

Generated results

``dataview
TABLE
	tags AS Tags,
	magma_generation_type AS Generator,
	magma_generation_params AS Params
WHERE magma_prompt = [[]]
``

Actions

``button
name Execute
type command
action Shell commands: Execute: magma.prompt.exec
color blue
``
``button
name Execute manually
type command
action Shell commands: Execute: magma.prompt.exec-manual
color blue
``
``button
name Copy to clipboard
type command
action Shell commands: Execute: magma.prompt.copy
color default
``

Example prompt

System prompt

![[Magma.system.config#Persona|]]

Context knowledge

The following sections contain background knowledge you need to be aware of, but which should NOT necessarily be covered in your response as it is documented elsewhere. Only mention absolutely necessary facts from it. Use a reference to the source if necessary.

![[Magma.system.config#Context knowledge|]]

Description of the Magma project ![[Project#Description|]]

Request

Warning
To prevent problems with the Markdown processor, code blocks with three backticks are written in this guide using two backticks to maintain proper rendering. In the actual documents the code blocks are written correctly with three backticks.

The custom prompt document consists of several parts:
	 The YAML frontmatter includes several Magma-specific properties:	 magma_type: the Magma document type
	 magma_generation_type and magma_generation_params: prompt-specific parameters for configuring the prompt execution
	 created_at, tags, and aliases: standard Obsidian properties

	 The prologue (the text before the initial document title header) contains some document controls which require Obsidian to get rendered:	 A DataView table showing a list of the generated prompt results
	 A series of buttons for different actions

	 The main body of the prompt contains two sections:	 "System prompt": This section becomes the system prompt of the OpenAI API request. It includes the persona and a "Context knowledge" subsection for providing background knowledge to the LLM.
	 "Request": This section is where you write the actual prompt.

 Prompt configuration

As you can see from the example prompt above, this contains some transclusions of sections from documents with a .config extension. These documents, which are located in the magma.config subdirectory of the vault, contain some basic setting options via properties in the YAML frontmatter as well as some sections that are transcluded or copied in various places. Of the numerous configuration files, however, only the Magma.system.config document, with the most general settings that are relevant for all prompts, plays a role for custom prompts. On the one hand, the persona, i.e. the text that opens the system prompt part in all prompts, can be defined there. On the other hand, parts of the context knowledge that should appear in all prompts can be defined here.
Context knowledge
In Magma, "context knowledge" refers to knowledge that should not necessarily be part of the result of a prompt, but is relevant to its understanding or execution. Typically, these are transclusions of various atomic notes.

Info
Note that the project description is always part of the context knowledge of every prompt, except when it comes to prompts that have the project itself as its subject, where this description is included in a more prominent manner. Due to this conditional transclusion, the project description is not part of the context knowledge section of the Magma.system.config document.

The initial content of custom prompts can be customized with the Obsidian template in the directory templates/custom_prompt.md of the Magma vault. However, the basic structure of a "System prompt" and a "Request" section should remain unchanged.

 Writing a Custom Prompt

	Unless you're working on a popular project the LLM has enough knowledge from its training, you should provide the basics of your project. So, ensure that a project description is provided in the "Description" section of the "Project" concept document.
	 Write your request in the "Request" section.
	 Add more necessary background knowledge that the LLM needs to understand your request to the "Context knowledge" section. This is ideally done via transclusion of atomic notes.

 Executing the Prompt

Magma provides two ways to execute the prompt: automatic execution and manual execution. In both cases, the prompt result is saved in a separate prompt result document named after the original prompt with a timestamp. Like any prompt result it is placed in a subdirectory __prompt_results__ of the directory where the prompt document is stored.
Info
The Magma vault directory contains its own .gitignore file in which __prompt_results__/ is listed by default, so they won't be version controlled.

 Manual Execution

Manual execution can be triggered from within Obsidian via the "Execute manually" button. This creates an empty prompt result document, which should show up in the "Generated results" table in the prologue and copies the compiled prompt with all transclusions resolved to the clipboard. The prompt from the clipboard can then be copied to the chatbot of your choice (ChatGPT, Claude, Bard etc.), executed there and the result can be copied to the respective result document.
When executing manually via the Mix.Tasks.Magma.Prompt.Exec Mix task directly:
$ mix magma.prompt.exec "Name of prompt" --manual

you are prompted on the shell to paste back the result, which is then added to the created prompt result document automatically.
If you just want to execute the prompt and not save the result back into your vault, you can use the Copy button or the Mix.Tasks.Magma.Prompt.Copy Mix task:
$ mix magma.prompt.copy "Name of prompt"

 Automatic Execution

Automatic execution is triggered via the "Execute" button or the Mix.Tasks.Magma.Prompt.Exec Mix task (without the --manual option).
In automatic execution, the magma_generation_type and magma_generation_params properties of the YAML frontmatter determine how the prompt is executed. The magma_generation_type determines which implementation of an LLM adapter (Magma.Generation) should be used. Currently, only the OpenAI API implementation (Magma.Generation.OpenAI) is available. The magma_generation_params set the values for the parameters of the selected adapter.
Warning
Unfortunately, the property editor in Obsidian does not currently support editing JSON parameters. Therefore, you need to switch to source mode to edit magma_generation_params in Obsidian.

The prompt is then executed using the configured LLM adapter and its parameters, and the result is stored in a prompt result document upon completion. Execution can take several minutes, especially with GPT-4, which is highly recommended for its superior results. Completion is signaled by an Obsidian notification. If you are not satisfied with a prompt result, you can delete it using the "Delete" button in the prologue and try again with different parameters.
You can configure the default values for the magma_generation_type and magma_generation_params properties via the respective YAML frontmatter properties Magma.system.config document. The default_generation_type key sets the Magma.Generation adapter to be used for new prompt documents, while the configuration for the adapter sets the default values for the magma_generation_params property of new prompt documents. Note, that you can still adapt them there individually.

Creating and Understanding Magma Artefacts

In Magma, we have the ability to generate what we call artefacts. These are outputs or products of the Magma environment that are created using predefined workflows and prompts. The basis for this is the Magma artefact model, which we'll introduce in this section.
Magma artefacts are things we want to generate. For example, these could be documentation artefacts like moduledocs for the API documentation, user guides, cheatsheets, a project website or README. There could also be code artefacts like test factories, properties etc., although these are not yet supported in the current version of Magma.

 Magma Artefact Model

The Magma artefact model is based on the concept of Matters and Artefacts. A Magma artefact is always about a specific subject matter, which is represented as an instance of a Magma matter type. Such a Magma matter instance is described in a concept document (Magma.Concept). The concept document also includes sections with prompts for the different kinds of artefacts for that matter.
In the next step of the artefact generation process, the artefact prompt document (Magma.Artefact.Prompt) is composed. This special kind of Magma prompt document has the goal of generating a concrete version of an artefact in a Magma artefact version document (Magma.Artefact.Version). The content structure is determined by the artefact type and is filled with the relevant parts of the concept document and eventually some matter-specific parts, for example, the code of the module in the case of Magma.Matter.Module matter type.
After the execution of the artefact prompt, the best prompt result is selected as a draft for the artefact version document, which is finally edited and finalized by the user.
Here's an illustrative sequence diagram showing the connection between these elements:
sequenceDiagram
 participant Ma as Magma.Artefact
 participant Mm as Magma.Matter
 participant Mc as Magma.Concept
 participant Map as Magma.Artefact.Prompt
 participant Mpr as Magma.PromptResult
 participant Mav as Magma.Artefact.Version

 Ma->>Mm: is about
 Mm->>Mc: is described by
 Ma->>Map: determines structure of
 Mc->>Map: provides content for
 Map->>Mpr: is executed to generate
 Mpr->>Mav: is selected draft for
 Mav->>Ma: realizes
In summary, the general process of creating a Magma artefact involves the following steps:
	Write the concept: Provide a description of the (subject) matter in the "Description" section of the concept document. Add necessary background knowledge in the "Context knowledge" section that helps to understand the description or generate artefacts about this matter. Customize the default prompt of the artefact to be created in the "Artefacts" section.
	Review the prompt and refine the concept if necessary.
	Execute the prompt. This can be done multiple times until you're satisfied with the result. Refine the concept and/or adapt the generation parameters in this iterative process.
	Select the best prompt result as a draft for the final version.
	Edit and finalize the final artefact version.

Let's see this workflow in action, by demonstrating the generation of the project README and a moduledoc.

 Generating a Project README

The first step is to write the concept of the project in the concept document. This document was already created during the vault initialization along with a prompt for the README artefact.

 The Concept Document

magma_type: Concept
magma_matter_type: Project
magma_matter_name: Example
created_at: 2023-10-06 16:03:10
tags: [magma-vault]
aliases: [Example project, Example-project]

Example project

Description

<!--
What is the Example project about?
-->

Context knowledge

<!--
This section should include background knowledge needed for the model to create a proper response, i.e. information it does not know either because of the knowledge cut-off date or unpublished knowledge.

Write it down right here in a subsection or use a transclusion. If applicable, specify source information that the model can use to generate a reference in the response.
-->

Artefacts

README

- Prompt: [[Prompt for project README]]
- Final version: [[README]]

Readme prompt task

Generate a README for project 'Example' according to its description and the following information:

Hex package name: app_name
Repo URL: https://github.com/github_username/repo_name
Documentation URL: https://hexdocs.pm/app_name/
Homepage URL:
Demo URL:
Logo path: logo.jpg
Screenshot path:
License: MIT License
Contact: Your Name - [@twitter_handle](https://twitter.com/twitter_handle) - your@email.com
Acknowledgments:

("n/a" means not applicable and should result in a removal of the respective parts)

The concept document has a YAML frontmatter which includes Obsidian properties (created_at, tags, aliases), the magma_type property specifying the Magma document type, and two new properties:
	magma_matter_type: Specifies the Magma matter type, in this case, Project.
	magma_matter_name: Specifies the name of the concrete matter, in this case, the name of the project. For matter types, where the matter name is the same as the document name, this property is not needed.

The main body of the concept includes:
a) Description of the Matter
The "Description" section of any concept document is crucial as it provides a description of its subject matter, in this case, the project, which will be transcluded as the central part in the request part of the prompt. This description can be written directly into this section or transcluded from other documents.
Info
As we saw in the last chapter, the project description is very important, as it is transcluded in the "Context knowledge" section of every custom prompt and every artefact prompt (except for those about the project itself, where it is transcluded more prominently since it's not just context knowledge in this case).

b) Context Knowledge
The "Context knowledge" section provides background information that helps to understand the matter and its description. For our project, for example, we could describe its ecosystem or some used technologies.
We encountered this section already in the introduction of Custom prompts. However, while in the case of a Custom prompt its content was specified directly in the prompt document, it is now specified in the concept document and transcluded in the prompts of all artefacts of this matter instance.
c) Artefacts
The "Artefacts" section includes subsections for all supported artefact types of the respective matter type. These subsections contain links to the respective artefact prompt and artefact version document, and a "Prompt task" section with the default prompt for the respective artefact type, which can be customized or extended for this particular instance here in the concept document.
Tip
If you want to customize the task prompt for an artefact type in general, you can do so in the "Task prompt" section of the config document of the respective artefact type in the magma.config/artefacts subdirectory of the vault. Note that this section is special because it is not transcluded, but interpreted as an EEx template that is evaluated when a concept document is created. The result of this evaluation is used as the content of the "Prompt task" section of the corresponding artefact type.

In the case of our project concept document, the only available artefact type in this first version of Magma is the README artefact. The system prompt for its generation is based on a template, which relies on some information, which should be provided in the given form in this section. If some fields do not apply for your project, you should write n/a.

 The Prompt Document

After filling the concept document, the artefact prompt document should be reviewed with the transcluded content. Let's look at the artefact prompt document that was generated during the vault initialization.

magma_type: Artefact.Prompt
magma_artefact: Readme
magma_concept: "[[Project]]"
magma_generation_type: OpenAI
magma_generation_params: {"model":"gpt-4","temperature":0.6}
created_at: 2023-10-24 16:05:35
tags: [magma-vault]
aliases: []

Generated results

``dataview
TABLE
	tags AS Tags,
	magma_generation_type AS Generator,
	magma_generation_params AS Params
WHERE magma_prompt = [[]]
``

Final version: [[README]]

Actions

``button
name Execute
type command
action Shell commands: Execute: magma.prompt.exec
color blue
``
``button
name Execute manually
type command
action Shell commands: Execute: magma.prompt.exec-manual
color blue
``
``button
name Copy to clipboard
type command
action Shell commands: Execute: magma.prompt.copy
color default
``
``button
name Update
type command
action Shell commands: Execute: magma.prompt.update
color default
``

Prompt for README

System prompt

![[Magma.system.config#Persona|]]

![[Readme.artefact.config#System prompt|]]

Context knowledge

The following sections contain background knowledge you need to be aware of, but which should NOT necessarily be covered in your response as it is documented elsewhere. Only mention absolutely necessary facts from it. Use a reference to the source if necessary.

![[Magma.system.config#Context knowledge|]]

![[Project.matter.config#Context knowledge|]]

![[Readme.artefact.config#Context knowledge|]]

![[Project#Context knowledge|]]

Request

![[Project#Readme prompt task|]]

Description of the 'Example' project ![[Project#Description|]]
You should notice its structure is very similar to the prompt shown in the previous page about "Custom prompts", but has some notable differences:
	In the YAML frontmatter, the properties magma_artefact and magma_concept have been added, which specify the artefact type and link to the concept document.
	The Generated results now contains a dedicated link to the final artefact version document.
	The Actions buttons now also have an update button, which you can use to regenerate the prompt. Although transcluded content is displayed automatically, it is sometimes necessary to regenerate the prompt (for example when source code, which is included for some artefact prompts, was modified, like for moduledocs), which can be done with this button or the Mix.Tasks.Magma.Prompt.Update Mix task.
	The "System prompt" section transcludes a section of the respective artefact type config document, which can be adapted to your specific needs. In the case of the README artefact type it contains a template for the README to be generated, which uses the fields of the form in the README artefact section in the concept document seen above.
	The "Context knowledge" section now includes a lot more transclusions from additional config documents, which allows you to compose the necessary knowledge more granular. After the "Context knowledge" section from the general Magma.system.config document that is always transcluded, we now see the following additional "Context knowledge" section transclusions:	from a config document for the matter type of the concept, in this case of the Project subject matter, the Project.matter.config document,
	from a config document for the artefact type, in this case of a Readme artefact, the Readme.artefact.config document,
	and finally, the "Context knowledge" section from the concept document above.

The artefact prompt can be executed in the same way as described in the "Custom Prompts and Prompt Execution" section of this guide. You may need to execute the prompt multiple times until you're satisfied with the result.

 The Prompt Result Documents

The prompt results now have an additional "Select as draft version" button, which you can use to select the best prompt result as a template for the artefact version.
Alternatively, you can use the Mix.Tasks.Magma.Artefact.SelectDraft Mix task directly:
$ mix magma.artefact.select_draft "Name of prompt result"

Warning
If a README already exists and must be overwritten, you must use the Mix task to confirm the overwrite. If you want to use the button, you must manually remove the old version beforehand, as a confirmation is currently not supported in Obsidian.

 The Artefact Version Document

After selecting the best prompt result as a draft, a README.md file is created in the project's root directory and filled with the result. A symbolic link to this file is then created in the Magma vault where the artefact version is normally stored (artefacts/final/project/README/README.md). This allows the README to be opened and edited in Obsidian.
As can be seen in this case of a README, artefact version documents are not always proper Magma documents, in the sense that they are properly typed with a magma_type, since this isn't possible, when the system consuming the artefact doesn't support YAML frontmatter.
With that, you can now complete the final version of the artefact.

 Generating module documentation for the API documentation

The process of generating the ModuleDoc for API documentation is quite similar to that of generating a README. The related concept and artefact prompts are created either during the initialization of the vault or by a subsequent code sync (refer to the Installation and setup page for details).
Although we're dealing with another matter type here, the concept documents are quite akin to those for the project which we saw in previous README example. The primary differences are:
	The magma_matter_type is Module instead of Project.
	The hints for the content to be written are tailored according to the Module matter type.
	The artefacts for the Module matter type are different. In the current version of Magma, only the ModuleDoc artefact type is available.

The primary goal of the ModuleDoc artefact is to generate the content for the @moduledoc string in the module's code. In fact, when the final artefact version is generated, you can use the Magma module as a replacement for the @moduledoc definition:
defmodule Some.Module do
 use Magma
 # will be replaced with a @moduledoc <content of ModuleDoc artefact version document>

 # some code
end
Warning
If you decide to include your moduledocs with use Magma, be aware that if you're writing a library and your users should be able to use these docs on their machines, e.g. with the h helper in IEx you'll have to include the Magma documents with the final moduledocs in your package like this:
defp package do
 [
 # ...
 files: ~w[lib priv mix.exs docs.magma/artefacts/final/modules/**/*.md]
]
end

However, the artefact prompt also asks for function docs for two reasons:
	 It's challenging to get the language model to ignore the functions and focus solely on the @moduledoc. It tends to describe the functions present in the shown implementation.
	 Even though Magma doesn't currently offer a similar integration for function docs as it does for @moduledoc, they are useful as copy-paste templates.

Here is a detailed look at the prompt for the ModuleDoc artefact (without the YAML frontmatter and prologue with the document controls, which are similar to the README prompt above):
Prompt for ModuleDoc of Some.Example

System prompt

![[Magma.system.config#Persona|]]

![[ModuleDoc.artefact.config#System prompt|]]

Context knowledge

The following sections contain background knowledge you need to be aware of, but which should NOT necessarily be covered in your response as it is documented elsewhere. Only mention absolutely necessary facts from it. Use a reference to the source if necessary.

![[Magma.system.config#Context knowledge|]]

Description of the Magma project ![[Project#Description|]]

![[Module.matter.config#Context knowledge|]]

Peripherally relevant modules

`Some` ![[Some#Description|]]

`Some.Example.Nested` ![[Some.Example.Nested#Description|]]

![[ModuleDoc.artefact.config#Context knowledge|]]

![[Some.Example#Context knowledge|]]

Request

![[Some.Example#ModuleDoc prompt task|]]

Description of the module `Some.Example` ![[Some.Example#Description|]]

Module code

This is the code of the module to be documented. Ignore commented out code.

``elixir
defmodule Some.Module do
 use Magma

 # some code	
end
``
Besides the project description, the "Context knowledge" section now transcludes the descriptions of all modules beneath the module to be documented in a subsection "Peripherally relevant modules". For example, for a module A.B.C, the descriptions of the modules A and A.B are transcluded here. Also, all direct submodules are transcluded, i.e. in this case all modules Some.Example.*. If you prefer to transclude module descriptions on your own and want to circumvent possible duplicate transclusions, these automatic module context transclusions can be disabled via the auto_module_context property in the Module.matter.config document.
As can be seen in this artefact prompt, the "Request" section also includes the actual source code of the module to be documented. Use the "Update" button from the Actions in the prologue, to update the prompt after modifications of the code.
The process of executing the artefact prompt and choosing the final artefact is similar to the README artefact. However, that the artefact version can now be kept in a proper artefact version document (with respective YAML frontmatter) at the place where it belongs (in this case artefacts/final/modules/Some/Module/ModuleDoc of Some.Module.md) and without the need for a symbolic link.

Generating Complex Artefacts

This section shows how Magma can be used to generate longer texts, such as user guides. It provides a detailed guide on how to use Magma for generating such complex artefacts composed of other artefacts.
Due to the token limits of an LLM, generating lengthy texts can be challenging. Instead of generating complete texts all at once, Magma generates these texts section by section. The text generation process is modelled as follows:
	Texts (Magma.Matter.Text) are a complex Magma matter type composed of various sections (Magma.Matter.Text.Section), which is also a Magma matter type.
	The overall scope of the text is described in the concept document, which is used to generate a Table of Contents artefact. This artefact guides the generation of initial concept documents for the sections of the text.
	The content of each section is described in its concept document. From these descriptions, parts of various artefacts such as an article, a presentation slide deck, or a screencast script can be generated. Currently, however, only the Magma.Artefacts.Article artefact type is implemented in Magma.
	Finally, the final artefact version of the whole artefact version of a text is assembled from the artefact versions of the sections.

This might sound rather complex, but is in practice quite straightforward. Let's walk through the process of creating an article using Magma to see this in action.

 Creating Initial Documents

You can create the initial documents for a new text with the Mix.Tasks.Magma.Text.New Mix task. The first argument is the title of your text, followed by an optional text type:
$ mix magma.text.new "Example User Guide" UserGuide

The text types determine the details of the system prompt of the artefact prompts. If no text type is provided, a minimal generic system prompt is used. Currently, there is only one text type predefined in this early stage of development, the UserGuide type.
Tip
With the Mix.Tasks.Magma.Text.Type.New Mix task, you can easily create your own text types. The given text type name must be a valid Elixir module name.
$ mix magma.text.type.new Book

This will create a new text type config document in the magma.config/text_types subdirectory of your vault, where you can define the system prompt and context knowledge for it. (If you created a generally useful text type, it would be nice to share it by opening a PR to add it to Magma. 🙏)

The following is an example of what the concept document looks like:

magma_type: Concept
magma_matter_type: Text
magma_matter_text_type: UserGuide
created_at: 2023-10-20 08:49:14
tags: [magma-vault]
aliases: []

Example User Guide

Description

<!--
What should "Example User Guide" cover?
-->

Context knowledge

<!--
This section should include background knowledge needed for the model to create a proper response, i.e. information it does not know either because of the knowledge cut-off date or unpublished knowledge.

Write it down right here in a subsection or use a transclusion. If applicable, specify source information that the model can use to generate a reference in the response.
-->

Sections

<!--
Don't remove or edit this section! The results of the generated table of contents will be copied to this place.
-->

Artefact previews

- [[Example User Guide (article) Preview]]

Artefacts

TableOfContents

- Prompt: [[Prompt for Example User Guide ToC]]
- Final version: [[Example User Guide ToC]]

TableOfContents prompt task

Your task is to write an outline of "Example User Guide".

Please provide the outline in the following format:

``markdown
Title of the first section

Abstract: Abstract of the introduction.

Title of the next section

Abstract: Abstract of the next section.

Title of the another section

Abstract: Abstract of the another section.
``

<!--
Please don't change the general structure of this outline format. The section generator relies on an outline with sections.
-->
As you can see, there is a description section here as in every concept document. In this section, all content that should be included in the text should be roughly outlined. A detailed context knowledge base is also essential in this case.

 Generating a Table of Content

In the "Artefacts" section, there is only a subsection for the generation of a table of contents (Magma.Artefacts.TableOfContents artefact type), which plays an important role in the following steps. From the generated table of contents artefact, the concept and artefact prompt documents of the individual sections are generated later. For this, it is important that the sections to be generated are specified in the produced artefact version of the table of contents as Markdown sections, which is pointed out by the comment at the end. However, as far as content in these sections is concerned, there are no specific requirements. The content generated by the LLM in these sections is used as the first content of the description of the concept of the respective section. Therefore, the generation of an abstract is requested here. However, the template can also be adapted in this respect if something different or additional is to be generated here.
The artefact prompt of the table of contents, its execution, and the creation of the artefact version are similar to the steps described in the previous chapters for generating other artefacts. The only notable difference for the prompts of artefacts about texts is that the transcluded system prompt is not coming from an artefact config document, but a config document for the text type, in this case the UserGuide.text_type.config document. This config document also defines a "Context knowledge" section which gets transcluded in the "Context knowledge" section of the prompt.

 Assembling Sections

Once the artefact version of the table of contents is generated, you can assemble the sections using the "Assemble sections" button or the Mix.Tasks.Magma.Text.Assemble Mix task:
mix magma.text.assemble "Example User Guide ToC"

This task performs the following actions:
	 It creates a concept document and an artefact prompt for each section of the article.

	 It transcludes the descriptions of the sections in the "Sections" section of the concept document, providing an overview of the entire article.

	 It creates a preview document for each artefact type of the text (currently only article). This document transcludes the artefact versions of all sections, allowing you to see a complete representation of the finished article at all times. It also serves as a basis for the final generation of the complete text by resolving the transclusions, which can be done using the "Finalize" button in the preview document or the Mix.Tasks.Magma.Text.Finalize:
mix magma.text.finalize "Example User Guide (article) Preview"

 Example

Let's illustrate this with another example. Suppose we want to create an article titled "Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs". Let's say after having the described what the text should be about in the concept, we came up with the following artefact version of the table of contents:

magma_type: Artefact.Version
magma_artefact: TableOfContents
magma_concept: "[[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs]]"
magma_draft: "[[Generated Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs ToC (2023-10-25T22:31:55)]]"
created_at: 2023-10-25 22:31:33
tags: [magma-vault]
aliases: []

``button
name Assemble sections
type command
action Shell commands: Execute: magma.text.assemble
color blue
``

Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs TOC

The Hurdles of Handling Voluminous Text

Abstract: Delving into the limitations of chat dialogs when managing extensive textual data. Issues such as scrolling challenges, lack of effective text segmentation, and limited editing capabilities come to the fore.

Contextual Challenges and Fragmented Conversations

Abstract: Highlighting the issues of maintaining coherence and context in lengthy, intricate discussions within chat interfaces. This includes the frequent need for users to backtrack or reintroduce topics, leading to disjointed conversations.

Rethinking the Interface

Abstract: Proposing alternative interfaces and modifications to address the identified challenges. From multi-pane designs to advanced organizational tools, a look into potential ways to enhance the experience of crafting complex texts with LLMs.
If we hit the "Assemble sections" button, the "Section" section of our text concept document will be filled with this:
Sections

[[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - The Hurdles of Handling Voluminous Text|The Hurdles of Handling Voluminous Text]] ![[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - The Hurdles of Handling Voluminous Text#Description|]]

[[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Contextual Challenges and Fragmented Conversations|Contextual Challenges and Fragmented Conversations]] ![[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Contextual Challenges and Fragmented Conversations#Description|]]

[[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Rethinking the Interface|Rethinking the Interface]] ![[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Rethinking the Interface#Description|]]
This looks quite overwhelming in this raw form, but it will look much cleaner when rendered in Obsidian: while the section titles link to the respective section concept documents, the content of the user written descriptions is transcluded.
The preview document looks very similar but transcludes the artefact versions of the sections instead.
A generated concept document for a section would look like this:

magma_type: Concept
magma_matter_type: Text.Section
magma_section_of: "[[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs]]"
created_at: 2023-10-25 22:42:35
tags: [magma-vault]
aliases: []

Rethinking the Interface

Description

Abstract: Proposing alternative interfaces and modifications to address the identified challenges. From multi-pane designs to advanced organizational tools, a look into potential ways to enhance the experience of crafting complex texts with LLMs.

Context knowledge

<!--
This section should include background knowledge needed for the model to create a proper response, i.e. information it does not know either because of the knowledge cut-off date or unpublished knowledge.

Write it down right here in a subsection or use a transclusion. If applicable, specify source information that the model can use to generate a reference in the response.
-->

Artefacts

Article

- Prompt: [[Prompt for Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Rethinking the Interface (article section)]]
- Final version: [[Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs - Rethinking the Interface (article section)]]

Article prompt task

Your task is to write the section "Rethinking the Interface" of "Chat Dialogues and Complexity - The Mismatch in Crafting Elaborate Texts with LLMs".

The individual artefact versions of the sections can be generated in the usual way:
	 Write the concepts of each section, i.e., fill the "Description" section and compile the "Context knowledge". (Note: The content of the "Context knowledge" section of the concept of the whole text is transcluded in the respective artefact prompt of the section, i.e., only the section-specific "Context knowledge" of the respective section must be specified.)
	 Execute the prompt to generate different prompt results.
	 Select the best prompt result as the basis for the artefact version.
	 Edit the final version, which should now also be reviewed in the preview in the overall context.

This process ensures that you can generate complex artefacts in a structured and manageable way with Magma.

Current Limitations and Roadmap

Magma is still in its early stages of development. While it already provides a useful environment for creating and executing complex prompts, it has some limitations and rough edges.

 Limitations

	The shell commands triggered by the buttons on the various Magma documents are only tested under macOS. If you're experiencing problems under Linux or Windows, please report them on this issue. If they work on one of these systems for you, please also confirm this on this issue.
	The table of contents of a text cannot be easily modified after the initial section creation.
	Intra-document transclusions (transclusions of sections inside the same document) are not supported due to a coarse transclusion recursion detection.
	Previous artefact versions are not automatically backed up when selecting a new one, you'll have to use the Mix task to overwrite previous ones or delete them manually.
	The moduledoc prompts produce mixed results and need further refinements.

 Roadmap

Main goals for the next versions are:
	Improving the process of changing the table of contents of a text after the initial section creation.
	Supporting intra-document transclusions.
	Implementing automatic backup for previous artefact versions when creating a new one.
	Adding support for generating a project website.

 Contributing to Magma

Magma is an open-source project, and we welcome contributions from the community. If you'd like to help and contribute to the project, there's plenty of opportunities. Here are just some suggestions:
	Test shell commands under Linux and Windows (see this issue)
	Simplifying the setup for non-Elixir users by creating a CLI and a self-contained binary with something like Burrito.
	Improving prompts.
	Adding more text types.
	Creating more artefacts for projects (like Project descriptions, Announcements for various sites/platforms) and modules (like Cheatsheets, Test factories, Test properties).
	Adding more matter types like versions and tasks (stories, issues etc.).
	Implementing support for module stereotypes (e.g. for GenServer, Mix tasks etc.) with more specific prompts.
	Adding support for other LLMs (via Magma.Generation adapters).
	Implementing support for other languages than Elixir.

I'm excited about the future of Magma and hope you are too. Together, we can make Magma a powerful tool for developers and writers alike.

Magma

Magma is an environment for writing and executing complex prompts.
It is primarily designed to support developers in documenting their projects.
It provides a system of documents for predefined workflows, to generate
various documentation artefacts.
Read the User Guide to learn more.

 Summary

 Functions

 defmoduledoc()

 Adds the contents of the final version of the Magma.Artefacts.ModuleDoc as the @moduledoc.

 version()

 Functions

 Link to this macro

 defmoduledoc()

 View Source

 (macro)

Adds the contents of the final version of the Magma.Artefacts.ModuleDoc as the @moduledoc.
Usually this done via use Magma.
warning
If you decide to include your moduledocs with this macro, be aware that if
you're writing a library and your users should be able to use these docs on
their machines, e.g. with the h helper in IEx you'll have to include the
Magma documents with the final moduledocs in your package like this:
defp package do
 [
 # ...
 files: ~w[lib priv mix.exs docs.magma/artefacts/final/modules/**/*.md]
]
end

 Link to this function

 version()

 View Source

Magma.View

Utility module with helper functions for creating the content of Magma documents.

 Summary

 Functions

 button(label, command, opts \\ [])

 callout(text, type \\ "info")

 comment(text)

 delete_current_file_button()

 include(document_or_section, subsection \\ nil, opts \\ [])

 include_context_knowledge(concept)

 link_to(document_or_target, label \\ nil)

 Creates an internal Obsidian link to the given document.

 link_to_concept(document, section \\ nil)

 link_to_preview(document, section \\ nil)

 link_to_prompt(document, section \\ nil)

 link_to_prompt_result(document, section \\ nil)

 link_to_version(document, section \\ nil)

 prompt_results_table()

 transclude(document_or_target, section \\ nil)

 Creates an Obsidian transclusion of the given document or section.

 transclude_concept(document, section \\ nil)

 transclude_preview(document, section \\ nil)

 transclude_prompt(document, section \\ nil)

 transclude_prompt_result(document, section \\ nil)

 transclude_version(document, section \\ nil)

 yaml_list(list)

 yaml_nested_map(struct)

 Functions

 Link to this function

 button(label, command, opts \\ [])

 View Source

 Link to this function

 callout(text, type \\ "info")

 View Source

 Link to this function

 comment(text)

 View Source

 Link to this function

 delete_current_file_button()

 View Source

 Link to this function

 include(document_or_section, subsection \\ nil, opts \\ [])

 View Source

 Link to this function

 include_context_knowledge(concept)

 View Source

 Link to this function

 link_to(document_or_target, label \\ nil)

 View Source

Creates an internal Obsidian link to the given document.
The document can be given by name or as a Magma.Document struct.
The optional second argument allows set an alternative label.

 Examples

iex> Magma.View.link_to("Document")
"[[Document]]"

iex> Magma.View.link_to("Document", "Alt")
"[[Document|Alt]]"

 Link to this function

 link_to_concept(document, section \\ nil)

 View Source

 Link to this function

 link_to_preview(document, section \\ nil)

 View Source

 Link to this function

 link_to_prompt(document, section \\ nil)

 View Source

 Link to this function

 link_to_prompt_result(document, section \\ nil)

 View Source

 Link to this function

 link_to_version(document, section \\ nil)

 View Source

 Link to this function

 prompt_results_table()

 View Source

 Link to this function

 transclude(document_or_target, section \\ nil)

 View Source

Creates an Obsidian transclusion of the given document or section.
The document can be given by name or as a Magma.Document struct.
The optional second argument can be used to specify a specific
section to be transcluded.

 Examples

iex> Magma.View.transclude("Document")
"![[Document|]]"

iex> Magma.View.transclude("Document", "Section")
"![[Document#Section|]]"

 Link to this function

 transclude_concept(document, section \\ nil)

 View Source

 Link to this function

 transclude_preview(document, section \\ nil)

 View Source

 Link to this function

 transclude_prompt(document, section \\ nil)

 View Source

 Link to this function

 transclude_prompt_result(document, section \\ nil)

 View Source

 Link to this function

 transclude_version(document, section \\ nil)

 View Source

 Link to this function

 yaml_list(list)

 View Source

 Link to this function

 yaml_nested_map(struct)

 View Source

Magma.Vault

A specialized Obsidian vault with directories for the Magma-specific documents.
The Magma.Vault module serves as a representation and utility module for a Magma vault - a specialized Obsidian vault that resides in an Elixir project. This vault is more than just a collection of Markdown documents; it houses Magma documents, which are special kinds of Markdown documents with specific paths and purposes. The vault itself can be stored by default in the docs.magma/ directory of an Elixir project but can be reconfigured as needed (see path/0).
Main functions of this module include:
	Retrieving paths within the vault, like the base path, template paths, concept paths, etc.
	Creating and initializing a new vault (create/3).
	Synchronizing the vault with the project's codebase (sync/1).
	Indexing documents by name (index/1).
	Fetching details of documents, such as their path (document_path/1) or type (document_type/1) .

 Summary

 Functions

 artefact_generation_path()

 Returns the Vault path of the directory for Magma.Artefact.Prompt documents.

 artefact_generation_path(segments)

 Constructs a complete path for Magma.Artefact.Prompt documents by joining the specified segments to the artefact_generation_path/0.

 artefact_version_path()

 Returns the Vault path of the directory for Magma.Artefact.Version documents.

 artefact_version_path(segments)

 Constructs a complete path for Magma.Artefact.Version documents by joining the specified segments to the artefact_generation_path/0.

 concept_path()

 Returns the Vault path of the directory for Magma.Concept documents.

 concept_path(segments)

 Constructs a complete path for Magma.Concept documents by joining the specified segments to the concept_path/0.

 create(project_name, base_vault \\ nil, opts \\ [])

 Creates and initializes a new vault.

 custom_prompt_template_path()

 Returns the Vault path for the custom prompt template.

 document_path(name_or_path)

 Return the path of an existing document.

 document_type(name_or_path)

 Determines the type of the document with the given name_or_path.

 index(document)

 Indexes the provided document by its name.

 path()

 Returns the application configured path to the vault.

 path(segments)

 Constructs a complete path by joining the specified segments to the root vault path/0.

 sync(opts \\ [])

 Synchronizes the Magma.Matter.Module related documents with the latest state of the codebase.

 template_path()

 Returns the Vault path of the directory for templates.

 template_path(segments)

 Constructs a complete template path by joining the specified segments to the template_path/0.

 Functions

 Link to this function

 artefact_generation_path()

 View Source

 @spec artefact_generation_path() :: Path.t()

Returns the Vault path of the directory for Magma.Artefact.Prompt documents.

 Link to this function

 artefact_generation_path(segments)

 View Source

 @spec artefact_generation_path(binary() | [binary()]) :: Path.t()

Constructs a complete path for Magma.Artefact.Prompt documents by joining the specified segments to the artefact_generation_path/0.

 Link to this function

 artefact_version_path()

 View Source

 @spec artefact_version_path() :: Path.t()

Returns the Vault path of the directory for Magma.Artefact.Version documents.

 Link to this function

 artefact_version_path(segments)

 View Source

 @spec artefact_version_path(binary() | [binary()]) :: Path.t()

Constructs a complete path for Magma.Artefact.Version documents by joining the specified segments to the artefact_generation_path/0.

 Link to this function

 concept_path()

 View Source

 @spec concept_path() :: Path.t()

Returns the Vault path of the directory for Magma.Concept documents.

 Link to this function

 concept_path(segments)

 View Source

 @spec concept_path(binary() | [binary()]) :: Path.t()

Constructs a complete path for Magma.Concept documents by joining the specified segments to the concept_path/0.

 Link to this function

 create(project_name, base_vault \\ nil, opts \\ [])

 View Source

 @spec create(
 binary(),
 base_vault :: Magma.Vault.BaseVault.theme() | Path.t() | nil,
 keyword()
) ::
 :ok | {:error, any()}

Creates and initializes a new vault.
The project_name is a mandatory parameter.
The base_vault specifies the Magma.Vault.BaseVault to be used for
initializing the new Magma vault. It can be specified with any of arguments
accepted by Magma.Vault.BaseVault.path/1.
Available opts:
	:force (default: false): allow to force creation even if a vault already exists
	:code_sync (default: true): perform an initial code sync/1

Returns :ok if the vault is successfully created or an error tuple if
there's an error during the vault creation process.

 Link to this function

 custom_prompt_template_path()

 View Source

 @spec custom_prompt_template_path() :: Path.t()

Returns the Vault path for the custom prompt template.

 Link to this function

 document_path(name_or_path)

 View Source

 @spec document_path(binary() | Path.t()) :: Path.t() | nil

Return the path of an existing document.
When given a path it checks if there actually exists a document at this path.
When given a document name (without file extension) it trys to fetch the path
from the index.
Returns nil, if no file exists at the given path or no document with the
given name is indexed.

 Link to this function

 document_type(name_or_path)

 View Source

 @spec document_type(binary() | Path.t()) ::
 {:ok, Magma.Document.type()} | {:error, any()}

Determines the type of the document with the given name_or_path.
The type is determined by the magma_type property within the document's
YAML front matter.

 Link to this function

 index(document)

 View Source

Indexes the provided document by its name.
This function indexes a given Magma.Document to enable fast access to it by
its name in the document_path/1 function or the load/1 functions of
Magma.Documents.

 Link to this function

 path()

 View Source

 @spec path() :: Path.t()

Returns the application configured path to the vault.
Unless specified otherwise, the path is the docs.magma directory
inside the project directory.
It can be changed with in your config.exs file like this:
config :magma,
 dir: "custom_dir"
Note, that this configuration should be environment-independent.
Unless you're working on Magma itself, you don't want a test-specific vault,
since the vault collects knowledge about your code in its entirety.

 Link to this function

 path(segments)

 View Source

 @spec path(binary() | [binary()]) :: Path.t()

Constructs a complete path by joining the specified segments to the root vault path/0.
Most of the time one of the more document type-specific functions is more suitable.

 Example

Magma.Vault.path("directory")
returns: "/path/to/project/docs.magma/directory"

Magma.Vault.path(["some", "directory"])
returns: "/path/to/project/docs.magma/some/directory"

 Link to this function

 sync(opts \\ [])

 View Source

 @spec sync(keyword()) :: :ok | {:error, any()}

Synchronizes the Magma.Matter.Module related documents with the latest state of the codebase.
All modules in the code base are determined and for each one the following
Magma.Documents created (unless they exist already or the :all option is set):
	a Magma.Concept
	Magma.Artefact.Prompts for all Magma.Artefacts for Magma.Matter.Module
(as specified by Magma.Matter.Module.artefacts/0)

Available options:
	:all (default: false) - when set to true also syncs modules for
already existing documents
	force (default: false) - when set to true overwrites all existing
documents without asking the user

 Link to this function

 template_path()

 View Source

 @spec template_path() :: Path.t()

Returns the Vault path of the directory for templates.

 Link to this function

 template_path(segments)

 View Source

 @spec template_path(binary() | [binary()]) :: Path.t()

Constructs a complete template path by joining the specified segments to the template_path/0.

 Example

Magma.Vault.template_path("some_template.md")
returns: "/path/to/project/docs.magma/templates/some_template.md"

Magma.Vault.BaseVault

Provides utilities to interact with predefined and custom base vaults.
A base vault is a preconfigured Obsidian vault that serves as a template when initializing a new Magma vault.

 Creating a new base vault

If you are looking to create a new base vault (either a local one or as a contribution to the Magma project), ensure you include the required plugins from the default base vault:
	 Buttons
	 Shell commands
	 QuickAdd
	 Dataview

Also, it's vital to copy the configurations of the Shell Commands and QuickAdd plugins, as they include the integration with the respective Magma mix tasks.

 Summary

 Types

 theme()

 Functions

 path(path_or_theme \\ nil)

 Returns the path to a base vault.

 path!(path_or_theme \\ nil)

 Returns the path to a base vault and raises an error when the given base vault does not exist.

 Types

 Link to this type

 theme()

 View Source

 @type theme() :: atom()

 Functions

 Link to this function

 path(path_or_theme \\ nil)

 View Source

Returns the path to a base vault.
Either the atom name of one of the predefined base vault in the priv/base_vault
directory of Magma can be used or the path to a custom local base vault.
If no base vault is given the default base vault is used.
Get path for the default base vault
Magma.Vault.BaseVault.path()

Get path for a predefined base vault
Magma.Vault.BaseVault.path(:custom_theme)

Get path for a custom base vault
Magma.Vault.BaseVault.path("/path/to/custom/base/vault")

 Link to this function

 path!(path_or_theme \\ nil)

 View Source

Returns the path to a base vault and raises an error when the given base vault does not exist.
Accepts the same arguments as path/1.

Magma.Vault.Migration

Migration of Magma vaults to be compatible with newer versions.
This module implements the general migration logic for Magma.Vaults
created with older versions of Magma, so they can be updated to work with
a newer version. It provides functionality to check the vault's version
against the required version and apply any necessary migrations, implemented
dedicated modules for specific versions. This process is crucial for
maintaining consistency and functionality as the Magma project evolves.

 Summary

 Functions

 magma_version_requirement()

 migrate()

 Applies all necessary migrations to update the vault for a newer version of Magma.

 Functions

 Link to this function

 magma_version_requirement()

 View Source

 Link to this function

 migrate()

 View Source

Applies all necessary migrations to update the vault for a newer version of Magma.

Magma.Vault.Version

Manages the versioning of the Magma vault.
The Magma.Vault.Version module provides functionality to handle the
versioning of the Magma.Vault by managing a version file within the vault.
This is crucial for ensuring compatibility between the vault and the
version of Magma being used, and for performing migrations when upgrading
to a new version of Magma.

 Summary

 Functions

 file()

 Returns the path to the version file in the Magma vault.

 load()

 Loads and returns the Magma vault version from the version file.

 save(version)

 Saves the given version to the version file in the Magma vault.

 Functions

 Link to this function

 file()

 View Source

Returns the path to the version file in the Magma vault.

 Link to this function

 load()

 View Source

Loads and returns the Magma vault version from the version file.
This function reads the version information from the .VERSION file within
the Magma vault. If the version file exists, it parses the version string
into a Version struct. If the file does not exist, it defaults to version
"0.1.0".

 Link to this function

 save(version)

 View Source

Saves the given version to the version file in the Magma vault.

Magma.Artefact.Prompt

 Summary

 Types

 t()

 Functions

 create(prompt_or_artefact, attrs \\ [], opts \\ [])

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(artefact, attrs \\ [])

 new!(artefact, attrs \\ [])

 render(prompt)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Artefact.Prompt{
 aliases: term(),
 artefact: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 generation: term(),
 name: term(),
 path: term(),
 tags: term()
}

 Functions

 Link to this function

 create(prompt_or_artefact, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(artefact, attrs \\ [])

 View Source

 Link to this function

 new!(artefact, attrs \\ [])

 View Source

 Link to this function

 render(prompt)

 View Source

Magma.Artefact.Version

 Summary

 Types

 t()

 Functions

 create(draft, attrs \\ [], opts \\ [])

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(draft, attrs \\ [])

 new!(draft, attrs \\ [])

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Artefact.Version{
 aliases: term(),
 artefact: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 draft: term(),
 name: term(),
 path: term(),
 tags: term()
}

 Functions

 Link to this function

 create(draft, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(draft, attrs \\ [])

 View Source

 Link to this function

 new!(draft, attrs \\ [])

 View Source

Magma.Concept

The basic Magma document type used for generating concrete artefacts.
It contains all user-contributed content necessary for artefact generation,
such as descriptions of the subject matter, background knowledge, and task
descriptions for various artefacts.
This module provides functions for creating, loading and updating these
concept documents, as well as functions for accessing specific sections
of the document such as the description and context knowledge sections.
It also allows for the creation of prompts based on a concept.

 Summary

 Types

 t()

 Functions

 context_knowledge_section(concept)

 context_knowledge_section_title()

 create(subject, attrs \\ [], opts \\ [])

 Creates a new concept document for a given subject matter in the Magma.Vault.

 create!(subject, attrs \\ [], opts \\ [])

 Creates a new concept document for a given subject matter in the Magma.Vault.

 create_prompts(concept, opts \\ [])

 description_section(concept)

 description_section_title()

 fetch(concept, key)

 See Magma.DocumentStruct.fetch/2.

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(subject, attrs \\ [])

 Creates a new concept document struct for a given subject matter.

 new!(subject, attrs \\ [])

 update_content_from_ast(concept)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Concept{
 aliases: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 name: term(),
 path: term(),
 prologue: term(),
 sections: term(),
 subject: term(),
 tags: term(),
 title: term()
}

 Functions

 Link to this function

 context_knowledge_section(concept)

 View Source

 Link to this function

 context_knowledge_section_title()

 View Source

 Link to this function

 create(subject, attrs \\ [], opts \\ [])

 View Source

Creates a new concept document for a given subject matter in the Magma.Vault.

 Link to this function

 create!(subject, attrs \\ [], opts \\ [])

 View Source

Creates a new concept document for a given subject matter in the Magma.Vault.
Fails in error cases.

 Link to this function

 create_prompts(concept, opts \\ [])

 View Source

 Link to this function

 description_section(concept)

 View Source

 Link to this function

 description_section_title()

 View Source

 Link to this function

 fetch(concept, key)

 View Source

See Magma.DocumentStruct.fetch/2.

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(subject, attrs \\ [])

 View Source

Creates a new concept document struct for a given subject matter.
Note, this function doesn't create the document in the Magma.Vault.
Use create/3 for this purpose.

 Link to this function

 new!(subject, attrs \\ [])

 View Source

 Link to this function

 update_content_from_ast(concept)

 View Source

 @spec update_content_from_ast(t()) :: t()

Magma.Document behaviour

A behavior for the different kinds of document types in Magma.
Besides the callback definition, it provides shared fields and logic between
all document types. Each document type defines additional fields for its
specific tasks and a path scheme that determines where instances of this type
are stored.
Note, that in general the content under the YAML frontmatter of a document
is not further interpreted (except Magma.Concept).
Magma.DocumentStruct allows to get the AST of a Markdown document.

 Summary

 Types

 t()

 type()

 Callbacks

 build_path(t)

 Builds the path of a new document during its creation.

 from(arg1)

 Fetches a document from a related document.

 load_document(t)

 Document type specific logic when loading a document.

 render_front_matter(t)

 Renders the document type specific fields as YAML front matter lines.

 title(t)

 The title of the document used in the initial top-level header of a document.

 Functions

 fields()

 recreate(document)

 Creates the file for document, overwriting the existing one.

 recreate!(document)

 Creates the file for document, overwriting the existing one.

 save(document, opts \\ [])

 Saves the changes on a document.

 type(string)

 Returns the document type module for the given string.

 type?(module)

 Returns if the given module is a document type module.

 type_name(type)

 Returns the document type name for the given document.

 Types

 Link to this type

 t()

 View Source

 @type t() ::
 Magma.Concept.t()
 | Magma.Prompt.t()
 | Magma.Artefact.Prompt.t()
 | Magma.PromptResult.t()
 | Magma.Artefact.Version.t()
 | Magma.Text.Preview.t()

 Link to this type

 type()

 View Source

 @type type() :: module()

 Callbacks

 Link to this callback

 build_path(t)

 View Source

 @callback build_path(t()) :: {:ok, Path.t()}

Builds the path of a new document during its creation.
The function will receive a struct created with the respective new function, which should
have initialized all parts required for this path building step.

 Link to this callback

 from(arg1)

 View Source

 @callback from(t() | {Magma.Concept.t(), Magma.Artefact.t()}) :: t() | binary()

Fetches a document from a related document.
For example, Concept.from(prompt) will return the Magma.Concept document from the given prompt.
Implementation should implement clauses for all document types for which it is possible.
For Magma.Artefact-specific documents from a Magma.Concept, the concept must be given in a
{Concept.t(), Artefact.t()} tuple.

 Link to this callback

 load_document(t)

 View Source

 @callback load_document(t()) :: {:ok, t()} | {:error, any()}

Document type specific logic when loading a document.
Usually the document type specific fields of the YAML front matter of the document
are extracted and interpreted here.

 Link to this callback

 render_front_matter(t)

 View Source

 @callback render_front_matter(t()) :: binary() | nil

Renders the document type specific fields as YAML front matter lines.

 Link to this callback

 title(t)

 View Source

 @callback title(t()) :: binary()

The title of the document used in the initial top-level header of a document.

 Functions

 Link to this function

 fields()

 View Source

 Link to this function

 recreate(document)

 View Source

Creates the file for document, overwriting the existing one.
This function is used by the Mix.Tasks.Magma.Prompt.Update Mix task.

 Link to this function

 recreate!(document)

 View Source

Creates the file for document, overwriting the existing one.
This function is used by the Mix.Tasks.Magma.Prompt.Update Mix task.

 Link to this function

 save(document, opts \\ [])

 View Source

Saves the changes on a document.

 Link to this function

 type(string)

 View Source

Returns the document type module for the given string.

 Example

iex> Magma.Document.type("Concept")
Magma.Concept

iex> Magma.Document.type("Artefact.Prompt")
Magma.Artefact.Prompt

iex> Magma.Document.type("Config.System")
Magma.Config.System

iex> Magma.Document.type("Vault")
nil

iex> Magma.Document.type("NonExisting")
nil

 Link to this function

 type?(module)

 View Source

Returns if the given module is a document type module.

 Link to this function

 type_name(type)

 View Source

Returns the document type name for the given document.

 Example

iex> Magma.Document.type_name(Magma.Concept)
"Concept"

iex> Magma.Document.type_name(Magma.Prompt)
"Prompt"

iex> Magma.Document.type_name(Magma.Artefact.Prompt)
"Artefact.Prompt"

iex> Magma.Document.type_name(Magma.PromptResult)
"PromptResult"

iex> Magma.Document.type_name(Magma.Artefact.Version)
"Artefact.Version"

iex> Magma.Document.type_name(Magma.Text.Preview)
"Text.Preview"

iex> Magma.Document.type_name(Magma.Vault)
** (RuntimeError) Invalid Magma.Document type: Magma.Vault

iex> Magma.Document.type_name(NonExisting)
** (RuntimeError) Invalid Magma.Document type: NonExisting

Magma.Prompt

 Summary

 Types

 t()

 Functions

 create(name, attrs \\ [], opts \\ [])

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(name, attrs \\ [])

 new!(name, attrs \\ [])

 path_prefix()

 render(prompt)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Prompt{
 aliases: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 generation: term(),
 name: term(),
 path: term(),
 tags: term()
}

 Functions

 Link to this function

 create(name, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(name, attrs \\ [])

 View Source

 Link to this function

 new!(name, attrs \\ [])

 View Source

 Link to this function

 path_prefix()

 View Source

 Link to this function

 render(prompt)

 View Source

Magma.PromptResult

 Summary

 Types

 t()

 Functions

 build_name(result)

 controls(prompt_result)

 create(prompt, attrs \\ [], opts \\ [])

 dir()

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(prompt, attrs \\ [])

 new!(prompt, attrs \\ [])

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.PromptResult{
 aliases: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 generation: term(),
 name: term(),
 path: term(),
 prompt: term(),
 tags: term()
}

 Functions

 Link to this function

 build_name(result)

 View Source

 Link to this function

 controls(prompt_result)

 View Source

 Link to this function

 create(prompt, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 dir()

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(prompt, attrs \\ [])

 View Source

 Link to this function

 new!(prompt, attrs \\ [])

 View Source

Magma.DocumentStruct

Provides an abstract representation of a Markdown document structured based on the Pandoc AST.
The Magma.DocumentStruct module provides an Elixir struct for representing
the contents of a Markdown document as an Abstract Syntax Tree (AST) based
on the Pandoc AST. The struct is designed to access the individual sections
including their subsections and facilitate the transclusion resolution feature,
which is essential for the prompt generation in Magma.
The Magma.DocumentStruct struct consists of a prologue, which is the
header-less text before the first section, and all sections of level 1
(which in turn consist of sections of level 2 and so on).
The core functionalities related to sections are implemented in the
Magma.DocumentStruct.Section module. The Magma.DocumentStruct acts as a
wrapper around this recursive section structure and delegates most of its
functions to the said module.

 Summary

 Types

 compatible()

 t()

 Functions

 fetch(document_struct, title)

 Fetches the section with the given title and returns it in an ok tuple.

 main_section(map)

 Returns the first section.

 parse(content)

 Parses the given content into a Magma.DocumentStruct.

 remove_comments(document_struct)

 Removes all comment blocks from the given document_struct.

 resolve_transclusions(document_struct)

 Processes and resolves transclusions within the given document_struct.

 section_by_title(map, title)

 Fetches the first section with the given title.

 set_level(document_struct, level)

 Sets the header level for all sections within the document.

 title(document_struct)

 Extracts and returns the title of the main_section/1.

 to_markdown(document)

 Converts the given document_struct back into a Markdown string.

 Types

 Link to this type

 compatible()

 View Source

 @type compatible() ::
 %{
 prologue: [Panpipe.AST.Node.t()],
 sections: [Magma.DocumentStruct.Section.t()]
 }
 | Magma.Concept.t()

 Link to this type

 t()

 View Source

 @type t() :: %Magma.DocumentStruct{
 prologue: [Panpipe.AST.Node.t()],
 sections: [Magma.DocumentStruct.Section.t()]
}

 Functions

 Link to this function

 fetch(document_struct, title)

 View Source

Fetches the section with the given title and returns it in an ok tuple.
If no section with title exists, it returns :error.
This implements Access.fetch/2 function, so that the document_struct[title]
syntax and the Kernel macros for accessing nested data structures like
get_in/2 are supported.
This function only searches sections directly under the given section.
For a recursive search, use section_by_title/2.

 Link to this function

 main_section(map)

 View Source

 @spec main_section(t() | compatible()) :: Magma.DocumentStruct.Section.t() | nil

Returns the first section.
Assuming that the first section with header level 1 is the main section.

 Link to this function

 parse(content)

 View Source

 @spec parse(binary()) :: {:ok, t()} | {:error, any()}

Parses the given content into a Magma.DocumentStruct.

 Link to this function

 remove_comments(document_struct)

 View Source

 @spec remove_comments(t()) :: t()

Removes all comment blocks from the given document_struct.
See Magma.DocumentStruct.Section.remove_comments/1 which does the same
on a section level.

 Link to this function

 resolve_transclusions(document_struct)

 View Source

 @spec resolve_transclusions(t()) :: t()

Processes and resolves transclusions within the given document_struct.
See Magma.DocumentStruct.Section.resolve_transclusions/1 which does the same
on a section level.

 Link to this function

 section_by_title(map, title)

 View Source

 @spec section_by_title(t() | compatible(), binary()) ::
 Magma.DocumentStruct.Section.t() | nil

Fetches the first section with the given title.
Unlike fetch/2, this function performs a recursive search throughout the
document to find the desired section.

 Link to this function

 set_level(document_struct, level)

 View Source

 @spec set_level(t(), non_neg_integer()) :: t()

Sets the header level for all sections within the document.
See Magma.DocumentStruct.Section.set_level/2 which does the same
on a section level.

 Link to this function

 title(document_struct)

 View Source

 @spec title(t() | compatible()) :: binary() | nil

Extracts and returns the title of the main_section/1.

 Link to this function

 to_markdown(document)

 View Source

 @spec to_markdown(t() | compatible()) :: binary()

Converts the given document_struct back into a Markdown string.

Magma.DocumentStruct.Section

Recursive structure for the nested sections of a Magma.DocumentStruct.

 Summary

 Types

 t()

 Functions

 empty?(section)

 Checks if the given section is empty, i.e. it has no content and nested sections.

 empty_content?(section)

 Checks if the given section consists solely of subsection headers.

 fetch(struct, title)

 Fetches the section with the given title and returns it in an ok tuple.

 new(header, content, sections \\ [])

 Creates a new section.

 preserve_eex_tags(section)

 remove_comments(section_or_content)

 Removes all comment blocks from the given section_or_content.

 resolve_links(section, opts \\ [])

 Resolves internal links in the provided section by replacing them with their content or display text.

 resolve_transclusions(section)

 Processes and resolves transclusions within the given section.

 section_by_title(section, title)

 Fetches the first section with the given title.

 set_header(section, header)

 Sets a new header for the given section, updating the :title and :level fields accordingly.

 set_header(section, title, level)

 Sets a new header with the given title and level for the given section, updating the :title and :level fields accordingly.

 set_level(section, level)

 Changes the header level of section to the given level.

 shift_level(section, shift_level)

 Shifts the header level of section by the given shift_level.

 to_markdown(section, opts \\ [])

 Converts a Magma.DocumentStruct.Section into a Markdown string.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.DocumentStruct.Section{
 content: [Panpipe.AST.Node.t()],
 header: Panpipe.AST.Header.t(),
 level: integer(),
 sections: [t()],
 title: binary()
}

 Functions

 Link to this function

 empty?(section)

 View Source

 @spec empty?(t()) :: boolean()

Checks if the given section is empty, i.e. it has no content and nested sections.

 Link to this function

 empty_content?(section)

 View Source

 @spec empty_content?(t()) :: boolean()

Checks if the given section consists solely of subsection headers.

 Link to this function

 fetch(struct, title)

 View Source

 @spec fetch(t() | Magma.DocumentStruct.compatible(), binary()) :: {:ok, t()} | :error

Fetches the section with the given title and returns it in an ok tuple.
If no section with section exists, it returns :error.
This implements Access.fetch/2 function, so that the section[title]
syntax and the Kernel macros for accessing nested data structures like
get_in/2 are supported.
This function only searches sections directly under the given section.
For a recursive search, use section_by_title/2.

 Link to this function

 new(header, content, sections \\ [])

 View Source

 @spec new(
 Panpipe.AST.Header.t() | {pos_integer(), binary()},
 [Panpipe.AST.Node.t()],
 [t()]
) :: t()

Creates a new section.

 Link to this function

 preserve_eex_tags(section)

 View Source

 Link to this function

 remove_comments(section_or_content)

 View Source

 @spec remove_comments(t()) :: t()

 @spec remove_comments([Panpipe.AST.Node.t()]) :: [Panpipe.AST.Node.t()]

Removes all comment blocks from the given section_or_content.
This function cleans up the document by removing all comment blocks
(<!-- comment -->).

 Link to this function

 resolve_links(section, opts \\ [])

 View Source

 @spec resolve_links(
 t(),
 keyword()
) :: t()

Resolves internal links in the provided section by replacing them with their content or display text.
The style of the resolved links can be specified with the :style option,
which accepts the following values:
	:plain (default) - no styling
	:emph - italic
	:strong - bold
	:underline - underlined
	a function accepting the children of the link AST and returning the
replacement AST node

 Link to this function

 resolve_transclusions(section)

 View Source

Processes and resolves transclusions within the given section.
Transclusion resolution in Magma is a procedure where an Obsidian transclusion,
such as ![[Some document]], is replaced with its actual content.
This mechanism forms the foundation for constructing LLM prompts in Magma.
The content from the referenced document or section undergoes several processing
steps before its insertion:
	Comments (<!-- comment -->) are removed.
	Internal links are replaced with the target as plain text.
	Transclusions within the transcluded content itself are resolved recursively
(unless it would result in an infinite recursion).
	If the transcluded content (after removing the comments), consists
exclusively of a heading with no content below it, the transclusion is
resolved with the empty string.
	The level of the transcluded sections is adjusted according to the current
level at the point of the transclusion.

Different types of transclusions are resolved in slightly varied ways,
particularly regarding the leading header of the transcluded content:
	Inline transclusions: Exclude the leading header.
	Custom header transclusions: Replace the leading header.
	Empty header transclusions: Retain the leading header.

 Link to this function

 section_by_title(section, title)

 View Source

 @spec section_by_title(t(), binary()) :: t() | nil

Fetches the first section with the given title.
Other than accessing the sections with the fetch/2, this searches the
sections recursively.

 Link to this function

 set_header(section, header)

 View Source

Sets a new header for the given section, updating the :title and :level fields accordingly.

 Link to this function

 set_header(section, title, level)

 View Source

Sets a new header with the given title and level for the given section, updating the :title and :level fields accordingly.

 Link to this function

 set_level(section, level)

 View Source

 @spec set_level(t(), non_neg_integer()) :: t()

Changes the header level of section to the given level.
Computes the difference to the current level of section and shifts the
level recursively on all subsections using shift_level/2.

 Link to this function

 shift_level(section, shift_level)

 View Source

 @spec shift_level(t(), integer()) :: t()

Shifts the header level of section by the given shift_level.
All subsections are shifted recursively.

 Link to this function

 to_markdown(section, opts \\ [])

 View Source

 @spec to_markdown(
 t(),
 keyword()
) :: binary()

Converts a Magma.DocumentStruct.Section into a Markdown string.

Magma.Matter behaviour

Behaviour for types of matter that can be subject of a Magma.Concept and the Magma.Artefacts generated from these concepts.
This module defines a set of callbacks that each matter type must implement.
These callbacks allow for the specification of various properties and
behaviours of the matter type, such as the available artefacts, paths for
different kinds of documents, texts for different parts of the concept and
prompt documents, and more.

 Summary

 Types

 name()

 t()

 type()

 Callbacks

 artefacts()

 A callback that returns the list of Magma.Artefact types that are available for this matter type.

 concept_name(t)

 A callback that returns the name of the Magma.Concept document.

 concept_title(t)

 A callback that returns the title header text of the Magma.Concept document.

 context_knowledge(t)

 A callback that allows to specify texts which should be included generally in the "Context knowledge" section of the Magma.Artefact.Prompt document about this type of matter.

 custom_concept_sections(t)

 A callback that can be used to define additional sections for the Magma.Concept document.

 default_concept_aliases(t)

 A callback that returns a list of Obsidian aliases for the Magma.Concept document of this type of matter.

 default_description(t, keyword)

 A callback that returns a text for the body of the "Description" section in the Magma.Concept document.

 extract_from_metadata(document_name, document_title, document_metadata)

 A callback that extracts an instance of this matter type from the matter-specific fields of the metadata during deserialization of a Magma.Concept document.

 prompt_concept_description_title(t)

 A callback that returns the section title for the concept description of a type of matter in the Magma.Artefact.Prompt.

 prompt_matter_description(t)

 A callback that can be used to define a general description of some matter which should be included in the Magma.Artefact.Prompt.

 relative_base_path(t)

 A callback that returns the path segment to be used for different kinds of documents for this type of matter.

 relative_concept_path(t)

 A callback that returns the path for Magma.Concept documents about this type of matter.

 render_front_matter(t)

 A callback that renders the matter-specific fields of this type of matter to YAML frontmatter.

 Functions

 extract_from_metadata(document_name, document_title, metadata)

 Extracts an instance of a matter from the matter-specific fields of the metadata of a Magma.Concept document.

 fields()

 Returns a list of the shared fields of the structs of every type of Magma.Matter.

 type(string)

 Returns the matter type module for the given string.

 type?(module)

 Checks if the given module is a Magma.Matter type module.

 type_name(type, validate \\ true)

 Returns the matter type name for the given matter type module.

 Types

 Link to this type

 name()

 View Source

 @type name() :: binary() | atom()

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Link to this type

 type()

 View Source

 @type type() :: module()

 Callbacks

 Link to this callback

 artefacts()

 View Source

 @callback artefacts() :: [Magma.Artefact.t()]

A callback that returns the list of Magma.Artefact types that are available for this matter type.

 Link to this callback

 concept_name(t)

 View Source

 @callback concept_name(t()) :: binary()

A callback that returns the name of the Magma.Concept document.
Note that this name must unique across all document names in the vault.

 Link to this callback

 concept_title(t)

 View Source

 @callback concept_title(t()) :: binary()

A callback that returns the title header text of the Magma.Concept document.

 Link to this callback

 context_knowledge(t)

 View Source

 @callback context_knowledge(Magma.Concept.t()) :: binary() | nil

A callback that allows to specify texts which should be included generally in the "Context knowledge" section of the Magma.Artefact.Prompt document about this type of matter.

 Link to this callback

 custom_concept_sections(t)

 View Source

 @callback custom_concept_sections(Magma.Concept.t()) :: binary() | nil

A callback that can be used to define additional sections for the Magma.Concept document.

 Link to this callback

 default_concept_aliases(t)

 View Source

 @callback default_concept_aliases(t()) :: list()

A callback that returns a list of Obsidian aliases for the Magma.Concept document of this type of matter.

 Link to this callback

 default_description(t, keyword)

 View Source

 @callback default_description(
 t(),
 keyword()
) :: binary()

A callback that returns a text for the body of the "Description" section in the Magma.Concept document.
As the description is something written by the user, this should return
a comment with a hint of what is expected to be written.

 Link to this callback

 extract_from_metadata(document_name, document_title, document_metadata)

 View Source

 @callback extract_from_metadata(
 document_name :: binary(),
 document_title :: binary(),
 document_metadata :: map()
) :: {:ok, t(), keyword()} | {:error, any()}

A callback that extracts an instance of this matter type from the matter-specific fields of the metadata during deserialization of a Magma.Concept document.
All YAML frontmatter properties are loaded first into the :custom_metadata
map of a Magma.Document. This callback implementation should Map.pop/2 the
matter-specific entries from the given document_metadata and return the created
instance of this matter type and the consumed metadata in an ok tuple.
Counterpart of render_front_matter/1.

 Link to this callback

 prompt_concept_description_title(t)

 View Source

 @callback prompt_concept_description_title(t()) :: binary()

A callback that returns the section title for the concept description of a type of matter in the Magma.Artefact.Prompt.

 Link to this callback

 prompt_matter_description(t)

 View Source

 @callback prompt_matter_description(t()) :: binary() | nil

A callback that can be used to define a general description of some matter which should be included in the Magma.Artefact.Prompt.
This is used for example to include the code of module, in the case of Magma.Matter.Module.

 Link to this callback

 relative_base_path(t)

 View Source

 @callback relative_base_path(t()) :: Path.t()

A callback that returns the path segment to be used for different kinds of documents for this type of matter.
This path segment will be incorporated in the path generator functions
of the Magma.Document types.

 Link to this callback

 relative_concept_path(t)

 View Source

 @callback relative_concept_path(t()) :: Path.t()

A callback that returns the path for Magma.Concept documents about this type of matter.
This path is relative to the Magma.Vault.concept_path/0

 Link to this callback

 render_front_matter(t)

 View Source

 @callback render_front_matter(t()) :: binary()

A callback that renders the matter-specific fields of this type of matter to YAML frontmatter.
Counterpart of extract_from_metadata/3.

 Functions

 Link to this function

 extract_from_metadata(document_name, document_title, metadata)

 View Source

Extracts an instance of a matter from the matter-specific fields of the metadata of a Magma.Concept document.
This function first extracts the matter type from the magma_matter_type field
in the YAML frontmatter and then delegates to the extract_from_metadata/3
implementation to process the matter-type specific fields.

 Link to this function

 fields()

 View Source

Returns a list of the shared fields of the structs of every type of Magma.Matter.
iex> Magma.Matter.fields()
[:name]

 Link to this function

 type(string)

 View Source

 @spec type(type()) :: binary()

 @spec type(binary()) :: type() | nil

Returns the matter type module for the given string.

 Example

iex> Magma.Matter.type("Module")
Magma.Matter.Module

iex> Magma.Matter.type("Project")
Magma.Matter.Project

iex> Magma.Matter.type("Vault")
nil

iex> Magma.Matter.type("NonExisting")
nil

 Link to this function

 type?(module)

 View Source

 @spec type?(module()) :: boolean()

Checks if the given module is a Magma.Matter type module.

 Link to this function

 type_name(type, validate \\ true)

 View Source

Returns the matter type name for the given matter type module.

 Example

iex> Magma.Matter.type_name(Magma.Matter.Module)
"Module"

iex> Magma.Matter.type_name(Magma.Matter.Text)
"Text"

iex> Magma.Matter.type_name(Magma.Matter.Text.Section)
"Text.Section"

iex> Magma.Matter.type_name(Magma.Vault)
** (RuntimeError) Invalid Magma.Matter type: Magma.Vault

iex> Magma.Matter.type_name(NonExisting)
** (RuntimeError) Invalid Magma.Matter type: NonExisting

Magma.Matter.Module

Magma.Matter type behaviour implementation for Elixir modules.
The Magma.Matter.Module struct is used for generation of Magma.Artefacts
about Elixir modules. It does not have any additional fields above the
Magma.Matter.fields/0 as it retrieves all necessary information via the
Elixir and Erlang reflection API from the module name.

 Summary

 Types

 t()

 Functions

 artefacts()

 Returns the list of Magma.Artefact types available for Elixir modules.

 code(module)

 Returns the source code of the module, if it exists.

 concept_name(module)

 Returns the name of the Magma.Concept document for an Elixir module.

 concept_title(module)

 Returns the title header text of the Magma.Concept document for an Elixir module.

 config()

 config(key)

 config_name()

 context_modules(module)

 Returns a list of the modules the given module is defined under.

 default_description(matter, _)

 Returns a default description for the Magma.Concept document of an Elixir module.

 ignore?(module)

 Determines whether the module should be ignored when generating documentation.

 new(name)

 Creates a new Magma.Matter.Module instance from a given module name in an ok tuple.

 new!(attrs)

 Creates a new Magma.Matter.Module instance from a given module name and fails in error cases.

 prompt_concept_description_title(module)

 Returns the title for the description section of the module in artefact prompts.

 prompt_matter_description(matter)

 Returns a string with a Markdown section containing the source code of the module for artefact prompts.

 relative_base_path(_)

 Returns the base path segment to be used for different kinds of documents for Elixir modules.

 relative_concept_path(matter)

 Returns the path for Magma.Concept documents about Elixir modules.

 source_path(module)

 Returns the source path of the module, if it exists.

 submodules(module)

 Returns a list of the submodules defined under the given module.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Matter.Module{name: term()}

 Functions

 Link to this function

 artefacts()

 View Source

Returns the list of Magma.Artefact types available for Elixir modules.
iex> Magma.Matter.Module.artefacts()
[Magma.Artefacts.ModuleDoc]

 Link to this function

 code(module)

 View Source

 @spec code(t() | module() | Path.t()) :: binary() | nil

Returns the source code of the module, if it exists.
The source code is read from the source_path/1.

 Link to this function

 concept_name(module)

 View Source

Returns the name of the Magma.Concept document for an Elixir module.
It is the module name as a string.

 Example

 iex> Some.Module
 ...> |> Magma.Matter.Module.new!()
 ...> |> Magma.Matter.Module.concept_name()
 "Some.Module"

 Link to this function

 concept_title(module)

 View Source

Returns the title header text of the Magma.Concept document for an Elixir module.

 Example

 iex> Some.Module
 ...> |> Magma.Matter.Module.new!()
 ...> |> Magma.Matter.Module.concept_title()
 "Some.Module"

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 context_modules(module)

 View Source

Returns a list of the modules the given module is defined under.

 Example

iex> Magma.Matter.Module.context_modules(Magma.DocumentStruct.Section)
[Magma, Magma.DocumentStruct]

 Link to this function

 default_description(matter, _)

 View Source

Returns a default description for the Magma.Concept document of an Elixir module.

 Link to this function

 ignore?(module)

 View Source

Determines whether the module should be ignored when generating documentation.
A module is ignored
	if it has a # Magma pragma: ignore comment at the beginning of its source code, or
	if it is marked as hidden (e.g. with @moduledoc false) and does not have aMagma pragma: include comment at the beginning of its source code.

 Link to this function

 new(name)

 View Source

 @spec new(binary() | atom() | [{:name, binary() | atom()}]) ::
 {:ok, t()} | {:error, any()}

Creates a new Magma.Matter.Module instance from a given module name in an ok tuple.

 Link to this function

 new!(attrs)

 View Source

Creates a new Magma.Matter.Module instance from a given module name and fails in error cases.

 Link to this function

 prompt_concept_description_title(module)

 View Source

Returns the title for the description section of the module in artefact prompts.

 Example

iex> Some.Module
...> |> Magma.Matter.Module.new!()
...> |> Magma.Matter.Module.prompt_concept_description_title()
"Description of the module `Some.Module`"

 Link to this function

 prompt_matter_description(matter)

 View Source

Returns a string with a Markdown section containing the source code of the module for artefact prompts.

 Link to this function

 relative_base_path(_)

 View Source

Returns the base path segment to be used for different kinds of documents for Elixir modules.
The base path for all modules is "modules".

 Link to this function

 relative_concept_path(matter)

 View Source

Returns the path for Magma.Concept documents about Elixir modules.

 Example

iex> Some.Module
...> |> Magma.Matter.Module.new!()
...> |> Magma.Matter.Module.relative_concept_path()
"modules/Some/Some.Module.md"

 Link to this function

 source_path(module)

 View Source

 @spec source_path(t() | module()) :: Path.t() | nil

Returns the source path of the module, if it exists.
The source path is the file path where the source code of the module is located.

 Link to this function

 submodules(module)

 View Source

Returns a list of the submodules defined under the given module.
Note: This function relies on the existence of concept documents for modules.

Magma.Matter.Project

Magma.Matter type behaviour implementation for the project Magma is used for.
It is unique in the sense that there is only one instance of it, corresponding
to the one project for which artefacts are being created. It plays a central
role as its description (in the corresponding Magma.Concept about this matter)
is included in every prompt.
The single Magma.Concept for the project can be fetched with the concept/0
function.

 Summary

 Types

 t()

 Functions

 app_name()

 Returns the project's app name as specified in the mix.exs file.

 artefacts()

 Returns the list of Magma.Artefact types available for a project.

 concept()

 Returns the Magma.Concept about the project.

 concept_name(project)

 Returns the name of the Magma.Concept document about the project.

 concept_title(project)

 Returns the title header text of the Magma.Concept document about the project.

 config()

 config(key)

 config_name()

 default_concept_aliases(project)

 Returns a list of Obsidian aliases for the Magma.Concept document about the project.

 default_description(project, _)

 Returns a default description for the Magma.Concept about the project.

 extract_from_metadata(document_name, document_title, metadata)

 Extracts the project name from the metadata of a Magma.Concept document about the project and creates a new instance with it.

 modules()

 Returns all modules of the project as Magma.Matter.Modules.

 new(name)

 Creates a new Magma.Matter.Project instance from the given name in an ok tuple.

 new!(attrs)

 Creates a new Magma.Matter.Project instance from the given name and fails in error cases.

 prompt_concept_description_title(project)

 Returns the title for the description section of the project in artefact prompts.

 relative_base_path(_)

 Returns the base path segment to be used for the document about the project.

 relative_concept_path(project)

 Returns the path for Magma.Concept document about the project.

 render_front_matter(matter)

 Renders the YAML frontmatter properties specific for the Magma.Concept document about the project.

 version()

 Returns the project's version as specified in the mix.exs file.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Matter.Project{name: term()}

 Functions

 Link to this function

 app_name()

 View Source

 @spec app_name() :: binary()

Returns the project's app name as specified in the mix.exs file.

 Link to this function

 artefacts()

 View Source

Returns the list of Magma.Artefact types available for a project.
iex> Magma.Matter.Project.artefacts()
[Magma.Artefacts.Readme]

 Link to this function

 concept()

 View Source

 @spec concept() :: {:ok, Magma.Concept.t()} | {:error, any()}

Returns the Magma.Concept about the project.

 Link to this function

 concept_name(project)

 View Source

Returns the name of the Magma.Concept document about the project.
In order to not get in name conflict with any other document (e.g. the
document about the top-level module which is usually the project name),
and there's only one such matter the project concept is generally called
"Project".

 Example

iex> "Example"
...> |> Magma.Matter.Project.new!()
...> |> Magma.Matter.Project.concept_name()
"Project"

 Link to this function

 concept_title(project)

 View Source

Returns the title header text of the Magma.Concept document about the project.

 Example

iex> "Example"
...> |> Magma.Matter.Project.new!()
...> |> Magma.Matter.Project.concept_title()
"Example project"

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 default_concept_aliases(project)

 View Source

Returns a list of Obsidian aliases for the Magma.Concept document about the project.

 Example

iex> "Example"
...> |> Magma.Matter.Project.new!()
...> |> Magma.Matter.Project.default_concept_aliases()
["Example project", "Example-project"]

 Link to this function

 default_description(project, _)

 View Source

Returns a default description for the Magma.Concept about the project.

 Link to this function

 extract_from_metadata(document_name, document_title, metadata)

 View Source

Extracts the project name from the metadata of a Magma.Concept document about the project and creates a new instance with it.
The project name must be specified in the magma_matter_name YAML frontmatter property.
If the project name is not found, it returns an error.

 Link to this function

 modules()

 View Source

 @spec modules() :: [Magma.Matter.Module.t()]

Returns all modules of the project as Magma.Matter.Modules.
which are not ignored in terms of Magma.Matter.Module.ignore?/1

 Link to this function

 new(name)

 View Source

 @spec new(binary() | [{:name, binary()}]) :: {:ok, t()} | {:error, any()}

 @spec new(binary() | [{:name, binary()}]) :: t()

Creates a new Magma.Matter.Project instance from the given name in an ok tuple.

 Link to this function

 new!(attrs)

 View Source

Creates a new Magma.Matter.Project instance from the given name and fails in error cases.

 Link to this function

 prompt_concept_description_title(project)

 View Source

Returns the title for the description section of the project in artefact prompts.

 Example

iex> "Example"
...> |> Magma.Matter.Project.new!()
...> |> Magma.Matter.Project.prompt_concept_description_title()
"Description of the 'Example' project"

 Link to this function

 relative_base_path(_)

 View Source

Returns the base path segment to be used for the document about the project.
Since there is just one such matter, and it has a central, this base path is
empty, meaning it these documents are placed all at the root of the folders
for the different document types.

 Link to this function

 relative_concept_path(project)

 View Source

Returns the path for Magma.Concept document about the project.
See also concept_name/1.

 Example

iex> "Example"
...> |> Magma.Matter.Project.new!()
...> |> Magma.Matter.Project.relative_concept_path()
"Project.md"

 Link to this function

 render_front_matter(matter)

 View Source

Renders the YAML frontmatter properties specific for the Magma.Concept document about the project.
In particular this includes magma_matter_name with the project name.

 Link to this function

 version()

 View Source

 @spec version() :: binary()

Returns the project's version as specified in the mix.exs file.

Magma.Artefact behaviour

Magma.Artefact is a behaviour for defining different types of artefacts.
A Magma artefact represents a specific type of output that can be generated
for some Magma matter. The module provides a set of callbacks for specifying
various aspects of the artefacts such as naming, path definitions, and
document generation details.

 Summary

 Types

 t()

 type()

 Callbacks

 concept_prompt_task_section_title()

 A callback that returns the title of the "Artefacts" subsection for this type of matter in the Magma.Concept document where for the text returned by the request_prompt_task/1 callback is rendered.

 concept_section_title()

 A callback that returns the title of the "Artefacts" subsection for this type of matter in the Magma.Concept document.

 context_knowledge(t)

 A callback that allows to specify texts which should be included generally in the "Context knowledge" section of the Magma.Artefact.Prompt document about this type of artefact.

 create_version(t, keyword)

 A callback that allows to implement a custom Magma.Artefact.Version document creation function.

 default_name(t)

 A callback that returns the name of an artefact to be used as default for the :name field.

 new(t)

 A callback that creates a new instance of a type of artefact with the default name.

 new(t, keyword)

 A callback that creates a new instance of a type of artefact.

 prompt_name(t)

 A callback that returns the name of the Magma.Artefact.Prompt document for this type of matter.

 relative_base_path(t)

 A callback that returns the general path segment to be used for documents for this type of artefact.

 relative_prompt_path(t)

 A callback that returns the path for Magma.Artefact.Prompt documents about this type of artefact.

 relative_version_path(t)

 A callback that returns the path for Magma.Artefact.Version documents about this type of artefact.

 request_prompt_task(t)

 A callback that returns the request prompt text of the Magma.Artefact.Concept document for this type of matter that describes what to generate.

 request_prompt_task_template_bindings(t)

 A callback that returns the bindings to be applied when rendering the request_prompt_task/1 EEx template.

 system_prompt_task(t)

 A callback that returns the system prompt text of the Magma.Artefact.Prompt document for this type of matter that describes what to generate.

 trim_prompt_result_header?()

 A callback that returns if the initial header of a generated Magma.PromptResult for this type artefact should be stripped.

 version_prologue(t)

 A callback that allows to specify a text which should be included in the prologue of the Magma.Artefact.Version document of this artefact type.

 version_title(t)

 A callback that returns the title to be used for the Magma.Artefact.Version document.

 Functions

 extract_from_metadata(metadata)

 Extracts an Magma.Artefact instance from YAML frontmatter metadata.

 fields()

 relative_prompt_path(artefact)

 relative_version_path(artefact)

 render_front_matter(struct)

 type(string)

 Returns the artefact type module for the given string.

 type?(module)

 Checks if the given module is a Magma.Artefact type module.

 type_name(type, validate \\ true)

 Returns the artefact type name for the given artefact type module.

 Types

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Link to this type

 type()

 View Source

 @type type() :: module()

 Callbacks

 Link to this callback

 concept_prompt_task_section_title()

 View Source

 @callback concept_prompt_task_section_title() :: binary()

A callback that returns the title of the "Artefacts" subsection for this type of matter in the Magma.Concept document where for the text returned by the request_prompt_task/1 callback is rendered.
By default, this is just the concept_section_title/0 with "prompt task" appended.

 Link to this callback

 concept_section_title()

 View Source

 @callback concept_section_title() :: binary()

A callback that returns the title of the "Artefacts" subsection for this type of matter in the Magma.Concept document.
This section consists of links to the Magma.Artefact.Prompt and the
Magma.Artefact.Version of this document and another subsection for the
text returned by the request_prompt_task/1 callback.

 Link to this callback

 context_knowledge(t)

 View Source

 @callback context_knowledge(Magma.Concept.t()) :: binary() | nil

A callback that allows to specify texts which should be included generally in the "Context knowledge" section of the Magma.Artefact.Prompt document about this type of artefact.

 Link to this callback

 create_version(t, keyword)

 View Source

 @callback create_version(
 Magma.Artefact.Version.t(),
 keyword()
) :: {:ok, Path.t() | Magma.Artefact.Version.t()} | {:error, any()} | nil

A callback that allows to implement a custom Magma.Artefact.Version document creation function.
This function should return nil if the default Magma.Artefact.Version.create/2
should be used (which the default implementation does automatically).

 Link to this callback

 default_name(t)

 View Source

 @callback default_name(Magma.Concept.t()) :: binary() | nil

A callback that returns the name of an artefact to be used as default for the :name field.

 Link to this callback

 new(t)

 View Source

 @callback new(Magma.Concept.t()) :: {:ok, t()} | {:error, any()}

A callback that creates a new instance of a type of artefact with the default name.

 Link to this callback

 new(t, keyword)

 View Source

 @callback new(
 Magma.Concept.t(),
 keyword()
) :: {:ok, t()} | {:error, any()}

A callback that creates a new instance of a type of artefact.

 Link to this callback

 prompt_name(t)

 View Source

 @callback prompt_name(t()) :: binary()

A callback that returns the name of the Magma.Artefact.Prompt document for this type of matter.

 Link to this callback

 relative_base_path(t)

 View Source

 @callback relative_base_path(t()) :: Path.t()

A callback that returns the general path segment to be used for documents for this type of artefact.

 Link to this callback

 relative_prompt_path(t)

 View Source

 @callback relative_prompt_path(t()) :: Path.t()

A callback that returns the path for Magma.Artefact.Prompt documents about this type of artefact.
Since the Magma.PromptResult document are always stored in the subdirectory
where the prompt are stored, this function also determines their path.
This path is relative to the Magma.Vault.artefact_generation_path/0.

 Link to this callback

 relative_version_path(t)

 View Source

 @callback relative_version_path(t()) :: Path.t()

A callback that returns the path for Magma.Artefact.Version documents about this type of artefact.
This path is relative to the Magma.Vault.artefact_version_path/0.

 Link to this callback

 request_prompt_task(t)

 View Source

 @callback request_prompt_task(Magma.Concept.t()) :: binary()

A callback that returns the request prompt text of the Magma.Artefact.Concept document for this type of matter that describes what to generate.
Despite returning also a general text like the system_prompt_task/1, this
one is included in the "Artefacts" section of the Magma.Concept document
(and only transcluded in Magma.Artefact.Prompt document), so that the user
has a chance to adapt it for a specific instance of this artefact type.
The generated default implementation returns the content of the
"Task prompt" section of the respective artefact config document,
after EEx evaluation with the bindings returned by request_prompt_task_template_bindings/1.

 Link to this callback

 request_prompt_task_template_bindings(t)

 View Source

 @callback request_prompt_task_template_bindings(Magma.Concept.t()) :: keyword()

A callback that returns the bindings to be applied when rendering the request_prompt_task/1 EEx template.

 Link to this callback

 system_prompt_task(t)

 View Source

 @callback system_prompt_task(Magma.Concept.t()) :: binary()

A callback that returns the system prompt text of the Magma.Artefact.Prompt document for this type of matter that describes what to generate.
As opposed to the request_prompt_task/1 this is a general, static text
used by artefacts of this type.
The generated default implementation returns a transclusion of the
"System prompt" section of the respective artefact config document.

 Link to this callback

 trim_prompt_result_header?()

 View Source

 @callback trim_prompt_result_header?() :: boolean()

A callback that returns if the initial header of a generated Magma.PromptResult for this type artefact should be stripped.
Since the title for the Magma.PromptResult is already defined,
the title generated by an LLM should be ignored usually.
For some types of artefacts, however, this should not be the case.
These artefact types, the default implementation returning true,
can be overwritten.

 Link to this callback

 version_prologue(t)

 View Source

 @callback version_prologue(Magma.Artefact.Version.t()) :: binary() | nil

A callback that allows to specify a text which should be included in the prologue of the Magma.Artefact.Version document of this artefact type.

 Link to this callback

 version_title(t)

 View Source

 @callback version_title(Magma.Artefact.Version.t()) :: binary()

A callback that returns the title to be used for the Magma.Artefact.Version document.

 Functions

 Link to this function

 extract_from_metadata(metadata)

 View Source

Extracts an Magma.Artefact instance from YAML frontmatter metadata.
The function attempts to retrieve the magma_artefact and
magma_concept from the metadata. It returns a tuple containing
the artefact (if found and valid), and the remaining metadata.

 Link to this function

 fields()

 View Source

 Link to this function

 relative_prompt_path(artefact)

 View Source

 Link to this function

 relative_version_path(artefact)

 View Source

 Link to this function

 render_front_matter(struct)

 View Source

 Link to this function

 type(string)

 View Source

Returns the artefact type module for the given string.

 Example

iex> Magma.Artefact.type("ModuleDoc")
Magma.Artefacts.ModuleDoc

iex> Magma.Artefact.type("TableOfContents")
Magma.Artefacts.TableOfContents

iex> Magma.Artefact.type("Vault")
nil

iex> Magma.Artefact.type("NonExisting")
nil

 Link to this function

 type?(module)

 View Source

Checks if the given module is a Magma.Artefact type module.

 Link to this function

 type_name(type, validate \\ true)

 View Source

Returns the artefact type name for the given artefact type module.

 Example

iex> Magma.Artefact.type_name(Magma.Artefacts.ModuleDoc)
"ModuleDoc"

iex> Magma.Artefact.type_name(Magma.Artefacts.Article)
"Article"

iex> Magma.Artefact.type_name(Magma.Vault)
** (RuntimeError) Invalid Magma.Artefacts type: Magma.Vault

iex> Magma.Artefact.type_name(NonExisting)
** (RuntimeError) Invalid Magma.Artefacts type: NonExisting

Magma.Artefacts.Article

 Summary

 Functions

 config()

 config(key)

 config_name()

 matter_type()

 new!(concept, attrs \\ [])

 Functions

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 matter_type()

 View Source

 Link to this function

 new!(concept, attrs \\ [])

 View Source

Magma.Artefacts.ModuleDoc

 Summary

 Functions

 config()

 config(key)

 config_name()

 get(mod)

 matter_type()

 new!(concept, attrs \\ [])

 prompt_result_section_title()

 version_path(mod)

 Functions

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 get(mod)

 View Source

 Link to this function

 matter_type()

 View Source

 Link to this function

 new!(concept, attrs \\ [])

 View Source

 Link to this function

 prompt_result_section_title()

 View Source

 Link to this function

 version_path(mod)

 View Source

Magma.Artefacts.Readme

 Summary

 Functions

 config()

 config(key)

 config_name()

 matter_type()

 new!(concept, attrs \\ [])

 Functions

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 matter_type()

 View Source

 Link to this function

 new!(concept, attrs \\ [])

 View Source

Magma.Artefacts.TableOfContents

 Summary

 Functions

 assemble_button()

 assemble_callout(version)

 config()

 config(key)

 config_name()

 matter_type()

 new!(concept, attrs \\ [])

 Functions

 Link to this function

 assemble_button()

 View Source

 Link to this function

 assemble_callout(version)

 View Source

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 matter_type()

 View Source

 Link to this function

 new!(concept, attrs \\ [])

 View Source

Magma.Matter.Text

 Summary

 Types

 t()

 type()

 Functions

 config()

 config(key)

 config_name()

 new(name, attrs \\ [])

 new!(name, attrs \\ [])

 sections_section_title()

 type(string, validate \\ true)

 Returns the text type module for the given string.

 type?(module)

 type_name(type, validate \\ true)

 Returns the text type name for the given text module.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Matter.Text{name: term(), type: term()}

 Link to this type

 type()

 View Source

 @type type() :: module()

 Functions

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 new(name, attrs \\ [])

 View Source

 @spec new(
 binary(),
 keyword()
) :: {:ok, t()} | {:error, any()}

 Link to this function

 new!(name, attrs \\ [])

 View Source

 Link to this function

 sections_section_title()

 View Source

 Link to this function

 type(string, validate \\ true)

 View Source

Returns the text type module for the given string.

 Example

iex> Magma.Matter.Text.type("UserGuide")
Magma.Matter.Texts.UserGuide

iex> Magma.Matter.Text.type("Generic")
Magma.Matter.Texts.Generic

iex> Magma.Matter.Text.type("Vault")
nil

iex> Magma.Matter.Text.type("NonExisting")
nil

 Link to this function

 type?(module)

 View Source

 Link to this function

 type_name(type, validate \\ true)

 View Source

Returns the text type name for the given text module.

 Example

iex> Magma.Matter.Text.type_name(Magma.Matter.Texts.UserGuide)
"UserGuide"

iex> Magma.Matter.Text.type_name(Magma.Matter.Texts.Generic)
"Generic"

iex> Magma.Matter.Text.type_name(Magma.Vault)
** (RuntimeError) Invalid Magma.Matter.Text type: Magma.Vault

iex> Magma.Matter.Text.type_name(NonExisting)
** (RuntimeError) Invalid Magma.Matter.Text type: NonExisting

Magma.Matter.Text.Section

 Summary

 Types

 t()

 Functions

 config()

 config(key)

 config_name()

 new(attrs)

 new(main_text, name)

 new!(attrs)

 new!(main_text, name)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Matter.Text.Section{main_text: term(), name: term()}

 Functions

 Link to this function

 config()

 View Source

 Link to this function

 config(key)

 View Source

 Link to this function

 config_name()

 View Source

 Link to this function

 new(attrs)

 View Source

 Link to this function

 new(main_text, name)

 View Source

 Link to this function

 new!(attrs)

 View Source

 Link to this function

 new!(main_text, name)

 View Source

Magma.Text

 Summary

 Functions

 create(text_name, text_type \\ nil)

 Functions

 Link to this function

 create(text_name, text_type \\ nil)

 View Source

Magma.Text.Preview

 Summary

 Types

 t()

 Functions

 build_name(preview)

 create(artefact, attrs \\ [], opts \\ [])

 dir()

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 new(artefact, attrs \\ [])

 new!(artefact, attrs \\ [])

 prologue()

 render(preview)

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Text.Preview{
 aliases: term(),
 artefact: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 name: term(),
 path: term(),
 tags: term()
}

 Functions

 Link to this function

 build_name(preview)

 View Source

 Link to this function

 create(artefact, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 dir()

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 new(artefact, attrs \\ [])

 View Source

 Link to this function

 new!(artefact, attrs \\ [])

 View Source

 Link to this function

 prologue()

 View Source

 Link to this function

 render(preview)

 View Source

Magma.Generation behaviour

Generic adapter-based Magma.Prompt execution.
The Magma.Generation module is primarily responsible for handling the
execution of prompts. It is designed to be adaptable and flexible,
supporting different LLMs via specific adapters.
The module defines a behaviour that each adapter should implement,
ensuring a consistent interface for executing prompts.
The currently implemented adapters are:
	Magma.Generation.OpenAI for the OpenAI API
	Magma.Generation.Manual for manual prompt execution

The default values for the generation specification embedded within a prompt
document (the magma_generation_type and magma_generation_params properties
in its YAML frontmatter) can be configured for your application in config.exs
like this:
config :magma,
 default_generation: Magma.Generation.OpenAI

config :magma, Magma.Generation.OpenAI,
 model: "gpt-4",
 temperature: 0.6
Except within the :test environment, the defaults can be configured also
with the default_generation_type and :default_generation_params properties
in YAML frontmatter of the magma_config.md document in your vault, taking
precedence over the ones from the application config.
Unlike, the default generation params from the magma_config.md document,
the ones from the application config are used also as initial defaults on the
new/1 function of a Magma.Generation implementation, meaning you only
have to provide the values differing from the application configured ones.

 Summary

 Types

 options()

 prompt()

 result()

 system_prompt()

 t()

 Callbacks

 default_params()

 execute(t, t, options)

 Functions

 default()

 execute(prompt)

 execute(generation, prompt, opts \\ [])

 extract_from_metadata(metadata)

 Extracts generation information from YAML frontmatter metadata.

 render_front_matter(generation)

 Renders generation YAML frontmatter properties.

 short_name(module)

 Returns the short version of the Magma.Generation implementation name.

 type(string)

 Returns the generation module for the given string.

 Types

 Link to this type

 options()

 View Source

 @type options() :: keyword()

 Link to this type

 prompt()

 View Source

 @type prompt() :: binary()

 Link to this type

 result()

 View Source

 @type result() :: binary()

 Link to this type

 system_prompt()

 View Source

 @type system_prompt() :: prompt()

 Link to this type

 t()

 View Source

 @type t() :: struct()

 Callbacks

 Link to this callback

 default_params()

 View Source

 @callback default_params() :: keyword()

 Link to this callback

 execute(t, t, options)

 View Source

 @callback execute(t(), Magma.Artefact.Prompt.t(), options()) ::
 {:ok, result()} | {:error, any()}

 Functions

 Link to this function

 default()

 View Source

 Link to this function

 execute(prompt)

 View Source

 Link to this function

 execute(generation, prompt, opts \\ [])

 View Source

 Link to this function

 extract_from_metadata(metadata)

 View Source

Extracts generation information from YAML frontmatter metadata.
The function attempts to retrieve the magma_generation_type and
magma_generation_params from the metadata. It returns a tuple containing
the generation (if found and valid), and the remaining metadata.

 Link to this function

 render_front_matter(generation)

 View Source

Renders generation YAML frontmatter properties.

 Link to this function

 short_name(module)

 View Source

Returns the short version of the Magma.Generation implementation name.
This is used as the magma_generation value in the YAML frontmatter.

 Example

iex> Magma.Generation.short_name(Magma.Generation.OpenAI)
OpenAI

iex> Magma.Generation.short_name(Magma.Generation.Bumblebee.TextGeneration.Llama)
Bumblebee.TextGeneration.Llama

 Link to this function

 type(string)

 View Source

Returns the generation module for the given string.

 Example

iex> Magma.Generation.type("OpenAI")
Magma.Generation.OpenAI

iex> Magma.Generation.type("Manual")
Magma.Generation.Manual

iex> Magma.Generation.type("Mock")
Magma.Generation.Mock

iex> Magma.Generation.type("Vault")
nil

iex> Magma.Generation.type("NonExisting")
nil

Magma.Generation.Manual

 Summary

 Functions

 new(description \\ nil)

 new!(description \\ nil)

 Functions

 Link to this function

 new(description \\ nil)

 View Source

 Link to this function

 new!(description \\ nil)

 View Source

Magma.Generation.OpenAI

 Summary

 Functions

 new(params \\ [])

 new!(params \\ [])

 Functions

 Link to this function

 new(params \\ [])

 View Source

 Link to this function

 new!(params \\ [])

 View Source

Magma.Config

Cache for the vault-based configuration.
This singleton GenServer provides access to the cached
Magma.Config.Documents in the Magma.Vault.

 Summary

 Types

 t()

 Functions

 artefact(type, key \\ nil)

 Returns a Magma.Config.Artefact document or a property of it.

 artefacts_path()

 Returns the path with Magma.Config.Artefact documents in the vault.

 artefacts_path(segments)

 Constructs a complete path to a artefact config document by joining the specified segments to the artefacts_path/0.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 matter(type, key \\ nil)

 Returns a Magma.Config.Matter document or a property of it.

 matter_path()

 Returns the path with Magma.Config.Matter documents in the vault.

 matter_path(segments)

 Constructs a complete path to a matter config document by joining the specified segments to the matter_path/0.

 path()

 Returns the path with Magma.Config.Documents in the vault.

 path(segments)

 Constructs a complete path to a config document by joining the specified segments to the path/0.

 project(key \\ nil)

 Returns the Magma.Project document or a property of it.

 reset()

 Resets the cache of all documents.

 start_link(arg)

 system(key \\ nil)

 Returns the Magma.Config.System document or a property of it.

 template_path()

 Returns the path with templates for the config document for a new vault.

 text_type(type, key \\ nil)

 Returns a Magma.Config.TextType document or a property of it.

 text_types()

 Returns a list of all text types.

 text_types_path()

 Returns the path with Magma.Config.TextType documents in the vault.

 text_types_path(segments)

 Constructs a complete path to a text type config document by joining the specified segments to the text_types_path/0.

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Config{
 artefacts: term(),
 matter: term(),
 project: term(),
 system: term(),
 text_types: term()
}

 Functions

 Link to this function

 artefact(type, key \\ nil)

 View Source

Returns a Magma.Config.Artefact document or a property of it.

 Link to this function

 artefacts_path()

 View Source

Returns the path with Magma.Config.Artefact documents in the vault.

 Link to this function

 artefacts_path(segments)

 View Source

Constructs a complete path to a artefact config document by joining the specified segments to the artefacts_path/0.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 matter(type, key \\ nil)

 View Source

Returns a Magma.Config.Matter document or a property of it.

 Link to this function

 matter_path()

 View Source

Returns the path with Magma.Config.Matter documents in the vault.

 Link to this function

 matter_path(segments)

 View Source

Constructs a complete path to a matter config document by joining the specified segments to the matter_path/0.

 Link to this function

 path()

 View Source

Returns the path with Magma.Config.Documents in the vault.

 Link to this function

 path(segments)

 View Source

Constructs a complete path to a config document by joining the specified segments to the path/0.

 Link to this function

 project(key \\ nil)

 View Source

Returns the Magma.Project document or a property of it.

 Link to this function

 reset()

 View Source

Resets the cache of all documents.

 Link to this function

 start_link(arg)

 View Source

 @spec start_link(any()) :: GenServer.on_start()

 Link to this function

 system(key \\ nil)

 View Source

Returns the Magma.Config.System document or a property of it.

 Link to this function

 template_path()

 View Source

Returns the path with templates for the config document for a new vault.

 Link to this function

 text_type(type, key \\ nil)

 View Source

Returns a Magma.Config.TextType document or a property of it.

 Link to this function

 text_types()

 View Source

Returns a list of all text types.

 Link to this function

 text_types_path()

 View Source

Returns the path with Magma.Config.TextType documents in the vault.

 Link to this function

 text_types_path(segments)

 View Source

Constructs a complete path to a text type config document by joining the specified segments to the text_types_path/0.

Magma.Config.Artefact

Magma.Config.Document for Magma.Artefact types.

 Summary

 Functions

 context_knowledge_transclusion(artefact_type)

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 name_by_type(artefact_type)

 render_request_prompt(artefact_config, bindings)

 system_prompt_section_title()

 task_prompt_section_title()

 Functions

 Link to this function

 context_knowledge_transclusion(artefact_type)

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 name_by_type(artefact_type)

 View Source

 Link to this function

 render_request_prompt(artefact_config, bindings)

 View Source

 Link to this function

 system_prompt_section_title()

 View Source

 Link to this function

 task_prompt_section_title()

 View Source

Magma.Config.Document

Foundational behaviors for Magma configuration documents.
This module is a base module that defines shared behavior and attributes for
Magma configuration documents. It is used to ensure consistency and
standardization of configuration documents.

 Summary

 Functions

 context_knowledge_section_title()

 The title for the context knowledge section in configuration documents.

 default_tags()

 Returns the default tags for Magma configuration documents.

 init(document)

 Initializes a new Magma configuration document.

 Functions

 Link to this function

 context_knowledge_section_title()

 View Source

The title for the context knowledge section in configuration documents.

 Link to this function

 default_tags()

 View Source

Returns the default tags for Magma configuration documents.

 Link to this function

 init(document)

 View Source

Initializes a new Magma configuration document.

Magma.Config.Matter

Magma.Config.Document for Magma.Matter types.

 Summary

 Functions

 context_knowledge_transclusion(matter_type)

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 name_by_type(matter_type)

 Functions

 Link to this function

 context_knowledge_transclusion(matter_type)

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 name_by_type(matter_type)

 View Source

Magma.Config.System

Magma.Config.Document for the general Magma system configuration.

 Summary

 Types

 t()

 Functions

 context_knowledge_transclusion()

 default_generation()

 default_link_resolution_style()

 default_persona(project_name)

 default_tags()

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load()

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 name()

 new(attrs \\ [])

 new!(attrs \\ [])

 path()

 persona_section_title()

 persona_transclusion()

 template(project_name)

 title()

 Types

 Link to this type

 t()

 View Source

 @type t() :: %Magma.Config.System{
 aliases: term(),
 content: term(),
 created_at: term(),
 custom_metadata: term(),
 name: term(),
 path: term(),
 sections: term(),
 tags: term()
}

 Functions

 Link to this function

 context_knowledge_transclusion()

 View Source

 Link to this function

 default_generation()

 View Source

 Link to this function

 default_link_resolution_style()

 View Source

 Link to this function

 default_persona(project_name)

 View Source

 Link to this function

 default_tags()

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load()

 View Source

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 name()

 View Source

 Link to this function

 new(attrs \\ [])

 View Source

 Link to this function

 new!(attrs \\ [])

 View Source

 Link to this function

 path()

 View Source

 Link to this function

 persona_section_title()

 View Source

 Link to this function

 persona_transclusion()

 View Source

 Link to this function

 template(project_name)

 View Source

 Link to this function

 title()

 View Source

Magma.Config.TextType

Magma.Config.Document for Magma.Matter.Text types.

 Summary

 Functions

 context_knowledge_transclusion(text_type)

 create(text_type_name, attrs \\ [], opts \\ [])

 from!(document)

 Fetches a document from a related document and immediately loads it with load!/1

 load(document)

 Loads a document from the given path or document.

 load!(document_or_path)

 Loads a document from the given path or document and raises an exception in error cases.

 load_linked(link)

 Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".

 name_by_type(text_type)

 new(text_type_name, attrs \\ [])

 new!(text_type_name, attrs \\ [])

 system_prompt_section_title()

 Functions

 Link to this function

 context_knowledge_transclusion(text_type)

 View Source

 Link to this function

 create(text_type_name, attrs \\ [], opts \\ [])

 View Source

 Link to this function

 from!(document)

 View Source

Fetches a document from a related document and immediately loads it with load!/1

 Link to this function

 load(document)

 View Source

Loads a document from the given path or document.
If the loaded document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 load!(document_or_path)

 View Source

Loads a document from the given path or document and raises an exception in error cases.

 Link to this function

 load_linked(link)

 View Source

Loads a document from the given Obsidian link, i.e. a string of the form "[[name]]".
If the referenced document is not of the proper document type an Magma.InvalidDocumentType
exception is returned in an :error tuple.

 Link to this function

 name_by_type(text_type)

 View Source

 Link to this function

 new(text_type_name, attrs \\ [])

 View Source

 Link to this function

 new!(text_type_name, attrs \\ [])

 View Source

 Link to this function

 system_prompt_section_title()

 View Source

Magma.DocumentNotFound exception

Represents a missing document that is referenced somewhere.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

Magma.InvalidDocumentType exception

Raised when a document type does not match the expected one.

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

mix magma.artefact.select_draft

A Mix task for selecting a prompt result as a draft version.
$ mix magma.artefact.select_draft "Name of prompt result"

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.prompt.copy

A Mix task for rendering a specified prompt, resolving all transclusions, and copying the result to the clipboard.
$ mix magma.prompt.copy "Name of prompt"

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.prompt.exec

A Mix task for executing prompts.
This Mix task facilitates the execution of a given prompt either manually or according to the generation specification embedded within the prompt document, depending on the magma_generation_type and magma_generation_params properties specified in the YAML frontmatter.
The task can be invoked with a prompt name or path, like so:
$ mix magma.prompt.exec "Name of prompt"

Using the --manual switch allows for manual execution of the prompt. In this mode, the rendered prompt is copied to the clipboard, ready for pasting and executing in the LLM interface of one's choice. By default, the user is interactively asked to paste the result of this execution, which is then used to create a prompt result document:
$ mix magma.prompt.exec "Name of prompt" --manual

The --no-interactive switch disables the interactive prompt for pasting the result back and instead creates an empty prompt result document. This is useful in contexts where shell interaction is not possible, such as with Obsidian buttons.

 Configuration

The default values for the generation specification embedded within the prompt document (the magma_generation_type and magma_generation_params properties in its YAML frontmatter) can be configured for your application in config.exs like this
config :magma,
 default_generation: Magma.Generation.OpenAI

config :magma, Magma.Generation.OpenAI,
 model: "gpt-4",
 temperature: 0.6

 Command line options

	 --manual - Executes the prompt manually, copying the rendered prompt to the clipboard for pasting and executing in an LLM interface
	 --no-interactive - Disables the interactive prompt for pasting the result back and creates an empty prompt result document instead

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.prompt.gen

A Mix task for generating Magma artefact prompt documents and custom prompt documents.
This Mix task is used to create either a custom Magma prompt document or an artefact prompt document. The task requires different arguments depending on the type of document to be created.
For a custom prompt document, a single argument representing the name of the prompt is required.
$ mix magma.prompt.gen "Prompt for something"

For an artefact prompt document, two arguments are needed: the first being the name of a concept and the second being the artefact type. The artefact type should be the last part of an Magma.Artefacts.X artefact type module, e.g. ModuleDoc or Readme.
$ mix magma.prompt.gen "Some.Module" ModuleDoc

Note that, by default, all artefact prompts of a concept (according to its matter type) are already created when a concept document is created. Therefore, it's usually not necessary to use this task for generating artefact prompt documents. If you only want to update an existing artefact prompt, you can use the Mix.Tasks.Magma.Prompt.Update Mix task instead.

 Command line options

	 --force - When set, this option allows the task to overwrite existing documents without asking for permission first.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.prompt.update

A Mix task for regenerating artefact prompt documents.
This task is useful for example when an artefact prompt contains the code of a module that has been modified since the creation of the prompt document. By regenerating the artefact prompt, the updated code is reflected in the prompt document.
$ mix magma.prompt.update "Name of a Prompt"

 Command line options

	 --all - When set, all prompts of the vault are updated.

 Summary

 Functions

 all_prompt_files(path \\ Vault.artefact_generation_path())

 run(args)

 Callback implementation for Mix.Task.run/1.

 update(name)

 update_all()

 Functions

 Link to this function

 all_prompt_files(path \\ Vault.artefact_generation_path())

 View Source

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 Link to this function

 update(name)

 View Source

 Link to this function

 update_all()

 View Source

mix magma.text.assemble

A Mix task for generating the section documents of a text from its final table of contents.
This task is used once the final artefact version document for the Magma.Artefacts.TableOfContents of a text has been created. This task will then create the concept and artefact prompt documents of the sections of the text and assemble the preview document.
mix magma.text.assemble "Name of ToC document"

 Command line options

	 --force - Allows the task to overwrite existing documents without asking for permission first.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.text.finalize

A Mix task for generating the final text from a given preview document.
mix magma.text.finalize "Name of preview document"

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.text.new

A Mix task for generating the concept and artefact prompt documents for a new text.
The first argument is the title of your text, followed by an optional text type. The text type corresponds to the last part of the available text type modules of the form Magma.Matter.Texts.X. The text type determines the details of the system prompt of the artefact prompts. If no text type is given, a minimal generic system prompt is used which can be refined according to the user's needs.
$ mix magma.text.new "Example User Guide" UserGuide

 Command line options

	 --force - When set, this option allows the task to overwrite existing documents without asking for permission first.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.text.type.new

A Mix task for generating a new text type.
This task is used to create a configuration document for a new text type. Users must specify a valid Elixir module name as the text type name as the first argument. Optionally, a human-readable label can be provided.

 Example

To create a new text type with just the name:
$ mix magma.text.type.new MyTextType

To create a new text type with a name and a label:
$ mix magma.text.type.new MyTextType "My Custom Text Type"

 Command line options

	 --force - Overwrites any existing text type configuration without confirmation (default: false)

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.vault.init

A Mix task for initializing the Magma vault directory.
This task is responsible for creating a new Magma vault for your project. The vault is initialized with a given project name, and optionally with a BaseVault which is an Obsidian vault preconfigured with Obsidian themes and plugins. If no BaseVault is specified, the default BaseVault is used. The vault is stored by default under the docs.magma directory within your project, this can be configured in the config.exs file.
During initialization, the task creates a concept document and artefact prompt for the project, concept documents and artefact prompts for all public modules of the project and for their moduledocs via a code sync, and a custom prompt template.

 Example

$ mix magma.vault.init "Your project name"

 Configuration

The location where the Magma vault is stored can be changed by setting the dir application key in the magma app in config.exs.
config :magma,
 dir: "your_magma_vault/"
A set of tags to be added on all generated documents can be configured with the default_tags application key. This can be useful for separating Magma documents from other documents in your vault. e.g. to filter them.
config :magma,
 default_tags: ["magma-vault"]

 Command line options

	 --force: If specified, forces the initialization even if a Magma vault already exists.
	 --base-vault: The name of a BaseVault to be used for initialization. If not specified, the default BaseVault is used.
	 --base-vault-path: The local path to a self-defined BaseVault to be used for initialization.
	 --no-code-sync: If specified, the code sync that creates concept documents and artefact prompts for all public modules of the project is skipped.

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.vault.migrate

Migrates the Magma vault to a newer Magma version

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix magma.vault.sync.code

A Mix task for syncing the module documents in the Magma vault with the ones in the codebase.
This Mix task is used to create corresponding Magma documents for all public and non-ignored modules in the codebase. This is particularly useful when new modules have been added after the initial vault creation. The task can be run from the command line using mix magma.vault.sync.code.
A module is considered ignored and will be skipped in the sync process:
	 If it has a # Magma pragma: ignore comment at the beginning of its source code, or
	 If it is marked as hidden (e.g. with @moduledoc false) and does not have a # Magma pragma: include comment at the beginning of its source code.

For each non-ignored module, the following Magma documents are created (unless they already exist):
	 Magma.Concept
	 Magma.Artefact.Prompts for all Magma.Artefacts of modules, e.g. a prompt for Magma.Artefacts.ModuleDoc

 Configuration

A set of tags to be added on all generated documents can be configured with the default_tags application key. This can be useful for separating Magma documents from other documents in your vault. e.g. to filter them.
config :magma,
 default_tags: ["magma-vault"]

 Command line options

	 --force - Forces the overwrite of all existing documents without user confirmation
	 --all - Includes modules for already existing documents in the synchronization process

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

