

 Makeup

 v1.1.1

 Table of contents

 	Changelog

 	Contributing

 	Makeup

 	Modules

 	Makeup

 	Makeup.Formatters.HTML.HTMLFormatter

 	Makeup.Lexer

 	Makeup.Lexer.Combinators

 	Makeup.Lexer.Groups

 	Makeup.Lexer.Postprocess

 	Makeup.Lexer.Types

 	Makeup.Registry

 	Makeup.Styles.HTML.Style

 	Makeup.Styles.HTML.StyleMap

Changelog

 1.1.1 - 2023-11-08

Add dracula theme.
Add one dark theme.
Fix warnings on recent Elixir versions.

 1.1.0 - 2022-02-12

Require NimbleParsec ~> 1.2.2 onwards to prepare for future deprecations.

 1.0.5 - 2020-10-02

Bugfix #1
Fix serious bug in the Makeup.Lexer.Combinators.lexeme/1 when given a list of unicode characters.
Before this fix, the following combinator:
import Makeup.Lexer.Combinators

characters_lexeme =
 utf8_char([])
 |> utf8_char([])
 |> lexeme()
 |> token(:character_lexeme)
when given as input a string like "àó" would return the following invalid Unicode:
[{:character_lexeme, %{}, <<225, 242>>}]
instead of
[{:character_lexeme, %{}, "áò"}]
This was caused by the use of IO.iodata_to_binary/1 instead of (the slower) to_string(). This was a problem because IO.iodata_to_binary/1 would put any byte in a binary instead of (correctly) encoding bytes > 128 as a Unicode character. This is not a problem with IO.iodata_to_binary/1 it's a problem with using that function when we want to encode characters as Unicode strings.
Bugfix #2
Fixed an edge case in the HTML encoder in the formatter.

 1.0.4 - 2020-09-25

Fix warnings and update NimbleParsec dependency.

 1.0.3 - 2020-06-07

Allow styles to be given as atoms when generating stylesheets.

 1.0.2 - 2020-05-28

Update NimbleParsec dependency.

 1.0.1 - 2020-03-24

Remove warnings on recent Elixir versions.

 1.0.0 - 2019-07-15

Upgrade the HTML formatter so that you can use different kinds of tags around the tokens.
Previous versions always used the tag (e.g. name).
You can now use other HTML tags using the :highlight_tag option:
alias Makeup.Formatters.HTML.HTMLFormatter
HTMLFormatter.format_as_iolist(tokens, highlight_tag: "font")

 0.8.0 - 2019-01-01

This release adds a new file extension registry for lexers.
This means that it's now possible to lookup lexers by file extension.
Since the previous release it was already possible to lookup lexers by language name.
For example:
elixir_lexer = Makeup.Registry.fetch_lexer_by_extension!("elixir")
Now you can also do this this:
elixir_lexer = Makeup.Registry.get_lexer_by_extension!("ex")
Documentation of the registry functionality was also improved.

 0.7.0 - 2018-12-30

Adds a register where lexer developers can register their lexers.
This allows one to pick a lexer based on the language name.
The goal is for Makeup to be aware of the available lexers.
In a project such as ExDoc this allows Makeup to support an unbounded number of languages just by declaring the lexer as a dependency.

 0.6.0 - 2018-12-22

Fixes the combinators affected by compatibility breaks in nimble_parsec from 0.4.x to 0.5.x.
Pins nimble_parsec to version 0.5.0.

Contributing

This document is meant to help people who want to contribute to Makeup.

 The release script

This project uses a release script to make it easy to publish a new release.
The script performs a series of checks and executes a number of tasks.
The script was inspired by the continuous release philosophy of the Python Hypothesis library.
You can find a high-level description here.
There are many differences though.
The main one is that this release script acts purely locally, and must be explicitly invoked,
while the one in hypothesis is a commit hook that runs on a continuous integration server.
Currently, the script does the following:
	Run the tests (abort the release if any tests fail)
	Get the current version from the mix.exs file
	Read a special RELEASE.md file to extract the release type (major, minor or patch)
and the text to add as a new entry in the CHANGELOG
	Update the version
	Add the new version to the mix.exs file
	Add a new entry to the CHANGELOG
	Commit the changes to Git
	Add a vX.Y.Z tag to the repo, so that it's easy to find each release
	Remove the RELEASE.md file, which must be written again for a new release
	Publish the package on Hex.pm

It decreases the number of mistakes and the amount of commands you need to run.
The path to the script is scripts/release.exs.
The mix.exs file defines an alias so that you can run the script mix release.

 Special files

 The RELEASE.md file

The RELEASE.md file must start with a line of the form RELEASE_TYPE: type,
where type is either major, minor or patch.
The following lines are used as the text for the entry in the changelog file.
A simple example of a RELEASE.md file would be:
RELEASE_TYPE: minor

This is a minor release.
It adds a minor feature and fixes two important bugs.

 The CHANGELOG.md file

The CHANGELOG.md file must contain the following line:
<!-- %% CHANGELOG_ENTRIES %% -->
The newest changelog entry will be under this line.

 Using

High Level Architecture

 What Makeup Is

The goal of Makeup is to take up something plain, and turn it into something pretty.
The previous sentence is only the first of probably many puns about makeup.
Makeup takes as argument a string representing source code,
and returns some data that contains the highlighted source code.
Currently, Makeup only supports HTML output (actually HTML + CSS + a little JavaScript).
In the future it might support other kinds of output.
It's made up of three parts:
	The Lexer, which turns the raw source code into a list of tokens.
There must be a lexer per programming language.
	The Formatter, which turns the list of tokens into something else
(what exactly is format dependent).
	The Styles, which control the output of the Formatter.

The main goal of having syntax highlighting is to make the code more understandable
for a human audience.
As discussed above, there is no need to actually parse the raw source into a valid AST.
This allows us to make lots of simplifications regarding what exactly to parse,
and which kinds of tokens we recognize.

 What Makeup Is Not

Makeup is not a static code analyzer.
As an analyzer, Makeup is very shallow and only cares about the surface details of your code.
The goal here is to make the code pretty to humans, not to gain any deep insights.
Makeup is not a general-purpose language parser.
If it helps you write a better lexer, by all means implement a parser
for the language in question so that you can lex it better,
but in general it's probably not worth it.
Makeup is not a tool to hyperlink your source code.
While such tools might be built on top of Makeup, it's not the original goal.
Lexers
The Lexer, turns the raw source code into a flat list of tokens.

 Tokens

A token has the following type:
{atom(), map(), String.t()}
The token format was inspired by the format of an Elixir AST node.
	The first element of the 3-tuple is the type of token.
Makeup supports a limited number of token types.
The supported token types are: [...]

	The second element is a map, containing some metadata about the token.
Some formatters can make use of the metadata in order to improve the output.
The only metadata keys currently used by the HTML formatter are the :group_id and the :unselectable keys.
	:group_id is used to mark delimiters as belonging to the same group, so that they are both highlighted when the user places the mouse cursor on top of one of them.

	:unselectable is used to mark a certain token as impossible to select in the HTML output.
It's useful for prompts in interactive interpreter sessions, which you usually don't want to copy and paste.

	The third element is an iolist (not exactly, see below) or a binary containing the text that forms the token.
Makeup lexers should by default use iolists instead of binaries because they usually bring better performance.

For example, the following are valid tokens:
	{:name, %{}, "a"} - represents the variable a

	{:string_double, %{}, "\"A String\""} - represents a literal string

	{:number_integer, %{}, ["17"]} - represents the number 17

 Note: iolists and makeup

The above description of the third element of the token is a slight simplification.
Erlang iolists can contain binaries, lists and integers representing bytes.
They can't contain arbitrary integers that encode Unicode characters.
It's very inconvenient to handle these Unicode characters inside the lexer,
so Makeup has chosen to handle them inside the formatter, which actually writes the "iolists" into an output device or a string.
Because the formatter usually has to escape the token values anyway, it is natural to "escape" Unicode characters at that level.

 Improving an Existing Lexer

There are probably lots of opportunities to profile the lexers and increase performance.
Although performance is important, being correct is also important.
When faced with the choice between being fast or being correct, you should be aware of the trade-off.

 Writing a New Lexer

Makeup lexers use the excellent NimbleParsec parsing library by default.
Writing a NimbleParsec parser is not a requirement to write an Elixir lexer.
As said above, a lexer is just a module that implements the behavior above.
You can write your lexer in any way you want.
You may use a different parsing library, a custom tokenizer, or even something like Regex.
On the other hand, by doing so you won't be making use of the combinators defined by Makeup.
Because a Lexer is just a module that implements a behavior,
there is no need for your grammar rules to output the final token stream.
You can process the token stream any way you want, as long as the format is the same.
For example, the current Elixir lexer iterates over the identifiers
in the token list to highlight some keywords such as if, when and defmodule.
Makeup now provides an API to register lexers on application start.
This means that you can dynamically add support for new programming languages by just depending on a new lexer (as long as the application which is using Makeup knows how to get a lexer from the registry, of course).
The lexer has the responsibility to register itself on application start.

 Matching delimiters

A new lexer should make an effort to match delimiters such as parenthesis when appropriate.
Such matched delimiters can be highlighted when the user places the mouse cursor
on top of one of the delimiters.
This makes it easy to visualize which part of the code is surrounded by the delimiters.
This is not a hard requirement for a new lexer, of course, but it's probably
quite easy to implement for almost every language.
<pre><code>
def f(x)
do
 x + 1
end
</code></pre>

 Aside: A Parser? Why not Regexes? They're simpler...

Can't I just use a Regex-based lexer like normal people?
Well, you can if you really want to.
But Regexes are very weak, and clearly not enough to lex most programming languages.
Most Regex-based lexers (like those employed by Pygments) are actually state machines
with arbitrarily deep stacks with state transitions driven by Regex matches.
This is equivalent to a stack-based automaton, which allows these lexers
to support arbitrary levels of nesting.
This is good enough to reasonably tokenize most programming languages,
but it's much more low level than NimbleParsec (and probably slower).
NimbleParsec allows you to define possibly recursive rules
and handles the state transitions itself, probably with better performance.
It's quite easy to port a Pygments lexer into Elixir, and sometimes they are shorter.
The hardest part is actually extracting the rules from the Regex-driven state machine.
Formatter
A formatter is an arbitrary module, which exports functions that perform arbitrary transformations on your list of tokens.
The output formats are so different that it doesn't really make much sense for a formatter to implement a behavior.
Some formatters should only output iolists, while others should only output binaries.
Others might not produce any output.
Think for example of a code formatter for a GUI application, which may work only by running function calls that statefully change the UI state.
Usually you'll want to implement two functions:
	format_as_iolist(tokens, opts \\ []) (converts a list of tokens into an iolist)
	format_as_binary(tokens, opts \\ []) (converts a list of tokens into a binary)

 Note: why iolists?

Concatenating strings is very slow on the BEAM.
The fast way to generate strings is to first generate an iolist and then calling IO.iodata_to_binary/1 on the iolist to generate a binary.

 Improving an Existing Formatter

The HTML formatter probably doesn't need many improvements.

 Writing a New Formatter

Some formatters that would be interesting to have:
	HTML Formatter with inline CSS styles (the default one uses CSS classes)
	(La)TeX Formatter
	Formatter suitable for use in terminals

While lexers will remain in separate packages for the foreseeable future,
I think formatters could be available on Makeup itself.
You can of course write your own formatters tailored to your projects.
Be sure to use iolists instead of binaries whenever possible.
Style

 Improving an Existing Style

While existing styles could use some improvements, you're probably better off
writing and contributing new ones.

 Writing a New Style

Writing a style is easy.
A style is just an Elixir module that can be converted into a CSS stylesheet.
If you prefer, you can write the CSS stylesheet directly for your application,
but for now, Makeup will only accept styles written as Elixir modules.
It's possible that in the future there will be a macro that generates an
Elixir module at compile-time from a CSS stylesheet.
It's probably not too hard to write a simple CSS parser and interpreter using NimbleParsec.
Writing Documentation

 Improving Makeup's Documentation

This document is a work in progress.
Educating people so that they can contribute (especially new lexers) is a priority.
A tool such as Makeup depends on the work of many people, as no one is proficient
in all the programming languages Makeup might have to highlight.
Also, at the moment, the options recognized by the lexers are not documented properly.

 Improving NimbleParsec's Documentation

Makeup lexers depend on NimbleParsec.
The NimbleParsec docs and test suite are somewhat lacking at the moment.
Teaching people how to use NimbleParsec is important if we want to encourage new contributions.
Currently, not many people are using NimbleParsec, so building a knowledge base around it might be important.
Adoption and Marketing
Increasing the adoption of Makeup is desirable, because not only it enhances
the readability of code examples in the wild, but it might bring new contributors.
New contributors bring new lexers, which bring higher adoption, which brings new contributors.
This is a virtuous cycle we must encourage.

Supported Tokens
 :comment
 :comment_hashbang
 :comment_multiline
 :comment_preproc
 :comment_preproc_file
 :comment_single
 :comment_special
 :error
 :escape
 :generic
 :generic_deleted
 :generic_emph,
 :generic_error
 :generic_heading,
 :generic_inserted
 :generic_output,
 :generic_prompt
 :generic_strong
 :generic_subheading
 :generic_traceback
 :keyword
 :keyword_constant
 :keyword_declaration,
 :keyword_namespace
 :keyword_pseudo
 :keyword_reserved
 :keyword_type,
 :literal
 :literal_date
 :name
 :name_attribute
 :name_builtin,
 :name_builtin_pseudo
 :name_class
 :name_constant
 :name_decorator
 :name_entity
 :name_exception
 :name_function
 :name_function_magic
 :name_label
 :name_namespace
 :name_other
 :name_property
 :name_tag
 :name_variable,
 :name_variable_class,
 :name_variable_global
 :name_variable_instance
 :name_variable_magic
 :number,
 :number_bin
 :number_float,
 :number_hex
 :number_integer
 :number_integer_long
 :number_oct,
 :operator,
 :operator_word,
 :other
 :punctuation
 :string
 :string_affix
 :string_backtick,
 :string_char
 :string_delimiter,
 :string_doc
 :string_double
 :string_escape
 :string_heredoc
 :string_interpol,
 :string_other
 :string_regex
 :string_sigil
 :string_single
 :string_symbol
 :text
 :whitespace

Makeup

[image: Module Version]
[image: Hex Docs]

 Introduction

Makeup is a "generic syntax highlighter suitable for use in code hosting, forums, wikis or other applications that need to prettify source code" . This tagline was shamelessly stolen from the Pygments website.
Pygments the major inspiration for this package, and the structure is basically the same.
It has lexers, formatters and styles.
	Lexers turn the source code into a list of tokens.
	Formatters turn the list of tokens into something else (HTML, TeX, images, etc.).
Currently only an HTML formatter exists.
	Styles customize the output of the formatter.
Makeup supports all Pygments' styles (in fact, they were converted from the Python's source).
New custom styles can be added to makeup itself, or defined in the Project that uses it.

 Demo

To see a sample of Makeup's output, go check the demo.
Please note that not all styles define all differences between tokens.
In a given style, strings and characters might be rendered in the same color while in others , the colors might be different.
That is style-dependent.
Some of the richer styles are
the Tango style (elixir),
the Colorful style (elixir),
the Default style (elixir), and
the Friendly style (elixir).

 Supported Languages

The supported source languages are:
	Elixir
	Erlang
	C
	HTML
	Diff
	JSON
	(H)EEx

 Installation

The package can be installed by adding makeup and makeup_elixir (required
for the ElixirLexer) to your list of dependencies in mix.exs:
def deps do
 [
 {:makeup, "x.y.z"},
 {:makeup_elixir, "x.y.z"}
]
end
Documentation can be found at https://hexdocs.pm/makeup.

 Changes

Changes from previous versions are details in the Changelog.

 Quickstart

To highlight some Elixir code (newlines added for clarity):
Makeup.highlight(source)
"<pre class=\"highlight\"><code>
x
+ 1
</code></pre>\n"
As you can see, the default HTML formatter uses CSS classes.
You'll need a CSS stylesheet to get the different colors and styles.
To generate a stylesheet:
Makeup.stylesheet(style) # by default, the StyleMap.default style is used.
... output omitted

 Advantages over Pygments

One of the greatest advantages is that it runs on the BEAM, so it can be used with Elixir projects without external dependencies.
Another advantage is that the way lexers are written, we can be a lot smarter than Pygments in processing the output.
For the developer, lexers are also easier to write than the Pygments lexers, because we use a PEG parser.
Most Pygments lexers use something like a state table that works based on regex matches,
and uses the results of those matches to switch to another state.
Using a PEG parser we can define the grammar in a more natural way.
The lexers are written using the excellent NimbleParsec parser.

 Disadvantages over Pygments

It supports fewer languages.

 Documentation on how to write a new lexer

Contributions are highly appreciated. The most direct way you can contribute to Makeup is by writing a new lexer. You can find some information here: CONTRIBUTING.md

 LICENSE

Makeup is licensed under the BSD license.
This is the same license as the Pygments Makeup uses and
it seems to be compatible with the licenses used by all the dependencies.

Makeup

Syntax highlighting library for code, inspired by Pygments.
By default, it doesn't include any lexers. You must import
them separately (even the Elixir lexer).

 Summary

 Functions

 highlight(source, options \\ [])

 Highlights the given string using the given lexer and formatter.

 highlight_inner_html(source, options \\ [])

 Convenience for formatting as the inner bits of HTML.

 stylesheet(style \\ :default_style, css_class \\ "highlight")

 Generates a CSS stylesheet for highlighted code for the given style.

 Functions

 Link to this function

 highlight(source, options \\ [])

 View Source

Highlights the given string using the given lexer and formatter.
By default it highlight the Elixir language using
Makeup.Formatters.HTML.HTMLFormatter.

 Options:

	:lexer - module name of the lexer to use (default: Makeup.Lexers.ElixirLexer)
	:lexer_options - list of options for the lexer
	:formatter - module name of the formatter to use (defult: Makeup.Formatters.HTML.HTMLFormatter)
	:formatter_options - list of options for the formatter. For the included HTMLFormatter, that's:	:css_class - css class(es) of the main <pre> element (default: "highlight")
	:highlight_tag - tag that wraps every token (default: "span")

 Link to this function

 highlight_inner_html(source, options \\ [])

 View Source

Convenience for formatting as the inner bits of HTML.

 Link to this function

 stylesheet(style \\ :default_style, css_class \\ "highlight")

 View Source

Generates a CSS stylesheet for highlighted code for the given style.
It expects a style, either as an atom name or as "style map",
and the css_class as the top level class for highlighted code.
For example, if the css_class is "highlight" (the default), the stylesheet
has the form:
.highlight .someclass {...}
.highlight .anotherclass {...}
See Makeup.Styles.HTML.StyleMap for all style maps.

Makeup.Formatters.HTML.HTMLFormatter

Turns a list of tokens into HTML fragments.

 Summary

 Functions

 format_as_binary(tokens, opts \\ [])

 Turns a list of tokens into an HTML fragment.
This fragment can be embedded directly into an HTML document.

 format_as_iolist(tokens, opts \\ [])

 Turns a list of tokens into an iolist which represents an HTML fragment.
This fragment can be embedded directly into an HTML document.

 format_inner_as_binary(tokens, opts)

 Turns a list of tokens into an HTML fragment.
This fragment can be embedded directly into an HTML document.

 format_inner_as_iolist(tokens, opts)

 Turns a list of tokens into an iolist which represents an HTML fragment.
This fragment can be embedded directly into an HTML document.

 format_token(arg, highlight_tag)

 Format a single token into an iolist.

 group_highlighter_javascript()

 Return a JavaScript snippet to highlight code on mouseover.
This is "raw" javascript, and for inclusion in an HTML file
it must be wrapped in a <script> tag.

 stylesheet(style \\ :default_style, css_class \\ "highlight")

 Return the CSS stylesheet for a given style.

 Functions

 Link to this function

 format_as_binary(tokens, opts \\ [])

 View Source

Turns a list of tokens into an HTML fragment.
This fragment can be embedded directly into an HTML document.

 Link to this function

 format_as_iolist(tokens, opts \\ [])

 View Source

Turns a list of tokens into an iolist which represents an HTML fragment.
This fragment can be embedded directly into an HTML document.

 Link to this function

 format_inner_as_binary(tokens, opts)

 View Source

Turns a list of tokens into an HTML fragment.
This fragment can be embedded directly into an HTML document.

 Link to this function

 format_inner_as_iolist(tokens, opts)

 View Source

Turns a list of tokens into an iolist which represents an HTML fragment.
This fragment can be embedded directly into an HTML document.

 Link to this function

 format_token(arg, highlight_tag)

 View Source

Format a single token into an iolist.

 Link to this function

 group_highlighter_javascript()

 View Source

Return a JavaScript snippet to highlight code on mouseover.
This is "raw" javascript, and for inclusion in an HTML file
it must be wrapped in a <script> tag.

 Link to this function

 stylesheet(style \\ :default_style, css_class \\ "highlight")

 View Source

Return the CSS stylesheet for a given style.

Makeup.Lexer behaviour

A lexer turns raw source code into a list of tokens.

 Summary

 Callbacks

 lex(t, list)

 Lexes a string into a list of tokens

 match_groups(list, t)

 Matches groups in a list of tokens.

 postprocess(list, list)

 Post-processes a list of tokens before matching the contained groups.

 root(t)

 Parses the given string into a parsec result that includes a list of tokens.

 root_element(t)

 Parses the smallest number of tokens that make sense.
It's a parsec.

 Functions

 merge(list)

 Merge adjacent tokens of the same type and with the same attributes.

 split_into_lines(tokens)

 Splits a list of tokens on newline characters ().

 unlex(tokens)

 Merges the token values into the original string.

 Callbacks

 Link to this callback

 lex(t, list)

 View Source

 @callback lex(String.t(), list()) :: [Makeup.Lexer.Types.token()]

Lexes a string into a list of tokens

 Link to this callback

 match_groups(list, t)

 View Source

 @callback match_groups([Makeup.Lexer.Types.token()], String.t()) :: [
 Makeup.Lexer.Types.token()
]

Matches groups in a list of tokens.

 Link to this callback

 postprocess(list, list)

 View Source

 @callback postprocess([Makeup.Lexer.Types.token()], list()) :: [
 Makeup.Lexer.Types.token()
]

Post-processes a list of tokens before matching the contained groups.

 Link to this callback

 root(t)

 View Source

 @callback root(String.t()) :: Makeup.Lexer.Types.parsec_result()

Parses the given string into a parsec result that includes a list of tokens.

 Link to this callback

 root_element(t)

 View Source

 @callback root_element(String.t()) :: Makeup.Lexer.Types.parsec_result()

Parses the smallest number of tokens that make sense.
It's a parsec.

 Functions

 Link to this function

 merge(list)

 View Source

 @spec merge([Makeup.Lexer.Types.token()]) :: [Makeup.Lexer.Types.token()]

Merge adjacent tokens of the same type and with the same attributes.
Doing this will require iterating over the list of tokens again,
so only do this if you have a good reason.

 Link to this function

 split_into_lines(tokens)

 View Source

 @spec split_into_lines([Makeup.Lexer.Types.token()]) :: [[Makeup.Lexer.Types.token()]]

Splits a list of tokens on newline characters ().
The result is a list of lists of tokens with no newlines.

 Link to this function

 unlex(tokens)

 View Source

 @spec unlex([Makeup.Lexer.Types.token()]) :: String.t()

Merges the token values into the original string.
Inverts the output of a lexer. That is, if lexer is a lexer, then:
string |> lexer.lex() |> Makeup.Lexer.unlex() == string
This only works for a correctly implemented lexer, of course.
The above identity can be treated as a lexer invariant for newly implemented lexers.

Makeup.Lexer.Combinators

Common components useful in many lexers.

 Summary

 Functions

 lexeme(combinator)

 Joins the result of the given combinator into a single string.

 many_surrounded_by(combinator, left, right)

 Matches a given combinator, repeated 0 or more times, surrounded by left and right delimiters.

 many_surrounded_by(combinator, left, right, ttype)

 Matches a given combinator, repeated 0 or more times, surrounded by left and right delimiters,
and wraps the right and left delimiters into a token of the given ttype.

 string_like(left, right, middle, ttype, attrs \\ %{})

 A generic combinator for string-like syntactic structures.

 token(literal, token_type)

 Wraps the given combinator into a token of the given ttype.

 token(literal, token_type, attrs)

 word_from_list(words)

 Matches one of the literal strings in the list.

 word_from_list(words, ttype)

 Matches one of the literal strings in the list and wraps it in a token of the given type.

 word_from_list(words, ttype, attrs)

 Matches one of the literal strings in the list and wraps it in a token of the given type,
with the given attrs.

 Functions

 Link to this function

 lexeme(combinator)

 View Source

Joins the result of the given combinator into a single string.
This is not usually necessary, but it can be useful if you want to match on the tokens.
It's easier to match on the token {:keyword, %{}, "unquote"} than on something like
{:keyword, %{}, ["u", "nquote"]}, even though both tokens will be treated the same way
by the formatter.

 Link to this function

 many_surrounded_by(combinator, left, right)

 View Source

Matches a given combinator, repeated 0 or more times, surrounded by left and right delimiters.
Delimiters can be combinators or literal strings (either both combinators or both literal strings).

 Link to this function

 many_surrounded_by(combinator, left, right, ttype)

 View Source

Matches a given combinator, repeated 0 or more times, surrounded by left and right delimiters,
and wraps the right and left delimiters into a token of the given ttype.

 Link to this function

 string_like(left, right, middle, ttype, attrs \\ %{})

 View Source

A generic combinator for string-like syntactic structures.
It takes the following parameters:
	left - left delimiter for the string. Can be a binary or a general combinator.
	right - right delimiter for the string. Can be a binary or a general combinator
	middle - a list of parsers to run inside the string which parse entities
that aren't characters.
The most common example are special characters and string interpolation
for languages that support it like Elixir.
	ttype - the token type to use for the string delimiters and ordinary characters
(tokens parsd by the)
	attrs - metadata attributes for the string delimiters and ordinary characters

 Examples

single_quoted_heredocs = string_like(
 "'''",
 "'''",
 combinators_inside_string,
 :string_char
)
The above is equivalent to the following more explicit version:
single_quoted_heredocs = string_like(
 string("'''"),
 string("'''"),
 combinators_inside_string,
 :string_char
)

 Link to this function

 token(literal, token_type)

 View Source

Wraps the given combinator into a token of the given ttype.
Instead of a combinator, the first argument can also be a string literal.

 Link to this function

 token(literal, token_type, attrs)

 View Source

 Link to this function

 word_from_list(words)

 View Source

Matches one of the literal strings in the list.
The strings aren't matched in order: they are automatically sorted in a way
that guarantees that the longest strings will be tried first.

 Examples

keywords = word_from_list(~w[do end catch after rescue])

 Link to this function

 word_from_list(words, ttype)

 View Source

Matches one of the literal strings in the list and wraps it in a token of the given type.
This is is just a shorthand.
The strings aren't matched in order: they are automatically sorted in a way
that guarantees that the longest strings will be tried first.

 Examples

keywords = word_from_list(~w[do end catch after rescue], :keyword)

 Link to this function

 word_from_list(words, ttype, attrs)

 View Source

Matches one of the literal strings in the list and wraps it in a token of the given type,
with the given attrs.
This is is just a shorthand.
The strings aren't matched in order: they are automatically sorted in a way
that guarantees that the longest strings will be tried first.

Makeup.Lexer.Groups

Utilities to highlight groups of tokens on mouseover.
The typical example is to highlight matching pairs of delimiters,
such as parenthesis, angle brackets, etc.

 Summary

 Functions

 defgroupmatcher(name, stacks, opts \\ [])

 Defines a function with the given name that takes a list of tokens and divides
matching delimiters into groups.

 random_prefix(n)

 Returns a random prefix for group ids in an HTML file.

 Functions

 Link to this macro

 defgroupmatcher(name, stacks, opts \\ [])

 View Source

 (macro)

Defines a function with the given name that takes a list of tokens and divides
matching delimiters into groups.
Takes as arguments a name for the function (must be an atom) and a list
containing the patterns describing the matching groups.

 Examples

Extracted from the default elixir lexer that ships with ExDoc
defgroupmatcher :match_groups, [
 # Match opening and closing parenthesis
 parentheses: [
 open: [[{:punctuation, %{language: :elixir}, "("}]],
 close: [[{:punctuation, %{language: :elixir}, ")"}]]
],

 # Match more complex delimiters, but still an open and close delimiter
 fn_end: [
 open: [[{:keyword, %{language: :elixir}, "fn"}]],
 close: [[{:keyword, %{language: :elixir}, "end"}]]
]

 # Match delimiters with middle components
 do_end: [
 open: [
 [{:keyword, %{language: :elixir}, "do"}]
],
 middle: [
 [{:keyword, %{language: :elixir}, "else"}],
 [{:keyword, %{language: :elixir}, "catch"}],
 [{:keyword, %{language: :elixir}, "rescue"}],
 [{:keyword, %{language: :elixir}, "after"}]
],
 close: [
 [{:keyword, %{language: :elixir}, "end"}]
]
]
]

 Link to this function

 random_prefix(n)

 View Source

Returns a random prefix for group ids in an HTML file.
This is useful to avoid collisions.
The group ids should be unique for a certain HTML document, and the easiest way of guaranteeing it
is by generating long random prefixes.

Makeup.Lexer.Postprocess

Often you'll want to run the token list through a postprocessing stage before
running the formatter.
Most of what we can do in a post-processing stage can be done with more parsing rules,
but doing it in a post-processing stage is often easier and faster.
Never assume one of the options is faster than the other, always measure performance.

 Summary

 Functions

 invert_word_map(pairs)

 Takes a list of the format [{key1, [val11, val12, ...]}, {key2, [val22, ...]}] and
returns a map of the form %{val11 => key1, val12 => key2, ..., val22 => key2, ...}.

 token_value_to_binary(arg)

 Converts the value of a token into a binary.

 token_values_to_binaries(tokens)

 Converts the values of the tokens in the list into binaries.

 Functions

 Link to this function

 invert_word_map(pairs)

 View Source

Takes a list of the format [{key1, [val11, val12, ...]}, {key2, [val22, ...]}] and
returns a map of the form %{val11 => key1, val12 => key2, ..., val22 => key2, ...}.
The resulting map may be useful to highlight some tokens in a special way
in a postprocessing step.
You can also use pattern matching instead of the inverted map,
and it will probably be faster, but always benchmark the alternatives before
committing to an implementation.

 Link to this function

 token_value_to_binary(arg)

 View Source

Converts the value of a token into a binary.
Token values are usually iolists for performance reasons.
The BEAM is actually quite fast at printing or concatenating iolists,
and some of the basic combinators output iolists, so there is no need
to convert the token values into binaries.
This function should only be used for tesring purposes, when you might
want to compare the token list into a reference output.
Converting the tokens into binaries has two advantges:
	It's much easier to compare tokens by visual inspection when the value is a binary
	When testing, two iolists that print to the same binary should be considered equal.

This function hasn't been optimized for speed.
Don't use in production code.

 Link to this function

 token_values_to_binaries(tokens)

 View Source

Converts the values of the tokens in the list into binaries.
Token values are usually iolists for performance reasons.
The BEAM is actually quite fast at printing or concatenating iolists,
and some of the basic combinators output iolists, so there is no need
to convert the token values into binaries.
This function should only be used for tesring purposes, when you might
want to compare the token list into a reference output.
Converting the tokens into binaries has two advantges:
	It's much easier to compare tokens by visual inspection when the value is a binary
	When testing, two iolists that print to the same binary should be considered equal.

 Example

defmodule MyTest do
 use ExUnit.Case
 alias Makeup.Lexers.ElixirLexer
 alias Makeup.Lexer.Postprocess

 test "binaries are much easier on the eyes" do
 naive_tokens = ElixirLexer(":atom")
 # Hard to inspect visually
 assert naive_tokens == [{:string_symbol, %{language: :elixir}, [":", "a", "tom"]}]
 better_tokens =
 text
 |> ElixirLexer.lex()
 |> Postprocess.token_values_to_binaries()
 # Easy to inspect visually
 assert better_tokens == [{:string_symbol, %{language: :elixir}, ":atom"}]
 end
end
Actually, you'll want to define some kind of helper to make it less verbose.
For example:
defmodule MyTest do
 use ExUnit.Case
 alias Makeup.Lexers.ElixirLexer
 alias Makeup.Lexer.Postprocess

 def lex(text) do
 text
 |> ElixirLexer.lex(group_prefix: "group")
 |> Postprocess.token_values_to_binaries()
 end

 test "even better with our little helper" do
 assert lex(":atom") == [{:string_symbol, %{language: :elixir}, ":atom"}]
 end
end

Makeup.Lexer.Types

 Summary

 Types

 context()

 parsec()

 parsec_failure()

 parsec_result()

 parsec_success()

 token()

 tokens()

 Types

 Link to this type

 context()

 View Source

 @type context() :: map()

 Link to this type

 parsec()

 View Source

 @type parsec() :: (String.t() -> parsec_result())

 Link to this type

 parsec_failure()

 View Source

 @type parsec_failure() ::
 {:error, String.t(), String.t(), context(), {integer(), integer()}, integer()}

 Link to this type

 parsec_result()

 View Source

 @type parsec_result() :: parsec_success() | parsec_failure()

 Link to this type

 parsec_success()

 View Source

 @type parsec_success() ::
 {:ok, tokens(), String.t(), context(), {integer(), integer()}, integer()}

 Link to this type

 token()

 View Source

 @type token() :: {atom(), map(), iodata()}

 Link to this type

 tokens()

 View Source

 @type tokens() :: [token()]

Makeup.Registry

A registry that allows users to dynamically register new makeup lexers.
Lexers should register themselves on application start.
That way, you can add support for new programming languages by depending on the relevant lexers.
This is useful for projects such as ExDoc, which might contain code
in a number of different programming languages.

 Summary

 Functions

 fetch_lexer_by_extension(name)

 Fetches a lexer from Makeup's registry with the given file extension.

 fetch_lexer_by_extension!(name)

 Fetches the lexer from Makeup's registry with the given file extension.

 fetch_lexer_by_name(name)

 Fetches the lexer from Makeup's registry with the given name.

 fetch_lexer_by_name!(name)

 Fetches the lexer from Makeup's registry with the given name.

 get_lexer_by_extension(name, default \\ nil)

 Gets the lexer from Makeup's registry with the given file extension.

 get_lexer_by_name(name, default \\ nil)

 Gets the lexer from Makeup's registry with the given name.

 register_lexer(lexer, opts)

 Add a new lexer to Makeup's registry under the given names and extensions.

 register_lexer_with_extension(name, arg)

 Adds a new lexer to Makeup's registry under the given extension.

 register_lexer_with_name(name, arg)

 Adds a new lexer to Makeup's registry under the given name.

 supported_file_extensions()

 Gets the list of supported language extensions.

 supported_language_names()

 Gets the list of supported language names.

 Functions

 Link to this function

 fetch_lexer_by_extension(name)

 View Source

Fetches a lexer from Makeup's registry with the given file extension.
Returns either {:ok, {lexer, options}} or :error.
This behaviour is based on Map.fetch/2.

 Link to this function

 fetch_lexer_by_extension!(name)

 View Source

Fetches the lexer from Makeup's registry with the given file extension.
Returns either {:ok, {lexer, options}} or raises a KeyError.
This behaviour is based on Map.fetch/2.

 Link to this function

 fetch_lexer_by_name(name)

 View Source

Fetches the lexer from Makeup's registry with the given name.
Returns either {:ok, {lexer, options}} or :error.
This behaviour is based on Map.fetch/2.

 Link to this function

 fetch_lexer_by_name!(name)

 View Source

Fetches the lexer from Makeup's registry with the given name.
Returns either {lexer, options} or raises a KeyError.
This behaviour is based on Map.fetch!/2.

 Link to this function

 get_lexer_by_extension(name, default \\ nil)

 View Source

Gets the lexer from Makeup's registry with the given file extension.
Returns either {lexer, options} or the default value
(which by default is nil).
This behaviour is based on Map.get/3.

 Link to this function

 get_lexer_by_name(name, default \\ nil)

 View Source

Gets the lexer from Makeup's registry with the given name.
Returns either {lexer, options} or the default value
(which by default is nil).
This behaviour is based on Map.get/3.

 Link to this function

 register_lexer(lexer, opts)

 View Source

Add a new lexer to Makeup's registry under the given names and extensions.
Expects a lexer lexer and a number of options:
	:options (default: []) - the lexer options.
If your lexer doesn't take any options, you'll want the default value of [].

	:names (default: []) - a list of strings with the language names for the lexer.
Language names are strings, not atoms.
Even if there is only one valid name, you must supply a list with that name.
To avoid filling the registry unnecessarily, you should normalize your language names
to lowercase strings.
If the caller wants to support upper case language names for some reason,
they can normalize the language names themselves.

	:extensions (default: []) - the list of file extensions for the languages supported by the lexer.
For example, the elixir lexer should support the "ex" and "exs" file extensions.
The extensions should not include the dot.
That is, you should register "ex" and not ".ex".
Even if there is only a supported extension, you must supply a list.

 Example

alias Makeup.Registry
alias Makeup.Lexers.ElixirLexer
The `:options` key is not required
Registry.register_lexer(ElixirLexer, names: ["elixir", "iex"], extensions: ["ex", "exs"])

 Link to this function

 register_lexer_with_extension(name, arg)

 View Source

Adds a new lexer to Makeup's registry under the given extension.
This function expects a file extension (e.g. "ex") and a pair containing
a lexer and a list of options.
You might want to use the Makeup.Registry.register_lexer/2 function instead.

 Examples

alias Makeup.Lexers.ElixirLexer
alias Makeup.Registry

Registry.register_lexer_with_extension("ex"), {ElixirLexer, []})
Registry.register_lexer_with_extension("exs"), {ElixirLexer, []})

 Link to this function

 register_lexer_with_name(name, arg)

 View Source

Adds a new lexer to Makeup's registry under the given name.
This function expects a language name (e.g. "elixir") and a pair containing
a lexer and a list of options.
You might want to use the Makeup.Registry.register_lexer/2 function instead.

 Examples

alias Makeup.Lexers.ElixirLexer
alias Makeup.Registry

Registry.register_lexer_with_name("elixir", {ElixirLexer, []})
Registry.register_lexer_with_name("iex", {ElixirLexer, []})

 Link to this function

 supported_file_extensions()

 View Source

Gets the list of supported language extensions.

 Link to this function

 supported_language_names()

 View Source

Gets the list of supported language names.

Makeup.Styles.HTML.Style

The style struct.

 Summary

 Functions

 make_style(options \\ [])

 Creates a new style.

 stylesheet(style, css_class \\ "highlight")

 Generate a stylesheet for a style.

 Functions

 Link to this function

 make_style(options \\ [])

 View Source

Creates a new style.
Takes care of unspecified token types and inheritance.
Writes and caches a CSS stylesheet for the style.

 Link to this function

 stylesheet(style, css_class \\ "highlight")

 View Source

Generate a stylesheet for a style.

Makeup.Styles.HTML.StyleMap

This module contains all styles, and facilities to map style names (binaries or atoms) to styles.
Style names are of the form <name>_style.

 Summary

 Functions

 abap_style()

 The abap style. Example here.

 algol_nu_style()

 The algol_nu style. Example here.

 algol_style()

 The algol style. Example here.

 arduino_style()

 The arduino style. Example here.

 autumn_style()

 The autumn style. Example here.

 borland_style()

 The borland style. Example here.

 bw_style()

 The bw style. Example here.

 colorful_style()

 The colorful style. Example here.

 default_style()

 The default style. Example here.

 dracula_style()

 The dracula style. Example here.

 emacs_style()

 The emacs style. Example here.

 friendly_style()

 The friendly style. Example here.

 fruity_style()

 The fruity style. Example here.

 igor_style()

 The igor style. Example here.

 lovelace_style()

 The lovelace style. Example here.

 manni_style()

 The manni style. Example here.

 monokai_style()

 The monokai style. Example here.

 murphy_style()

 The murphy style. Example here.

 native_style()

 The native style. Example here.

 one_dark_style()

 The one_dark style. Example here.

 paraiso_dark_style()

 The paraiso_dark style. Example here.

 paraiso_light_style()

 The paraiso_light style. Example here.

 pastie_style()

 The pastie style. Example here.

 perldoc_style()

 The perldoc style. Example here.

 rainbow_dash_style()

 The rainbow_dash style. Example here.

 rrt_style()

 The rrt style. Example here.

 samba_style()

 The samba style, based on the tango style, but with visual distinction between
classes and variables, and lighter punctuation.

 tango_style()

 The tango style. Example here.

 trac_style()

 The trac style. Example here.

 vim_style()

 The vim style. Example here.

 vs_style()

 The vs style. Example here.

 xcode_style()

 The xcode style. Example here.

 Functions

 Link to this function

 abap_style()

 View Source

The abap style. Example here.

 Link to this function

 algol_nu_style()

 View Source

The algol_nu style. Example here.

 Link to this function

 algol_style()

 View Source

The algol style. Example here.

 Link to this function

 arduino_style()

 View Source

The arduino style. Example here.

 Link to this function

 autumn_style()

 View Source

The autumn style. Example here.

 Link to this function

 borland_style()

 View Source

The borland style. Example here.

 Link to this function

 bw_style()

 View Source

The bw style. Example here.

 Link to this function

 colorful_style()

 View Source

The colorful style. Example here.

 Link to this function

 default_style()

 View Source

The default style. Example here.

 Link to this function

 dracula_style()

 View Source

The dracula style. Example here.

 Link to this function

 emacs_style()

 View Source

The emacs style. Example here.

 Link to this function

 friendly_style()

 View Source

The friendly style. Example here.

 Link to this function

 fruity_style()

 View Source

The fruity style. Example here.

 Link to this function

 igor_style()

 View Source

The igor style. Example here.

 Link to this function

 lovelace_style()

 View Source

The lovelace style. Example here.

 Link to this function

 manni_style()

 View Source

The manni style. Example here.

 Link to this function

 monokai_style()

 View Source

The monokai style. Example here.

 Link to this function

 murphy_style()

 View Source

The murphy style. Example here.

 Link to this function

 native_style()

 View Source

The native style. Example here.

 Link to this function

 one_dark_style()

 View Source

The one_dark style. Example here.

 Link to this function

 paraiso_dark_style()

 View Source

The paraiso_dark style. Example here.

 Link to this function

 paraiso_light_style()

 View Source

The paraiso_light style. Example here.

 Link to this function

 pastie_style()

 View Source

The pastie style. Example here.

 Link to this function

 perldoc_style()

 View Source

The perldoc style. Example here.

 Link to this function

 rainbow_dash_style()

 View Source

The rainbow_dash style. Example here.

 Link to this function

 rrt_style()

 View Source

The rrt style. Example here.

 Link to this function

 samba_style()

 View Source

The samba style, based on the tango style, but with visual distinction between
classes and variables, and lighter punctuation.

 Link to this function

 tango_style()

 View Source

The tango style. Example here.

 Link to this function

 trac_style()

 View Source

The trac style. Example here.

 Link to this function

 vim_style()

 View Source

The vim style. Example here.

 Link to this function

 vs_style()

 View Source

The vs style. Example here.

 Link to this function

 xcode_style()

 View Source

The xcode style. Example here.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

