

 Mar

 v0.2.6

 [image: Logo]

 Table of contents

 	README

 	

 	Modules

 	Mar

 	Mar.Route

README

[image: mar]
Mar — Simple Web in Elixir
Video Demo
Mar is a simple web framework written in Elixir functional programming language. The design of the library aims to provide a Flask-like experience for Elixir developers. It is a layer of abstraction on top of Plug powered by Bandit.

 Design

graph

Supervisor
Bandit

subgraph legend
 direction TB
 modules
 protocols[[protocols]]
 impls(impls)
end

subgraph mar
 Mar
 Mar.Route[[Mar.Route]]
 Mar.Router
end

subgraph my_app
 MyApp
 Mar.Route.MyApp(Mar.Route.MyApp)
end

Mar.Router -- "__protocol__(:impls)" --> Mar.Route
Mar.Router -- "%MyApp{}" --> Mar.Route.MyApp
Mar.Router -- apply --> MyApp
MyApp -- use --> Mar
MyApp -- start_link --> Supervisor
MyApp -- defimpl --> Mar.Route.MyApp
Supervisor -- child_spec --> Mar
Supervisor -- ":start" --> Bandit
Bandit -- ":plug" --> Mar.Router

The design goal for Mar is to make it transparent to the user so someone who just covered the basics of the language can jump right into building a web application. Elixir offers a powerful and aesthetic syntax built-in, such as multi-clause function definitions with parameters pattern matching module with struct definition, @behaviour and Protocol for polymorphism, and use macro that injects code into the module. Mar attempts to fully utilise these native features to provide a simple and intuitive API for building web applications.
For the user, such brevity means typing in use Mar makes all the connections and sets up reasonable defaults so a web application is defined without an extra file in the lib/. With object-oriented programming, it's as simple as passing an object. That's what we see from Flask, Sinatra or Express. The object can encapsulate the state and operation of the application without too much ceremony on the user's codespace. But for the functional programming paradigm, it usually spills out to the user modules. To manage this, Mar has to keep as much as possible in the library. And it takes accessing the module information of the user code from the library.
I was surprised by the level of frustration such an approach can cause. At first, I thought it was me that I couldn't come up with an elegant solution right up. But as I dug deeper, I found the trail of lamentation. Most libraries resort to taking some configuration for a module, so the user can manually report to the library. Other than that, the ambition of the community has reached scanning all the modules in the user project and saving them in an ETS or an Agent. I tried it and it was a convoluted, error-prone, and hard-to-maintain solution, at least for my technical capability.
Protocol is an often underappreciated feature of the language. And it sheds light on the problem. Protocols do module consolidation in order to enhance the performance. And the protocol can reach the consolidated modules with __protocol__(:impls). If Mar can slip in protocol implementation code into the user module with use Mar, it will automatically report the module to the protocol. And Mar can access the module without extra configuration. This comes with a nice side effect. Since defimpl takes structs anyway, saving information in the struct is a natural way to keep the module information. And the protocol can work as a liminal codespace instead of being a tool for module registration.
So that's exactly the way Mar is implemented. Each user module is a unique implementation of Mar.Route. It provides some default defimpl functions and Mar.__using__/1 injects them alongside defstruct handling options. This way, use Mar makes these things possible:
	Register the module to the Mar.Route.
	Save information in the %MyApp{} struct.
	Interact with the library through Mar.Route.MyApp

use Mar takes path and params options. path is the URL path of the route where path parameters are annotated with :. They are parsed and appended to the existing params.
Mar also exports Mar.child_spec/1 so the user can start the supervision tree just by adding Mar as a child. The child spec starts Bandit with Mar.Plug as a general pipeline which goes down to Mar.Router where path-matching, parameter parsing, and action dispatching are done.
Path-matching algorithm is far from optimised. It's a few iterations over the list of routes. Stream is applied where applicable to alleviate the performance. Once the path finds the module of responsibility, path parameters are parsed to the Plug.Conn first, where they merge over query parameters and body parameters. Then parameters are selectively loaded to the struct. The HTTP method is loaded as well for the action name. Then before the action is dispatched, conn is loaded to the struct. This allows Mar.Route to expose the entire connection to the user module. After the action is dispatched, it exposes the connection once more. And finally, the response gets sent.

 Installation

Create a project with supervision tree:
$ mix new my_app --sup
$ cd my_app

Add Mar to your dependencies in:
mix.exs
defp deps do
 [
 {:mar, "~> 0.2.0"}
]
end
Add Mar as a child:
lib/my_app/application.ex
def start(_type, _args) do
 children = [
 Mar
]
 # ...
end
Add Mar to your module to make it a route:
lib/my_app/route.ex
defmodule MyApp.Page do
 use Mar

 def get() do
 "Hello, world!"
 end
end
Spin up a server:
$ mix run --no-halt

$ curl localhost:4000
Hello, world!

 Use

Using Mar makes the module a route.
It injects Mar.Route protocol and a struct.
Set a path or the default is "/".
Add parameters in the path or in the params list.
defmodule MyApp do
 use Mar, path: "/post/:id", params: [:likes, :comment]
end
Name your function after the HTTP method.
Take HTTP parameters from a map.
Return a response body with text.
def get(%{id: id}) do
 "You are reading #{id}"
end
Returning a map will send a response in JSON.
def post(%{id: id, comment: comment}) do
 %{
 id: id,
 comment: comment
 }
end
Return a tuple to set HTTP status and headers.
def delete(%{id: _id}) do
 # {status, header, body}
 {301, [location: "/"], nil}
end
Mar.Route protocol lets you access Plug.Conn.
defimpl Mar.Route do
 # Mar.Route.MyApp

 def before_action(route) do
 # Access `route.conn` before the actions you have defined.
 route
 end

 def after_action(route) do
 # Access `route.conn` after the actions you have defined.
 route
 end
end

 Reference

	Mar on HexDocs
	Proposal on Elixir Forum

Mar

Using Mar makes the module a route.
It injects Mar.Route protocol and a struct.
Set a path or the default is "/".
Add parameters in the path or in the params list.
defmodule MyApp do
 use Mar, path: "/post/:id", params: [:likes, :comment]
end
Name your function after the HTTP method.
Take HTTP parameters from a map.
Return a response body with text.
def get(%{id: id}) do
 "You are reading #{id}"
end
Returning a map will send a response in JSON.
def post(%{id: id, comment: comment}) do
 %{
 id: id,
 comment: comment
 }
end
Return a tuple to set HTTP status and headers.
def delete(%{id: _id}) do
 # {status, header, body}
 {301, [location: "/"], nil}
end
Mar.Route protocol lets you access Plug.Conn.
defimpl Mar.Route do
 # Mar.Route.MyApp

 def before_action(route) do
 # Access `route.conn` before the actions you have defined.
 route
 end

 def after_action(route) do
 # Access `route.conn` after the actions you have defined.
 route
 end
end

Mar.Route protocol

Mar.Route protocol lets you access Plug.Conn.
defmodule MyApp do
 # ...

 defimpl Mar.Route do
 # Mar.Route.MyApp

 def before_action(route) do
 # Access `route.conn` before the actions you have defined.
 route
 end

 def after_action(route) do
 # Access `route.conn` after the actions you have defined.
 route
 end
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 after_action(route)

 before_action(route)

 Types

 Link to this type

 t()

 View Source

 @type t() :: term()

All the types that implement this protocol.

 Functions

 Link to this function

 after_action(route)

 View Source

 @spec after_action(t()) :: t()

 Link to this function

 before_action(route)

 View Source

 @spec before_action(t()) :: t()

 OEBPS/dist/epub-RKEUJJI5.js
(()=>{var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{l(e,!0)}),t.addEventListener("mouseleave",n=>{l(e,!1)})})}function l(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),a()});})();

OEBPS/assets/logo.png

