

 match_engine

 v1.6.0

 Table of contents

 	Modules

 	MatchEngine

MatchEngine

MatchEngine is an in-memory matching/filtering engine with
MongoDB-like query syntax.

 Introduction

The query language consists of nested Elixir "keyword list". Each
component of the query consists of a key part and a value
part. The key part is either a logic operator (and/or/not), or a
reference to a field, the value part is either a plain value, or a
value operator.
When a query is run against a document, where each term is scored
individually and then summed. (This implies "or"). Some example
queries:
[title: "hoi"]
[title: [_eq: "hoi"]]
[_and: [name: "John", age: 36]]
[_or: [name: "John", age: 36]]
[_not: [title: "foo"]]
Two ways of saying "Score all documents in which the title equals "hoi"":
[title: "hoi"]
[title: [_eq: "hoi"]]
Combining various matchers with logic operators:
[_and: [name: "John", age: 36]]
[_or: [name: "John", age: 36]]
[_not: [title: "foo"]]
Performing matches in nested objects is also possible; the query
simply follows the shape of the data.
Given a document consisting of a nested structure, %{"user" => %{"name" => "John"}}:
"User name equals John":
[user: [name: "John"]]
"User name does not equal John":
[_not: [user: [name: "John"]]]
Note that this is a different approach for nesting fields than MongoDB, which uses dot notation for field nesting.

 Query execution

The queries can be run by calling MatchEngine.score_all/2 or MatchEngine.filter_all/2.
Queries are first preprocessed, and then executed on a list of search
"documents". A "document" is just a normal Elixir map, with string
keys.
The preprocessing phase compiles any regexes, checks whether all
operators exist, and de-nests nested field structures.
The query phase runs the preprocessed query for each document in the
list, by calculating the score for the given document, given the
query. When using filter_all/2, documents with a zero score are
removed from the input list. When using score_all, the list is
sorted on score, descending, and this score, including any
additional metadata, is returned in a "_match" map inside the
document.

 Value operators

Value operators work on an individual field. Various operators can
be used to calculate a score for a given field.

 _eq

Scores on the equality of the argument.
[title: "hello"]
[title: [_eq: "hello"]]

 _ne

Scores on the inequality of the argument. ("Not equals")
[title: [_ne: "hello"]]

 _has

Scores when the document's value is a member of the given list.
[role: [_in: ["developer", "freelancer"]]]

 _hasnt

Scores when the document's value contains a member of the given list or contains the given word or words
[tag: [_has: ["production"]]]
[title: [_has: "The"]]
[title: [_has: ["The", "title"]]]

 _in

Scores when the document's value is a member of the given list.
[role: [_in: ["developer", "freelancer"]]]

 _nin

Scores when the document's value is not a member of the given list.
[role: [_nin: ["recruiter"]]]

 _lt, _gt, _lte, _gte

Scores on using the comparison operators <, >, <= and >=.
[age: [_gt: 18]]

 _sim

Normalized string similarity. The max of the Normalised Levenshtein
distance and Jaro distance.

 _regex

Match a regular expression. The input is a string, which gets compiled
into a regex. This operator scores on the length of match divided by
the total string length. It is possible to add named captures to the
regex, which then get added to the _match metadata map, as seen in the following exapmle:
regex matches entire string, 100% score
assert %{"score" => 1} == score([title: [_regex: "foo"]], %{"title" => "foo"})
regex matches with a capture called 'name'. It is boosted by weight.
assert %{"score" => 1.6, "name" => "food"} == score([title: [_regex: "(?P<name>foo[dl])", w: 4]], %{"title" => "foodtrucks"})
The regex match can also be inversed, where the document value is
treated as the regular expression, and the query input is treated as
the string to be matched. (No captures are supported in this case).
assert %{"score" => 0.5} == score([title: [_regex: "foobar", inverse: true]], %{"title" => "foo"})

 _geo

Calculate document score based on its geographical distance to a given
point. The geo distance (both in the operator and in the document) can
be given as:
	A regular list, e.g. [4.56, 52.33]
	A keyword list, e.g. [lat: 52.33, lon: 4.56]
	A map with atom keys, e.g. %{lat: 52.33, lon: 4.56}
	A map with string keys, e.g. %{"lat" => 52.33, "lon" => 4.56}

The calculated distance is returned in meters, as part of the _match map.
An extra argument, max_distance can be given to the operator which
specifies the maximum cutoff point. It defaults to 100km. (100_000).
Distance is scored logarithmically with respect to the maximum
distance.
doc = %{"location" => %{"lat" => 52.340500999999996, "lon" => 4.8832816}}
q = [location: [_geo: [lat: 52.340500999999996, lon: 4.8832816]]]
assert %{"score" => 1, "distance" => 0.0} == score(q, doc)
When radius is given as an option, all geo points that are within
the radius will score a 1 and the max_distance scoring will be in
effect for distances larger than the radius.

 _geo_poly

Calculate document score based on its containment inside a given
geographical polygon.
Accepts a list of geographical coordinates, each in the same format
as _geo.
Like _geo, the max_distance option can be given to the operator
which specifies the maximum cutoff point. It defaults to
100km. (100_000). Distance is scored logarithmically with respect
to the maximum distance.
When the point is inside the polygon, the score is always 1. Only
when the point is outside the polygon, the geographical distance
from the document point to the closest point on the edge of the
polygon is calculated and scored based on the max_distance
setting.

 _time

Score by an UTC timestamp, relative to the given time.
t1 = "2018-02-19T15:29:53.672235Z"
t2 = "2018-02-19T15:09:53.672235Z"
assert %{"score" => s} = score([inserted_at: [_time: t1]], %{"inserted_at" => t2})
This way, documents can be returned in order of recency.

 Logic operators

 _and

Combine matchers, multiplying the score. When one of the matchers
returns 0, the total score is 0 as well.
[_and: [name: "John", age: 36]]

 _or

Combine matchers, adding the scores.
[_or: [name: "John", id: 12]]

 _not

Reverse the score of the nested matchers. (when score > 0, return 0, otherwise, return 1.
[_not: [title: "foo"]]

 Matcher weights

w: 10 can be added to a matcher term to boost its score by the given weight.
[title: [_eq: "Pete", w: 5], summary: [_sim: "hello", w: 2]]
b: true can be added to force a score of 1 when the score is > 0.
[title: [_sim: "hello", b: true]]

 Map syntax for queries

Instead of keyword lists, queries can also be specified as maps. In
this case, the keys of the map need to be strings. Query maps are
meant to be used from user-generated input, and can be easily created from JSON files.
[_not: [title: "foo"]]
can also be written as:
%{"_not" => %{"title" => "foo"}}

[title: [_eq: "Pete", w: 5], summary: [_sim: "hello", w: 2]]
can also be written as:
%{"title" => %{"_eq" => "Pete", "w" => 5}, "summary" => %{"_sim" => "hello", "w" => 2}}

 Summary

 Types

 doc()

 doc_with_match()

 operator()

 operator_arg()

 operator_pair()

 query()

 score_match()

 Functions

 filter(query, doc)

 Filter a single document agains the given query

 filter_all(docs, query)

 Filter all given documents agains the given query.

 score(query, doc)

 Score a single document agains the given query

 score_all(docs, query)

 Score all given documents against the given query.

 Types

 Link to this type

 doc()

 View Source

 @type doc() :: map()

 Link to this type

 doc_with_match()

 View Source

 @type doc_with_match() :: map()

 Link to this type

 operator()

 View Source

 @type operator() ::
 :_not
 | :_and
 | :_or
 | :_eq
 | :_ne
 | :_in
 | :_nin
 | :_sim
 | :_regex
 | :_geo
 | :_time
 | :_has
 | :_hasnt

 Link to this type

 operator_arg()

 View Source

 @type operator_arg() :: any()

 Link to this type

 operator_pair()

 View Source

 @type operator_pair() :: {operator(), operator_arg()}

 Link to this type

 query()

 View Source

 @type query() :: [operator_pair()] | map()

 Link to this type

 score_match()

 View Source

 @type score_match() :: map()

 Functions

 Link to this function

 filter(query, doc)

 View Source

 @spec filter(query(), doc()) :: score_match()

Filter a single document agains the given query
Top-level query operators are treated as and clauses. The return
value includes score attribute which contains the actual score.

 Link to this function

 filter_all(docs, query)

 View Source

 @spec filter_all([doc()], query()) :: [doc_with_match()]

Filter all given documents agains the given query.
Only the documents that have a positive (greater than 0) score are
returned. The document order is preserved, no sorting on score is done.

 Link to this function

 score(query, doc)

 View Source

 @spec score(query(), doc()) :: score_match()

Score a single document agains the given query
Top-level query operators are treated as or clauses. The return
value includes score attribute which contains the actual score.

 Link to this function

 score_all(docs, query)

 View Source

 @spec score_all([doc()], query()) :: [doc_with_match()]

Score all given documents against the given query.
All documents are returned, even when their score is 0. The returned
list of documents is sorted on their score, descending (best
matching document first).
The document contains a _match key which contains the score
attribute. Some operators, e.g. _geo, add additional information
to this match map, for instance, the geographical distance.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

