

    

        match_spec

        v0.3.1



    



  

    Table of contents

    
      



            	MatchSpec





  	Modules
    

    	MatchSpec


    

  



      

    


  

    
MatchSpec
    

[image: tests]
:ets matchspec helper library for elixir.  Exposes the fun2ms/1 macro which 
transforms elixir-style function code into ets matchspecs.
iex> require MatchSpec
iex> MatchSpec.fun2ms(fn {key, value} when key === :foo -> value end)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :foo}}], [:"$2"]}]
Also exposes the ms2fun/2 function which converts a matchspec to function code
or ast which represents a function that performs the same task as the ets matchspec
iex> MatchSpec.ms2fun([{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :foo}}], [:"$2"]}], :code)
"fn {v1, v2} when v1 === :foo -> v2 end"
iex> :ets.test_ms({:foo, :bar}, MatchSpec.fun2ms(fn {key, value} when key === :foo -> value end))
{:ok, :bar}
Provides fun2msfun/4 macro which can be used to parametrize the matchspec:
iex> require MatchSpec
iex> lambda = MatchSpec.fun2msfun(fn {^key, value} -> value end, [key])
iex> lambda.(:key)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :key}}], [:"$2"]}]
Provides defmatchspec/2 and defmatchspecp/2 macros which can be used to 
directly generate functions in your module
defmodule MyModule do
  use MatchSpec
  
  defmatchspec my_matchspec(key) do
    {^key, value} -> value
  end
end

MyModule.my_matchspec(:key)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :key}}], [:"$2"]}]
Installation
The package can be installed by adding match_spec to your list of dependencies in mix.exs:
def deps do
  [
    {:match_spec, "~> 0.3.1"}
  ]
end
Documentation can be found at https://hexdocs.pm/match_spec.



  

    
MatchSpec 
    



      
Elixir module to help you write matchspecs.
contains functions which transform elixir-style functions into erlang matchspecs,
and vice versa.
Functions to matchspecs
For transforming elixir-style functions into matchspecs, the following
restrictions apply:
Function form
	The function must use the Kernel.fn/1 macro as its form, or use defmatchspec/2
or defmatchspecp/2, where the matchspecs form is similar to the Kernel.fn/1 form
	The function must have arity 1.

Function argument matching
	The function may only match whole variables or tuple patterns.
	Only one tuple pattern may be matched.
	if your tuple contains a binary pattern match the binary pattern may only
consist of bytes and strings, and only the size/1 modifier is allowed.	bitstrings matching is not supported
	conversions such as float are not supported.



Guards and return expression
	The function may only use guards in its when section.	for defmatchspec/2, defmatchspecp/2, or fun2msfun/4: aKernel.in/2
guard may take a bound variable as its second parameter.


	The function may only return a single expression that (optionally) uses guard
functions to transform matches.

Examples (allowed)
Binding a top-level variable
fn tuple -> tuple end
Top-level tuple match
fn {_, _, value} -> value end
When with guard
fn {_, _, value} when is_integer(value) -> value end
Limitations on local guards
local (defguardp) guards are only supported when the macro is inside
of a function body, due to limitations on macro resolution timing.
The following use cases are currently NOT supported:
	fun2ms/2 outside of a function body (inside the module body)
	fun2msfun/4 outside of function body (:lambda, :def, or :defp)

The following use cases are currently supported:
	fun2ms/2 inside a function body
	fun2msfun/4 inside of a function body (:lambda only)
	defmatchspec/2 always
	defmatchspecp/2 always


Structure matching inside a tuple
fn {%{key: a}} -> a end
Binary matching inside a tuple
fn {<<"foo" :: binary, 42, a :: binary>>} -> a end
Result expression modification by guards
fn {a, b} -> a + b end
Examples (disallowed)
Arity not 1
fn foo, bar -> foo + bar end
Multiple tuple matches
fn {_, :foo} = {:bar, value} -> value end
Non-tuple top level match
fn "foo" <> bar -> bar end
fn %{foo: bar} -> bar end
Disallowed type in binary match
fn {<<foo :: integer-big-endian>>} -> foo end
Non-guard function in match
fn {a} when String.starts_with?(a, "foo") -> a end
Non-guard function in result
fn {a, b} -> a ++ b end
Note
The restrictions on binary matching exist due to limitations on the BIFs
available to ets and may change in the future if OTP comes to support
these conversions in its kernel.


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    Functions
  


    
      
        defmatchspec(header, list)

      


        Writes a matchspec-generating function based on a body.



    


    
      
        defmatchspecp(header, list)

      


        Writes a matchspec-generating function based on a body.



    


    
      
        fun2ms(fun, opts \\ [])

      


        converts a function ast into an ets matchspec.



    


    
      
        fun2msfun(type \\ :lambda, name \\ nil, fun_ast, bindings)

      


        converts a function into a function that generates a match spec based on
bindings.



    


    
      
        ms2fun(ms, mode)

      


        converts a matchspec into elixir AST for functions.  Unfortunately, the ast
generator cannot guess names for variables, so variable names are set by
the numerical value of the matchspec token



    





      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this macro
    
    defmatchspec(header, list)


      
       
       View Source
     


      (macro)

  


  

Writes a matchspec-generating function based on a body.
You may provide multiple function bodies.
This macro uses the same backend as fun2msfun/4 and will generate
identical code to that macro.
Example:
use MatchSpec

defmatchspec my_matchspec(value) do
  {key, ^value} when key !== :foo -> key
end
This generates the equivalent to the following function:
def my_matchspec(value) do
  [{{:"$1", :"$2"}, [{:"=:=", :"$2", {:const, value}}, {:"=/=", :"$1", {:const, :foo}}], [:"$1"]]
end

  



  
    
      
      Link to this macro
    
    defmatchspecp(header, list)


      
       
       View Source
     


      (macro)

  


  

Writes a matchspec-generating function based on a body.
You may provide multiple function bodies.
This macro uses the same backend as fun2msfun/4 and will generate
identical code.
see defmatchspec/2 for details

  



    

  
    
      
      Link to this macro
    
    fun2ms(fun, opts \\ [])


      
       
       View Source
     


      (macro)

  


  

converts a function ast into an ets matchspec.
The function must also be "fn ast"; you can't pass a shorthand lambda or
a lambda to an existing lambda.
The function lambda form is only used as a scaffolding to represent ets
matching and filtering operations, by default it will not be instantiated
into bytecode of the resulting module.
iex> require MatchSpec
iex> MatchSpec.fun2ms(fn tuple = {k, v} when v > 1 and v < 10 -> tuple end)
[{{:"$1", :"$2"}, [{:andalso, {:>, :"$2", 1}, {:<, :"$2", 10}}], [:"$_"]}]
You can use variables from the calling scope in the filters.
iex> require MatchSpec
iex> my_atom = :foo
iex> MatchSpec.fun2ms(fn tuple = {k, _} when k === my_atom -> tuple end)
[{{:"$1", :_}, [{:"=:=", :"$1", {:const, :foo}}], [:"$_"]}]
If you would also like the equivalent lambda, pass with_fun: true as an
option and the fun2ms/2 macro will emit a tuple of the matchspec and the
lambda.
iex> {ms, fun} = MatchSpec.fun2ms(fn {:key, value} -> value end, with_fun: true)
iex> :ets.test_ms({:key, "value"}, ms)
{:ok, "value"}
iex> fun.({:key, "value"})
"value"
This macro uses the same backend as fun2msfun/4 and will emit the same
matchspec as if you passed no parameters to fun2msfun/4

  



    

    

  
    
      
      Link to this macro
    
    fun2msfun(type \\ :lambda, name \\ nil, fun_ast, bindings)


      
       
       View Source
     


      (macro)

  


  

converts a function into a function that generates a match spec based on
bindings.
This can be used to either create a named function or an anonymous function.
If you would like to use one of the free variables in your function as a part
of the head of the match, you must pin it.
if you omit the first parameter, it will create an anonymous function.

  
  basic-example-with-lambda-default

  
  Basic example with :lambda (default):


iex> require MatchSpec

# using a variable in the match
iex> lambda = MatchSpec.fun2msfun(:lambda, fn {key, value} when key === target -> value end, [target])
iex> lambda.(:key)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :key}}], [:"$2"]}]

#pinning a variable
iex> lambda2 = MatchSpec.fun2msfun(fn {^key, value} -> value end, [key])
iex> lambda2.(:key)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :key}}], [:"$2"]}]
Note that the bindings parameter acts like pattern matching on function
arguments:  They may use complex matches and there can be more than one, the
arity of the anonymous (or def/defp) function matches the length of the
bindings argument.
iex> require MatchSpec
iex> lambda = MatchSpec.fun2msfun(:lambda, fn {^key, ^value} -> true end, [%{key: key}, value])
iex> lambda.(%{key: :key}, :value)
[{{:"$1", :"$2"}, [{:"=:=", :"$1", {:const, :key}}, {:"=:=", :"$2", {:const, :value}}], [true]}]

  
  example-with-def-defp

  
  Example with (:def/:defp):


require MatchSpec

MatchSpec.fun2msfun(:def, :matchspec, fn {key, value} when key == target -> value end, [target])

  



  
    
      
      Link to this function
    
    ms2fun(ms, mode)


      
       
       View Source
     


  


  

converts a matchspec into elixir AST for functions.  Unfortunately, the ast
generator cannot guess names for variables, so variable names are set by
the numerical value of the matchspec token
The second parameter takes two modes:
	:ast emits elixir ast to write a lambda.

iex> MatchSpec.ms2fun([{{:"$1", :"$2"}, [], [:"$2"]}], :ast)

{:fn, [],
  [{:->, [], [[{:{}, [], [{:v1, [], nil}, {:v2, [], nil}]}], {:v2, [], nil}]}]}
	:code outputs formatted elixir code.

iex> MatchSpec.ms2fun([{{:"$1", :"$2"}, [], [:"$2"]}, {{:"$1"}, [], [:"$_"]}], :code)

"""
fn
  {v1, v2} -> v2
  tuple = {v1} -> tuple
end
"""

  


        

      



  OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();




