

 Maverick

 v0.3.0

 [image: Logo]

 Table of contents

 	Modules

 	Maverick

 	Maverick.Api

 	Maverick.Exception

 	Maverick.Exception.Default

 	Maverick.Path

 	Maverick.Response

 	Maverick.Route

 	Maverick.Path.ParseError

 	Mix Tasks

 	mix mvk.routes

Maverick

Web API framework with a need for speed
Use
Maverick builds on top of the Plug.Conn.Adapter for your supported webserver and creates
the webserver handler by reading annotations on functions you want to expose as part of your API. To publish a function, add use Maverick to your module and the @route attribute to
the relevant functions. Pass a keyword list of options to the route attribute including the
:path and you're off to the races.
Once you add the Maverick.Api to your application supervision tree and start the app,
Maverick compiles your routes into a handler module and sends incoming requests
to your functions, taking care to wrap the return values accordingly.
Example
With Maverick added to your application's dependencies, create a module that implements the
use Maverick.Api macro and pass it, at a minimum, the name of your application:
 defmodule CoolApp.Api do
 use Maverick.Api, otp_app: :cool_app
 end
Then, in your application supervision tree, add your Maverick Api to the list of children:
 children =
 [
 maybe_a_database,
 other_cool_stuff,
 {CoolApp.Api, name: :cool_app_web, port: 443},
 anything_else
]
Now it's time to annotate the functions you want served over HTTP. These can be anywhere within
your project structure that make sense to you, Maverick will compile them all into your callback
handler. While it's considered best practice to structure your code to separate domain concerns
and maintain good abstractions, in practice this organization has no effect on what functions are
available to be routed to by Maverick. Add use Maverick to a module that will be
serving functions and then any public function (sorry, no macros) with the @route annotation will do:
 defmodule CoolApp.BusinessLogics do
 use Maverick, scope: "api/v1"

 @route path: "do/stuff"
 def do_stuff(%{"stuff" => what_needs_doing}) do
 what_needs_doing |> transform_process_etc
 end
 end
Once the app is started, you can reach your function at the path, method, etc. configured on
the route annotation, such as: curl -XPOST -d '{\"stuff\":\"transform-me!\"}' "http://host:port/api/v1/do/stuff"
Route Options
The following options can configure functions annotated with the @route attribute:
	:path - The path, as a string, at which the function should be accessible. Prefix
elements of the path with a colon (":") if they should be treated as variables on requests,
such as api/customers/:customer_id (required).

	:args - The format of the argument that will be passed to the internal function, which can
be one of :params (the default), {:required_params: [atom()]}, or :request.
	:params - The argument passed to the function will be a string-keyed map merging the
path parameters map, query parameters map, and the request body map.

	{:required_params, [atom()]} - The second element is a list of atoms representing keys
that must appear and have non-nil values in the request params map, this subset of
key/value pairs will be sent as a string-keyed map.

	:request - The entire Maverick request struct will be sent. This is good for handling
requests that need access to deeper elements of the HTTP request like the source IP,
scheme, port, manipulating headers, etc.

	:method - The HTTP method the function should respond to as an atom or a string. Defaults
to "POST" (all methods are converted to uppercase strings so follow your personal tastes).

	:success_code - In the event of success, the HTTP status code that will be returned (defaults
to 200).

	:error_code - In the event of an error (an explicit {:error, term()}), the HTTP status code
that will be returned.

	:scope - This special option is set at the module level (use Maverick.Api, scope: "path/prefix"),
not on the @route attribute, to set a shared prefix for all routes handled within the module.

Return Values
Maverick aims to be simple to use, passing some form of map to your function (see :args in the above
"Route Options" section) and taking virtually any JSON-encodable term as a result to return to the client.
That said, the following are acceptable return values for your routed functions; use the simplest one
that meets your needs and it will be converted accordingly to allow the webserver to hand it back to the client:
	response() - Any raw term will be assumed to be a successful request; must be encodable to JSON.

	{:ok, response()} - An explicit success; the term must be encodable to JSON.

	{:error, response()} - An explicit (non-exception) failure; the term must be encodable to JSON.

	{code(), headers(), response()} - A 3-tuple with an explicit integer status code, map of response
headers, and response body which, you guessed it, must be encodable to JSON.

In the absence of a full-detailed response return value, Maverick will apply the :success_code for
the status code of {:ok, response()} and implicitly successful response() results and the
:error_code for the status code of {:error, response()} results.
When response headers are returned, they are expected to be in the form of a map, as this is the format
in which the function will receive request headers. They will be converted to [{String.t(), String.t()}]
before handing back to the webserver to return to the client. If no response headers are returned, Maverick
will automatically add the {"Content-Type", "application/json"} header.
Exceptions
In the event an exception is raised during handling of a request, the Handler functions will automatically
rescue and construct a response by calling functions from the the Maverick.Exception protocol on the exception. See the exception protocol module for implementing it for specific exceptions.

 Anchor for this section

 Summary

 Types

 api()

 otp_app()

 root_scope()

 Functions

 handle_response(conn, conn)

 Anchor for this section

Types

 Link to this type

 api()

 View Source

 @type api() :: module()

 Link to this type

 otp_app()

 View Source

 @type otp_app() :: atom()

 Link to this type

 root_scope()

 View Source

 @type root_scope() :: String.t()

 Anchor for this section

Functions

 Link to this function

 handle_response(conn, conn)

 View Source

Maverick.Api

Provides the entrypoint for configuring and managing the
implementation of Maverick in an application by a single
use/2 macro that provides a supervision tree start_link/1
and child_spec/1 for adding Maverick as a child of the
top-level application supervisor.
The Api module implementing use Maverick.Api, when started,
will orchestrate the start of the process that does the heavy
lifting of compiling function routes into a callback Handler
module at application boot and then handing off to the Elli
webserver configured to route requests by way of that Handler module.
use Maverick.Api options
	:otp_app - The name of the application implementing Maverick
as an atom (required).

Maverick.Api child_spec and start_link options
	:init_name - The name the Initializer should register as.
Primarily for logging and debugging, as the process should exit
immediately with a :normal status if successful. May be any
valid GenServer name.

	:supervisor_name - The name the Maverick supervisor process
should register as. May be any valid GenServer name.

	:name - The name the Elli server process should register as.
May be any valid GenServer name.

	:port - The port number the webserver will listen on. Defaults
to 4000.

	:tls_certfile - The path to the PEM-encoded SSL/TLS certificate
file to encrypt requests and responses.

	:tls_keyfile - The path to the PEM-encoded SSL/TLS key file to
encrypt requests and responses.

Maverick.Exception protocol

 Anchor for this section

 Summary

 Types

 t()

 Functions

 error_code(t)

 handle(t, conn)

 message(t)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 error_code(t)

 View Source

 @spec error_code(t()) :: 100..999

 Link to this function

 handle(t, conn)

 View Source

 @spec handle(t(), Plug.Conn.t()) :: Plug.Conn.t()

 Link to this function

 message(t)

 View Source

 @spec message(t()) :: String.t()

Maverick.Exception.Default

Maverick.Path

Provides functionality for parsing paths to lists of path
nodes, identifying path variables for pattern matching on
incoming requests.

 Anchor for this section

 Summary

 Types

 path()

 path_node()

 raw_path()

 Functions

 parse(string)

 Parse a path string to a list of path nodes. A path node is either
a String.t() or a tuple of {:variable, String.t()}. Nodes
beginning with a colon character (":") will parse to a variable
tuple. At runtime, variable tuples are used to construct the
path params portion of a Maverick request.

 validate(string)

 Reads a path string and validates as a Maverick-compatible path,
including any colon (":") characters signifying a path variable.
Strips any extraneous forward slashes from the result.

 Anchor for this section

Types

 Link to this type

 path()

 View Source

 @type path() :: [path_node()]

 Link to this type

 path_node()

 View Source

 @type path_node() :: String.t() | {:variable, String.t()}

 Link to this type

 raw_path()

 View Source

 @type raw_path() :: String.t()

 Anchor for this section

Functions

 Link to this function

 parse(string)

 View Source

 @spec parse(String.t()) :: path()

Parse a path string to a list of path nodes. A path node is either
a String.t() or a tuple of {:variable, String.t()}. Nodes
beginning with a colon character (":") will parse to a variable
tuple. At runtime, variable tuples are used to construct the
path params portion of a Maverick request.

 Link to this function

 validate(string)

 View Source

 @spec validate(String.t()) :: raw_path()

Reads a path string and validates as a Maverick-compatible path,
including any colon (":") characters signifying a path variable.
Strips any extraneous forward slashes from the result.

Maverick.Response protocol

 Anchor for this section

 Summary

 Types

 t()

 Functions

 handle(t, conn)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 handle(t, conn)

 View Source

Maverick.Route

A struct detailing a Maverick Route. The
contents are determined at compile time
by the annotations applied to routable functions.
Maverick uses the routes to construct request
handlers for each routable function at runtime.

 Anchor for this section

 Summary

 Types

 args()

 error_code()

 method()

 success_code()

 t()

 Functions

 list_routes(otp_app, root_scope)

 Takes an OTP app name and a root scope and returns a
list of all routes the app defines as %MODULE structs.

 Anchor for this section

Types

 Link to this type

 args()

 View Source

 @type args() :: :params | :request | {:required_params, [atom()]}

 Link to this type

 error_code()

 View Source

 @type error_code() :: non_neg_integer()

 Link to this type

 method()

 View Source

 @type method() :: binary()

 Link to this type

 success_code()

 View Source

 @type success_code() :: non_neg_integer()

 Link to this type

 t()

 View Source

 @type t() :: %Maverick.Route{
 args: args(),
 error_code: error_code(),
 function: atom(),
 method: method(),
 module: module(),
 path: Maverick.Path.path(),
 raw_path: Maverick.Path.raw_path(),
 success_code: success_code()
}

 Anchor for this section

Functions

 Link to this function

 list_routes(otp_app, root_scope)

 View Source

 @spec list_routes(Maverick.otp_app(), Maverick.root_scope()) :: [t()]

Takes an OTP app name and a root scope and returns a
list of all routes the app defines as %MODULE structs.

Maverick.Path.ParseError exception

The path could not be parsed due to illegal character(s)

mix mvk.routes

Prints all routes for the default or a given Maverick Api
 #> mix mvk.routes
 #> mix mvk.routes MyApp.Alternative.Api
The default router is drawn from the root name of the application
(the :app key in your Mixfile) converted to Elixir "Module-case"
and concatenated with .Api similar to the Ecto Repo convention
of MyApp.Repo being used to name the module implementing Ecto.Repo.

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

