

 MDEx

 v0.11.0

 [image: Logo]

 Table of contents

 	Changelog

 	Examples

 	GitHub Flavored Markdown

 	Syntax Highlight

 	Light Dark Theme

 	Custom Theme

 	Code Block Decorators

 	Mermaid

 	Highlight Words

 	Liquid

 	Phoenix LiveView HEEx

 	Guides

 	Plugins

 	Compilation

 	Safety

 	Code Block Decorators

 	
 Modules

 	MDEx

 	MDEx.Document

 	MDEx.Sigil

 	Document Nodes

 	MDEx.Alert

 	MDEx.BlockQuote

 	MDEx.Code

 	MDEx.CodeBlock

 	MDEx.DescriptionDetails

 	MDEx.DescriptionItem

 	MDEx.DescriptionList

 	MDEx.DescriptionTerm

 	MDEx.Emph

 	MDEx.Escaped

 	MDEx.EscapedTag

 	MDEx.FootnoteDefinition

 	MDEx.FootnoteReference

 	MDEx.FrontMatter

 	MDEx.Heading

 	MDEx.HeexBlock

 	MDEx.HeexInline

 	MDEx.Highlight

 	MDEx.HtmlBlock

 	MDEx.HtmlInline

 	MDEx.Image

 	MDEx.LineBreak

 	MDEx.Link

 	MDEx.List

 	MDEx.ListItem

 	MDEx.Math

 	MDEx.MultilineBlockQuote

 	MDEx.Paragraph

 	MDEx.Raw

 	MDEx.ShortCode

 	MDEx.SoftBreak

 	MDEx.SpoileredText

 	MDEx.Strikethrough

 	MDEx.Strong

 	MDEx.Subscript

 	MDEx.Superscript

 	MDEx.Table

 	MDEx.TableCell

 	MDEx.TableRow

 	MDEx.TaskItem

 	MDEx.Text

 	MDEx.ThematicBreak

 	MDEx.Underline

 	MDEx.WikiLink

 	Exceptions

 	MDEx.DecodeError

 	MDEx.InvalidInputError

 	MDEx.InvalidSelector

 Changelog

0.11.0 - 2026-01-09
Changed
	[Sigil] Minor breaking change Returns %MDEx.HeexInline{} instead of %MDEx.Text{} for Elixir expressions in the AST
	[Deps] Update autumn to v0.6.0

Added
	[Sigil] HEEX modifier for Phoenix LiveView components and Elixir expressions in Markdown
	[Syntax Highlighter] Support multi (light/dark) themes

Fixed
	Preserve HTML entities in output

0.10.0 - 2025-11-13
Changed
	BREAKING Move :ignore_setext from render to parse options
	BREAKING Update comrak to v0.48.0 with breaking changes:	Added closed field to MDEx.CodeBlock (indicates if code block was explicitly closed)
	Added closed field to MDEx.Heading (indicates if ATX heading had closing hashes)
	Added texts field to MDEx.FootnoteReference (stores original text elements with positions)
	Changed MDEx.Table num_rows calculation: now includes the header row in the count
	NUL byte handling changed: no longer translated to replacement character during parsing
	No virtual newline appended at EOF when missing

	Overall performance optimizations in parsing and syntax highlighting
	Add extension option :highlight for ==highlighted text== (renders as <mark> tags)
	Add extension option :inline_footnotes
	Add extension option :subtext for Discord-style subtext
	Add parse option :tasklist_in_table for tasklist items in table cells
	Add parse option :leave_footnote_definitions to keep footnotes inline
	Add parse option :escaped_char_spans for tracking escaped characters with source positions
	Update autumnus to v0.7.8

0.9.4 - 2025-10-10
Changed
	Add usage-rules.md for LLMs
	Update autumn to v0.5.6
	Update autumnus to v0.7.5
	Update comrak to v0.43.0
	Update rustler to v0.37.0

0.9.3 - 2025-10-04
Added
	[Document] Initial (experimental) streaming support. Disabled by default, can be enabled with option streaming: true.
	[Options] Added :streaming option to enable fragments streaming.

Fixed
	[Document] Flush buffered markdown between pipeline steps

0.9.2 - 2025-10-02
Added
	[Document] Add MDEx.Document.put_markdown/3 to append or prepend markdown chunks to document buffer

Changed
	[Document] Introduce buffering to accumulate markdown chunks before parsing
	Fixed pipeline execution when :markdown is passed in MDEx.new/1
	DEPRECATED MDEx.Document.parse_markdown/2 and MDEx.Document.parse_markdown!/2 in favor of MDEx.parse_document/2 or MDEx.Document.put_markdown/1

Deprecated
0.9.1 - 2025-09-30
Added
	[Sigil] Support assigns in MD sigil modifier
	[Docs] Document assigns support in HTML and MD modifiers

Changed
	[Deps] Update comrak to v0.42.0
	[Deps] Update autumnus to v0.7.4
	[Deps] Update autumn to v0.5.5

0.9.0 (2025-09-22)
BREAKING CHANGES
This version introduces breaking changes to the public API. Please follow the upgrade guide below to migrate your code.
Upgrade Guide
	Replace %MDEx.Pipe{} with %MDEx.Document{}

The MDEx.Document module now provides an unified API to create, manipulate, and render Markdown documents.
- %MDEx.Pipe{} = pipe = MDEx.new()
- MDEx.Pipe.run(pipe)
+ %MDEx.Document{} = document = MDEx.new()
+ MDEx.Document.run(document)
See examples https://github.com/leandrocp/mdex_gfm/pull/7/files and https://github.com/leandrocp/mdex_mermaid/pull/13/files
	Move types from MDEx to MDEx.Document

- @spec my_function(MDEx.options()) :: any()
+ @spec my_function(MDEx.Document.options()) :: any()
	Replace the :features option with explicit :syntax_highlight and :sanitize options

- MDEx.new(features: [syntax_highlight_theme: "github_light", sanitize: true])
+ MDEx.new(
+ syntax_highlight: [formatter: {:html_inline, theme: "github_light"}],
+ sanitize: MDEx.Document.default_sanitize_options()
+)
Added
	[Document] Add MDEx.Document.default_options/0 to get all default options
	[Document] Add MDEx.Document.parse_markdown/2 to replace MDEx.Document with new Markdown content
	[Document] Add extra fields in %MDEx.Document{} to store options, private data, and pipeline state. Use functions in MDEx.Document to manipulate these fields.
	[Document] Add config Application.put_env(:mdex, :inspect_format, :struct) to enable inspecting the raw %MDEx.Document{} struct

Changed
	[Deps] Require autumnus >= 0.5.4
	BREAKING Remove MDEx.Pipe in favour of unifying all functionality in MDEx.Document
	BREAKING Return %MDEx.Document{} in MDEx.new/1 instead of %MDEx.Pipe{}
	BREAKING Move type definitions from MDEx to MDEx.Document (extension_options, parse_options, render_options, syntax_highlight_options, sanitize_options, options)
	BREAKING Remove the :features option and support only explicit :syntax_highlight / :sanitize entries
	DEPRECATED Rename :document to :markdown in MDEx.new/1
	DEPRECATED Soft-removed :document option from MDEx.to_*/2 functions
	DEPRECATED Move MDEx.default_extension_options/0, MDEx.default_parse_options/0, MDEx.default_render_options/0, MDEx.default_syntax_highlight_options/0, and MDEx.default_sanitize_options/0 to MDEx.Document

0.8.6 (2025-09-19)
Changed
	[Deps] Require autumnus >= 0.5.3

Fixed
Added
	[Document] Pretty print the MDEx.Document AST
	[Document] Add access by integer index for nodes in depth-first traversal order

Changes
	[Deps] Update comrak to v0.41.0

Fixed
	[Collectable] Fix inline node merging

0.8.4 (2025-09-09
Changes
	[Delta] Support extra newlines between consecutive paragraphs (@Valian)

Fixed
	[Delta] Correct escape characters in table entries (@Valian)

0.8.3 (2025-09-08)
Added
	Add MDEx.to_delta/2 and MDEx.to_delta!/2 functions to convert Markdown to Quill Delta format (@Valian)
	Support for all MDEx node types in Delta conversion with comprehensive attribute mappings (@Valian)
	Custom converter system for Delta format allowing node-specific behavior overrides (@Valian)

Changed
	[Document] Collect (Enum.into/2) nodes into documents respecting nested structures and inline/block rules
	[Document] Merge documents using Enum.into/2

0.8.2 (2025-08-20)
Added
	Add new extension option cjk_friendly_emphasis
	[Docs] Add Custom Theme example
	[Docs] Add Code Block Decorators guide
	[Docs] Add mdex_gfm plugin

Changed
	[Deps] Update autumnus to v0.7.3
	[Deps] Update autumn to v0.5.2

0.8.1 (2025-07-29)
Added
	[Sigil] Enable Code Block Decorators in ~MD sigil

Changed
	[Docs] Add Livebook examples
	[Docs] Reorganize docs to make it easier to navigate

0.8.0 (2025-07-26)
Added
	[Syntax Highlighter] Add support for Code Block Decorators
	[Syntax Highlighter] Add language caddy and fish

Changed
	[Deps] Require autumnn >= 0.5.0
	[Deps] Update autumnus to v0.7.0

Breaking Changes
	[Syntax Highlighter] Replace line tags with <div>

0.7.5 (2025-07-02)
Fixed
	Match all nodes in MDEx.Pipe.update_nodes/3

0.7.4 (2025-07-02)
Fixed
	Accept the soft deprecated :unsafe_ in :render options

0.7.3 (2025-06-24)
Added
	Add MDEx.anchorize/1 to format text as an anchor (@paradox460)

Changed
	Build x86_64-pc-windows-msvc target on windows-2022 instead of unsupported windows-2019

0.7.2 (2025-06-23)
Fixed
	Make sure :syntax_highlight is decoded with latest autumn version

0.7.1 (2025-06-20)
Added
	[Syntax Highlighter] Allow to disable the built-in syntax highlighter
	[Options] Limited support for :image_url_rewriter extension
	[Options] Limited support for :link_url_rewriter extension

Changed
	[Sigil] Disable autolink to avoid conflicts on HEEx templates
	[Options] Rename :unsafe_ to :unsafe in :render options. The old :unsafe_ option still works.
	[Syntax Highlighter] Update autumnus to v0.4.0 with new languages and themes

Fixed
	[Sigils] Remove smart: true option to avoid automatic conversion of punctuation.
	[Docs] Update image in Dockerfile example

0.7.0 (2025-05-21)
This versions introduces a new sigil ~MD that supersedes the ~M and ~m sigils.
To migrate from ~M to ~MD, you can simply replace ~M with ~MD in your code.
To migrate from ~m to ~MD, you should define an assigns map with the values you want to expose:
before
lang = ":elixir"
~m|`lang = #{lang}`|

after
assigns = %{lang: ":elixir"}
~MD|`lang = <%= @lang %>`|
Breaking Changes
	Minimum required Elixir version is now v1.15

Deprecations
	Deprecate ~M sigil in favor of ~MD
	Deprecate ~m sigil in favor of ~MD

Enhancements
	Introduce the ~MD sigil

0.6.2 (2025-05-13)
Enhancements
	[Deps] Update comrak to v0.39
	[Deps] Move doc dependencies to :doc group to avoid unnecessary downloads
	[Sanitize] Added the following tag attribute rules by default:	code: class translate tabindex
	pre: class style
	span: class style data-line

	[Pipe] Added MDEx.Pipe.is_sanitize_enabled/1
	[Pipe] Added MDEx.Pipe.get_sanitize_option/3

Breaking Changes
	[comrak] Removed option :experimental_inline_sourcepos. It's included by default now.

Fixes
	[Syntax Highlight] Class and style are applied when sanitize is enabled

Docs
	Add comparison table with other libraries

0.6.1 (2025-04-18)
Changes
	[Syntax Highlighter] Defaults to [formatter: [{:html_inline, theme: "onedark"}]]

0.6.0 (2025-04-18)
This version introduces some minor breaking changes and some deprecations, see the change log below.
The biggest change is the migration from Inkjet to Autumnus for the syntax highlighter,
which can cause breaking changes in the syntax highlighter output, for example a missing theme or different class names or styles.
Please open an issue if you find any problems.
Breaking Changes
	[Syntax Highlighter] Renamed <pre> tag class from "autumn-hl" to "athl"
	[Syntax Highlighter] Changed tag class from "ahl-{token}" to "{token}", for eg: "ahl-punctuation" changed to "punctuation"
	Removed type t:MDEx.features_option/0
	Removed function MDEx.default_features_options/0
	Removed function MDEx.Pipe.put_features_options/2

Deprecations
	Option :features is deprecated in favor of :syntax_highlight and :sanitize

Enhancements
	Lines are now wrapped in tags as , for eg: ...
	Added tabindex="0" attribute into <code> tag for better accessibility
	Added function MDEx.Pipe.put_syntax_highlight_options/2
	Added function MDEx.Pipe.put_sanitize_options/2

Changes
	Replaced Inkjet with Autumnus in the Syntax Highlighter adapter

0.5.0 (2025-03-31)
Enhancements
	Introduce MDEx.Pipe - a Req-like pipeline to manipulate Markdown documents and write plugins
	Added JSON modifier to ~m and ~M sigils
	Added MDEx.Document.wrap/1

Fixes
	Revert to NIF 2.15 only

Changes
	Updated comrak to v0.37.0

0.4.3 (2025-03-29)
Enhancements
	New logo
	Custom sanitization options by @kivikakk
	Added to_json/1 and to_json/2 to convert Markdown or MDEx.Document to JSON
	Added support to parse JSON to MDEx.Document in parse_document/1 and parse_document/2
	Document and validate all options (comrak and ammonia)

Fixes
	Fix :unsafe_ options in sigils, effectively enabling them
	[Docs] Tag Alert node as Document Node

Breaking changes
	Bump minimum required Elixir version to 1.14
	Sigils now properly enable the :unsafe_ option, which may cause breaking changes to some users

Deprecations
	Renamed to_commonmark/1 and to_commonmark/2 to to_markdown/1 and to_markdown/2
	Renamed to_commonmark!/1 and to_commonmark!/2 to to_markdown!/1 and to_markdown!/2

0.4.2 (2025-03-25)
Enhancements
	Added target riscv64gc-unknown-linux-gnu target
	Added binaries for NIF version 2.16

Fixes
	Fixed glibc version mismatch on x86_64-unknown-linux-gnu target

Docs
	Added section Pre-compilation listing all targets, how to compile the project,
and how to enable targets for legacy CPUs.
	Added example in MDEx.Document on how to bump Heading levels

0.4.1 (2025-03-24)
Enhancements
	Added target arm-unknown-linux-gnueabihf used by Raspberry Pi

0.4.0 (2025-03-10)
Enhancements
	Added support for GitHub
and GitLab alerts.
	Process alerts by default in Sigils.
	Added :experimental_minimize_commonmark render option.

Docs
	Add nimble_publisher example by @PJUllrich

Chores
	Add sample Dockerfile for debugging

0.3.3 (2025-02-03)
Fixes
	Fix MDEx.Document.fetch/2 spec

0.3.2 (2025-01-11)
Enhancements
	Add MDEx.safe_html/2 utility function to sanitize and escape HTML content

Fixes
	HTML: encode { and } only inside <code> tags to avoid disabling LiveView expressions

0.3.1 (2025-01-08)
Enhancements
	HTML: encode { and } as { and } to avoid LiveView syntax errors in HEEx templates

0.3.0 (2024-12-16)
Be aware, this version introduces major breaking changes:
	AST format has changed
	Sigils ~m and ~M now returns %MDEx.Document{} instead of a Markdown string (use the MD modifier to have the old behavior)

These changes enables the implementation of protocols to improve the manipulation of the AST,
see the MDEx.Document module and examples for more info.
Breaking changes
	Changed the AST format from {name, attributes, children} to structs as %MDEx.Heading{level: 1, nodes: [%MDEx.Text{literal: "Hello"}]}
	Sigils ~m and ~M now returns %MDEx.Document{} instead of a Markdown string
	Removed MDEx.attribute/2 in favor of pattern matching key/value pairs in node structs

Enhancements
	New AST format based on structs
	Introduced modifiers HTML, XML, and MD for both sigils ~m and ~M
	Introduced MDEx.traverse_and_update/3 with the acc argument
	Updated autumn to properly escape curly braces in HEEx template on LiveView 1.0
	Updated comrak to v0.31	New node MDEx.Subscript
	New attr is_task_item in list nodes
	New option render.figure_with_caption
	New option render.tasklist_classes
	New option render.ol_width

0.2.0 (2024-10-09)
Breaking changes
	to_html/1 and to_html/2 now returns {:ok, String.t()} or {:error, %MDEx.DecodeError{}} instead of just String.t().
The reason is because now they may accept an AST as input which may cause decoding errors.
Replace with to_html!/1 and to_html!/2 to have the same behavior as before.

Fixes
	Fix misspelling of thematic causing render errors - #73 by @jonklein

Enhancements
	Added to_commonmark/1 and to_commonmark/2 to convert an AST to CommonMark - #70 by @jonklein
	Added ~M sigil (no interpolation) with AST and MD modifiers (defaults to HTML without the modifier)
	Added ~m sigil (supports interpolation and escaping) with AST and MD modifiers (defaults to HTML without the modifier)
	Added parse_document/1 and parse_document/2 to parse Markdown to AST
	Added low-level functions traverse_and_update/2 and attribute/2 to manipulate AST
	Added to_html!/1 and to_html!/2, the raising version of to_html/1 and to_html/2 (similar to previous to_html/1 and to_html/2)
	Changed to_html/1 and to_html/2 to accept AST as input
	Added examples directory to show how to use the new APIs

0.1.18 (2024-07-13)
Enhancements
	Bump comrak from 0.24.1 to 0.26.0
	Add new extension options: underline, spoiler, greentext
	Add new render options: experimental_inline_sourcepos, escaped_char_spans, ignore_setext, ignore_empty_links, gfm_quirks, prefer_fenced

0.1.17 (2024-06-19)
Enhancements
	Relax minimum required Elixir version to 1.13
	Bump comrak to 0.24.1
	Bump ammonia to 4.0
	Add new extension options: multiline_block_quotes, math_dollars, math_code, shortcodes, wikilinks_title_after_pipe, wikilinks_title_before_pipe
	Add new render option: escaped_char_spans
	Add new option features.syntax_highlight_inline_style to control whether to embed inline styles or not. Default is true.

Changed
	Build binaries on MacOS 12

0.1.16 (2024-04-29)
Enhancements
	Added language objc to syntax highlighter.

0.1.15 (2024-04-16)
Enhancements
	Update rustler to ~> 0.32
	Update rustler_precompiled ~> 0.7
	Added legacy targets

Backwards incompatible changes
	Minimum required Elixir version is now 1.14
	Removed target arm-unknown-linux-gnueabihf
	Removed target riscv64gc-unknown-linux-gnu

0.1.14 (2024-04-11)
Backwards incompatible changes
	[Syntax Highlight] Renamed parent <pre> class from autumn-highlight to autumn-hl
	[Syntax Highlight] Added prefix ahl- to each scope class

Enhancements
	Update autumn to 0.2.2 (#33)
	Update comrak to 0.20.0 (#27) - @supernintendo

0.1.13 (2023-11-20)
Enhancements
	Update autumn themes to add base16-tomorrow and base16-tomorrow-night - @paradox460

0.1.12 (2023-11-06)
Fixes
	Comrak docs links

Enhancements
	Add languages: jsx, tsx, vim
	Bump injket v0.10.2

0.1.11 (2023-10-25)
Fixes
	Syntax highlighting - remove newlines to avoid formatting incorrectly

0.1.10 (2023-10-24)
Enhancements
	Add translate="no" attr in <code> tag

Fixes
	Fix Javascript syntax highlight
	Fix Typescript syntax highlight

0.1.9 (2023-09-29)
Enhancements
	Add logo
	Add icon

0.1.8 (2023-09-29)
Enhancements
	Fallback to plain text on invalid language
	Syntax highlight injections
	Add samples

0.1.7 (2023-09-27)
Enhancements
	Syntax highlight code using tree-sitter and helix editor themes. Use https://github.com/leandrocp/autumn/tree/main/native/inkjet_nif under the hood.

0.1.6 (2023-09-14)
Enhancements
	Load extra themes and syntaxes with https://crates.io/crates/two-face

0.1.5 (2023-09-12)
Enhancements
	Sanitize output with https://crates.io/crates/ammonia
	Syntax Highlight with https://crates.io/crates/syntect

0.1.4 (2023-09-11)
Fixes
	Compile on Ubuntu 20 to fix libc version mismatch

0.1.3 (2023-09-11)
Enhancements
	NIF version 2.15

0.1.2 (2023-09-11)
Enhancements
	Guard markdown arg

Fixes
	specs

0.1.1 (2023-09-11)
Enhancements
	Update Rust to edition 2021
	Add @spec to public functions

0.1.0 (2023-09-11)
Enhancements
	MDEx.to_html/1 to convert Markdown to HTML using default options.
	MDEx.to_html/2 to convert Markdown to HTML using custom options.

 GitHub Flavored Markdown

Mix.install([
 {:mdex, "~> 0.8"},
 {:mdex_gfm, "~> 0.1"},
 {:kino, "~> 0.16"},
 {:req, "~> 0.5"}
])
Setup
markdown = """
GitHub Flavored Markdown :eyes:

Feature	Status
Fast	:white_check_mark:
GFM	:white_check_mark:

- [x] Task A
- [x] Task B
- [] Task C

```elixir
def deps do
  [
    {:mdex, "~> 0.8"}
  ]
end
```

Check out the spec at https://github.github.com/gfm
"""
"# GitHub Flavored Markdown :eyes:\n\n| Feature | Status |\n| ------- | ------ |\n| Fast | :white_check_mark: |\n| GFM | :white_check_mark: |\n\n- [x] Task A\n- [x] Task B\n- [] Task C\n\n```elixir\ndef deps do\n [\n {:mdex, \"~> 0.8\"}\n]\nend\n```\n\nCheck out the spec at https://github.github.com/gfm\n"
You can either use the mdex_gfm plugin or set the options yourself. You can find either approaches below.
Plugin
MDEx.new(markdown: markdown)
|> MDExGFM.attach()
|> MDEx.to_html!(syntax_highlight: [formatter: {:html_inline, theme: "github_light"}])
|> Kino.HTML.new()

Manual
options = [
 extension: [
 alerts: true,
 autolink: true,
 footnotes: true,
 shortcodes: true,
 strikethrough: true,
 table: true,
 tagfilter: true,
 tasklist: true
],
 parse: [
 relaxed_autolinks: true,
 relaxed_tasklist_matching: true
],
 render: [
 github_pre_lang: true,
 full_info_string: true,
 unsafe: true
],
 syntax_highlight: [
 formatter: {:html_inline, theme: "github_light"}
]
]

markdown
|> MDEx.to_html!(options)
|> Kino.HTML.new()

 Syntax Highlight

Mix.install([
 {:mdex, "~> 0.8"},
 {:kino, "~> 0.16"}
])
Example
options = [
 syntax_highlight: [formatter: {:html_inline, theme: "catppuccin_latte"}]
]

"""
Elixir
```elixir
# elixir example

def fib(n), do: fib(n, 1, 1)

def fib(0, _a, _b), do: []

def fib(n, a, b) when n > 0 do
  [a | fib(n - 1, b, a + b)]
end
```

Ruby
```ruby
# ruby example

def fibonacci(n)
  return n if (0..1).include?(n)
  (fibonacci(n - 1) + fibonacci(n - 2))
end
```

Rust
```rust
// rust example

fn fibonacci(n: u32) -> u32 {
  match n {
    0 => 1,
    1 => 1,
    _ => fibonacci(n - 1) + fibonacci(n - 2),
  }
}
```
"""
|> MDEx.to_html!(options)
|> Kino.HTML.new()

 Light Dark Theme

Mix.install([
 {:mdex, "~> 0.11"},
 {:kino, "~> 0.18"}
])
Example
options = [
 render: [unsafe: true],
 syntax_highlight: [
 formatter: {
 :html_multi_themes,
 themes: [light: "github_light", dark: "github_dark"],
 default_theme: "light-dark()"
 }
]
]

"""
Light/Dark Example

Change your OS system setting to see the colors change from light to dark and vice-versa.

```elixir
# elixir

def fib(n), do: fib(n, 1, 1)

def fib(0, _a, _b), do: []

def fib(n, a, b) when n > 0 do
  [a | fib(n - 1, b, a + b)]
end
```

<style>
 /* Enable light/dark mode based on system preference */
 html {
 color-scheme: light dark;
 }
</style>
"""
|> MDEx.to_html!(options)
|> Kino.HTML.new()

 Custom Theme

Mix.install([
 {:mdex, "~> 0.8"},
 {:kino, "~> 0.16"}
])
Example
Below we'll customize an existing theme but any %Autumn.Theme{} would work, even if built from scratch.
theme = Autumn.Theme.get("github_light")

function_call_style =
 %Autumn.Theme.Style{
 fg: "#d1242f",
 bg: "#e4b7be",
 bold: true
 }

new_theme = put_in(
 theme,
 [Access.key!(:highlights), Access.key!("function.call")],
 function_call_style
)
%Autumn.Theme{
 name: "github_light",
 appearance: :light,
 revision: "c106c9472154d6b2c74b74565616b877ae8ed31d",
 highlights: %{
 "function.macro" => %Autumn.Theme.Style{
 fg: "#6639ba",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "variable.builtin" => %Autumn.Theme.Style{
 fg: "#0550ae",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "markup.list.checked" => %Autumn.Theme.Style{
 fg: "#116329",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "character" => %Autumn.Theme.Style{
 fg: "#0a3069",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "string.special.symbol" => %Autumn.Theme.Style{
 fg: "#0550ae",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "markup.strong" => %Autumn.Theme.Style{
 fg: "#1f2328",
 bg: nil,
 bold: true,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "markup.list.unchecked" => %Autumn.Theme.Style{
 fg: "#57606a",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "variable.parameter.builtin" => %Autumn.Theme.Style{
 fg: "#0550ae",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "character.special" => %Autumn.Theme.Style{
 fg: "#1f2328",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "boolean" => %Autumn.Theme.Style{
 fg: "#0550ae",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "string.escape" => %Autumn.Theme.Style{
 fg: "#0a3069",
 bg: nil,
 bold: true,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 "keyword.exception" => %Autumn.Theme.Style{
 fg: "#0550ae",
 bg: nil,
 bold: false,
 italic: false,
 text_decoration: %Autumn.Theme.TextDecoration{underline: nil, strikethrough: false}
 },
 ...
 }
}
options = [
 syntax_highlight: [formatter: {:html_inline, theme: new_theme}]
]

"""
Elixir
```elixir
# elixir example

def fib(n), do: fib(n, 1, 1)

def fib(0, _a, _b), do: []

def fib(n, a, b) when n > 0 do
  [a | fib(n - 1, b, a + b)]
end
```

Ruby
```ruby
# ruby example

def fibonacci(n)
  return n if (0..1).include?(n)
  (fibonacci(n - 1) + fibonacci(n - 2))
end
```

Rust
```rust
// rust example

fn fibonacci(n: u32) -> u32 {
  match n {
    0 => 1,
    1 => 1,
    _ => fibonacci(n - 1) + fibonacci(n - 2),
  }
}
```
"""
|> MDEx.to_html!(options)
|> Kino.HTML.new()

 Code Block Decorators

Mix.install([
 {:mdex, "~> 0.8.1"},
 {:kino, "~> 0.16"}
])
Docs
All options and more examples at Guides / Code Block Decorators
import MDEx.Sigil

~MD"""
```elixir highlight_lines=2,5,8-10 theme=github_light
defmodule Lines do
  @langs ["elixir", "rust"]

  def langs do
    @langs
  end

  def libs do
    [:comrak, :ammonia, :autumnus]
  end
end
```
"""HTML
|> Kino.HTML.new()
Decorator: highlight_lines
Decorator: theme
import MDEx.Sigil

~MD"""
```elixir theme=gruvbox_light
defmodule Lines do
  @langs ["elixir", "rust"]

  def langs do
    @langs
  end

  def libs do
    [:comrak, :ammonia, :autumnus]
  end
end
```
"""HTML
|> Kino.HTML.new()
Decorator: highlight_lines_style
import MDEx.Sigil

~MD"""
```elixir highlight_lines=2 highlight_lines_style="background-color: purple; font-weight: bold; font-size: 18px"
defmodule Lines do
  @langs ["elixir", "rust"]

  def langs do
    @langs
  end

  def libs do
    [:comrak, :ammonia, :autumnus]
  end
end
```
"""HTML
|> Kino.HTML.new()
Decorator: include_highlights
~MD"""
```elixir include_highlights
defmodule Lines do
  @langs ["elixir", "rust"]

  def langs do
    @langs
  end

  def libs do
    [:comrak, :ammonia, :autumnus]
  end
end
```
"""HTML
|> Kino.HTML.new()

 Mermaid

Mix.install([
 {:mdex, "~> 0.8"},
 {:mdex_mermaid, "~> 0.3"},
 {:kino, "~> 0.16"}
])
Example
markdown = """
Flowchart

```mermaid
graph TD;
    A-->B;
    A-->C;
    B-->D;
    C-->D;
```
"""

mdex =
 MDEx.new(markdown: markdown)
 |> MDExMermaid.attach()

mdex
|> MDEx.to_html!()
|> Kino.HTML.new()

 Highlight Words

Mix.install([
 {:mdex, "~> 0.8"},
 {:kino, "~> 0.16"}
])
Example
import MDEx.Sigil

opts = [
 render: [unsafe: true]
]

markdown = ~MD"""
Highlight Example

Transform double equal signals into `<mark>` tags as described at [Markdown Guide](https://www.markdownguide.org/extended-syntax/#highlight).

==Because== I need to highlight these ==very important words== and also these ==other words too==.
"""

document =
 Kernel.update_in(markdown, [:document, Access.key!(:nodes), Access.all(), :text], fn %MDEx.Text{literal: literal} ->
 # break each text literal into blocks separated by =={text}==
 case Regex.split(~r/==.*?==/, literal, include_captures: true, trim: true) do
 # single text means no == == found
 [text] ->
 %MDEx.Text{literal: text}

 # return HtmlBlock <mark> for each ==
 blocks ->
 blocks =
 Enum.map(blocks, fn
 "==" <> rest ->
 marked_text = "<mark>" <> String.replace_suffix(rest, "==", "</mark>")
 %MDEx.HtmlBlock{literal: marked_text}

 text ->
 %MDEx.Text{literal: text}
 end)

 %MDEx.Paragraph{nodes: blocks}
 end
 end)

document
|> MDEx.to_html!(opts)
|> Kino.HTML.new()

 Liquid

Mix.install([
 {:mdex, "~> 0.8"},
 {:kino, "~> 0.16"},
 {:solid, "~> 0.15"}
])
Example
markdown = """
[Liquid](https://shopify.github.io/liquid/) Example

Lang
{{ lang.name | capitalize }}

Projects {% assign projects = "phoenix, phoenix, live_view, mdex" | split: ", " %}
{{ projects | uniq | join: ", " }}

Updated at {{ "now" | date: "%Y-%m-%d %H:%M" }}
"""

assigns = %{"lang" => %{"name" => "elixir"}}

with {:ok, parsed} <- Solid.parse(markdown),
 {:ok, rendered} <- Solid.render(parsed, assigns) do
 rendered
 |> IO.iodata_to_binary()
 |> MDEx.to_html!()
 |> Kino.HTML.new()
end

 Phoenix LiveView HEEx

Mix.install([
 {:mdex, "~> 0.11"},
 {:phoenix_playground, "~> 0.1"},
 {:req_embed, "~> 0.3"}
])
Example
defmodule MarkdownLive do
 use Phoenix.LiveView
 import MDEx.Sigil

 def mount(_params, _session, socket) do
 {:ok, assign(socket, message: "Have a nice day", count: 0)}
 end

 def render(assigns) do
 ~MD"""
 <script src="https://cdn.tailwindcss.com?plugins=typography"></script>

 <div class="prose lg:prose-xl max-w-2xl mx-auto p-8">

 # Demo

 Hello from MDEx :wave:

 Markdown and **HEEx** together!

 Today is _{Calendar.strftime(DateTime.utc_now(), "%B %d, %Y")}_

 <div class="flex items-center gap-4 p-6 bg-white/10 rounded-xl my-6 not-prose">
 <button phx-click="dec" class="w-10 h-10 rounded-full bg-red-500 text-white text-xl font-bold">-</button>
 {@count}
 <button phx-click="inc" class="w-10 h-10 rounded-full bg-green-500 text-white text-xl font-bold">+</button>
 </div>

 <%= @message %>
 <ReqEmbed.embed url="https://www.youtube.com/watch?v=XfELJU1mRMg" class="aspect-video rounded-xl my-6" />

 Built with:
 - <.link href="https://crates.io/crates/comrak">comrak</.link>
 - <.link href="https://hex.pm/packages/mdex">MDEx</.link>

 </div>
 """HEEX
 end

 def handle_event("inc", _, socket), do: {:noreply, update(socket, :count, &(&1 + 1))}
 def handle_event("dec", _, socket), do: {:noreply, update(socket, :count, &(&1 - 1))}
end
PhoenixPlayground.start(live: MarkdownLive, open_browser: true)

 Plugins

	mdex_gfm - Enable GitHub Flavored Markdown (GFM)
	mdex_mermaid - Render Mermaid diagrams in code blocks
	mdex_katex - Render math formulas using KaTeX

 Compilation

Pre-compilation
Pre-compiled binaries are available for the following targets, so you don't need to have Rust installed to compile and use this library:
	aarch64-apple-darwin
	aarch64-unknown-linux-gnu
	aarch64-unknown-linux-musl
	arm-unknown-linux-gnueabihf
	riscv64gc-unknown-linux-gnu
	x86_64-apple-darwin
	x86_64-pc-windows-gnu
	x86_64-pc-windows-msvc
	x86_64-unknown-freebsd
	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl

Note: The pre-compiled binaries for Linux are compiled using Ubuntu 22 on libc 2.35, which requires minimum Ubuntu 22, Debian Bookworm or a system with a compatible libc version. For older Linux systems, you'll need to compile manually.
Compile manually
But in case you need or want to compile it yourself, you can do the following:
	Install Rust

	Install a C compiler or build packages

It depends on your OS, for example in Ubuntu you can install the build-essential package.
	Run:

export MDEX_BUILD=1
mix deps.get
mix compile

Legacy CPUs
Modern CPU features are enabled by default but if your environment has an older CPU,
you can use legacy artifacts by adding the following configuration to your config.exs:
config :mdex, use_legacy_artifacts: true

 Safety

MDEx employs 4 mechanisms to handle safety: omitting), escaping, sanitizing, and unsafe rendering.
TL;DR is if you trust the input then just use render: [unsafe: true] option to render raw HTML,
otherwise consider using render: [unsafe: true], sanitize: MDEx.default_sanitize_options() to be on the safe side.
Omitting/Removing unsafe content (default)
For security reasons, MDEx does not render raw HTML by default:
iex> MDEx.to_html!("<h1>Hello</h1>")
"<!-- raw HTML omitted -->"
But that's not very useful for most cases, so you have a few other options:
Escape
The most basic is render raw HTML but escape it:
iex> MDEx.to_html!("<h1>Hello</h1>", render: [escape: true])
"<h1>Hello</h1>"
Sanitize
But if the input is provided by external sources, it might be a good idea to sanitize it:
iex> MDEx.to_html!("Elixir", render: [unsafe: true], sanitize: MDEx.default_sanitize_options())
"<p>Elixir</p>"
Note that you must pass the unsafe: true option to first generate the raw HTML in order to sanitize it.
It does clean HTML with a conservative set of defaults
that works for most cases, but you can overwrite those rules for further customization.
For example, let's modify the link rel attribute
to add "nofollow" into the rel attribute:
iex> MDEx.to_html!("External", render: [unsafe: true], sanitize: [link_rel: "nofollow noopener noreferrer"])
"<p>External</p>"
In this case the default rule set is still applied but the link_rel rule is overwritten.
Unsafe
If those rules are too strict and you really trust the input, or you really need to render raw HTML,
then you can just render it directly without escaping nor sanitizing:
iex> MDEx.to_html!("<script>alert('hello')</script>", render: [unsafe: true])
"<script>alert('hello')</script>"

 Code Block Decorators

Code block decorators allow you to customize the appearance and behavior of individual code blocks by adding special attributes to the info string (the part after the opening backticks).
Prerequisites
To use code block decorators, you must enable both :render options:
render: [
 github_pre_lang: true,
 full_info_string: true
]
Available Decorators
	Decorator	Description	Supported Formatters	Example
	theme	Override the syntax highlighting theme	All	theme=github_dark
	pre_class	Add custom CSS classes to <pre> element	All	pre_class="my-class"
	highlight_lines	Highlight single and/or range of lines	All	highlight_lines="1,3-5"
	highlight_lines_style	Custom inline styles for highlighted lines	HTML inline only	highlight_lines_style="background: yellow"
	highlight_lines_class	Custom CSS class for highlighted lines	All	highlight_lines_class="emphasis"
	include_highlights	Add syntax token names as data attributes	All	include_highlights

Examples
Following examples assume render: [github_pre_lang: true, full_info_string: true] is set.
You can find a Livebook at Examples / Code Block Decorators
Override Theme
Change the syntax highlighting theme for a specific code block:
```elixir theme=github_dark
def hello do
  "Hello, world!"
end
```
Output: <pre class="athl" style="color: #c9d1d9; background-color: #0d1117;">...
Add Custom CSS Classes
Add your own CSS classes to the <pre> element:
```javascript pre_class="code-example interactive"
console.log("Hello!");
```
Output: <pre class="athl code-example interactive">...
Highlight Specific Lines
Highlight individual lines or ranges (inclusive):
Highlight lines 1, 4, 5, and 6

```python highlight_lines="1,4-6"
import math

def calculate(x):
    result = x * 2
    # return calculated result
    return math.sqrt(x)
```
With :html_inline formatter, lines get styles from the theme's highlight color, for eg:
...
With :html_linked formatter, the class highlighted is added to the highlighted lines, for eg:
...
Custom Highlight Styling
Use either highlight_lines_style or highlight_lines_class to customize the appearance of highlighted lines:
```ruby highlight_lines="2" highlight_lines_style="background: #ffeb3b; font-weight: bold;"
class User
  def initialize(name)
    @name = name
  end
end
```
Include Syntax Token Information
Add syntax token names in data-highlight attributes, useful for debugging or custom styling:
```rust include_highlights
let x: i32 = 42;
```
Output: let
Combine Multiple Decorators
Use multiple decorators together:
```typescript theme=github_light pre_class="example" highlight_lines="2-3" include_highlights
interface User {
  name: string;    // highlighted
  email: string;   // highlighted
  age?: number;
}
```
Important Notes
	Formatter Support: Not all decorators work with all formatters:
	highlight_lines_style only works with :html_inline formatter
	theme only works with :html_inline formatter

	CSS Classes: The athl class is always added to <pre> elements when using syntax highlighting

	Line Numbers: The data-line attribute is added to each line for reference

	Order: It's expected the first word of the code fence info string to be the language name, followed by decorators.
	For example, elixir theme=github_dark is valid, but theme=github_dark elixir is not.

	Performance: Decorators are processed at render time, so using many decorators may impact performance

MDEx

 [image: MDEx logo]

 [image: Hex Version]

 MDEx.Document - MDEx v0.11.0

MDEx.Document

Document is the core structure to store, manipulate, and render Markdown documents.
Tree
%MDEx.Document{
 nodes: [
 %MDEx.Paragraph{
 nodes: [
 %MDEx.Code{num_backticks: 1, literal: "Elixir"}
]
 }
]
}
Each node may contain attributes and children nodes as in the example above where MDEx.Document
contains a MDEx.Paragraph node which contains a MDEx.Code node with the attributes :num_backticks and :literal.
You can check out each node's documentation in the Document Nodes section, for example MDEx.HtmlBlock.
The MDEx.Document module represents the root of a document and implements several behaviours and protocols
to enable operations to fetch, update, and manipulate the document tree.
In these examples we will be using the ~MD sigil.
Tree Traversal
Understanding tree traversal is fundamental to working with MDEx documents, as it affects how all
Enum functions, Access operations, and other protocols behave.
The document tree is enumerated using depth-first pre-order traversal. This means:
	The parent node is visited first
	Then each child node is visited recursively
	Children are processed in the order they appear in the :nodes list

This traversal order affects all Enum functions, including Enum.at/2, Enum.map/2, Enum.find/2, and friends.
iex> doc = ~MD[# Hello]
iex> Enum.at(doc, 0)
%MDEx.Document{nodes: [%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1, setext: false}]}
iex> Enum.at(doc, 1)
%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1, setext: false}
iex> Enum.at(doc, 2)
%MDEx.Text{literal: "Hello"}
More complex traversal with nested elements:
iex> doc = ~MD[**bold** text]
iex> Enum.at(doc, 0)
%MDEx.Document{nodes: [%MDEx.Paragraph{nodes: [%MDEx.Strong{nodes: [%MDEx.Text{literal: "bold"}]}, %MDEx.Text{literal: " text"}]}]}
iex> Enum.at(doc, 1)
%MDEx.Paragraph{nodes: [%MDEx.Strong{nodes: [%MDEx.Text{literal: "bold"}]}, %MDEx.Text{literal: " text"}]}
iex> Enum.at(doc, 2)
%MDEx.Strong{nodes: [%MDEx.Text{literal: "bold"}]}
iex> Enum.at(doc, 3)
%MDEx.Text{literal: "bold"}
iex> Enum.at(doc, 4)
%MDEx.Text{literal: " text"}
Traverse and Update
You can also use the low-level MDEx.traverse_and_update/2 and MDEx.traverse_and_update/3 APIs
to traverse each node of the AST and either update the nodes or do some calculation with an accumulator.
Streaming
Experimental
Streaming is still experimental and subject to change in future releases.
It's disabled by default until the API is stabilized. Enable it with the option streaming: true.
Streaming ties together MDEx.new(streaming: true), MDEx.Document.put_markdown/3, and MDEx.Document.run/1 or MDEx.to_*
so you can feed complete or incomplete Markdown fragments into the Document which will be completed on demand to render valid output.
Typical usage:
	Start with MDEx.new(streaming: true) — the document enables streaming and buffers fragments.
	Call MDEx.Document.put_markdown/3 as fragments arrive — the text is buffered and parsing/rendering is deferred.
	Call MDEx.Document.run/1 or any MDEx.to_* — buffered fragments are parsed completing nodes to ensure valid output.

This is ideal for AI or chat apps where Markdown comes in bursts but must stay renderable.
For example, feeding **Fol produces a temporary MDEx.Strong node then adding low** replaces it with the final content on the next run.
iex> doc = MDEx.new(streaming: true) |> MDEx.Document.put_markdown("**Fol")
iex> MDEx.to_html!(doc)
"<p>Fol</p>"
iex> doc |> MDEx.Document.put_markdown("low**") |> MDEx.to_html!()
"<p>Follow</p>"
You can find a demo application in examples/streaming.exs.
Protocols
Enumerable
The Enumerable protocol allows us to call Enum functions to iterate over and manipulate the document tree.
All enumeration follows the depth-first traversal order described above.
Count the nodes in a document:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> Enum.count(doc)
7
Count how many nodes have the :literal attribute:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> Enum.reduce(doc, 0, fn
...> %{literal: _literal}, acc -> acc + 1
...>
...> _node, acc -> acc
...> end)
3
Check if a node is member of the document:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> Enum.member?(doc, %MDEx.Code{literal: "elixir", num_backticks: 1})
true
Map each node to its module name:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> Enum.map(doc, fn %node{} -> inspect(node) end)
["MDEx.Document", "MDEx.Heading", "MDEx.Text", "MDEx.Paragraph", "MDEx.Code", "MDEx.Paragraph", "MDEx.Code"]
Collectable
The Collectable protocol allows you to build documents by collecting nodes or merging multiple documents together.
This is particularly useful for programmatically constructing documents from various sources.
Merge two documents together using Enum.into/2:
iex> first_doc = ~MD[# First Document]
iex> second_doc = ~MD[# Second Document]
iex> Enum.into(second_doc, first_doc)
%MDEx.Document{
 nodes: [
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "First Document"}], level: 1, setext: false},
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "Second Document"}], level: 1, setext: false}
]
}
Collect individual nodes into a document:
iex> chunks = [
...> %MDEx.Text{literal: "Hello "},
...> %MDEx.Code{literal: "world", num_backticks: 1}
...>]
iex> document = Enum.into(chunks, %MDEx.Document{})
%MDEx.Document{
 nodes: [
 %MDEx.Text{literal: "Hello "},
 %MDEx.Code{literal: "world", num_backticks: 1}
]
}
iex> MDEx.to_html!(document)
"Hello <code>world</code>"
Build a document incrementally by collecting mixed content:
iex> chunks = [
...> %MDEx.Heading{nodes: [%MDEx.Text{literal: "Title"}], level: 1, setext: false},
...> %MDEx.Paragraph{nodes: []},
...> %MDEx.Text{literal: "Some text"},
...> %MDEx.ListItem{nodes: [%MDEx.Text{literal: "Item 1"}]},
...> %MDEx.Text{literal: " - WIP"},
...>]
iex> document = Enum.into(chunks, %MDEx.Document{})
%MDEx.Document{
 nodes: [
 %MDEx.Heading{
 level: 1,
 nodes: [%MDEx.Text{literal: "Title"}],
 setext: false
 },
 %MDEx.Paragraph{
 nodes: [%MDEx.Text{literal: "Some text"}]
 },
 %MDEx.List{
 bullet_char: "-",
 delimiter: :period,
 is_task_list: false,
 list_type: :bullet,
 marker_offset: 0,
 nodes: [%MDEx.ListItem{nodes: [%MDEx.Text{literal: "Item 1 - WIP"}], list_type: :bullet, marker_offset: 0, padding: 2, start: 1, delimiter: :period, bullet_char: "-", tight: true, is_task_list: false}],
 padding: 2,
 start: 1,
 tight: true
 }
]
}
iex> MDEx.to_html!(document)
"<h1>Title</h1>\n<p>Some text</p>\n\nItem 1 - WIP\n"
Access
The Access behaviour gives you the ability to fetch and update nodes using different types of keys.
Access operations also follow the depth-first traversal order when searching through nodes.
Access by Index
You can access nodes by their position in the depth-first traversal using integer indices:
iex> doc = ~MD[# Hello]
iex> doc[0]
%MDEx.Document{nodes: [%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1, setext: false}]}
iex> doc[1]
%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1, setext: false}
iex> doc[2]
%MDEx.Text{literal: "Hello"}
Negative indices access nodes from the end:
iex> doc = ~MD[# Hello **world**]
iex> doc[-1] # Last node
%MDEx.Text{literal: "world"}
Access by Node Type
Starting with a simple Markdown document, let's fetch only the text node by matching the MDEx.Text node:
iex> ~MD[# Hello][%MDEx.Text{literal: "Hello"}]
[%MDEx.Text{literal: "Hello"}]
That's essentially the same as:
doc = %MDEx.Document{nodes: [%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1, setext: false}]},

Enum.filter(
 doc,
 fn node -> node == %MDEx.Text{literal: "Hello"} end
)
The key can also be modules, atoms, and even functions! For example:
Fetch all Code nodes, either by MDEx.Code module or the :code atom representing the Code node:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> doc[MDEx.Code]
[%MDEx.Code{num_backticks: 1, literal: "elixir"}, %MDEx.Code{num_backticks: 1, literal: "rust"}]
iex> doc[:code]
[%MDEx.Code{num_backticks: 1, literal: "elixir"}, %MDEx.Code{num_backticks: 1, literal: "rust"}]
Dynamically fetch Code nodes where the :literal (node content) starts with "eli" using a function to filter the result:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...> """
iex> doc[fn node -> String.starts_with?(Map.get(node, :literal, ""), "eli") end]
[%MDEx.Code{num_backticks: 1, literal: "elixir"}]
That's the most flexible option, in case struct, modules, or atoms are not enough to match the node you want.
The Access protocol also allows us to update nodes that match a selector.
In the example below we'll capitalize the content of all MDEx.Code nodes:
iex> doc = ~MD"""
...> # Languages
...>
...> `elixir`
...>
...> `rust`
...>
...> Continue...
...> """
iex> update_in(doc, [:document, Access.key!(:nodes), Access.all(), :code, Access.key!(:literal)], fn literal ->
...> String.upcase(literal)
...> end)
%MDEx.Document{
 nodes: [
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "Languages"}], level: 1, setext: false},
 %MDEx.Paragraph{nodes: [%MDEx.Code{num_backticks: 1, literal: "ELIXIR"}]},
 %MDEx.Paragraph{nodes: [%MDEx.Code{num_backticks: 1, literal: "RUST"}]},
 %MDEx.Paragraph{nodes: [%MDEx.Text{literal: "Continue..."}]}
]
}
String.Chars
Calling Kernel.to_string/1 will format it as CommonMark text:
iex> to_string(~MD[# Hello])
"# Hello"
Fragments (nodes without the parent %Document{}) are also formatted:
iex> to_string(%MDEx.Heading{nodes: [%MDEx.Text{literal: "Hello"}], level: 1})
"# Hello"
Inspect
The Inspect protocol provides two display formats for documents:
Tree format (default): Shows the document structure as a visual tree, making it easy to understand the hierarchy and relationships between nodes.
iex> ~MD[# Hello :smile:]
#MDEx.Document(3 nodes)<
└── 1 [heading] level: 1, setext: false
 ├── 2 [text] literal: "Hello "
 └── 3 [short_code] code: "smile", emoji: "😄"
>
Struct format: Shows the raw struct representation, useful for debugging and testing. To enable this format:
iex> Application.put_env(:mdex, :inspect_format, :struct)
iex> ~MD[# Hello :smile:]
%MDEx.Document{
 nodes: [
 %MDEx.Heading{
 nodes: [%MDEx.Text{literal: "Hello "}, %MDEx.ShortCode{code: "smile", emoji: "😄"}],
 level: 1,
 setext: false
 }
],
 # ... other fields
}
The struct format is particularly useful in tests where you need to see exact differences between expected and actual values. You can set this in your test/test_helper.exs:
Application.put_env(:mdex, :inspect_format, :struct)
Pipeline and Plugins
MDEx.Document is a Req-like API to transform Markdown documents through a series of steps in a pipeline.
Its main use case it to enable plugins, for example:
markdown = """
Project Diagram

```mermaid
graph TD
    A[Enter Chart Definition] --> B(Preview)
    B --> C{decide}
    C --> D[Keep]
    C --> E[Edit Definition]
    E --> B
    D --> F[Save Image and Code]
    F --> B
```
"""

MDEx.new(markdown: markdown)
|> MDExMermaid.attach(mermaid_version: "11")
|> MDEx.to_html!()
To understand how it works, let's write that Mermaid plugin.
Writing Plugins
Let's start with a simple plugin as example to render Mermaid diagrams.
In order to render Mermaid diagrams, we need to inject a <script> into the document,
as outlined in their docs:
<script type="module">
 import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@11/dist/mermaid.esm.min.mjs';
 mermaid.initialize({ startOnLoad: true });
</script>
Note that the package version is specified in the URL, so we'll add an option
:mermaid_version to the plugin to let users specify the version they want to use.
By default, we'll use the latest version:
MDEx.new() |> MDExMermaid.attach()
But users can override it:
MDEx.new() |> MDExMermaid.attach(mermaid_version: "11")
Let's get into the actual code, with comments to explain each part:
defmodule MDExMermaid do
 alias MDEx.Document

 @latest_version "11"

 def attach(document, options \ []) do
 document
 # register option with prefix `:mermaid_` to avoid conflicts with other plugins
 |> Document.register_options([:mermaid_version])
 # merge all options given by users
 |> Document.put_options(options)
 # actual steps to manipulate the document
 # see respective Document functions for more info
 |> Document.append_steps(enable_unsafe: &enable_unsafe/1)
 |> Document.append_steps(inject_script: &inject_script/1)
 |> Document.append_steps(update_code_blocks: &update_code_blocks/1)
 end

 # to render raw html and <script> tags
 defp enable_unsafe(document) do
 Document.put_render_options(document, unsafe: true)
 end

 defp inject_script(document) do
 version = Document.get_option(document, :mermaid_version, @latest_version)

 script_node =
 %MDEx.HtmlBlock{
 literal: """
 <script type="module">
 import mermaid from 'https://cdn.jsdelivr.net/npm/mermaid@#{version}/dist/mermaid.esm.min.mjs';
 mermaid.initialize({ startOnLoad: true });
 </script>
 """
 }

 Document.put_node_in_document_root(document, script_node)
 end

 defp update_code_blocks(document) do
 selector = fn
 %MDEx.CodeBlock{info: "mermaid"} -> true
 _ -> false
 end

 Document.update_nodes(
 document,
 selector,
 &%MDEx.HtmlBlock{literal: "<pre class="mermaid">#{&1.literal}</pre>", nodes: &1.nodes}
)
 end
end
Now we can attach/1 that plugin into any MDEx document to render Mermaid diagrams.
Practical Examples
Here are some common patterns for working with MDEx documents that combine the protocols described above.
Update all code block nodes filtered by the selector function
Add line "// Modified" in Rust block codes:
iex> doc = ~MD"""
...> # Code Examples
...>
...> ```elixir
...> def hello do
...> :world
...> end
...> ```
...>
...> ```rust
...> fn main() {
...> println!("Hello");
...> }
...> ```
...> """
iex> selector = fn
...> %MDEx.CodeBlock{info: "rust"} -> true
...> _ -> false
...> end
iex> update_in(doc, [:document, Access.key!(:nodes), Access.all(), selector], fn node ->
...> %{node | literal: "// Modified\n" <> node.literal}
...> end)
%MDEx.Document{
 nodes: [
 %MDEx.Heading{
 nodes: [%MDEx.Text{literal: "Code Examples"}],
 level: 1,
 setext: false
 },
 %MDEx.CodeBlock{
 info: "elixir",
 literal: "def hello do\n :world\nend\n"
 },
 %MDEx.CodeBlock{
 info: "rust",
 literal: "// Modified\nfn main() {\n println!(\"Hello\");\n}\n"
 }
]
}
Collect headings by level
iex> doc = ~MD"""
...> # Main Title
...>
...> ## Section 1
...>
...> ### Subsection
...>
...> ## Section 2
...> """
iex> Enum.reduce(doc, %{}, fn
...> %MDEx.Heading{level: level, nodes: [%MDEx.Text{literal: text}]}, acc ->
...> Map.update(acc, level, [text], &[text | &1])
...> _node, acc -> acc
...> end)
%{
 1 => ["Main Title"],
 2 => ["Section 2", "Section 1"],
 3 => ["Subsection"]
}
Extract and transform task list items
iex> doc = ~MD"""
...> # Todo List
...>
...> - [] Buy groceries
...> - [x] Call mom
...> - [] Read book
...> """
iex> Enum.map(doc, fn
...> %MDEx.TaskItem{checked: checked, nodes: [%MDEx.Paragraph{nodes: [%MDEx.Text{literal: text}]}]} ->
...> {checked, text}
...> _ -> nil
...> end)
...> |> Enum.reject(&is_nil/1)
[
 {false, "Buy groceries"},
 {true, "Call mom"},
 {false, "Read book"}
]
Bump all heading levels, except level 6
iex> doc = ~MD"""
...> # Main Title
...>
...> ## Subtitle
...>
...> ###### Notes
...> """
iex> selector = fn
...> %MDEx.Heading{level: level} when level < 6 -> true
...> _ -> false
...> end
iex> update_in(doc, [:document, Access.key!(:nodes), Access.all(), selector], fn node ->
...> %{node | level: node.level + 1}
...> end)
%MDEx.Document{
 nodes: [
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "Main Title"}], level: 2, setext: false},
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "Subtitle"}], level: 3, setext: false},
 %MDEx.Heading{nodes: [%MDEx.Text{literal: "Notes"}], level: 6, setext: false}
]
}

 Summary

 Types

 extension_options()

 List of comrak extension options.

 md_node()

 Fragment of a Markdown document, a single node. May contain children nodes.

 options()

 Options to customize the parsing and rendering of Markdown documents.

 parse_options()

 List of comrak parse options.

 render_options()

 List of comrak render options.

 sanitize_options()

 List of ammonia options.

 selector()

 Selector used to match nodes in the document.

 step()

 Step in a pipeline.

 syntax_highlight_options()

 Syntax Highlight code blocks using autumn.

 t()

 Tree root of a Markdown document, including all children nodes.

 Functions

 append_steps(document, steps)

 Appends steps to the end of the existing document's step list.

 default_extension_options()

 Returns the default :extension options.

 default_options()

 Returns all default options.

 default_parse_options()

 Returns the default :parse options.

 default_render_options()

 Returns the default :render options.

 default_sanitize_options()

 Returns the default :sanitize options.

 default_syntax_highlight_options()

 Returns the default :syntax_highlight options.

 fetch(document, selector)

 Callback implementation for Access.fetch/2.

 get_and_update(document, selector, fun)

 Callback implementation for Access.get_and_update/3.

 get_option(document, key, default \\ nil)

 Retrieves an option value from the document.

 get_private(document, key, default \\ nil)

 Retrieves a private value from the document.

 get_sanitize_option(document, key, default \\ nil)

 Retrieves one of the sanitize_options/0 options from the document.

 halt(document)

 Halts the document pipeline execution.

 halt(document, exception)

 Halts the document pipeline execution with an exception.

 is_sanitize_enabled(document)

 Returns true if the document has the :sanitize option set, otherwise false.

 parse_markdown(document, markdown)

 deprecated

 parse_markdown!(document, markdown)

 deprecated

 pop(document, key, default \\ nil)

 Callback implementation for Access.fetch/2.

 prepend_steps(document, steps)

 Prepends steps to the beginning of the existing document's step list.

 put_extension_options(document, options)

 Updates the document's :extension options.

 put_markdown(document, markdown, position \\ :bottom)

 Adds markdown chunks into the document buffer.

 put_node_in_document_root(document, node, position \\ :top)

 Inserts node into the document root at the specified position.

 put_options(document, options)

 Merges options into the document options.

 put_parse_options(document, options)

 Updates the document's :parse options.

 put_private(document, key, value)

 Stores a value in the document's private storage.

 put_render_options(document, options)

 Updates the document's :render options.

 put_sanitize_options(document, options)

 Updates the document's :sanitize options.

 put_syntax_highlight_options(document, options)

 Updates the document's :syntax_highlight options.

 register_options(document, options)

 Registers a list of valid options that can be used by steps in the document pipeline.

 run(document)

 Executes the document pipeline.

 update_nodes(document, selector, fun)

 Updates all nodes in the document that match selector.

 update_private(document, key, default, fun)

 Updates a value in the document's private storage using a function.

 wrap(document)

 Wraps nodes in a MDEx.Document.

 Types

 extension_options()

 @type extension_options() :: [
 strikethrough: boolean(),
 tagfilter: boolean(),
 table: boolean(),
 autolink: boolean(),
 tasklist: boolean(),
 superscript: boolean(),
 header_ids: binary() | nil,
 footnotes: boolean(),
 inline_footnotes: boolean(),
 description_lists: boolean(),
 front_matter_delimiter: binary() | nil,
 multiline_block_quotes: boolean(),
 alerts: boolean(),
 math_dollars: boolean(),
 math_code: boolean(),
 shortcodes: boolean(),
 wikilinks_title_after_pipe: boolean(),
 wikilinks_title_before_pipe: boolean(),
 underline: boolean(),
 subscript: boolean(),
 spoiler: boolean(),
 greentext: boolean(),
 subtext: boolean(),
 highlight: boolean(),
 image_url_rewriter: binary() | nil,
 link_url_rewriter: binary() | nil,
 cjk_friendly_emphasis: boolean(),
 phoenix_heex: boolean()
]

List of comrak extension options.
Example
MDEx.to_html!("~~strikethrough~~", extension: [strikethrough: true])
#=> "<p>strikethrough</p>"

 md_node()

 @type md_node() ::
 MDEx.FrontMatter.t()
 | MDEx.BlockQuote.t()
 | MDEx.List.t()
 | MDEx.ListItem.t()
 | MDEx.DescriptionList.t()
 | MDEx.DescriptionItem.t()
 | MDEx.DescriptionTerm.t()
 | MDEx.DescriptionDetails.t()
 | MDEx.CodeBlock.t()
 | MDEx.HtmlBlock.t()
 | MDEx.Paragraph.t()
 | MDEx.Heading.t()
 | MDEx.ThematicBreak.t()
 | MDEx.FootnoteDefinition.t()
 | MDEx.FootnoteReference.t()
 | MDEx.Table.t()
 | MDEx.TableRow.t()
 | MDEx.TableCell.t()
 | MDEx.Text.t()
 | MDEx.TaskItem.t()
 | MDEx.SoftBreak.t()
 | MDEx.LineBreak.t()
 | MDEx.Code.t()
 | MDEx.HtmlInline.t()
 | MDEx.Raw.t()
 | MDEx.Emph.t()
 | MDEx.Strong.t()
 | MDEx.Strikethrough.t()
 | MDEx.Superscript.t()
 | MDEx.Link.t()
 | MDEx.Image.t()
 | MDEx.ShortCode.t()
 | MDEx.Math.t()
 | MDEx.MultilineBlockQuote.t()
 | MDEx.Escaped.t()
 | MDEx.WikiLink.t()
 | MDEx.Underline.t()
 | MDEx.Subscript.t()
 | MDEx.SpoileredText.t()
 | MDEx.EscapedTag.t()
 | MDEx.Alert.t()
 | MDEx.HeexBlock.t()
 | MDEx.HeexInline.t()

Fragment of a Markdown document, a single node. May contain children nodes.

 options()

 @type options() :: [
 extension: extension_options(),
 parse: parse_options(),
 render: render_options(),
 syntax_highlight: syntax_highlight_options() | nil,
 sanitize: sanitize_options() | nil,
 streaming: boolean()
]

Options to customize the parsing and rendering of Markdown documents.
Examples
	Enable the table extension:
 MDEx.to_html!("""
lang
elixir
 """,
 extension: [table: true]
)

	Syntax highlight using inline style and the github_light theme:
 MDEx.to_html!("""
 ## Code Example

  ```elixir
  Atom.to_string(:elixir)
  ```
 """,
 syntax_highlight: [
 formatter: {:html_inline, theme: "github_light"}
])

	Sanitize HTML output, in this example disallow <a> tags:
 MDEx.to_html!("""
 ## Links won't be displayed

 Example
  ```
  """,
  sanitize: [
    rm_tags: ["a"],
  ])


Options
	:extension (keyword/0) - Enable extensions. See comrak's ExtensionOptions for more info and examples. The default value is [].
	:strikethrough (boolean/0) - Enables the strikethrough extension from the GFM spec. The default value is false.

	:tagfilter (boolean/0) - Enables the tagfilter extension from the GFM spec. The default value is false.

	:table (boolean/0) - Enables the table extension from the GFM spec. The default value is false.

	:autolink (boolean/0) - Enables the autolink extension from the GFM spec. The default value is false.

	:tasklist (boolean/0) - Enables the task list extension from the GFM spec. The default value is false.

	:superscript (boolean/0) - Enables the superscript Comrak extension. The default value is false.

	:header_ids - Enables the header IDs Comrak extension. The default value is nil.

	:footnotes (boolean/0) - Enables the footnotes extension per cmark-gfm The default value is false.

	:inline_footnotes (boolean/0) - Enables inline footnotes with ^[footnote content] syntax The default value is false.

	:description_lists (boolean/0) - Enables the description lists extension. The default value is false.

	:front_matter_delimiter - Enables the front matter extension. The default value is nil.

	:multiline_block_quotes (boolean/0) - Enables the multiline block quotes extension. The default value is false.

	:alerts (boolean/0) - Enables GitHub style alerts. The default value is false.

	:math_dollars (boolean/0) - Enables math using dollar syntax. The default value is false.

	:math_code (boolean/0) - Enables the math code extension from the GFM spec. The default value is false.

	:shortcodes (boolean/0) - Phrases wrapped inside of ':' blocks will be replaced with emojis. The default value is false.

	:wikilinks_title_after_pipe (boolean/0) - Enables wikilinks using title after pipe syntax. The default value is false.

	:wikilinks_title_before_pipe (boolean/0) - Enables wikilinks using title before pipe syntax. The default value is false.

	:underline (boolean/0) - Enables underlines using double underscores. The default value is false.

	:subscript (boolean/0) - Enables subscript text using single tildes. The default value is false.

	:spoiler (boolean/0) - Enables spoilers using double vertical bars. The default value is false.

	:greentext (boolean/0) - Requires at least one space after a > character to generate a blockquote, and restarts blockquote nesting across unique lines of input. The default value is false.

	:subtext (boolean/0) - Enables Discord-style subtext using curly braces with hyphens: {-text-}. The default value is false.

	:highlight (boolean/0) - Enables the highlight extension using double equals ==highlighted text== (wraps text in <mark> tags). The default value is false.

	:image_url_rewriter - Wraps embedded image URLs using a string template.
  Example:
  Given this image ![alt text](http://unsafe.com/image.png) and this rewriter:
image_url_rewriter: "https://example.com?url={@url}"
  Renders <p><img src="https://example.com?url=http://unsafe.com/image.png" alt="alt text" /></p>
  Notes:
	Assign @url is always passed to the template.
	Function callback is not supported, only string templates.
Transform the Document AST for more complex cases.

The default value is nil.

	:link_url_rewriter - Wraps link URLs using a string template.
  Example:
  Given this link [my link](http://unsafe.example.com/bad) and this rewriter:
link_url_rewriter: "https://safe.example.com/norefer?url={@url}"
  Renders <p><a href="https://safe.example.com/norefer?url=http://unsafe.example.com/bad">my link</a></p>
  Notes:
	Assign @url is always passed to the template.
	Function callback is not supported, only string templates.
Transform the Document AST for more complex cases.

The default value is nil.

	:cjk_friendly_emphasis (boolean/0) - Recognizes many emphasis that appear in CJK contexts but are not recognized by plain CommonMark. The default value is false.

	:phoenix_heex (boolean/0) - Enables Phoenix HEEx components and expressions. The default value is false.



	:parse (keyword/0) - Configure parsing behavior. See comrak's ParseOptions for more info and examples. The default value is [].
	:smart (boolean/0) - Punctuation (quotes, full-stops and hyphens) are converted into 'smart' punctuation. The default value is false.

	:default_info_string - The default info string for fenced code blocks. The default value is nil.

	:relaxed_tasklist_matching (boolean/0) - Whether or not a simple x or X is used for tasklist or any other symbol is allowed. The default value is false.

	:relaxed_autolinks (boolean/0) - Relax parsing of autolinks, allow links to be detected inside brackets and allow all url schemes. It is intended to allow a very specific type of autolink detection, such as [this http://and.com that] or {http://foo.com}, on a best can basis. The default value is true.

	:ignore_setext (boolean/0) - Ignore setext headings in input. The default value is false.

	:tasklist_in_table (boolean/0) - Parse a tasklist item if it's the only content of a table cell. The default value is false.

	:leave_footnote_definitions (boolean/0) - Leave footnote definitions inline instead of moving them to the end of the document. The default value is false.

	:escaped_char_spans (boolean/0) - Wrap escaped characters in a <span> to allow any post-processing to recognize them. The default value is false.



	:render (keyword/0) - Configure rendering behavior. See comrak's RenderOptions for more info and examples. The default value is [].
	:hardbreaks (boolean/0) - Soft line breaks in the input translate into hard line breaks in the output. The default value is false.

	:github_pre_lang (boolean/0) - GitHub-style <pre lang="xyz"> is used for fenced code blocks with info tags. The default value is false.

	:full_info_string (boolean/0) - Enable full info strings for code blocks. The default value is false.

	:width (integer/0) - The wrap column when outputting CommonMark. The default value is 0.

	:unsafe (boolean/0) - Allow rendering of raw HTML and potentially dangerous links. The default value is false.

	:escape (boolean/0) - Escape raw HTML instead of clobbering it. The default value is false.

	:list_style - Set the type of bullet list marker to use.
Either one of :dash, :plus, or :star. The default value is :dash.

	:sourcepos (boolean/0) - Include source position attributes in HTML and XML output. The default value is false.

	:escaped_char_spans (boolean/0) - Wrap escaped characters in a <span> to allow any post-processing to recognize them. The default value is false.

	:ignore_empty_links (boolean/0) - Ignore empty links in input. The default value is false.

	:gfm_quirks (boolean/0) - Enables GFM quirks in HTML output which break CommonMark compatibility. The default value is false.

	:prefer_fenced (boolean/0) - Prefer fenced code blocks when outputting CommonMark. The default value is false.

	:figure_with_caption (boolean/0) - Render the image as a figure element with the title as its caption. The default value is false.

	:tasklist_classes (boolean/0) - Add classes to the output of the tasklist extension. This allows tasklists to be styled. The default value is false.

	:ol_width (integer/0) - Render ordered list with a minimum marker width. Having a width lower than 3 doesn't do anything. The default value is 1.

	:experimental_minimize_commonmark (boolean/0) - Minimise escapes used in CommonMark output (-t commonmark) by removing each individually and seeing if the resulting document roundtrips.
Brute-force and expensive, but produces nicer output.
Note that the result may not in fact be minimal. The default value is false.



	:syntax_highlight - Apply syntax highlighting to code blocks.
  Examples:
  syntax_highlight: [formatter: {:html_inline, theme: "github_dark"}]

  syntax_highlight: [formatter: {:html_linked, theme: "github_light"}]
  See Autumn for more info and examples.
The default value is [formatter: {:html_inline, [theme: "onedark"]}].

	:sanitize - Cleans HTML using ammonia after rendering.
It's disabled by default but you can enable its conservative set of default options as:
[sanitize: MDEx.Document.default_sanitize_options()]
Or customize one of the options. For example, to disallow <a> tags:
[sanitize: [rm_tags: ["a"]]]
In the example above it will append rm_tags: ["a"] into the default set of options, essentially the same as:
sanitize = Keyword.put(MDEx.Document.default_sanitize_options(), :rm_tags, ["a"])
[sanitize: sanitize]
See the Safety section for more info.
The default value is nil.

	:streaming (boolean/0) - Enables streaming (experimental). The default value is false.



  



  
    
      
    
    
      parse_options()



        
          
        

    

  


  

      

          @type parse_options() :: [
  smart: boolean(),
  default_info_string: binary() | nil,
  relaxed_tasklist_matching: boolean(),
  relaxed_autolinks: boolean(),
  ignore_setext: boolean(),
  tasklist_in_table: boolean(),
  leave_footnote_definitions: boolean(),
  escaped_char_spans: boolean()
]


      


List of comrak parse options.
Example
MDEx.to_html!(""Hello" -- world...", parse: [smart: true])
#=> "<p>“Hello” – world…</p>"

  



  
    
      
    
    
      render_options()



        
          
        

    

  


  

      

          @type render_options() :: [
  hardbreaks: boolean(),
  github_pre_lang: boolean(),
  full_info_string: boolean(),
  width: integer(),
  unsafe: boolean(),
  escape: boolean(),
  list_style: term(),
  sourcepos: boolean(),
  escaped_char_spans: boolean(),
  ignore_empty_links: boolean(),
  gfm_quirks: boolean(),
  prefer_fenced: boolean(),
  figure_with_caption: boolean(),
  tasklist_classes: boolean(),
  ol_width: integer(),
  experimental_minimize_commonmark: boolean()
]


      


List of comrak render options.
Example
MDEx.to_html!("<script>alert('xss')</script>", render: [unsafe: true])
#=> "<script>alert('xss')</script>"

  



  
    
      
    
    
      sanitize_options()



        
          
        

    

  


  

      

          @type sanitize_options() :: [
  tags: [binary()],
  add_tags: [binary()],
  rm_tags: [binary()],
  clean_content_tags: [binary()],
  add_clean_content_tags: [binary()],
  rm_clean_content_tags: [binary()],
  tag_attributes: %{optional(binary()) => [binary()]},
  add_tag_attributes: %{optional(binary()) => [binary()]},
  rm_tag_attributes: %{optional(binary()) => [binary()]},
  tag_attribute_values: %{
    optional(binary()) => %{optional(binary()) => [binary()]}
  },
  add_tag_attribute_values: %{
    optional(binary()) => %{optional(binary()) => [binary()]}
  },
  rm_tag_attribute_values: %{
    optional(binary()) => %{optional(binary()) => [binary()]}
  },
  set_tag_attribute_values: %{
    optional(binary()) => %{optional(binary()) => binary()}
  },
  set_tag_attribute_value: %{
    optional(binary()) => %{optional(binary()) => binary()}
  },
  rm_set_tag_attribute_value: %{optional(binary()) => binary()},
  generic_attribute_prefixes: [binary()],
  add_generic_attribute_prefixes: [binary()],
  rm_generic_attribute_prefixes: [binary()],
  generic_attributes: [binary()],
  add_generic_attributes: [binary()],
  rm_generic_attributes: [binary()],
  url_schemes: [binary()],
  add_url_schemes: [binary()],
  rm_url_schemes: [binary()],
  url_relative: term() | {atom(), binary()} | {atom(), {binary(), binary()}},
  link_rel: binary() | nil,
  allowed_classes: %{optional(binary()) => [binary()]},
  add_allowed_classes: %{optional(binary()) => [binary()]},
  rm_allowed_classes: %{optional(binary()) => [binary()]},
  strip_comments: boolean(),
  id_prefix: binary() | nil
]


      


List of ammonia options.
Example
iex> MDEx.to_html!("<h1>Title</h1><p>Content</p>", sanitize: [rm_tags: ["h1"]], render: [unsafe: true])
"Title<p>Content</p>"

  



  
    
      
    
    
      selector()



        
          
        

    

  


  

      

          @type selector() :: md_node() | module() | atom() | (md_node() -> boolean())


      


Selector used to match nodes in the document.
Valid selectors can be the module or struct, an atom representing the node name, or a function that receives a node and returns a boolean.
See MDEx.Document for more info and examples.

  



  
    
      
    
    
      step()



        
          
        

    

  


  

      

          @type step() ::
  (t() -> t())
  | (t() -> {t(), Exception.t()})
  | (t() -> {module(), atom(), [term()]})


      


Step in a pipeline.
It's a function that receives a MDEx.Document.t/0 struct and must return either one of the following:
	a MDEx.Document.t/0 struct
	a tuple with a MDEx.Document.t/0 struct and an Exception.t/0 as {document, exception}
	a tuple with a module, function and arguments which will be invoked with apply/3


  



  
    
      
    
    
      syntax_highlight_options()



        
          
        

    

  


  

      

          @type syntax_highlight_options() :: [{:formatter, Autumn.formatter()}]


      


Syntax Highlight code blocks using autumn.
Example
MDEx.to_html!("""
...> ```elixir
...> {:mdex, "~> 0.1"}
...> ```
...> """, syntax_highlight: [formatter: {:html_inline, theme: "nord"}])
#=> <pre class="athl" style="color: #d8dee9; background-color: #2e3440;"><code class="language-elixir" translate="no" tabindex="0"><span class="line" data-line="1"><span style="color: #88c0d0;">&lbrace;</span><span style="color: #ebcb8b;">:mdex</span><span style="color: #88c0d0;">,</span> <span style="color: #a3be8c;">&quot;~&gt; 0.1&quot;</span><span style="color: #88c0d0;">&rbrace;</span>
#=> </span></code></pre>

  



  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Document{
  buffer: term(),
  current_steps: term(),
  halted: boolean(),
  nodes: [md_node()],
  options: options(),
  private: %{},
  registered_options: MapSet.t(),
  steps: [step()]
}


      


Tree root of a Markdown document, including all children nodes.

  


        

      

      
        Functions


        


  
    
      
    
    
      append_steps(document, steps)



        
          
        

    

  


  

      

          @spec append_steps(
  t(),
  keyword(step())
) :: t()


      


Appends steps to the end of the existing document's step list.
Examples
iex> document = MDEx.new()
iex> document = MDEx.Document.append_steps(
...>   document,
...>   enable_tables: fn doc -> MDEx.Document.put_extension_options(doc, table: true) end
...> )
iex> document
...> |> MDEx.Document.run()
...> |> MDEx.Document.get_option(:extension)
...> |> Keyword.get(:table)
true

  



  
    
      
    
    
      default_extension_options()



        
          
        

    

  


  

      

          @spec default_extension_options() :: extension_options()


      


Returns the default :extension options.
[
  phoenix_heex: false,
  cjk_friendly_emphasis: false,
  link_url_rewriter: nil,
  image_url_rewriter: nil,
  highlight: false,
  subtext: false,
  greentext: false,
  spoiler: false,
  subscript: false,
  underline: false,
  wikilinks_title_before_pipe: false,
  wikilinks_title_after_pipe: false,
  shortcodes: false,
  math_code: false,
  math_dollars: false,
  alerts: false,
  multiline_block_quotes: false,
  front_matter_delimiter: nil,
  description_lists: false,
  inline_footnotes: false,
  footnotes: false,
  header_ids: nil,
  superscript: false,
  tasklist: false,
  autolink: false,
  table: false,
  tagfilter: false,
  strikethrough: false
]

  



  
    
      
    
    
      default_options()



        
          
        

    

  


  

      

          @spec default_options() :: options()


      


Returns all default options.
[
  streaming: false,
  sanitize: nil,
  syntax_highlight: [
    formatter: {:html_inline,
     [
       header: nil,
       highlight_lines: nil,
       include_highlights: false,
       italic: false,
       pre_class: nil,
       theme: "onedark"
     ]}
  ],
  render: [
    experimental_minimize_commonmark: false,
    ol_width: 1,
    tasklist_classes: false,
    figure_with_caption: false,
    prefer_fenced: false,
    gfm_quirks: false,
    ignore_empty_links: false,
    escaped_char_spans: false,
    sourcepos: false,
    list_style: :dash,
    escape: false,
    unsafe: false,
    width: 0,
    full_info_string: false,
    github_pre_lang: false,
    hardbreaks: false
  ],
  parse: [
    escaped_char_spans: false,
    leave_footnote_definitions: false,
    tasklist_in_table: false,
    ignore_setext: false,
    relaxed_autolinks: true,
    relaxed_tasklist_matching: false,
    default_info_string: nil,
    smart: false
  ],
  extension: [
    phoenix_heex: false,
    cjk_friendly_emphasis: false,
    link_url_rewriter: nil,
    image_url_rewriter: nil,
    highlight: false,
    subtext: false,
    greentext: false,
    spoiler: false,
    subscript: false,
    underline: false,
    wikilinks_title_before_pipe: false,
    wikilinks_title_after_pipe: false,
    shortcodes: false,
    math_code: false,
    math_dollars: false,
    alerts: false,
    multiline_block_quotes: false,
    front_matter_delimiter: nil,
    description_lists: false,
    inline_footnotes: false,
    footnotes: false,
    header_ids: nil,
    superscript: false,
    tasklist: false,
    autolink: false,
    table: false,
    tagfilter: false,
    strikethrough: false
  ]
]

  



  
    
      
    
    
      default_parse_options()



        
          
        

    

  


  

      

          @spec default_parse_options() :: parse_options()


      


Returns the default :parse options.
[
  escaped_char_spans: false,
  leave_footnote_definitions: false,
  tasklist_in_table: false,
  ignore_setext: false,
  relaxed_autolinks: true,
  relaxed_tasklist_matching: false,
  default_info_string: nil,
  smart: false
]

  



  
    
      
    
    
      default_render_options()



        
          
        

    

  


  

      

          @spec default_render_options() :: render_options()


      


Returns the default :render options.
[
  experimental_minimize_commonmark: false,
  ol_width: 1,
  tasklist_classes: false,
  figure_with_caption: false,
  prefer_fenced: false,
  gfm_quirks: false,
  ignore_empty_links: false,
  escaped_char_spans: false,
  sourcepos: false,
  list_style: :dash,
  escape: false,
  unsafe: false,
  width: 0,
  full_info_string: false,
  github_pre_lang: false,
  hardbreaks: false
]

  



  
    
      
    
    
      default_sanitize_options()



        
          
        

    

  


  

      

          @spec default_sanitize_options() :: sanitize_options()


      


Returns the default :sanitize options.
[
  id_prefix: nil,
  strip_comments: true,
  rm_allowed_classes: %{},
  add_allowed_classes: %{},
  allowed_classes: %{},
  link_rel: "noopener noreferrer",
  url_relative: :passthrough,
  rm_url_schemes: [],
  add_url_schemes: [],
  url_schemes: ["bitcoin", "ftp", "ftps", "geo", "http", "https", "im", "irc",
   "ircs", "magnet", "mailto", "mms", "mx", "news", "nntp", "openpgp4fpr",
   "sip", "sms", "smsto", "ssh", "tel", "url", "webcal", "wtai", "xmpp"],
  rm_generic_attributes: [],
  add_generic_attributes: [],
  generic_attributes: ["lang", "title"],
  rm_generic_attribute_prefixes: [],
  add_generic_attribute_prefixes: [],
  generic_attribute_prefixes: [],
  rm_set_tag_attribute_value: %{},
  set_tag_attribute_value: %{},
  set_tag_attribute_values: %{},
  rm_tag_attribute_values: %{},
  add_tag_attribute_values: %{},
  tag_attribute_values: %{},
  rm_tag_attributes: %{},
  add_tag_attributes: %{},
  tag_attributes: %{
    "a" => ["href", "hreflang"],
    "bdo" => ["dir"],
    "blockquote" => ["cite"],
    "code" => ["class", "translate", "tabindex"],
    "col" => ["align", "char", "charoff", "span"],
    "colgroup" => ["align", "char", "charoff", "span"],
    "del" => ["cite", "datetime"],
    "hr" => ["align", "size", "width"],
    "img" => ["align", "alt", "height", "src", "width"],
    "ins" => ["cite", "datetime"],
    "ol" => ["start"],
    "pre" => ["class", "style"],
    "q" => ["cite"],
    "span" => ["class", "style", "data-line"],
    "table" => ["align", "char", "charoff", "summary"],
    "tbody" => ["align", "char", "charoff"],
    "td" => ["align", "char", "charoff", "colspan", "headers", "rowspan"],
    "tfoot" => ["align", "char", "charoff"],
    "th" => ["align", "char", "charoff", "colspan", "headers", "rowspan",
     "scope"],
    "thead" => ["align", "char", "charoff"],
    "tr" => ["align", "char", "charoff"]
  },
  rm_clean_content_tags: [],
  add_clean_content_tags: [],
  clean_content_tags: ["script", "style"],
  rm_tags: [],
  add_tags: [],
  tags: ["a", "abbr", "acronym", "area", "article", "aside", "b", "bdi", "bdo",
   "blockquote", "br", "caption", "center", "cite", "code", "col", "colgroup",
   "data", "dd", "del", "details", "dfn", "div", "dl", "dt", "em", "figcaption",
   "figure", "footer", "h1", "h2", "h3", "h4", "h5", "h6", "header", "hgroup",
   "hr", "i", "img", "ins", "kbd", "li", "map", "mark", "nav", "ol", "p", "pre",
   "q", "rp", "rt", "rtc", "ruby", "s", "samp", "small", "span", "strike",
   "strong", "sub", "summary", "sup", "table", "tbody", "td", "th", "thead",
   "time", "tr", "tt", "u", "ul", "var", "wbr"]
]

  



  
    
      
    
    
      default_syntax_highlight_options()



        
          
        

    

  


  

      

          @spec default_syntax_highlight_options() :: syntax_highlight_options()


      


Returns the default :syntax_highlight options.
[
  formatter: {:html_inline,
   [
     header: nil,
     highlight_lines: nil,
     include_highlights: false,
     italic: false,
     pre_class: nil,
     theme: "onedark"
   ]}
]

  



  
    
      
    
    
      fetch(document, selector)



        
          
        

    

  


  

      

          @spec fetch(t(), selector()) :: {:ok, [md_node()]} | :error


      


Callback implementation for Access.fetch/2.
See the Access section for more info.

  



  
    
      
    
    
      get_and_update(document, selector, fun)



        
          
        

    

  


  

Callback implementation for Access.get_and_update/3.
See the Access section for more info.

  



    

  
    
      
    
    
      get_option(document, key, default \\ nil)



        
          
        

    

  


  

      

          @spec get_option(t(), atom(), term()) :: term()


      


Retrieves an option value from the document.
Examples
iex> document = MDEx.new(render: [escape: true])
iex> MDEx.Document.get_option(document, :render)[:escape]
true

  



    

  
    
      
    
    
      get_private(document, key, default \\ nil)



        
          
        

    

  


  

      

          @spec get_private(t(), atom(), default) :: term() | default when default: var


      


Retrieves a private value from the document.
Examples
iex> document = MDEx.new() |> MDEx.Document.put_private(:count, 2)
iex> MDEx.Document.get_private(document, :count)
2

  



    

  
    
      
    
    
      get_sanitize_option(document, key, default \\ nil)



        
          
        

    

  


  

      

          @spec get_sanitize_option(t(), atom(), term()) :: term()


      


Retrieves one of the sanitize_options/0 options from the document.
Examples
iex> document =
...>   MDEx.new()
...>   |> MDEx.Document.put_sanitize_options(add_tags: ["x-component"])
iex> MDEx.Document.get_sanitize_option(document, :add_tags)
["x-component"]

  



  
    
      
    
    
      halt(document)



        
          
        

    

  


  

      

          @spec halt(t()) :: t()


      


Halts the document pipeline execution.
This function is used to stop the pipeline from processing any further steps. Once a pipeline
is halted, no more steps will be executed. This is useful for plugins that need to stop
processing when certain conditions are met or when an error occurs.
Examples
iex> document = MDEx.Document.halt(MDEx.new())
iex> document.halted
true

  



  
    
      
    
    
      halt(document, exception)



        
          
        

    

  


  

      

          @spec halt(t(), Exception.t()) :: {t(), Exception.t()}


      


Halts the document pipeline execution with an exception.

  



  
    
      
    
    
      is_sanitize_enabled(document)



        
          
        

    

  


  

      

          @spec is_sanitize_enabled(t()) :: boolean()


      


Returns true if the document has the :sanitize option set, otherwise false.

  



  
    
      
    
    
      parse_markdown(document, markdown)



        
          
        

    

  


    
      This function is deprecated. Use MDEx.parse_document/2 or MDEx.Document.put_markdown/1 instead.
    


  


  



  
    
      
    
    
      parse_markdown!(document, markdown)



        
          
        

    

  


    
      This function is deprecated. Use MDEx.parse_document/2 or MDEx.Document.put_markdown/1 instead.
    


  


  



    

  
    
      
    
    
      pop(document, key, default \\ nil)



        
          
        

    

  


  

Callback implementation for Access.fetch/2.
See the Access section for more info.

  



  
    
      
    
    
      prepend_steps(document, steps)



        
          
        

    

  


  

      

          @spec prepend_steps(
  t(),
  keyword(step())
) :: t()


      


Prepends steps to the beginning of the existing document's step list.

  



  
    
      
    
    
      put_extension_options(document, options)



        
          
        

    

  


  

      

          @spec put_extension_options(t(), extension_options()) :: t()


      


Updates the document's :extension options.
Examples
iex> document = MDEx.Document.put_extension_options(MDEx.new(), table: true)
iex> MDEx.Document.get_option(document, :extension)[:table]
true

  



    

  
    
      
    
    
      put_markdown(document, markdown, position \\ :bottom)



        
          
        

    

  


  

      

          @spec put_markdown(t(), String.t() | [String.t()], position :: :top | :bottom) :: t()


      


Adds markdown chunks into the document buffer.
Examples
iex> document =
...>   MDEx.new(markdown: "# First\n")
...>   |> MDEx.Document.put_markdown("# Second")
...>   |> MDEx.Document.run()
iex> document.nodes
[
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "First"}], level: 1, setext: false},
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "Second"}], level: 1, setext: false}
]

iex> document =
...>   MDEx.new(markdown: "# Last")
...>   |> MDEx.Document.put_markdown("# First\n", :top)
...>   |> MDEx.Document.run()
iex> document.nodes
[
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "First"}], level: 1, setext: false},
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "Last"}], level: 1, setext: false}
]

iex> document = MDEx.new(streaming: true) |> MDEx.Document.put_markdown("`let x =")
iex> MDEx.to_html!(document)
"<p><code>let x =</code></p>"

  



    

  
    
      
    
    
      put_node_in_document_root(document, node, position \\ :top)



        
          
        

    

  


  

      

          @spec put_node_in_document_root(t(), md_node(), position :: :top | :bottom) :: t()


      


Inserts node into the document root at the specified position.
	By default, the node is inserted at the top of the document.
	Node must be a valid fragment node like a MDEx.Heading, MDEx.HtmlBlock, etc.

Examples
iex> document =
...>   MDEx.new(markdown: "# Doc")
...>   |> MDEx.Document.append_steps(append_node: fn document ->
...>     html_block = %MDEx.HtmlBlock{literal: "<p>Hello</p>"}
...>     MDEx.Document.put_node_in_document_root(document, html_block, :bottom)
...>   end)
iex> MDEx.to_html(document, render: [unsafe: true])
{:ok, "<h1>Doc</h1>\n<p>Hello</p>"}

  



  
    
      
    
    
      put_options(document, options)



        
          
        

    

  


  

      

          @spec put_options(
  t(),
  keyword()
) :: t()


      


Merges options into the document options.
This function handles both built-in options (:extension, :parse, :render, :syntax_highlight, and :sanitize)
and user-defined options that have been registered with register_options/2.
Examples
iex> document = MDEx.Document.register_options(MDEx.new(), [:custom_option])
iex> document = MDEx.Document.put_options(document, [
...>   extension: [table: true],
...>   custom_option: "value"
...> ])
iex> MDEx.Document.get_option(document, :extension)[:table]
true
iex> MDEx.Document.get_option(document, :custom_option)
"value"
Built-in options are validated against their respective schemas:
iex> try do
...>   MDEx.Document.put_options(MDEx.new(), [extension: [invalid: true]])
...> rescue
...>   NimbleOptions.ValidationError -> :error
...> end
:error

  



  
    
      
    
    
      put_parse_options(document, options)



        
          
        

    

  


  

      

          @spec put_parse_options(t(), parse_options()) :: t()


      


Updates the document's :parse options.
Examples
iex> document = MDEx.Document.put_parse_options(MDEx.new(), smart: true)
iex> MDEx.Document.get_option(document, :parse)[:smart]
true

  



  
    
      
    
    
      put_private(document, key, value)



        
          
        

    

  


  

      

          @spec put_private(t(), atom(), term()) :: t()


      


Stores a value in the document's private storage.
Examples
iex> document = MDEx.Document.put_private(MDEx.new(), :mermaid_version, "11")
iex> MDEx.Document.get_private(document, :mermaid_version)
"11"

  



  
    
      
    
    
      put_render_options(document, options)



        
          
        

    

  


  

      

          @spec put_render_options(t(), render_options()) :: t()


      


Updates the document's :render options.
Examples
iex> document = MDEx.Document.put_render_options(MDEx.new(), escape: true)
iex> MDEx.Document.get_option(document, :render)[:escape]
true

  



  
    
      
    
    
      put_sanitize_options(document, options)



        
          
        

    

  


  

      

          @spec put_sanitize_options(t(), sanitize_options()) :: t()


      


Updates the document's :sanitize options.
Examples
iex> document = MDEx.Document.put_sanitize_options(MDEx.new(), add_tags: ["MyComponent"])
iex> MDEx.Document.get_option(document, :sanitize)[:add_tags]
["MyComponent"]

  



  
    
      
    
    
      put_syntax_highlight_options(document, options)



        
          
        

    

  


  

      

          @spec put_syntax_highlight_options(t(), syntax_highlight_options()) :: t()


      


Updates the document's :syntax_highlight options.
Examples
iex> document = MDEx.Document.put_syntax_highlight_options(MDEx.new(), formatter: :html_linked)
iex> MDEx.Document.get_option(document, :syntax_highlight)[:formatter]
:html_linked

  



  
    
      
    
    
      register_options(document, options)



        
          
        

    

  


  

      

          @spec register_options(t(), [atom()]) :: t()


      


Registers a list of valid options that can be used by steps in the document pipeline.
Examples
iex> document = MDEx.new()
iex> document = MDEx.Document.register_options(document, [:mermaid_version])
iex> document = MDEx.Document.put_options(document, mermaid_version: "11")
iex> document.options[:mermaid_version]
"11"

iex> MDEx.new(rendr: [unsafe: true])
** (ArgumentError) unknown option :rendr. Did you mean :render?

  



  
    
      
    
    
      run(document)



        
          
        

    

  


  

      

          @spec run(t()) :: t()


      


Executes the document pipeline.
This function performs some main operations:
	Processes buffered markdown: If there are any markdown chunks in the buffer (added via put_markdown/3 for example),
they are parsed and added to the document. If the document already has nodes, they are combined with the buffer.

	Completes any buffered fragments: If streaming is enabled, it completes any buffered fragments to ensure valid Markdown.

	Executes pipeline steps: All registered steps (added via append_steps/2 or prepend_steps/2) are
executed in order. Steps can transform the document or halt the pipeline.


See MDEx.new/1 for more info.
Examples
Processing buffered markdown:
iex> document =
...>   MDEx.new(markdown: "# First\n")
...>   |> MDEx.Document.put_markdown("# Second")
...>   |> MDEx.Document.run()
iex> document.nodes
[
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "First"}], level: 1, setext: false},
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "Second"}], level: 1, setext: false}
]
Executing pipeline steps:
iex> document =
...>   MDEx.new()
...>   |> MDEx.Document.append_steps(add_heading: fn doc ->
...>     heading = %MDEx.Heading{nodes: [%MDEx.Text{literal: "Intro"}], level: 1, setext: false}
...>     MDEx.Document.put_node_in_document_root(doc, heading, :top)
...>   end)
...>   |> MDEx.Document.run()
iex> document.nodes
[%MDEx.Heading{nodes: [%MDEx.Text{literal: "Intro"}], level: 1, setext: false}]
Streaming:
iex> document =
...>   MDEx.new(streaming: true, markdown: "```elixir\n")
...>   |> MDEx.Document.put_markdown("IO.inspect(:mdex)")
...>   |> MDEx.Document.run()
iex> document.nodes
[
  %MDEx.CodeBlock{
    info: "elixir",
    literal: "IO.inspect(:mdex)\n"
  }
]

  



  
    
      
    
    
      update_nodes(document, selector, fun)



        
          
        

    

  


  

      

          @spec update_nodes(t(), selector(), (md_node() -> md_node())) :: t()


      


Updates all nodes in the document that match selector.
Example
iex> markdown = """
...> # Hello
...> ## World
...> """
iex> document =
...>   MDEx.new(markdown: markdown)
...>   |> MDEx.Document.run()
...>   |> MDEx.Document.update_nodes(MDEx.Text, fn node -> %{node | literal: String.upcase(node.literal)} end)
iex> document.nodes
[
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "HELLO"}], level: 1, setext: false},
  %MDEx.Heading{nodes: [%MDEx.Text{literal: "WORLD"}], level: 2, setext: false}
]

  



  
    
      
    
    
      update_private(document, key, default, fun)



        
          
        

    

  


  

      

          @spec update_private(t(), key :: atom(), default :: term(), (term() -> term())) :: t()


      


Updates a value in the document's private storage using a function.
Examples
iex> document = MDEx.new() |> MDEx.Document.put_private(:count, 1)
iex> document = MDEx.Document.update_private(document, :count, 0, &(&1 + 1))
iex> MDEx.Document.get_private(document, :count)
2

  



  
    
      
    
    
      wrap(document)



        
          
        

    

  


  

      

          @spec wrap(t() | md_node() | [md_node()]) :: t()


      


Wraps nodes in a MDEx.Document.
	Passing an existing document returns it unchanged.
	Passing a node or list of nodes builds a new document with default options.

Examples
iex> document = MDEx.Document.wrap(MDEx.new(markdown: "# Title") |> MDEx.Document.run())
iex> document.nodes
[%MDEx.Heading{nodes: [%MDEx.Text{literal: "Title"}], level: 1, setext: false}]

iex> document = MDEx.Document.wrap(%MDEx.Text{literal: "Hello"})
iex> document.nodes
[%MDEx.Text{literal: "Hello"}]

  


        

      


  

  
    
    MDEx.Sigil - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Sigil 
    



      
Sigils for parsing and formatting Markdown between different formats.
Examples
With no modifier, ~MD defaults to converting a Markdown string into a MDEx.Document struct:
iex> import MDEx.Sigil
iex> ~MD|# Hello from `~MD` sigil|
%MDEx.Document{
  nodes: [
    %MDEx.Heading{
      nodes: [
        %MDEx.Text{literal: "Hello from "},
        %MDEx.Code{num_backticks: 1, literal: "~MD"},
        %MDEx.Text{literal: " sigil"}
      ],
      level: 1,
      setext: false
    }
  ]
}
You can also convert Markdown to HTML, JSON or XML:
iex> import MDEx.Sigil
iex> ~MD|`~MD` also converts to HTML format|HTML
"<p><code>~MD</code> also converts to HTML format</p>"

iex> import MDEx.Sigil
iex> ~MD|and to XML as well|XML
"<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE document SYSTEM "CommonMark.dtd">\n<document xmlns="http://commonmark.org/xml/1.0">\n  <paragraph>\n    <text xml:space="preserve">and to XML as well</text>\n  </paragraph>\n</document>"
Assigns in the context can be referenced in the Markdown content using <%= ... %> syntax, which is evaluated at runtime. ~MD
accepts an assigns map to pass variables to the document when rendering HTML or Markdown:
iex> import MDEx.Sigil
iex> assigns = %{lang: "Elixir"}
iex> ~MD|Running <%= @lang %>|HTML
"<p>Running Elixir</p>"

iex> import MDEx.Sigil
iex> assigns = %{lang: "Elixir"}
iex> ~MD|Running <%= @lang %>|MD
"Running Elixir"
The HEEX modifier can render component and Elixir expressions:
iex> import MDEx.Sigil
iex> assigns = %{lang: "Elixir"}
iex> rendered = ~MD|Learn <Phoenix.Component.link href="https://elixir-lang.org">{@lang}</Phoenix.Component.link>|HEEX
%Phoenix.LiveView.Rendered{...}
iex> rendered |> Phoenix.HTML.Safe.to_iodata() |> IO.iodata_to_binary()
"<p>Learn <a href="https://elixir-lang.org">Elixir</a></p>"
Modifiers
	HTML - converts Markdown or MDEx.Document to HTML

  Use EEx.SmartEngine to convert the document into HTML. It does support assigns but only the old <%= ... %> syntax,
  and it doesn't support components. It's useful if you want to generate static HTML from Markdown or don't need components or don't want to define an assigns variable (it's optional).
  Prefer using the HEEX modifier if you need full Phoenix LiveView support with components and expressions.
	HEEX - converts Markdown to Phoenix HEEx for LiveView templates

  Enables LiveView components, phx-* bindings, and Elixir expressions inside Markdown.
  Requires Phoenix LiveView and an assigns variable in scope.
  See Phoenix LiveView HEEx example for a demo.
	JSON - converts Markdown or MDEx.Document to JSON

	XML - converts Markdown or MDEx.Document to XML

	MD - converts MDEx.Document to Markdown and can interpolate assigns in Markdown strings

	DELTA - converts Markdown or MDEx.Document to Quill Delta format

	No modifier (default) - parses a Markdown string into a MDEx.Document struct


Note that you should import MDEx.Sigil to use the ~MD sigil.
HTML/EEx Format Order
In order to generate the final result, the Markdown string or MDEx.Document (initial input) is first converted into a static HTML without escaping
the content, then the HTML is passed to the appropriate engine to generate the final output.
Assigns and Expressions
The HTML and HEEX modifiers evaluate assigns and expressions at runtime.
Other modifiers preserve them as literal text in the output.
Expressions inside code blocks are preserved
Expressions like <%= ... %> or { ... } inside code blocks are escaped, not evaluated:
assigns = %{title: "Hello"}
~MD"`{@title}`"HTML
#=> "<p><code>&lbrace;@title&rbrace;</code></p>"
Options
All modifiers use these options by default:
[
  streaming: false,
  sanitize: nil,
  syntax_highlight: [
    formatter: {:html_inline,
     [
       header: nil,
       highlight_lines: nil,
       include_highlights: false,
       italic: false,
       pre_class: nil,
       theme: "onedark"
     ]}
  ],
  extension: [
    cjk_friendly_emphasis: false,
    link_url_rewriter: nil,
    image_url_rewriter: nil,
    highlight: false,
    subtext: false,
    greentext: false,
    subscript: false,
    wikilinks_title_before_pipe: false,
    wikilinks_title_after_pipe: false,
    front_matter_delimiter: nil,
    inline_footnotes: false,
    header_ids: nil,
    tagfilter: false,
    strikethrough: true,
    table: true,
    autolink: false,
    tasklist: true,
    superscript: true,
    footnotes: true,
    description_lists: true,
    multiline_block_quotes: true,
    alerts: true,
    math_dollars: true,
    math_code: true,
    shortcodes: true,
    underline: true,
    spoiler: true,
    phoenix_heex: true
  ],
  parse: [
    escaped_char_spans: false,
    leave_footnote_definitions: false,
    tasklist_in_table: false,
    ignore_setext: false,
    default_info_string: nil,
    smart: false,
    relaxed_tasklist_matching: true,
    relaxed_autolinks: true
  ],
  render: [
    experimental_minimize_commonmark: false,
    ol_width: 1,
    tasklist_classes: false,
    figure_with_caption: false,
    prefer_fenced: false,
    gfm_quirks: false,
    ignore_empty_links: false,
    escaped_char_spans: false,
    sourcepos: false,
    list_style: :dash,
    width: 0,
    hardbreaks: false,
    unsafe: true,
    escape: false,
    github_pre_lang: true,
    full_info_string: true
  ]
]
If you need a different set of options, you can call the regular functions in MDEx to pass the options you need.

      


      
        Summary


  
    Functions
  


    
      
        sigil_M(arg, modifiers)

          deprecated

      


    


    
      
        sigil_MD(arg, modifiers)

      


        The ~MD sigil converts a Markdown string or a %MDEx.Document{} struct to either one of these formats: MDEx.Document, Markdown (CommonMark), HTML, JSON or XML.



    


    
      
        sigil_m(arg, modifiers)

          deprecated

      


    





      


      
        Functions


        


  
    
      
    
    
      sigil_M(arg, modifiers)


        (macro)


        
          
        

    

  


    
      This macro is deprecated. Use the ~MD sigil instead.
    


  


  



  
    
      
    
    
      sigil_MD(arg, modifiers)


        (macro)


        
          
        

    

  


  

The ~MD sigil converts a Markdown string or a %MDEx.Document{} struct to either one of these formats: MDEx.Document, Markdown (CommonMark), HTML, JSON or XML.
Assigns
You can define a variable assigns in the context of the sigil to evaluate expressions:
iex> assigns = %{lang: ":elixir"}
iex> ~MD|`lang = <%= @lang %>`|HTML
"<p><code>lang = :elixir</code></p>"

iex> assigns = %{lang: ":elixir"}
iex> ~MD|`lang = <%= @lang %>`|MD
"`lang = :elixir`"
Note that only the HTML and MD modifiers support assigns.
Examples
Markdown to MDEx.Document
iex> ~MD[`lang = :elixir`]
%MDEx.Document{nodes: [%MDEx.Paragraph{nodes: [%MDEx.Code{num_backticks: 1, literal: "lang = :elixir"}]}]}
Markdown to HTML
iex> ~MD[`lang = :elixir`]HTML
"<p><code>lang = :elixir</code></p>\n"
Markdown to JSON
iex> ~MD[`lang = :elixir`]JSON
"{"nodes":[{"nodes":[{"literal":"lang = :elixir","num_backticks":1,"node_type":"MDEx.Code"}],"node_type":"MDEx.Paragraph"}],"node_type":"MDEx.Document"}"
Markdown to XML
iex> ~MD[`lang = :elixir`]XML
"<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE document SYSTEM "CommonMark.dtd">
<document xmlns="http://commonmark.org/xml/1.0">
  <paragraph>
    <code xml:space="preserve">lang = :elixir</code>
  </paragraph>
</document>
"
MDEx.Document to Markdown
iex> ~MD|%MDEx.Document{nodes: [%MDEx.Paragraph{nodes: [%MDEx.Code{num_backticks: 1, literal: "lang = :elixir"}]}]}|MD
"`lang = :elixir`"
Markdown to Quill Delta
iex> ~MD|`lang = :elixir`|DELTA
[%{"insert" => "lang = :elixir", "attributes" => %{"code" => true}}, %{"insert" => "\n"}]
Elixir Expressions
iex> ~MD[## Section <%= 1 + 1 %>]HTML
"<h2>Section 2</h2>"

  



  
    
      
    
    
      sigil_m(arg, modifiers)


        (macro)


        
          
        

    

  


    
      This macro is deprecated. Use the ~MD sigil instead.
    


  


  


        

      


  

  
    
    MDEx.Alert - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Alert 
    



      
GitHub and GitLab style alerts / admonitions.
See GitHub
and GitLab docs.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Alert{
  alert_type: :note | :tip | :important | :warning | :caution,
  fence_length: non_neg_integer(),
  fence_offset: non_neg_integer(),
  multiline: boolean(),
  nodes: [MDEx.Document.md_node()],
  title: String.t() | nil
}


      



  


        

      


  

  
    
    MDEx.BlockQuote - MDEx v0.11.0
    
    

    


  
  

    
MDEx.BlockQuote 
    



      
A block quote marker.
Spec: https://github.github.com/gfm/#block-quotes

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.BlockQuote{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Code - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Code 
    



      
Inline code span.
Spec: https://github.github.com/gfm/#code-spans

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Code{literal: String.t(), num_backticks: non_neg_integer()}


      



  


        

      


  

  
    
    MDEx.CodeBlock - MDEx v0.11.0
    
    

    


  
  

    
MDEx.CodeBlock 
    



      
A code block, fenced or indented.
Spec: https://github.github.com/gfm/#fenced-code-blocks and https://github.github.com/gfm/#indented-code-blocks

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.CodeBlock{
  closed: boolean(),
  fence_char: String.t(),
  fence_length: non_neg_integer(),
  fence_offset: non_neg_integer(),
  fenced: boolean(),
  info: String.t(),
  literal: String.t(),
  nodes: [MDEx.Document.md_node()]
}


      



  


        

      


  

  
    
    MDEx.DescriptionDetails - MDEx v0.11.0
    
    

    


  
  

    
MDEx.DescriptionDetails 
    



      
Description details of a description item.
See MDEx.DescriptionList

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.DescriptionDetails{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.DescriptionItem - MDEx v0.11.0
    
    

    


  
  

    
MDEx.DescriptionItem 
    



      
A description item of a description list.
See MDEx.DescriptionList

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.DescriptionItem{
  marker_offset: non_neg_integer(),
  nodes: [MDEx.Document.md_node()],
  padding: non_neg_integer(),
  tight: boolean()
}


      



  


        

      


  

  
    
    MDEx.DescriptionList - MDEx v0.11.0
    
    

    


  
  

    
MDEx.DescriptionList 
    



      
A description list.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.DescriptionList{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.DescriptionTerm - MDEx v0.11.0
    
    

    


  
  

    
MDEx.DescriptionTerm 
    



      
A description term of a description item.
See MDEx.DescriptionList

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.DescriptionTerm{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Emph - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Emph 
    



      
Emphasis.
Spec: https://github.github.com/gfm/#emphasis-and-strong-emphasis

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Emph{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Escaped - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Escaped 
    



      
An escaped character.
Spec: https://github.github.com/gfm/#backslash-escapes

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Escaped{}


      



  


        

      


  

  
    
    MDEx.EscapedTag - MDEx v0.11.0
    
    

    


  
  

    
MDEx.EscapedTag 
    



      
Escaped tag.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.EscapedTag{literal: String.t(), nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.FootnoteDefinition - MDEx v0.11.0
    
    

    


  
  

    
MDEx.FootnoteDefinition 
    



      
A footnote definition.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.FootnoteDefinition{
  name: String.t(),
  nodes: [MDEx.Document.md_node()],
  total_references: non_neg_integer()
}


      



  


        

      


  

  
    
    MDEx.FootnoteReference - MDEx v0.11.0
    
    

    


  
  

    
MDEx.FootnoteReference 
    



      
The reference to a footnote.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.FootnoteReference{
  ix: non_neg_integer(),
  name: String.t(),
  ref_num: non_neg_integer(),
  texts: [{String.t(), non_neg_integer()}]
}


      



  


        

      


  

  
    
    MDEx.FrontMatter - MDEx v0.11.0
    
    

    


  
  

    
MDEx.FrontMatter 
    



      
Document metadata.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.FrontMatter{literal: String.t()}


      



  


        

      


  

  
    
    MDEx.Heading - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Heading 
    



      
A heading, either ATX or setext.
ATX is the most common heading, a line starting with 1-6 # characters,
and setext is represented as one or more lines followed by a heading underline as === or ---.
Spec: https://github.github.com/gfm/#atx-headings and https://github.github.com/gfm/#setext-headings

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Heading{
  closed: boolean(),
  level: pos_integer(),
  nodes: [MDEx.Document.md_node()],
  setext: boolean()
}


      



  


        

      


  

  
    
    MDEx.HeexBlock - MDEx v0.11.0
    
    

    


  
  

    
MDEx.HeexBlock 
    



      
Phoenix LiveView HEEx block-level element.
Used for HEEx components, directives, comments, and expressions in Markdown.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.HeexBlock{
  literal: String.t(),
  node: String.t(),
  nodes: [MDEx.Document.md_node()]
}


      



  


        

      


  

  
    
    MDEx.HeexInline - MDEx v0.11.0
    
    

    


  
  

    
MDEx.HeexInline 
    



      
Phoenix LiveView HEEx inline element.
Used for inline HEEx expressions in Markdown.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.HeexInline{literal: String.t()}


      



  


        

      


  

  
    
    MDEx.Highlight - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Highlight 
    



      
Highlight (mark) text.
Uses double equals syntax: ==highlighted text==

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Highlight{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.HtmlBlock - MDEx v0.11.0
    
    

    


  
  

    
MDEx.HtmlBlock 
    



      
A HTML block.
Spec: https://github.github.com/gfm/#html-blocks

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.HtmlBlock{
  block_type: non_neg_integer(),
  literal: String.t(),
  nodes: [MDEx.Document.md_node()]
}


      



  


        

      


  

  
    
    MDEx.HtmlInline - MDEx v0.11.0
    
    

    


  
  

    
MDEx.HtmlInline 
    



      
Raw HTML.
Spec: https://github.github.com/gfm/#raw-html

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.HtmlInline{literal: String.t()}


      



  


        

      


  

  
    
    MDEx.Image - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Image 
    



      
An image.
Spec: https://github.github.com/gfm/#images

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Image{
  nodes: [MDEx.Document.md_node()],
  title: String.t() | nil,
  url: String.t()
}


      



  


        

      


  

  
    
    MDEx.LineBreak - MDEx v0.11.0
    
    

    


  
  

    
MDEx.LineBreak 
    



      
A hard line break.
Spec: https://github.github.com/gfm/#hard-line-breaks

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.LineBreak{}


      



  


        

      


  

  
    
    MDEx.Link - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Link 
    



      
Link to a URL.
Spec: https://github.github.com/gfm/#links

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Link{
  nodes: [MDEx.Document.md_node()],
  title: String.t() | nil,
  url: String.t()
}


      



  


        

      


  

  
    
    MDEx.List - MDEx v0.11.0
    
    

    


  
  

    
MDEx.List 
    



      
A List that contains MDEx.ListItem.
Spec: https://github.github.com/gfm/#lists

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.List{
  bullet_char: String.t(),
  delimiter: :period | :paren,
  is_task_list: boolean(),
  list_type: :bullet | :ordered,
  marker_offset: non_neg_integer(),
  nodes: [MDEx.Document.md_node()],
  padding: non_neg_integer(),
  start: non_neg_integer(),
  tight: boolean()
}


      



  


        

      


  

  
    
    MDEx.ListItem - MDEx v0.11.0
    
    

    


  
  

    
MDEx.ListItem 
    



      
A List Item of a MDEx.List.
Spec: https://github.github.com/gfm/#list-items

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.ListItem{
  bullet_char: String.t(),
  delimiter: :period | :paren,
  is_task_list: boolean(),
  list_type: :bullet | :ordered,
  marker_offset: non_neg_integer(),
  nodes: [MDEx.Document.md_node()],
  padding: non_neg_integer(),
  start: non_neg_integer(),
  tight: boolean()
}


      



  


        

      


  

  
    
    MDEx.Math - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Math 
    



      
Inline math span.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Math{
  display_math: boolean(),
  dollar_math: boolean(),
  literal: String.t()
}


      



  


        

      


  

  
    
    MDEx.MultilineBlockQuote - MDEx v0.11.0
    
    

    


  
  

    
MDEx.MultilineBlockQuote 
    



      
A multiline block quote.
Spec: https://github.github.com/gfm/#block-quotes

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.MultilineBlockQuote{
  fence_length: non_neg_integer(),
  fence_offset: non_neg_integer(),
  nodes: [MDEx.Document.md_node()]
}


      



  


        

      


  

  
    
    MDEx.Paragraph - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Paragraph 
    



      
A paragraph that contains nodes.
Spec: https://github.github.com/gfm/#paragraphs

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Paragraph{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Raw - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Raw 
    



      
A Raw output node. This will be inserted verbatim into CommonMark and HTML output. It can only be created programmatically, and is never parsed from input.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Raw{literal: String.t()}


      



  


        

      


  

  
    
    MDEx.ShortCode - MDEx v0.11.0
    
    

    


  
  

    
MDEx.ShortCode 
    



      
Emoji generated from a shortcode.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.ShortCode{code: String.t(), emoji: String.t()}


      



  


        

      


  

  
    
    MDEx.SoftBreak - MDEx v0.11.0
    
    

    


  
  

    
MDEx.SoftBreak 
    



      
A soft line break.
Spec: https://github.github.com/gfm/#soft-line-breaks

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.SoftBreak{}


      



  


        

      


  

  
    
    MDEx.SpoileredText - MDEx v0.11.0
    
    

    


  
  

    
MDEx.SpoileredText 
    



      
Spoilered text.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.SpoileredText{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Strikethrough - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Strikethrough 
    



      
Strikethrough.
Spec: https://github.github.com/gfm/#strikethrough-extension-

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Strikethrough{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Strong - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Strong 
    



      
Strong emphasis.
Spec: https://github.github.com/gfm/#emphasis-and-strong-emphasis

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Strong{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Subscript - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Subscript 
    



      
Subscript.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Subscript{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Superscript - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Superscript 
    



      
Superscript.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Superscript{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.Table - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Table 
    



      
A table with rows and columns.
Spec: https://github.github.com/gfm/#tables-extension-

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Table{
  alignments: [:none | :left | :right | :center],
  nodes: [MDEx.Document.md_node()],
  num_columns: non_neg_integer(),
  num_nonempty_cells: non_neg_integer(),
  num_rows: non_neg_integer()
}


      



  


        

      


  

  
    
    MDEx.TableCell - MDEx v0.11.0
    
    

    


  
  

    
MDEx.TableCell 
    



      
A table cell inside a table row.
See MDEx.Table

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.TableCell{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.TableRow - MDEx v0.11.0
    
    

    


  
  

    
MDEx.TableRow 
    



      
A table row.
See MDEx.Table

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.TableRow{header: boolean(), nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.TaskItem - MDEx v0.11.0
    
    

    


  
  

    
MDEx.TaskItem 
    



      
A task item inside a list.
Spec: https://github.github.com/gfm/#task-list-items-extension-

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.TaskItem{
  checked: boolean(),
  marker: String.t(),
  nodes: [MDEx.Document.md_node()]
}


      



  


        

      


  

  
    
    MDEx.Text - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Text 
    



      
Literal text.
Spec: https://github.github.com/gfm/#textual-content

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Text{literal: String.t()}


      



  


        

      


  

  
    
    MDEx.ThematicBreak - MDEx v0.11.0
    
    

    


  
  

    
MDEx.ThematicBreak 
    



      
A break between lines.
Spec: https://github.github.com/gfm/#thematic-breaks

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.ThematicBreak{}


      



  


        

      


  

  
    
    MDEx.Underline - MDEx v0.11.0
    
    

    


  
  

    
MDEx.Underline 
    



      
Underline.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.Underline{nodes: [MDEx.Document.md_node()]}


      



  


        

      


  

  
    
    MDEx.WikiLink - MDEx v0.11.0
    
    

    


  
  

    
MDEx.WikiLink 
    



      
A link in the form of a wiki link.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.WikiLink{nodes: [MDEx.Document.md_node()], url: String.t()}


      



  


        

      


  

  
    
    MDEx.DecodeError - MDEx v0.11.0
    
    

    


  
  

    
MDEx.DecodeError exception
    



      
Failed to decode a Document.
Usually this means that a MDEx.Document is invalid and cannot be decoded.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        message(decode_error)

      


        Callback implementation for Exception.message/1.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.DecodeError{
  __exception__: true,
  document: term(),
  error: Exception.t()
}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      message(decode_error)



        
          
        

    

  


  

Callback implementation for Exception.message/1.

  


        

      


  

  
    
    MDEx.InvalidInputError - MDEx v0.11.0
    
    

    


  
  

    
MDEx.InvalidInputError exception
    



      
Given input is invalid.
Usually this means that the input is not a string or a MDEx.Document struct.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        message(invalid_input_error)

      


        Callback implementation for Exception.message/1.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.InvalidInputError{__exception__: true, found: term()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      message(invalid_input_error)



        
          
        

    

  


  

Callback implementation for Exception.message/1.

  


        

      


  

  
    
    MDEx.InvalidSelector - MDEx v0.11.0
    
    

    


  
  

    
MDEx.InvalidSelector exception
    



      
Invalid Access key selector.

      


      
        Summary


  
    Types
  


    
      
        t()

      


    





  
    Functions
  


    
      
        message(invalid_selector)

      


        Callback implementation for Exception.message/1.



    





      


      
        Types


        


  
    
      
    
    
      t()



        
          
        

    

  


  

      

          @type t() :: %MDEx.InvalidSelector{__exception__: true, selector: term()}


      



  


        

      

      
        Functions


        


  
    
      
    
    
      message(invalid_selector)



        
          
        

    

  


  

Callback implementation for Exception.message/1.

  


        

      


  
OEBPS/dist/epub-4WIP524F.js
