

 Measurements

 v0.1.2

 Table of contents

 	Measurements

 	Demo

 	Modules

 	Measurements

 	Measurements.Dimension

 	Measurements.Scale

 	Measurements.Unit

 	Measurements.Unit.Length

 	Measurements.Unit.Time

Measurements

Measurements is a library for computation of physical quantities (time, distances, etc.) in Elixir.
A quantity is represented by a struct with a value, a unit and a positive error.
Error is propagated through calculations, and unit prevent collision of unrelated quantities.
Automatic conversion of unit (in scale) is supported.
Conversion of unit, across dimension, could ultimately be supported.
But is a very large endaevour and the package API is not stable enough just yet.
See https://en.wikipedia.org/wiki/Dimensional_analysis as reference.
Dimensions supported:
	[X] Time (T)
	[X] Length (L)
	[] Mass (M)
	[] Electric Current (I)
	[] Absolute Temperature (Θ)
	[] Amount of Substance (N)
	[] Luminous Intensity (J)

Installation
If available in Hex, the package can be installed
by adding measurements to your list of dependencies in mix.exs:
def deps do
 [
 {:measurements, "~> 0.1.2"}
]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/measurements.
Testing in Iex
$ mix test --trace

Or for a more interactive approach:
$ iex -S mix

Testing in Livebook
Install livebook as an escript and start it:
livebook server
From there you can open DEMO.livemd to see measurements in action, and try it for yourself !
How to develop
Optionally, setup direnv with asdf.
This will allow to work with another elixir version than your system's one.
Then:
	install it
	run the tests
	check the livebook
	browse the docs
	have a look at the code

Want to change something ?
	open an issue to discuss
	Make it work
	open a PR to show off the work
	Make it beautiful
	Let's merge it!
	Make it fast

Demo

Mix.install([
 {:measurements, path: "."},
 {:vega_lite, "~> 0.1.6"},
 {:kino_vega_lite, "~> 0.1.7"}
])

alias VegaLite, as: Vl
Introduction
measurements is a package helping with manipulation of real physics quantities.
Usage
A measurement is just a struct that can be easily created like so:
Measurements.new(4, :kilometer)
If desired, an associated error can be added onto that measurement
Measurements.new(300, :second) |> Measurements.add_error(4, :millisecond)
A measurement can be converted to another unit of the same dimension
Measurements.new(300, :second, 5) |> Measurements.best_convert(:microsecond)
The best unit is chosen to avoid loosing precision. If the target unit is not better than the current one, the conversion is simply ignored.
Measurements.new(300, :millisecond, 5) |> Measurements.best_convert(:second)
This allows to operate on measurements without knowing their precision, but remaining confident no precision in lost in various computations.
Arithmetic
Addition
Measurements support addition with automated conversion, provided the unit dimension matches.
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)

Measurements.sum(m1, m2)
Otherwise an explicit error with clean measurement representation is displayed:
m1 = Measurements.new(4, :second) |> Measurements.add_error(5, :millisecond)
m2 = Measurements.new(543, :micrometer)
Measurements.sum(m1, m2)
Scaling
Scaling the Measurement by a constant is also supported. Note the scale also applies to the error.
m1 = Measurements.new(4, :second) |> Measurements.add_error(5, :millisecond)
Measurements.scale(m1, 60)
Difference
Therefore difference of two measurements with unit of same dimension is also supported.
A more convenient delta/2 function is provided for this purpose.
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)

Measurements.delta(m1, m2)
Ratio
The ratio of two measurement is also supported.
The result will be a measurement, with its unit adjusted.
Therefore the nil Unit is just a constant, with potentially an error...
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)
Measurements.ratio(m1, m2)
We can verify this result, and maybe get an exact match, even if the value is a float:
[
 Measurements.ratio(m1, m2).value * 0.543 == 4,
 # relative error recovery is a bit more involved.
 # Refer to Error propagation theory when in doubt (TODO link?)
 Measurements.ratio(m1, m2).error * 543 / 2 == Measurements.ratio(m1, m2).value
]
TODO : Product
This will require more involved unit dimension manipulation...
Discrete Calculus
With the capabilities in Measurements so far, we can already implement some basic discrete calculus on physical quantities.
Local Discrete Derivative
TODO
Local Discrete Integral
TODO
Iterative Control

Measurements

Documentation for Measurements.
A measurement is a quantity represented, by a value, a unit and an error.
The value is usually an integer to maintain maximum precision,
but can also be a float if required.
Examples
iex> Measurements.time(42, :second)
%Measurements{
 value: 42,
 unit: :second,
 error: 0
}

 Anchor for this section

 Summary

 Types

 t()

 Measurement Type

 Functions

 add_error(value, err, unit)

 Add error to a Measurement.

 best_convert(m, unit)

 Convert the measurement to the new unit, if the new unit is more precise.

 delta(m1, m2)

 The difference of two measurements, with implicit unit conversion.

 length(v, unit, err \\ 0)

 Length Measurement.

 new(v, unit, err \\ 0)

 Generic Measurement. Unit indicates the dimension.

 ratio(m1, m2)

 The ratio of two measurements, with implicit unit conversion.

 scale(m1, n)

 Scales a measurement by a number.

 sum(m1, m2)

 The sum of multiple measurements, with implicit unit conversion.

 time(v, unit, err \\ 0)

 Time Measurement.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Measurements{
 error: non_neg_integer(),
 unit: Measurements.Unit.t(),
 value: integer()
}

Measurement Type

 Anchor for this section

Functions

 Link to this function

 add_error(value, err, unit)

 View Source

 @spec add_error(t(), integer(), Measurements.Unit.t()) :: t()

Add error to a Measurement.
The error is symmetric and always represented by a positive number.
The measurement unit is converted if needed to not loose precision.

 examples

 Examples

iex> Measurements.time(42, :second) |> Measurements.add_error(-4, :millisecond)
%Measurements{
 value: 42_000,
 unit: :millisecond,
 error: 4
}

 Link to this function

 best_convert(m, unit)

 View Source

 @spec best_convert(t(), Measurements.Unit.t()) :: t()

Convert the measurement to the new unit, if the new unit is more precise.
This will pick the most precise between the measurement's unit and the new unit.
Then it will convert the measurement to the chosen unit.
If no conversion is possible, the original measurement is returned.

 examples

 Examples

iex> Measurements.time(42, :second) |> Measurements.add_error(1, :second) |> Measurements.best_convert(:millisecond)
%Measurements{value: 42_000, unit: :millisecond, error: 1_000}

iex> Measurements.time(42, :millisecond) |> Measurements.add_error(1, :millisecond) |> Measurements.best_convert(:second)
%Measurements{value: 42, unit: :millisecond, error: 1}

 Link to this function

 delta(m1, m2)

 View Source

The difference of two measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work.
Error will be propagated (ie compounded).

 examples

 Examples

iex> m1 = Measurements.time(42, :second) |> Measurements.add_error(1, :second)
iex> m2 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.delta(m1, m2)
%Measurements{
 value: 41_457,
 unit: :millisecond,
 error: 1_003
}

 Link to this function

 length(v, unit, err \\ 0)

 View Source

 @spec length(integer(), Measurements.Unit.t(), integer()) :: t()

Length Measurement.

 examples

 Examples

iex> Measurements.length(42, :meter)
%Measurements{
 value: 42,
 unit: :meter
}

 Link to this function

 new(v, unit, err \\ 0)

 View Source

 @spec new(integer(), Measurements.Unit.t(), integer()) :: t()

Generic Measurement. Unit indicates the dimension.

 examples

 Examples

iex> Measurements.new(42, :meter)
%Measurements{
 value: 42,
 unit: :meter
}

 Link to this function

 ratio(m1, m2)

 View Source

The ratio of two measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work, currently.
Error will be propagated (ie relatively compounded) as an int if possible.

 examples

 Examples

iex> m1 = Measurements.time(300, :second) |> Measurements.add_error(1, :second)
iex> m2 = Measurements.time(60_000, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.ratio(m1, m2)
%Measurements{
 value: 5,
 unit: nil,
 error: 0.01691666666666667
}

 Link to this function

 scale(m1, n)

 View Source

Scales a measurement by a number.
No unit conversion happens at this stage for simplicity, and to keep the scale of the resulting value obvious.
Error will be scaled by the same number, but always remains positive.

 examples

 Examples

 iex> m1 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
 iex> Measurements.scale(m1, 10)
 %Measurements{
 value: 5430,
 unit: :millisecond,
 error: 30
 }

 Link to this function

 sum(m1, m2)

 View Source

The sum of multiple measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work.
Error will be propagated.

 examples

 Examples

iex> m1 = Measurements.time(42, :second) |> Measurements.add_error(1, :second)
iex> m2 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.sum(m1, m2)
%Measurements{
 value: 42_543,
 unit: :millisecond,
 error: 1_003
}

 Link to this function

 time(v, unit, err \\ 0)

 View Source

 @spec time(integer(), Measurements.Unit.t(), integer()) :: t()

Time Measurement.

 examples

 Examples

iex> Measurements.time(42, :second)
%Measurements{
 value: 42,
 unit: :second
}

Measurements.Dimension

 Measurements.Dimension deals with the dimension of a unit and related conversion

 Anchor for this section

 Summary

 Types

 t()

 Dimension Type

 Functions

 new()

 prod(d1, d2)

 ratio(d1, d2)

 with_current(d, n)

 with_length(d, n)

 with_lintensity(d, n)

 with_mass(d, n)

 with_substance(d, n)

 with_temperature(d, n)

 with_time(d, n)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Measurements.Dimension{
 current: integer(),
 length: integer(),
 lintensity: integer(),
 mass: integer(),
 substance: integer(),
 temperature: integer(),
 time: integer()
}

Dimension Type

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Link to this function

 prod(d1, d2)

 View Source

 Link to this function

 ratio(d1, d2)

 View Source

 Link to this function

 with_current(d, n)

 View Source

 Link to this function

 with_length(d, n)

 View Source

 Link to this function

 with_lintensity(d, n)

 View Source

 Link to this function

 with_mass(d, n)

 View Source

 Link to this function

 with_substance(d, n)

 View Source

 Link to this function

 with_temperature(d, n)

 View Source

 Link to this function

 with_time(d, n)

 View Source

Measurements.Scale

 Measurements.Scale deals with the scale of a unit and related conversion

 Anchor for this section

 Summary

 Types

 t()

 Scale Type

 Functions

 convert(scale)

 from_value(value, scale \\ %__MODULE__{})

 new(magnitude \\ 0, coefficient \\ 1)

 prod(s1, s2)

 ratio(s1, s2)

 to_value(scale)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Measurements.Scale{coefficient: integer(), magnitude: integer()}

Scale Type

 Anchor for this section

Functions

 Link to this function

 convert(scale)

 View Source

 Link to this function

 from_value(value, scale \\ %__MODULE__{})

 View Source

 Link to this function

 new(magnitude \\ 0, coefficient \\ 1)

 View Source

 Link to this function

 prod(s1, s2)

 View Source

 Link to this function

 ratio(s1, s2)

 View Source

 Link to this function

 to_value(scale)

 View Source

 @spec to_value(t()) :: integer()

Measurements.Unit

Documentation for Measurements.Unit.
A unit is represented by an atom. Ref: https://en.wikipedia.org/wiki/International_System_of_Units
There exist multiple submodules defining the various units:
	Time
	TODO !!

Internally, a unit relies on Scale and Dimension to determine:
	which conversion is allowed or not.
	which unit is better suited to a value.

But a user does not need to know about it, it will be managed automatically, to minimize loss of precision,
and keep the Measurement value in the integer range as much as possible.
Examples
iex> Measurements.Unit.time(:second)
{:ok, :second}

iex> Measurements.Unit.min(:second, :nanosecond)
{:ok, :nanosecond}

iex> {:ok, converter} = Measurements.Unit.convert(:second, :millisecond)
iex> converter.(42)
42_000

 Anchor for this section

 Summary

 Types

 t()

 Unit Type

 value()

 Functions

 convert(from_unit, to_unit)

 Conversion algorithm from a unit to another.

 dimension(unit)

 The dimension of the unit

 length(unit, power_ten_scale \\ 0)

 Normalizes a custom length unit to a known one

 max(u1, u2)

 finds out, for two units of the same dimension, which unit is more (in scale) than the other.
This means the returned unit will be the least precise

 min(u1, u2)

 finds out, for two units of the same dimension, which unit is less (in scale) than the other.
This means the returned unit will be the most precise

 module(unit)

 Returns the module where this unit is defined.

 new(unit)

 Normalizes a known unit, of any dimension

 scale(unit)

 time(unit, power_ten_scale \\ 0)

 Normalizes a custom time unit to a known one.

 to_string(unit)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: atom()

Unit Type

 Link to this type

 value()

 View Source

 @type value() :: integer()

 Anchor for this section

Functions

 Link to this function

 convert(from_unit, to_unit)

 View Source

 @spec convert(t(), t()) :: {:ok, (value() -> value())} | {:error, String.t()}

Conversion algorithm from a unit to another.
Will find out which dimension the unnit belongs to, and if a conversion is possible.

 Link to this function

 dimension(unit)

 View Source

 @spec dimension(atom()) :: {:ok, Dimension.t()} | {:error, term()}

The dimension of the unit

 Link to this function

 length(unit, power_ten_scale \\ 0)

 View Source

 @spec length(atom(), integer()) :: {:ok, t()} | {:error, (value() -> value()), t()}

Normalizes a custom length unit to a known one

 Link to this function

 max(u1, u2)

 View Source

 @spec max(t(), t()) :: t()

finds out, for two units of the same dimension, which unit is more (in scale) than the other.
This means the returned unit will be the least precise

 Link to this function

 min(u1, u2)

 View Source

 @spec min(t(), t()) :: t()

finds out, for two units of the same dimension, which unit is less (in scale) than the other.
This means the returned unit will be the most precise

 Link to this function

 module(unit)

 View Source

 @spec module(atom()) :: atom()

Returns the module where this unit is defined.
Indicates which implementation to call for normalization, conversion, etc.

 Link to this function

 new(unit)

 View Source

 @spec new(atom()) :: {:ok, t()} | {:error, (value() -> value()), t()}

Normalizes a known unit, of any dimension

 Link to this function

 scale(unit)

 View Source

 @spec scale(atom()) :: {:ok, Measurements.Scale.t()} | {:error, term()}

 Link to this function

 time(unit, power_ten_scale \\ 0)

 View Source

 @spec time(atom(), integer()) :: {:ok, t()} | {:error, (value() -> value()), t()}

Normalizes a custom time unit to a known one.

 Link to this function

 to_string(unit)

 View Source

 @spec to_string(atom()) :: String.t()

Measurements.Unit.Length

 Measurements.Unit.Length deals with length-related units.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 __units()

 macro used for reflection at compile time : which units are usable with this module.

 kilometer()

 meter()

 micrometer()

 millimeter()

 nanometer()

 to_string(unit)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: atom()

 Anchor for this section

Functions

 Link to this macro

 __units()

 View Source

 (macro)

macro used for reflection at compile time : which units are usable with this module.

 Link to this macro

 kilometer()

 View Source

 (macro)

 Link to this macro

 meter()

 View Source

 (macro)

 Link to this macro

 micrometer()

 View Source

 (macro)

 Link to this macro

 millimeter()

 View Source

 (macro)

 Link to this macro

 nanometer()

 View Source

 (macro)

 Link to this function

 to_string(unit)

 View Source

 @spec to_string(atom()) :: String.t()

Measurements.Unit.Time

 Measurements.Unit.Time deals with time-related units.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 __units()

 macro used for reflection at compile time: which units are usable with this module.

 gigahertz()

 hertz()

 kilohertz()

 megahertz()

 microsecond()

 millisecond()

 nanosecond()

 second()

 to_string(unit)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: atom() | non_neg_integer()

 Anchor for this section

Functions

 Link to this macro

 __units()

 View Source

 (macro)

macro used for reflection at compile time: which units are usable with this module.

 Link to this macro

 gigahertz()

 View Source

 (macro)

 Link to this macro

 hertz()

 View Source

 (macro)

 Link to this macro

 kilohertz()

 View Source

 (macro)

 Link to this macro

 megahertz()

 View Source

 (macro)

 Link to this macro

 microsecond()

 View Source

 (macro)

 Link to this macro

 millisecond()

 View Source

 (macro)

 Link to this macro

 nanosecond()

 View Source

 (macro)

 Link to this macro

 second()

 View Source

 (macro)

 Link to this function

 to_string(unit)

 View Source

 @spec to_string(atom()) :: String.t()

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

