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Measurements is a library for computation of physical quantities (time, distances, etc.) in Elixir.
A quantity is represented by a struct with a value, a unit and a positive error.
Error is propagated through calculations, and unit prevent collision of unrelated quantities.
Automatic conversion of unit (in scale) is supported.
Conversion of unit, across dimension, could ultimately be supported.
But is a very large endaevour and the package API is not stable enough just yet.
See https://en.wikipedia.org/wiki/Dimensional_analysis as reference.
Dimensions supported:
	[X] Time (T)
	[X] Length (L)
	[ ] Mass (M)
	[ ] Electric Current (I)
	[ ] Absolute Temperature (Θ)
	[ ] Amount of Substance (N)
	[ ] Luminous Intensity (J)

Installation
If available in Hex, the package can be installed
by adding measurements to your list of dependencies in mix.exs:
def deps do
  [
    {:measurements, "~> 0.1.2"}
  ]
end
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/measurements.
Testing in Iex
$ mix test --trace

Or for a more interactive approach:
$ iex -S mix

Testing in Livebook
Install livebook as an escript and start it:
livebook server
From there you can open DEMO.livemd to see measurements in action, and try it for yourself !
How to develop
Optionally, setup direnv with asdf. 
This will allow to work with another elixir version than your system's one.
Then:
	install it
	run the tests
	check the livebook
	browse the docs
	have a look at the code

Want to change something ?
	open an issue to discuss
	Make it work
	open a PR to show off the work
	Make it beautiful
	Let's merge it! 
	Make it fast
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Mix.install([
  {:measurements, path: "."},
  {:vega_lite, "~> 0.1.6"},
  {:kino_vega_lite, "~> 0.1.7"}
])

alias VegaLite, as: Vl
Introduction
measurements is a package helping with manipulation of real physics quantities.
Usage
A measurement is just a struct that can be easily created like so:
Measurements.new(4, :kilometer)
If desired, an associated error can be added onto that measurement
Measurements.new(300, :second) |> Measurements.add_error(4, :millisecond)
A measurement can be converted to another unit of the same dimension
Measurements.new(300, :second, 5) |> Measurements.best_convert(:microsecond)
The best unit is chosen to avoid loosing precision. If the target unit is not better than the current one, the conversion is simply ignored.
Measurements.new(300, :millisecond, 5) |> Measurements.best_convert(:second)
This allows to operate on measurements without knowing their precision, but remaining confident no precision in lost in various computations.
Arithmetic
Addition
Measurements support addition with automated conversion, provided the unit dimension matches.
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)

Measurements.sum(m1, m2)
Otherwise an explicit error with clean measurement representation is displayed:
m1 = Measurements.new(4, :second) |> Measurements.add_error(5, :millisecond)
m2 = Measurements.new(543, :micrometer)
Measurements.sum(m1, m2)
Scaling
Scaling the Measurement by a constant is also supported. Note the scale also applies to the error.
m1 = Measurements.new(4, :second) |> Measurements.add_error(5, :millisecond)
Measurements.scale(m1, 60)
Difference
Therefore difference of two measurements with unit of same dimension is also supported.
A more convenient delta/2 function is provided for this purpose.
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)

Measurements.delta(m1, m2)
Ratio
The ratio of two measurement is also supported.
The result will be a measurement, with its unit adjusted.
Therefore the nil Unit is just a constant, with potentially an error...
m1 = Measurements.new(4, :millimeter)
m2 = Measurements.new(543, :micrometer, 2)
Measurements.ratio(m1, m2)
We can verify this result, and maybe get an exact match, even if the value is a float:
[
  Measurements.ratio(m1, m2).value * 0.543 == 4,
  # relative error recovery is a bit more involved.
  # Refer to Error propagation theory when in doubt (TODO link?)
  Measurements.ratio(m1, m2).error * 543 / 2 == Measurements.ratio(m1, m2).value
]
TODO : Product
This will require more involved unit dimension manipulation...
Discrete Calculus
With the capabilities in Measurements so far, we can already implement some basic discrete calculus on physical quantities.
Local Discrete Derivative
TODO
Local Discrete Integral
TODO
Iterative Control
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Documentation for Measurements.
A measurement is a quantity represented, by a value, a unit and an error.
The value is usually an integer to maintain maximum precision,
but can also be a float if required.
Examples
iex> Measurements.time(42, :second)
%Measurements{
  value: 42,
  unit: :second,
  error: 0
}
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        add_error(value, err, unit)

      


        Add error to a Measurement.



    


    
      
        best_convert(m, unit)

      


        Convert the measurement to the new unit, if the new unit is more precise.



    


    
      
        delta(m1, m2)

      


        The difference of two measurements, with implicit unit conversion.



    


    
      
        length(v, unit, err \\ 0)

      


        Length Measurement.



    


    
      
        new(v, unit, err \\ 0)

      


        Generic Measurement. Unit indicates the dimension.



    


    
      
        ratio(m1, m2)

      


        The ratio of two measurements, with implicit unit conversion.



    


    
      
        scale(m1, n)

      


        Scales a measurement by a number.



    


    
      
        sum(m1, m2)

      


        The sum of multiple measurements, with implicit unit conversion.
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        Time Measurement.
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          @type t() :: %Measurements{
  error: non_neg_integer(),
  unit: Measurements.Unit.t(),
  value: integer()
}
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      Link to this function
    
    add_error(value, err, unit)
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          @spec add_error(t(), integer(), Measurements.Unit.t()) :: t()


      


Add error to a Measurement.
The error is symmetric and always represented by a positive number.
The measurement unit is converted if needed to not loose precision.

  
  examples

  
  Examples


iex> Measurements.time(42, :second) |> Measurements.add_error(-4, :millisecond)
%Measurements{
  value: 42_000,
  unit: :millisecond,
  error: 4
}

  



  
    
      
      Link to this function
    
    best_convert(m, unit)
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          @spec best_convert(t(), Measurements.Unit.t()) :: t()


      


Convert the measurement to the new unit, if the new unit is more precise.
This will pick the most precise between the measurement's unit and the new unit.
Then it will convert the measurement to the chosen unit.
If no conversion is possible, the original measurement is returned.

  
  examples

  
  Examples


iex> Measurements.time(42, :second) |> Measurements.add_error(1, :second) |> Measurements.best_convert(:millisecond)
%Measurements{value: 42_000, unit: :millisecond, error: 1_000}

iex> Measurements.time(42, :millisecond) |> Measurements.add_error(1, :millisecond) |> Measurements.best_convert(:second)
%Measurements{value: 42, unit: :millisecond, error: 1}

  



  
    
      
      Link to this function
    
    delta(m1, m2)
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The difference of two measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work.
Error will be propagated (ie compounded).

  
  examples

  
  Examples


iex>  m1 = Measurements.time(42, :second) |> Measurements.add_error(1, :second)
iex>  m2 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.delta(m1, m2)
%Measurements{
  value: 41_457,
  unit: :millisecond,
  error: 1_003
}

  



    

  
    
      
      Link to this function
    
    length(v, unit, err \\ 0)


      
       
       View Source
     


  


  

      

          @spec length(integer(), Measurements.Unit.t(), integer()) :: t()


      


Length Measurement.

  
  examples

  
  Examples


iex> Measurements.length(42, :meter)
%Measurements{
  value: 42,
  unit: :meter
}

  



    

  
    
      
      Link to this function
    
    new(v, unit, err \\ 0)
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          @spec new(integer(), Measurements.Unit.t(), integer()) :: t()


      


Generic Measurement. Unit indicates the dimension.

  
  examples

  
  Examples


iex> Measurements.new(42, :meter)
%Measurements{
  value: 42,
  unit: :meter
}

  



  
    
      
      Link to this function
    
    ratio(m1, m2)


      
       
       View Source
     


  


  

The ratio of two measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work, currently.
Error will be propagated (ie relatively compounded) as an int if possible.

  
  examples

  
  Examples


iex>  m1 = Measurements.time(300, :second) |> Measurements.add_error(1, :second)
iex>  m2 = Measurements.time(60_000, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.ratio(m1, m2)
%Measurements{
  value: 5,
  unit: nil,
  error: 0.01691666666666667
}

  



  
    
      
      Link to this function
    
    scale(m1, n)
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Scales a measurement by a number.
No unit conversion happens at this stage for simplicity, and to keep the scale of the resulting value obvious.
Error will be scaled by the same number, but always remains positive.

  
  examples

  
  Examples


  iex>  m1 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
  iex> Measurements.scale(m1, 10)
  %Measurements{
    value: 5430,
    unit: :millisecond,
    error: 30
  }

  



  
    
      
      Link to this function
    
    sum(m1, m2)
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The sum of multiple measurements, with implicit unit conversion.
Only measurements with the same unit dimension will work.
Error will be propagated.

  
  examples

  
  Examples


iex>  m1 = Measurements.time(42, :second) |> Measurements.add_error(1, :second)
iex>  m2 = Measurements.time(543, :millisecond) |> Measurements.add_error(3, :millisecond)
iex> Measurements.sum(m1, m2)
%Measurements{
  value: 42_543,
  unit: :millisecond,
  error: 1_003
}

  



    

  
    
      
      Link to this function
    
    time(v, unit, err \\ 0)
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          @spec time(integer(), Measurements.Unit.t(), integer()) :: t()


      


Time Measurement.

  
  examples

  
  Examples


iex> Measurements.time(42, :second)
%Measurements{
  value: 42,
  unit: :second
}
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  Measurements.Dimension deals with the dimension of a unit and related conversion
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      Link to this type
    
    t()
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          @type t() :: %Measurements.Dimension{
  current: integer(),
  length: integer(),
  lintensity: integer(),
  mass: integer(),
  substance: integer(),
  temperature: integer(),
  time: integer()
}
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  Measurements.Scale deals with the scale of a unit and related conversion
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          @type t() :: %Measurements.Scale{coefficient: integer(), magnitude: integer()}
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      Link to this function
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    from_value(value, scale \\ %__MODULE__{})
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          @spec to_value(t()) :: integer()


      



  


        

      



  

    
Measurements.Unit 
    



      
Documentation for Measurements.Unit.
A unit is represented by an atom. Ref: https://en.wikipedia.org/wiki/International_System_of_Units
There exist multiple submodules defining the various units:
	Time
	TODO !!

Internally, a unit relies on Scale and Dimension to determine:
	which conversion is allowed or not.
	which unit is better suited to a value.

But a user does not need to know about it, it will be managed automatically, to minimize loss of precision,
and keep the Measurement value in the integer range as much as possible.
Examples
iex> Measurements.Unit.time(:second)
{:ok, :second}

iex> Measurements.Unit.min(:second, :nanosecond)
{:ok, :nanosecond}

iex> {:ok, converter} = Measurements.Unit.convert(:second, :millisecond)
iex> converter.(42)
42_000
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        Conversion algorithm from a unit to another.
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        The dimension of the unit



    


    
      
        length(unit, power_ten_scale \\ 0)

      


        Normalizes a custom length unit to a known one
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        finds out, for two units of the same dimension, which unit is more (in scale) than the other.
This means the returned unit will be the least precise
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        finds out, for two units of the same dimension, which unit is less (in scale) than the other.
This means the returned unit will be the most precise
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        Returns the module where this unit is defined.
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          @type t() :: atom()
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          @type value() :: integer()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
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          @spec convert(t(), t()) :: {:ok, (value() -> value())} | {:error, String.t()}


      


Conversion algorithm from a unit to another.
Will find out which dimension the unnit belongs to, and if a conversion is possible.
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          @spec dimension(atom()) :: {:ok, Dimension.t()} | {:error, term()}


      


The dimension of the unit

  



    

  
    
      
      Link to this function
    
    length(unit, power_ten_scale \\ 0)


      
       
       View Source
     


  


  

      

          @spec length(atom(), integer()) :: {:ok, t()} | {:error, (value() -> value()), t()}


      


Normalizes a custom length unit to a known one
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          @spec max(t(), t()) :: t()


      


finds out, for two units of the same dimension, which unit is more (in scale) than the other.
This means the returned unit will be the least precise
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          @spec min(t(), t()) :: t()


      


finds out, for two units of the same dimension, which unit is less (in scale) than the other.
This means the returned unit will be the most precise
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          @spec module(atom()) :: atom()


      


Returns the module where this unit is defined.
Indicates which implementation to call for normalization, conversion, etc.
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          @spec new(atom()) :: {:ok, t()} | {:error, (value() -> value()), t()}


      


Normalizes a known unit, of any dimension
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      Link to this function
    
    time(unit, power_ten_scale \\ 0)


      
       
       View Source
     


  


  

      

          @spec time(atom(), integer()) :: {:ok, t()} | {:error, (value() -> value()), t()}


      


Normalizes a custom time unit to a known one.
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  Measurements.Unit.Length deals with length-related units.
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  Measurements.Unit.Time deals with time-related units.
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