

 Medic

 v1.11.0

 Table of contents

 	Medic

 	Installation

 	Modules

 	Medic.Checks.Corepack

 	Medic.Checks.Git

 	Medic.Checks.Hosts

 	Medic.Checks.ToolVersions

 	Medic.Extra.Keyword

 	Medic.Doctor

 	Medic.Test

 	Medic.Update

 	Medic.Checks

 	Medic.Checks.Asdf

 	Medic.Checks.Chromedriver

 	Medic.Checks.Direnv

 	Medic.Checks.Hex

 	Medic.Checks.Homebrew

 	Medic.Checks.NPM

 	Medic.Checks.Postgres

 	Medic.Check

 	Medic.Cmd

 	Medic.Etc

Medic

Medic is a tool for helping developers to set up a project on their workstation. It is optimized for
MacOS, with a number of assumptions built in.
	Homebrew for system dependencies
	ASDF for language dependencies

It ships with a set of checks and high-level runners.

 Runners

	Medic.Doctor - runs checks to make sure that a development workstation can run the application
	Medic.Test - runs the required set of tests to validate your application
	Medic.Update - all the things you want to do after (and including) git pull

 Checks

Checks are defined as modules and functions in the Medic.Checks namespace.
Checks are configured to run via Medic.Doctor via MFA ({module, function, arguments}) syntax,
with {module, function} as a shortcut for zero-arity checks.

 Local Checks

Local checks can be created by adding exs files in .medic/checks. Any elixir script files
present in that directory will be automatically loaded by Medic prior to execution.
Checks should return a Medic.Check.check_return_t/0.
For example, if the following module is added at .medic/checks/local_check.exs
defmodule Local.Checks.LocalCheck do
 def :check do
 :ok
 end
end
Then it can be added to .medic/doctor.exs:
[
 {Local.Checks.LocalCheck, :check}
]

Installation

Use the generators to add support files and set up your .medic directory:
mix archive.install hex gen_medic
mix gen.medic

 Installed Files

The medic generators will add a number of files in the root path of the current project:
├── .medic/
│ ├── .medic/require.exs
│ ├── .medic/doctor.exs
│ ├── .medic/update.exs
│ ├── .medic/_support/
│ │ ├── cecho.sh
│ │ ├── check.sh
│ │ ├── confirm.sh
│ │ ├── doctor.sh
│ │ ├── os.sh
│ │ └── step.sh
│ └── .medic/checks/
└── bin/dev/
 ├── docs
 ├── doctor
 ├── start
 ├── test
 └── update
And the following lines to .gitignore:
.medic/skipped/
.medic/.doctor.out
The shell scripts in bin/dev use the bash helpers in .medic/_support to help bootstrap a project
on a new computer (which may not have Erlang or Elixir, for instance). As quickly as possible, the
execution runtime moves into Elixir.

 Alternate Medic Source

Scripts in bin/dev require .medic/require.exs, which uses Mix.install/1 to download Medic and
make it available. By default, gen_medic generates a file that looks like this, where version is
matched to version of gen_medic:
Mix.install([
 {:medic, "~> 0.5.0", force: true}
])
To use medic from GitHub, change .medic/require.exs as follows:
Mix.install([
 {:medic, github: "synchronal/medic-ex", force: true}
])
When developing locally, a local path can be used:
Mix.install([
 {:medic, path: "../../medic", force: true}
])
Note: In Elixir 1.12.0, relative paths must be expanded using Path.expand(path, __DIR__).

 Configure Doctor Checks

Doctor defaults to a subset of available checks. The set of checks to run can be configured in
.medic/doctor.exs. If this file exists, it should be a list of check tuples.
For example:
[
 {Medic.Checks.Homebrew, :bundled?},
 {Medic.Checks.Chromedriver, :unquarantined?},
 {Medic.Checks.Chromedriver, :versions_match?},
 {Medic.Checks.Direnv, :envrc_file_exists?},
 {Medic.Checks.Direnv, :has_all_keys?},
 {Medic.Checks.Asdf, :plugin_installed?, ["postgres"]},
 {Medic.Checks.Asdf, :package_installed?, ["postgres"]},
 {Medic.Checks.Hex, :local_hex_installed?},
 {Medic.Checks.Hex, :packages_installed?},
 {Medic.Checks.NPM, :exists?},
 {Medic.Checks.NPM, :require_minimum_version, ["7.8.0"]},
 {Medic.Checks.NPM, :any_packages_installed?},
 {Medic.Checks.NPM, :all_packages_installed?},
 {Medic.Checks.Postgres, :running?},
 {Medic.Checks.Postgres, :correct_version_running?},
 {Medic.Checks.Postgres, :role_exists?},
 {Medic.Checks.Postgres, :correct_data_directory?},
 {Medic.Checks.Postgres, :database_exists?, ["apex_dev"]}
]

 Configure Update Commands

Commands are read from .medic/update.exs in your project, which should contain a list of commands.

 Recommended Update Configuration

This is the recommended list of commands for a database-backed Phoenix app (in this order):
[
 :update_code,
 :update_mix,
 :update_npm,
 :build_npm,
 :migrate,
 :doctor
]
When creating a new project, just copy the line above into .medic/update.exs in your project.

 Built-in Update Commands

The following commands are built in and can be specified as atoms:
	update_code: performs git pull --rebase
	update_mix: performs mix deps.get
	update_npm: performs npm install --prefix assets
	build_npm: performs npm run build --prefix assets
	migrate: performs mix ecto.migrate
	doctor: runs Medic.Doctor. Typically this is the last command you want to run.

 Custom Update Commands

A custom command is a list with 3 or 4 items: a description, a shell command, arguments, and an
optional list of opts that will be sent to System.cmd/3. For example:
["Seeding DB", "mix", ["run", "priv/repo/seeds.exs"]]
Your .medic/update.exs file can have a combination of built-in commands and custom commands:
[
 :update_code,
 :update_mix,
 :update_npm,
 :build_npm,
 :migrate,
 ["Seeding DB", "mix", ["run", "priv/repo/seeds.exs"]],
 :doctor
]

Medic.Checks.Corepack

Corepack is a thing build into node to shim package managers.

 Summary

 Functions

 shim_installed?(shim)

 Functions

 Link to this function

 shim_installed?(shim)

 View Source

Medic.Checks.Git

Common checks for git configuration

 Examples

{Check.Git, :uses_ssh?, ["github.com"]}

 Summary

 Functions

 uses_ssh?(domain)

 Checks to make sure that git defaults to using SSH instead of HTTPS.

 Functions

 Link to this function

 uses_ssh?(domain)

 View Source

 @spec uses_ssh?(binary()) :: Medic.Check.check_return_t()

Checks to make sure that git defaults to using SSH instead of HTTPS.

Medic.Checks.Hosts

Host-related checks

 Summary

 Functions

 host_exists?(host, opts \\ [])

 Uses hostess to check that the given host exists in /etc/hosts,
and if not, suggests using hostess to add the host pointing at 127.0.0.1.

 Functions

 Link to this function

 host_exists?(host, opts \\ [])

 View Source

 @spec host_exists?(
 binary(),
 keyword()
) :: Medic.Check.check_return_t()

Uses hostess to check that the given host exists in /etc/hosts,
and if not, suggests using hostess to add the host pointing at 127.0.0.1.
Assumes that hostess is installed.
Accepts a remedy option.
{Medic.Checks.Hosts, :host_exists?, ["myapp.local"]}
{Medic.Checks.Hosts, :host_exists?, ["myapp2.local", remedy: "sudo hostess add myapp2 127.0.0.2"]}

Medic.Checks.ToolVersions

Doctor checks for runtime version managers. Prefers mise-en-place,
then asdf.

 Examples

{Check.ToolVersions, :package_installed?, ["postgres"]}
{Check.ToolVersions, :plugin_installed?, ["postgres"]}

 Summary

 Functions

 package_installed?(package)

 Checks that ASDF can resolve a version for the declared plugin.

 plugin_installed?(plugin)

 Checks that the configured ASDF plugin is installed.

 Functions

 Link to this function

 package_installed?(package)

 View Source

 @spec package_installed?(binary()) :: Medic.Check.check_return_t()

Checks that ASDF can resolve a version for the declared plugin.

 Link to this function

 plugin_installed?(plugin)

 View Source

 @spec plugin_installed?(binary()) :: Medic.Check.check_return_t()

Checks that the configured ASDF plugin is installed.

Medic.Extra.Keyword

Keyword helpers

 Summary

 Functions

 compact(enum)

 Functions

 Link to this function

 compact(enum)

 View Source

Medic.Doctor

Checks to ensure that the application can be run for development and tests.

 Usage

Medic.Doctor is run from a shell script generated at bin/dev/doctor:
elixir -r .medic/require.exs -e "Medic.Doctor.run()" $*

 Configuration

See the guides for information on how to Configure Doctor Checks
for a specific project or how to write Custom Checks.

 Summary

 Functions

 clipboard(cmd)

 copy(arg, cmd)

 failed(output, remedy, skipfile)

 run()

 run(list)

 Functions

 Link to this function

 clipboard(cmd)

 View Source

 Link to this function

 copy(arg, cmd)

 View Source

 Link to this function

 failed(output, remedy, skipfile)

 View Source

 Link to this function

 run()

 View Source

 Link to this function

 run(list)

 View Source

Medic.Test

Common list of tests.

 Usage

Medic.Test is run from a shell script generated at bin/dev/test:
elixir -r .medic/require.exs -e "Medic.Test.run()" $*

 Summary

 Functions

 mix_test_options(opts)

 run(opts \\ [])

 Functions

 Link to this function

 mix_test_options(opts)

 View Source

 Link to this function

 run(opts \\ [])

 View Source

Medic.Update

Performs a list of commands to update a project.

 Usage

Medic.Update is run from a shell script generated at bin/dev/update:
elixir -r .medic/require.exs -e "Medic.Update.run()" $*

 Configuration

See the guides for information on how to Configure Update Checks.

 Summary

 Functions

 run()

 Runs the commands listed in .medic/update.exs.

 Functions

 Link to this function

 run()

 View Source

Runs the commands listed in .medic/update.exs.

Medic.Checks

Namespace for check modules provided by Medic.

Medic.Checks.Asdf

Doctor checks for the ASDF runtime version manager.
https://asdf-vm.com/#/

 Examples

{Check.Asdf, :package_installed?, ["postgres"]}
{Check.Asdf, :plugin_installed?, ["postgres"]}

 Summary

 Functions

 package_installed?(package)

 Checks that ASDF can resolve a version for the declared plugin.

 plugin_installed?(plugin)

 Checks that the configured ASDF plugin is installed.

 Functions

 Link to this function

 package_installed?(package)

 View Source

 @spec package_installed?(binary()) :: Medic.Check.check_return_t()

Checks that ASDF can resolve a version for the declared plugin.

 Link to this function

 plugin_installed?(plugin)

 View Source

 @spec plugin_installed?(binary()) :: Medic.Check.check_return_t()

Checks that the configured ASDF plugin is installed.

Medic.Checks.Chromedriver

Checks to see if Chromedriver is allowed to run in the MacOS quarantine sandbox.

 Examples

{Check.Chromedriver, :unquarantined?}
{Check.Chromedriver, :versions_match?}

 Summary

 Functions

 chrome_installed?()

 Checks to make sure that Google Chrome is installed.

 unquarantined?()

 Checks that chromedriver is installed, and has not been quarantined by the
MacOS security sandbox.

 versions_match?()

 Checks that chromedriver matches the installed version of Chrome.

 Functions

 Link to this function

 chrome_installed?()

 View Source

 @spec chrome_installed?() :: Medic.Check.check_return_t()

Checks to make sure that Google Chrome is installed.

 Link to this function

 unquarantined?()

 View Source

 @spec unquarantined?() :: Medic.Check.check_return_t()

Checks that chromedriver is installed, and has not been quarantined by the
MacOS security sandbox.

 Link to this function

 versions_match?()

 View Source

 @spec versions_match?() :: Medic.Check.check_return_t()

Checks that chromedriver matches the installed version of Chrome.

Medic.Checks.Direnv

Direnv - unclutter your .profile
https://direnv.net

 Examples

{Check.Direnv, :envrc_file_exists?}
{Check.Direnv, :has_all_keys?}

 Summary

 Functions

 envrc_file_exists?()

 Checks to make sure that .envrc exists in the project root directory.

 has_all_keys?()

 Compares keys in .envrc.sample and .envrc, to ensure that all sample
keys have a real export.

 Functions

 Link to this function

 envrc_file_exists?()

 View Source

 @spec envrc_file_exists?() :: Medic.Check.check_return_t()

Checks to make sure that .envrc exists in the project root directory.

 Link to this function

 has_all_keys?()

 View Source

 @spec has_all_keys?() :: Medic.Check.check_return_t()

Compares keys in .envrc.sample and .envrc, to ensure that all sample
keys have a real export.

Medic.Checks.Hex

Hex installed locally, and mix deps installed.

 Examples

{Check.Hex, :local_hex?}
{Check.Hex, :installed?}

 Summary

 Functions

 local_hex_installed?()

 Checks that hex is installed locally.

 local_rebar_installed?()

 Checks that rebar is installed locally.

 packages_compiled?(opts \\ [])

 Checks that all Mix dependencies are compiled.

 packages_installed?(opts \\ [])

 Checks that all Mix dependencies are installed.

 rebar_path()

 Functions

 Link to this function

 local_hex_installed?()

 View Source

 @spec local_hex_installed?() :: Medic.Check.check_return_t()

Checks that hex is installed locally.

 Link to this function

 local_rebar_installed?()

 View Source

 @spec local_rebar_installed?() :: Medic.Check.check_return_t()

Checks that rebar is installed locally.

 Link to this function

 packages_compiled?(opts \\ [])

 View Source

 @spec packages_compiled?(opts :: Keyword.t()) :: Medic.Check.check_return_t()

Checks that all Mix dependencies are compiled.

 Examples

{Medic.Checks.Hex, :packages_compiled?}
{Medic.Checks.Hex, :packages_compiled?, [cd: "subdirectory"]}

 Link to this function

 packages_installed?(opts \\ [])

 View Source

 @spec packages_installed?(opts :: Keyword.t()) :: Medic.Check.check_return_t()

Checks that all Mix dependencies are installed.

 Examples

{Medic.Checks.Hex, :packages_installed?}
{Medic.Checks.Hex, :packages_installed?, [cd: "subdirectory"]}

 Link to this function

 rebar_path()

 View Source

Medic.Checks.Homebrew

Expects a Brewfile to be present, and homebrew packages declared in the
Brewfile to be up-to-date.

 Examples

{Check.Homebrew, :bundled?}
{Check.Homebrew, :bundled?, [path_to_file]}

 Summary

 Functions

 brewfile_exists?()

 bundled?()

 Expects there to be a Brewfile, and for all the dependencies in that Brewfile
to be up to date.

 bundled?(file)

 homebrew_installed?()

 Functions

 Link to this function

 brewfile_exists?()

 View Source

 @spec brewfile_exists?() :: Medic.Check.check_return_t()

 Link to this function

 bundled?()

 View Source

 @spec bundled?() :: Medic.Check.check_return_t()

Expects there to be a Brewfile, and for all the dependencies in that Brewfile
to be up to date.

 Link to this function

 bundled?(file)

 View Source

 @spec bundled?(Path.t()) :: Medic.Check.check_return_t()

 Link to this function

 homebrew_installed?()

 View Source

Medic.Checks.NPM

Checks that NPM exists, implicitly checking for NodeJS.

 Examples

{Check.NPM, :exists?}
{Check.NPM, :require_minimum_version, ["7.8.0"]}
{Check.NPM, :installed?}

 Summary

 Functions

 all_packages_installed?(opts \\ [])

 Checks that the packages declared in assets/package-lock.json are all installed.

 any_packages_installed?(opts \\ [])

 Checks that npm install has been run at least once.

 exists?()

 Checks that there is an npm executable installed locally.

 require_minimum_version(minimum)

 Checks the installed version of npm is greater than or equal to the declared version.

 Functions

 Link to this function

 all_packages_installed?(opts \\ [])

 View Source

 @spec all_packages_installed?(opts :: Keyword.t()) :: Medic.Check.check_return_t()

Checks that the packages declared in assets/package-lock.json are all installed.
Opts:
	cd: The directory to run the command in.
	prefix: Run npm with --prefix. Defaults to assets.

 Link to this function

 any_packages_installed?(opts \\ [])

 View Source

 @spec any_packages_installed?(opts :: Keyword.t()) :: Medic.Check.check_return_t()

Checks that npm install has been run at least once.
Opts:
	cd: The directory to run the command in.
	prefix: Run npm with --prefix. Defaults to assets.

 Link to this function

 exists?()

 View Source

 @spec exists?() :: Medic.Check.check_return_t()

Checks that there is an npm executable installed locally.

 Link to this function

 require_minimum_version(minimum)

 View Source

 @spec require_minimum_version(binary()) :: Medic.Check.check_return_t()

Checks the installed version of npm is greater than or equal to the declared version.

Medic.Checks.Postgres

Checks that Postgres is running, and is set up correctly.

 Examples

{Check.Postgres, :running?},
{Check.Postgres, :correct_version_running?},
{Check.Postgres, :role_exists?},
{Check.Postgres, :correct_data_directory?},
{Check.Postgres, :database_exists?, ["my_db"]}

 Environment variables

Medic uses psql in order to connect to Postgres for its checks. When using
a non-standard configuration, such as database port, consider setting environment
variables such as PGPORT (in .envrc or .envrc.local) to configure psql if
possible.
These environment variables are documented in
libpq's documentation.

 Summary

 Functions

 correct_data_directory?(path_or_opts \\ "./priv/postgres/data")

 Checks that the running instance of Postgres has the expected data directory.

 correct_version_running?(opts \\ [])

 Checks that the running Postgres database matches the version defined
in ASDF's .tool-versions file.

 database_exists?(database_name, opts \\ [])

 Checks that the named database exists in the running Postgres instance.

 role_exists?(username \\ "postgres")

 Checks that a user has been created in the running instance. This check defaults
to the username postgres if not explicitly given.

 running?(opts \\ [])

 Checks whether Postgres is running, by attempting to list all databases.

 Functions

 Link to this function

 correct_data_directory?(path_or_opts \\ "./priv/postgres/data")

 View Source

 @spec correct_data_directory?(Path.t() | list()) :: Medic.Check.check_return_t()

Checks that the running instance of Postgres has the expected data directory.
If run with no arguments, this expects that the data directory is located at ./priv/postgres/data
within the current project.
If run with one argument, the argument can be:
	A path to the data directory, or
	A keyword list with one or more of the following keys:	data_directory: the path to the data directory
	remedy: the remedy as a string
	username: username to use when calling psql

 Usage

{Medic.Checks.Postgres, :correct_data_directory?}
{Medic.Checks.Postgres, :correct_data_directory?, ["/path/to/data/directory"]}
{Medic.Checks.Postgres, :correct_data_directory?, [data_directory: "/path/to/data/directory", username: "postgres"]}
{Medic.Checks.Postgres, :correct_data_directory?, [data_directory: "/path/to/data/directory", remedy: "bin/dev/db-restart"]}

 Link to this function

 correct_version_running?(opts \\ [])

 View Source

Checks that the running Postgres database matches the version defined
in ASDF's .tool-versions file.
Options:
	remedy: the remedy as a string

 Link to this function

 database_exists?(database_name, opts \\ [])

 View Source

Checks that the named database exists in the running Postgres instance.

 Usage

{Medic.Checks.Postgres, :database_exists?, ["my_db_dev"]}
{Medic.Checks.Postgres, :database_exists?, ["my_db_dev", username: "postgres"]}
{Medic.Checks.Postgres, :database_exists?, ["my_db_dev", remedy: "mix ecto.reset"]}

 Link to this function

 role_exists?(username \\ "postgres")

 View Source

 @spec role_exists?(binary()) :: Medic.Check.check_return_t()

Checks that a user has been created in the running instance. This check defaults
to the username postgres if not explicitly given.

 Usage

{Medic.Checks.Postgres, :role_exists?}
{Medic.Checks.Postgres, :role_exists?, ["postgres"]}

 Link to this function

 running?(opts \\ [])

 View Source

 @spec running?(list()) :: Medic.Check.check_return_t()

Checks whether Postgres is running, by attempting to list all databases.
Options:
	remedy: the remedy as a string
	username: username to use when calling psql

Medic.Check

Reusable check functions

 Summary

 Types

 check_return_t()

 Valid return values from a check.

 Functions

 command_succeeds?(command, args, list)

 Usable within a check. If the command exits with a 0 status code, then :ok, is returned.
If the command returns a non-zero status code, then {:error, output, remedy} is returned,
where output is any text generated by the command.

 in_list?(item, list, list)

 skip_file(arg)

 skipped?(module, function, args)

 Types

 Link to this type

 check_return_t()

 View Source

 @type check_return_t() ::
 :ok
 | :skipped
 | {:warn, output :: binary()}
 | {:error, output :: binary(), remedy :: binary()}

Valid return values from a check.
	:ok - The check succeeded with no problems.
	:skipped - Doctor checks for files in .medic/skipped/ to skip a check. Custom
checks could return this to notify Doctor that they chose internally to skip the check.
	{:warn, output} - The check generated warnings, but does not stop Doctor from proceeding.
	{:error, output, remedy} - The check failed. Output may be stdout and/or stderr generated
from shell commands, or custom error output to show to the user. The remedy will by copied
into the local paste buffer.

 Functions

 Link to this function

 command_succeeds?(command, args, list)

 View Source

 @spec command_succeeds?(binary(), [binary()], [{:remedy, binary()}]) ::
 :ok | {:error, binary(), binary()}

Usable within a check. If the command exits with a 0 status code, then :ok, is returned.
If the command returns a non-zero status code, then {:error, output, remedy} is returned,
where output is any text generated by the command.

 Link to this function

 in_list?(item, list, list)

 View Source

 Link to this function

 skip_file(arg)

 View Source

 Link to this function

 skipped?(module, function, args)

 View Source

Medic.Cmd

Helpers for running commands.

 Summary

 Functions

 exec(command, args, opts \\ [])

 Run a command via System.cmd, returning trimmed output and status code

 exec!(command, args, opts \\ [])

 Run a command via System.cmd, returning trimmed output, or raising if the command fails.

 run(description, command, args, opts \\ [])

 Run a command, writing the description, command, and output to stdout.
Returns result of System.cmd.

 run!(description, command, args, opts \\ [])

 Run a command, writing the description, command, and output to stdout.
Returns :ok or raises if the command fails.

 Functions

 Link to this function

 exec(command, args, opts \\ [])

 View Source

 @spec exec(binary(), [binary()], [binary()]) :: {binary(), non_neg_integer()}

Run a command via System.cmd, returning trimmed output and status code

 Link to this function

 exec!(command, args, opts \\ [])

 View Source

 @spec exec!(binary(), [binary()], [binary()]) :: binary()

Run a command via System.cmd, returning trimmed output, or raising if the command fails.

 Link to this function

 run(description, command, args, opts \\ [])

 View Source

 @spec run(binary(), binary(), [binary()], list()) :: {binary(), integer()}

Run a command, writing the description, command, and output to stdout.
Returns result of System.cmd.

 Link to this function

 run!(description, command, args, opts \\ [])

 View Source

 @spec run!(binary(), binary(), [binary()], list()) :: :ok

Run a command, writing the description, command, and output to stdout.
Returns :ok or raises if the command fails.

Medic.Etc

Helper functions.

 Summary

 Functions

 application_version(path, version_flag)

 split_at_newlines(string)

 Functions

 Link to this function

 application_version(path, version_flag)

 View Source

 Link to this function

 split_at_newlines(string)

 View Source

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

