

 Mesh

 v0.1.4

 Table of contents

 	Getting Started

 	Quickstart

 	Clustering

 	Advanced

 	Implementing Processes

 	Sharding

 	
 Modules

 	Mesh.Actors.VirtualTestActor

 	Mesh.Cluster.Rebalancing

 	Mesh.Cluster.Rebalancing.Reconciler

 	Mesh.Cluster.Rebalancing.Support

 	Mesh.Request

 	Mesh.Shards.HashStrategy

 	Mesh.Shards.HashStrategy.EventualConsistency

 	Public API

 	Mesh

 	Mesh.Supervisor

 	Actors

 	Mesh.Actors.ActorOwner

 	Mesh.Actors.ActorOwnerSupervisor

 	Mesh.Actors.ActorSupervisor

 	Mesh.Actors.ActorSystem

 	Mesh.Actors.ActorTable

 	Sharding

 	Mesh.Shards.ShardConfig

 	Mesh.Shards.ShardRouter

 	Clustering

 	Mesh.Cluster.Capabilities

 	Mesh.Cluster.Membership

 Quickstart

Mix.install([
 {:mesh, "~> 0.1"},
 {:libcluster, "~> 3.3"} # optional
])
Introduction
Mesh is a distributed virtual process system for Elixir that provides:
	Location transparency - processes can live anywhere in the cluster
	Automatic sharding - consistent hashing distributes processes across nodes
	Capability-based routing - route processes to nodes based on capabilities
	Simple GenServer protocol - no special behaviors required

Setup
Add Mesh to your supervision tree:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 children = [
 # Start Mesh
 Mesh.Supervisor
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
For this quickstart, we'll start Mesh manually:
{:ok, _pid} = Mesh.Supervisor.start_link([])
IO.puts("✓ Mesh started")
Define a Process
Create a simple GenServer that will act as your virtual process. The only requirements are:
	Implement start_link/1 accepting actor_id
	Handle {:actor_call, payload} messages

defmodule GameActor do
 use GenServer
 require Logger

 def start_link(actor_id) do
 GenServer.start_link(__MODULE__, actor_id)
 end

 def init(actor_id) do
 Logger.info("GameActor #{actor_id} started")
 {:ok, %{id: actor_id, score: 0, level: 1}}
 end

 def handle_call({:actor_call, %{action: "increment_score"}}, _from, state) do
 new_score = state.score + 1
 new_state = %{state | score: new_score}
 {:reply, {:ok, new_score}, new_state}
 end

 def handle_call({:actor_call, %{action: "level_up"}}, _from, state) do
 new_level = state.level + 1
 new_state = %{state | level: new_level}
 {:reply, {:ok, new_level}, new_state}
 end

 def handle_call({:actor_call, %{action: "get_stats"}}, _from, state) do
 {:reply, {:ok, %{score: state.score, level: state.level}}, state}
 end
end
Register Capabilities
Capabilities define what types of processes this node can handle. By registering :game, we're telling Mesh that this node is responsible for handling game-related processes.
In a multi-node cluster, you might have:
	Game nodes with :game capability
	Chat nodes with :chat capability
	Payment nodes with :payment capability

Mesh uses these capabilities to route process requests to the appropriate nodes.
Mesh.register_capabilities([:game])
IO.puts("✓ Capabilities registered: [:game]")

Give it a moment to sync across nodes
Process.sleep(100)
Invoke Processes
Now you can invoke processes! Mesh will automatically:
	Create the process on first invocation
	Route to the correct node based on consistent hashing
	Reuse the same process instance for subsequent calls with the same actor_id

First call - process will be created
{:ok, pid, score} = Mesh.call(%Mesh.Request{
 module: GameActor,
 id: "player_123",
 payload: %{action: "increment_score"},
 capability: :game
})
IO.puts("Score: #{score}, PID: #{inspect(pid)}")
Subsequent calls with the same actor_id will reuse the same process:
Same process instance
{:ok, ^pid, score} = Mesh.call(%Mesh.Request{
 module: GameActor,
 id: "player_123",
 payload: %{action: "increment_score"},
 capability: :game
})
IO.puts("Score: #{score}, PID: #{inspect(pid)} (same PID!)")
Try different actions:
{:ok, _pid, level} = Mesh.call(%Mesh.Request{
 module: GameActor,
 id: "player_123",
 payload: %{action: "level_up"},
 capability: :game
})
IO.puts("Level: #{level}")

{:ok, _pid, stats} = Mesh.call(%Mesh.Request{
 module: GameActor,
 id: "player_123",
 payload: %{action: "get_stats"},
 capability: :game
})
IO.inspect(stats, label: "Stats")
Multiple Processes
Each unique actor_id creates a separate process instance:
Create multiple players
for player_id <- 1..5 do
 {:ok, _pid, score} =
 Mesh.call(%Mesh.Request{
 module: GameActor,
 id: "player_#{player_id}",
 payload: %{action: "increment_score"},
 capability: :game
 })
 IO.puts("Player #{player_id}: #{score}")
end
Sharding
Mesh uses consistent hashing to determine which node owns each process:
Check which shard an actor belongs to
shard = Mesh.shard_for("player_123")
IO.puts("player_123 is on shard #{shard}")

Check which node owns a shard
{:ok, owner_node} = Mesh.owner_node(shard, :game)
IO.puts("Shard #{shard} is owned by: #{owner_node}")
NOTE: The default hash strategy (EventualConsistency) uses eventual consistency for process placement. Shards are used purely for routing decisions - they do not provide state guarantees or transactions. Each process manages its own state independently. During network partitions or topology changes, the same process ID may temporarily exist on multiple nodes until the system converges. You can implement custom hash strategies with different consistency guarantees - see Configuration.
Next Steps
	Learn about Configuration to customize hash strategies and sharding
	Explore Clustering to distribute processes across multiple nodes
	See Implementing Processes for complex stateful processes
	Understand Sharding internals and distribution

Additional Links
	Code
	Documentation

 Clustering

Mesh uses capabilities to route processes to appropriate nodes in a cluster.
Setup libcluster
For multi-node setups, configure libcluster in your application:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do
 topologies = [
 gossip: [
 strategy: Cluster.Strategy.Gossip,
 config: [
 port: 45892,
 if_addr: "0.0.0.0",
 multicast_addr: "230.1.1.251",
 multicast_ttl: 1
]
]
]

 children = [
 # Start libcluster for node discovery
 {Cluster.Supervisor, [topologies, [name: MyApp.ClusterSupervisor]]},
 # Start Mesh
 Mesh.Supervisor,
 # Your workers...
]

 Supervisor.start_link(children, strategy: :one_for_one)
 end
end
Capabilities
Capabilities are labels that define what types of processes a node is responsible for handling. They enable workload isolation and allow you to create specialized node types in your cluster.
Think of capabilities as tags that describe a node's role. For example:
	:game - Game-related processes (game servers, matchmaking)
	:chat - Chat/messaging processes (rooms, conversations)
	:payment - Payment processing (transactions, billing)

When you invoke a process with a specific capability, Mesh automatically routes it to a node that has registered that capability. This allows you to:
	Isolate workloads (separate game logic from payment processing)
	Scale specific capabilities independently (add more game nodes without affecting chat)
	Use specialized hardware for different workload types

Register Capabilities
Tell Mesh what this node can handle:
Mesh.register_capabilities([:game, :chat])
You can do this in your application start or in a dedicated worker:
defmodule MyApp.CapabilityRegistrar do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, [])
 end

 def init(_) do
 # Register capabilities when the node starts
 Mesh.register_capabilities([:game, :chat])
 {:ok, nil}
 end
end
Routing
Mesh automatically routes process invocations to nodes that support the requested capability:
This will be routed to a node with :game capability
{:ok, pid, _} = Mesh.call(%Mesh.Request{module: GameActor, id: "player_1", payload: payload, capability: :game})

This will be routed to a node with :chat capability
{:ok, pid, _} = Mesh.call(%Mesh.Request{module: ChatActor, id: "room_1", payload: payload, capability: :chat})
Multi-Node Example
Node 1 - Game Server
On node1@host
Mesh.register_capabilities([:game])
Node 2 - Chat Server
On node2@host
Mesh.register_capabilities([:chat])
Node 3 - Universal
On node3@host
Mesh.register_capabilities([:game, :chat, :payment])
Now processes will be automatically distributed:
	Game processes go to node1 or node3
	Chat processes go to node2 or node3
	Payment processes only go to node3

Node Discovery Strategies
Mesh is agnostic about how nodes discover each other. Use libcluster strategies:
	Gossip: Local network multicast
	Kubernetes: K8s service discovery
	EPMD: Static node list
	DNS: DNS-based discovery

See libcluster documentation for more strategies.

 Implementing Processes

This guide explains how to implement processes for Mesh and how they work within the system.
The Protocol
Mesh expects a simple GenServer that follows these conventions:
	Implement start_link/1 - Receives the actor_id as parameter
	Handle messages via handle_call/3 with your own pattern matching
	Return {:reply, result, state} - Standard GenServer response

That's it. No behaviors, no macros, just a GenServer.
Basic Example
defmodule MyApp.Counter do
 use GenServer

 # Required: accept actor_id
 def start_link(actor_id) do
 GenServer.start_link(__MODULE__, actor_id)
 end

 def init(actor_id) do
 {:ok, %{id: actor_id, count: 0}}
 end

 # Handle any message pattern you want
 def handle_call(payload, _from, state) do
 new_count = state.count + 1
 {:reply, {:ok, new_count}, %{state | count: new_count}}
 end
end
Using with Mesh
To invoke your process:
Register the capability first
Mesh.register_capabilities([:counter])

Call the process (synchronous)
{:ok, pid, result} = Mesh.call(%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{},
 capability: :counter
})

Cast to the process (asynchronous, fire-and-forget)
:ok = Mesh.cast(%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{action: :reset},
 capability: :counter
})
What happens on call:
	Mesh determines which node should own this process based on "counter_1" and :counter capability
	If the process doesn't exist, Mesh starts it using MyApp.Counter.start_link("counter_1")
	Mesh sends your payload directly via GenServer.call(pid, payload)
	Returns {:ok, pid, result} where pid is the process identifier and result is what your handle_call returned

What happens on cast:
	Same routing logic as call
	Mesh sends your payload directly via GenServer.cast(pid, payload)
	Returns :ok immediately without waiting for a response

NOTE: Mesh uses eventual consistency for process placement. Shards are routing mechanisms only - they do not guarantee state consistency across the cluster. Each process is responsible for managing its own state. During network splits or topology changes, the same process ID may temporarily exist on multiple nodes until convergence.

Custom Initialization
You can pass custom arguments to your process when it's first created:
defmodule MyApp.GameActor do
 use GenServer

 # Support both arities for flexibility
 def start_link(actor_id), do: start_link(actor_id, nil)

 def start_link(actor_id, init_arg) do
 GenServer.start_link(__MODULE__, {actor_id, init_arg})
 end

 def init({actor_id, nil}) do
 # Default initialization
 {:ok, %{id: actor_id, level: 1, score: 0}}
 end

 def init({actor_id, init_arg}) do
 # Custom initialization with provided argument
 {:ok, %{id: actor_id, level: init_arg.starting_level, score: 0}}
 end

 def handle_call(_payload, _from, state) do
 {:reply, {:ok, state}, state}
 end
end
Usage:
Create with custom starting level
{:ok, pid, state} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "player_123",
 payload: %{action: :get_state},
 capability: :game,
 init_arg: %{starting_level: 10}
})

state.level == 10
Note: The init_arg is only used when the process is first created. Subsequent calls to the same id will reuse the existing process with its current state.
Supervision
Important: Mesh supervises your processes, not you.
When you invoke a process, Mesh:
	Looks up if a process with that actor_id already exists
	If not, starts it under Mesh.Actors.ActorSupervisor (a DynamicSupervisor)
	Caches the PID in an ETS table for fast lookups
	Routes the call to the process

Your processes live under Mesh's supervision tree:
Mesh.Supervisor
 └── Mesh.Actors.ActorSupervisor (DynamicSupervisor)
 ├── YourProcess (actor_id: "counter_1")
 ├── YourProcess (actor_id: "counter_2")
 └── YourProcess (actor_id: "player_123")
Process Lifecycle
Creation
First call creates the process
{:ok, pid, result} = Mesh.call(%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{},
 capability: :counter
})
Reuse
Subsequent calls reuse the same process
{:ok, ^pid, result} = Mesh.call(%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{},
 capability: :counter
})
Failure & Restart
If your process crashes, Mesh handles it automatically:
defmodule MyApp.Crasher do
 use GenServer

 def start_link(actor_id) do
 GenServer.start_link(__MODULE__, actor_id)
 end

 def init(actor_id) do
 {:ok, %{id: actor_id, crashes: 0}}
 end

 def handle_call(%{action: "crash"}, _from, state) do
 # This will crash the process
 raise "boom!"
 end

 def handle_call(_payload, _from, state) do
 {:reply, {:ok, state.crashes}, state}
 end
end
What happens when it crashes:
	The process terminates
	Mesh's supervisor restarts it automatically
	Next invocation gets a new PID with fresh state

First call - process created
{:ok, pid1, _} = Mesh.call(%Mesh.Request{
 module: MyApp.Crasher,
 id: "crasher_1",
 payload: %{},
 capability: :crasher
})

Crash it (this will raise an error, use try/catch if needed)
try do
 Mesh.call(%Mesh.Request{
 module: MyApp.Crasher,
 id: "crasher_1",
 payload: %{action: "crash"},
 capability: :crasher
 })
rescue
 _ -> :ok
end

Next call gets a new process with fresh state
{:ok, pid2, _} = Mesh.call(%Mesh.Request{
 module: MyApp.Crasher,
 id: "crasher_1",
 payload: %{},
 capability: :crasher
})

Different PIDs
pid1 != pid2 # true
Architecture
Understanding how Mesh routes and manages processes:
When you invoke a process via Mesh.call, the system executes a multi-step pipeline to ensure the process exists on the correct node and receives your message.
The routing layer first computes a shard number by hashing the process ID. With 4096 shards distributed across available nodes, the hash ring determines which node should own this particular process. This deterministic approach ensures the same ID always routes to the same node unless the cluster topology changes.
Once the target node is identified, Mesh checks if this is a local or remote call. For local calls, it proceeds directly to the owner. For remote calls, it uses RPC to invoke the owner on the target node.
The owner component manages all processes for its assigned shards. It maintains an ETS table for fast PID lookups. When a call arrives, it first checks if the process already exists in the table. If found, the message is forwarded immediately. If not found, the owner starts a new process under its DynamicSupervisor, caches the PID in ETS, and then forwards the message.
Finally, your GenServer receives your payload directly via handle_call/3. You have complete freedom to pattern match on the payload structure. You process the business logic and return a response, which flows back through the owner, potentially through RPC, and returns to the original caller.
This architecture provides several benefits: processes are evenly distributed across nodes via consistent hashing, PID caching eliminates repeated lookups, dynamic supervision handles failures automatically, and the entire system operates without coordination overhead between nodes.
Key Takeaways
	Just use GenServer - No special behaviors or macros needed
	Mesh supervises everything - Don't add your processes to your own supervision tree
	Call vs Cast - Use Mesh.call for synchronous requests, Mesh.cast for fire-and-forget
	Custom initialization - Pass init_arg in the Request struct for custom setup
	Stateful by default - Each actor_id maintains its own state
	Automatic restart - Crashes are handled, but state is lost (use persistence if needed)
	Location transparent - Process might be local or remote, Mesh handles routing
	ETS caching - Fast PID lookups after first invocation

Testing
defmodule MyApp.GameActorTest do
 use ExUnit.Case

 setup do
 # Mesh is already started by test_helper
 Mesh.register_capabilities([:game])
 Process.sleep(50) # Let capabilities sync
 :ok
 end

 test "increments score" do
 {:ok, _pid, {:ok, score}} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "test_game_1",
 payload: %{action: :increment},
 capability: :game
 })

 assert score == 1
 end

 test "maintains state across calls" do
 id = "test_game_2"

 req = fn payload ->
 %Mesh.Request{
 module: MyApp.GameActor,
 id: id,
 payload: payload,
 capability: :game
 }
 end

 {:ok, pid1, _} = Mesh.call(req.(%{action: :increment}))
 {:ok, pid2, {:ok, score}} = Mesh.call(req.(%{action: :increment}))

 assert pid1 == pid2 # Same process
 assert score == 2 # State maintained
 end

 test "custom initialization" do
 {:ok, _pid, {:ok, state}} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "test_game_3",
 payload: %{action: :get_state},
 capability: :game,
 init_arg: %{starting_level: 10}
 })

 assert state.level == 10
 end

 test "async cast" do
 # Create the process first
 {:ok, _pid, _} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "test_game_4",
 payload: %{action: :get_state},
 capability: :game
 })

 # Send async message
 :ok = Mesh.cast(%Mesh.Request{
 module: MyApp.GameActor,
 id: "test_game_4",
 payload: %{action: :log},
 capability: :game
 })
 end
end

 Sharding

Mesh uses hashing to distribute processes across nodes in a cluster.
Hash Ring
Mesh divides the actor ID space into 4096 shards (configurable) using a hash ring:
actor_id → hash(actor_id) → shard (0..4095) → owner_node
The hash strategy determines how shards map to nodes. The default strategy uses modulo-based routing for simplicity and performance.
How It Works
	Hash the actor ID:
shard = :erlang.phash2(actor_id, 4096)
"player_123" → 2451

	Get nodes for capability:
nodes = Mesh.Cluster.Capabilities.nodes_for(:game)
[:node1@host, :node2@host, :node3@host]

	Determine owner (using default EventualConsistency strategy):
owner = Enum.at(nodes, rem(shard, length(nodes)))
Enum.at(nodes, rem(2451, 3)) → node1@host

Note: You can customize the hash strategy to implement different routing algorithms. See Configuration for details.

Benefits
Deterministic Placement
The same actor_id always maps to the same node (until topology changes):
These will always go to the same node
Mesh.call(%Mesh.Request{module: GameActor, id: "player_123", payload: payload, capability: :game}) # → node1
Mesh.call(%Mesh.Request{module: GameActor, id: "player_123", payload: payload, capability: :game}) # → node1
Mesh.call(%Mesh.Request{module: GameActor, id: "player_123", payload: payload, capability: :game}) # → node1
Load Distribution
Processes are evenly distributed across available nodes:
100,000 processes distributed across 3 nodes
for i <- 1..100_000 do
 Mesh.call(%Mesh.Request{module: GameActor, id: "actor_#{i}", payload: payload, capability: :game})
end

Result: ~33,333 processes per node
Minimal Disruption
When nodes join or leave, only affected shards are remapped:
	3 nodes → 4 nodes: ~25% of processes move
	4 nodes → 3 nodes: ~25% of processes move
	2 nodes → 3 nodes: ~33% of processes move

Configuration
Configure the number of shards in config/config.exs:
config :mesh, shards: 4096
Choosing Shard Count
	Default: 4096 - Good for most use cases
	Higher (8192+): Better distribution with many nodes (10+)
	Lower (2048): Less memory overhead for small clusters (2-4 nodes)

Shard Distribution
Check how processes are distributed:
Get shard for a process
shard = Mesh.shard_for("player_123")

Get owner node for a shard
{:ok, node} = Mesh.owner_node(shard, :game)
Monitoring Distribution
Track shard distribution in production:
defmodule MyApp.ShardMonitor do
 use GenServer

 def start_link(_) do
 GenServer.start_link(__MODULE__, [])
 end

 def init(_) do
 schedule_check()
 {:ok, %{}}
 end

 def handle_info(:check, state) do
 # Get all shards owned by this node
 local_node = node()
 shard_count = Mesh.Shards.ShardConfig.shard_count()
 capabilities = Mesh.all_capabilities()

 owned_shards =
 for shard <- 0..(shard_count - 1),
 capability <- capabilities,
 {:ok, owner} = Mesh.owner_node(shard, capability),
 owner == local_node do
 {shard, capability}
 end

 IO.puts("Node #{local_node} owns #{length(owned_shards)} shards")

 schedule_check()
 {:noreply, state}
 end

 defp schedule_check do
 Process.send_after(self(), :check, 60_000) # Every minute
 end
end
Best Practices
	Don't change shard count in production: Changing it remaps all processes
	Monitor distribution: Track processes per node to detect imbalances
	Plan for growth: Choose shard count based on expected cluster size
	Use capabilities wisely: Group related processes under same capability
	Test rebalancing: Verify behavior when nodes join/leave

Example Distribution
With 3 nodes and 4096 shards:
Node 1: Shards 0, 3, 6, 9, ... (~1365 shards)
Node 2: Shards 1, 4, 7, 10, ... (~1365 shards)
Node 3: Shards 2, 5, 8, 11, ... (~1366 shards)
When creating 100k processes:
Node 1: ~33,333 processes
Node 2: ~33,333 processes
Node 3: ~33,334 processes
Troubleshooting
Uneven Distribution
If you see uneven distribution:
	Check actor ID patterns: Avoid sequential IDs, use UUIDs or hashed values
	Increase shard count: More shards = better distribution
	Verify node availability: Ensure all nodes are properly connected

Hot Spots
If specific processes get too many requests:
	Split the process: Divide state across multiple processes
	Use caching: Cache read-heavy data outside processes
	Add read replicas: Create read-only copies for popular processes

Mesh.Actors.VirtualTestActor

Simple test actor for benchmarks and testing.
This is a minimal actor that echoes back the payload it receives.
Used internally for Mesh's own tests and benchmarks.
For production use, implement your own actor modules:
Example Custom Actor
defmodule MyApp.GameActor do
 use GenServer

 def start_link(actor_id) do
 GenServer.start_link(__MODULE__, actor_id)
 end

 @impl true
 def init(actor_id) do
 {:ok, %{id: actor_id, state: :ready}}
 end

 @impl true
 def handle_call(payload, _from, state) do
 # Your custom logic here
 {:reply, {:ok, :processed}, state}
 end
end

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(actor_name, initial_state \\ nil)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(actor_name, initial_state \\ nil)

Mesh.Cluster.Rebalancing

Coordinates rebalancing when capabilities are registered or removed.
When a node registers capabilities, this module ensures a coordinated
rebalancing process across all nodes with the same capabilities:
	Enter rebalancing mode (pause new actor creation)
	Gracefully stop actors for affected capabilities
	Synchronize shards across all participating nodes
	Exit rebalancing mode (resume normal operation)

This prevents race conditions and ensures consistent actor placement
during topology changes.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 coordinate_rebalancing(node, capabilities)

 Initiates coordinated rebalancing for the given capabilities.

 mode()

 Returns current rebalancing mode: :active or :rebalancing

 rebalancing?(capability)

 Checks if a capability is currently rebalancing.

 reset_state()

 start_link(_)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 coordinate_rebalancing(node, capabilities)

Initiates coordinated rebalancing for the given capabilities.
This function will:
	Calculate current shard ownership (before registration)
	Register capabilities (changes topology)
	Calculate new shard ownership (after registration)
	Put affected nodes into rebalancing mode
	Stop only actors on shards that changed ownership
	Sync shards
	Resume normal operation

Returns :ok or {:error, reason}

 mode()

Returns current rebalancing mode: :active or :rebalancing

 rebalancing?(capability)

Checks if a capability is currently rebalancing.

 reset_state()

 start_link(_)

Mesh.Cluster.Rebalancing.Reconciler

Background reconciliation process that periodically checks and fixes
inconsistencies in the cluster.
This module embraces the eventual consistency model by:
	Detecting orphaned actors on wrong nodes
	Cleaning up actors that should have been moved during rebalancing
	Detecting nodes stuck in rebalancing mode
	Ensuring convergence without distributed locks

The reconciler runs independently on each node, allowing the cluster
to self-heal without coordination overhead.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 reconcile_now()

 Triggers an immediate reconciliation. Useful for testing or forcing cleanup.

 start_link(_)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 reconcile_now()

Triggers an immediate reconciliation. Useful for testing or forcing cleanup.

 start_link(_)

Mesh.Cluster.Rebalancing.Support

Support functions for resilient rebalancing operations.
This module provides fault-tolerant versions of RPC calls and actor
shutdowns that embrace eventual consistency and graceful degradation.

 Summary

 Functions

 call_with_retry(node, module, function, args, opts \\ [])

 Calls an RPC with retry logic and exponential backoff.

 evaluate_partial_success(results, operation_name)

 Evaluates success rate and determines if operation succeeded.

 stop_actor_gracefully(actor_key, pid, epoch)

 Gracefully stops an actor with timeout and monitoring.

 stop_actors_parallel(actors_to_stop, epoch)

 Stops actors in parallel with timeout.

 Functions

 call_with_retry(node, module, function, args, opts \\ [])

Calls an RPC with retry logic and exponential backoff.
Accepts partial failures and uses adaptive timeouts to handle
network delays and temporary unavailability.

 evaluate_partial_success(results, operation_name)

Evaluates success rate and determines if operation succeeded.
Accepts partial success for eventual consistency:
	= 80% success: Operation considered successful

	= 50% success: Degraded but acceptable

	< 50% success: Critical failure

The system relies on self-healing to converge to correct state.

 stop_actor_gracefully(actor_key, pid, epoch)

Gracefully stops an actor with timeout and monitoring.
Gives the actor time to clean up before forcing termination.
Tags the shutdown reason with the rebalancing epoch for debugging.

 stop_actors_parallel(actors_to_stop, epoch)

Stops actors in parallel with timeout.
Uses Task-based parallelism to stop multiple actors efficiently,
with a global timeout to prevent indefinite blocking.

Mesh.Request

Request structure for invoking processes in Mesh.
Fields
	:module - The GenServer module to invoke (required)
	:id - The actor ID that identifies this specific process instance (required)
	:payload - The payload to send to the process (required)
	:capability - The capability that determines routing (required)
	:init_arg - Optional argument passed to the process's start_link/2 on creation

Examples
Simple request
%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{action: :increment},
 capability: :counter
}

With custom initialization argument
%Mesh.Request{
 module: MyApp.GameActor,
 id: "player_123",
 payload: %{action: :get_state},
 capability: :game,
 init_arg: %{starting_level: 5}
}

 Summary

 Types

 t()

 Functions

 new(module, id, payload, capability, opts \\ [])

 Creates a new Request struct.

 Types

 t()

 @type t() :: %Mesh.Request{
 capability: atom(),
 id: String.t(),
 init_arg: any(),
 module: module(),
 payload: any()
}

 Functions

 new(module, id, payload, capability, opts \\ [])

Creates a new Request struct.
Examples
iex> Mesh.Request.new(MyApp.Counter, "counter_1", %{action: :increment}, :counter)
%Mesh.Request{module: MyApp.Counter, id: "counter_1", payload: %{action: :increment}, capability: :counter}

iex> Mesh.Request.new(MyApp.GameActor, "player_1", %{}, :game, init_arg: %{level: 10})
%Mesh.Request{module: MyApp.GameActor, id: "player_1", payload: %{}, capability: :game, init_arg: %{level: 10}}

Mesh.Shards.HashStrategy behaviour

Behavior for shard hashing strategies.
Allows different implementations of hashing algorithms to be used for
distributing actors across nodes.
The default implementation uses modulo-based distribution (EventualConsistency).
You can implement your own strategy by implementing this behavior.
Configuration
config :mesh, :hash_strategy, Mesh.Shards.HashStrategy.EventualConsistency
Custom Implementation
To create a custom strategy:
defmodule MyApp.CustomHashStrategy do
 @behaviour Mesh.Shards.HashStrategy

 @impl true
 def owner_node(shard, _capability, nodes) do
 # Your custom logic here
 Enum.at(nodes, rem(shard, length(nodes)))
 end
end
Then configure it:
config :mesh, :hash_strategy, MyApp.CustomHashStrategy

 Summary

 Callbacks

 owner_node(shard, capability, nodes)

 Determines which node should own a given shard for a specific capability.

 Callbacks

 owner_node(shard, capability, nodes)

 @callback owner_node(shard :: non_neg_integer(), capability :: atom(), nodes :: [node()]) ::
 node()

Determines which node should own a given shard for a specific capability.
Parameters
	shard - The shard number (0 to shard_count - 1)
	capability - The capability atom
	nodes - Sorted list of nodes that support this capability

Returns
	node() - The node that should own this shard

Mesh.Shards.HashStrategy.EventualConsistency

Eventual consistency hash strategy using modulo distribution.
Distributes shards across nodes using rem(shard, node_count). When nodes are added
or removed, ownership changes cause the same process ID to temporarily exist on multiple
nodes until the system converges (eventual consistency).
This is the default strategy.

Mesh

Mesh - A distributed actor system with capability-based routing.
Mesh provides a simple, unified API for working with distributed actors
across an Erlang/Elixir cluster. Actors are distributed and routed using shards,
which are computed from the actor ID and mapped to nodes based on capabilities.
Architecture
Mesh uses a three-layer architecture:
	Sharding: Computes a shard (0..4095) from the actor ID using :erlang.phash2/2
	Capability Routing: Determines which nodes support a given capability
	Actor Placement: Routes actors to owner nodes via RPC

Quick Start
Register capabilities this node supports
Mesh.register_capabilities([:game, :chat])

Call a process
{:ok, pid, response} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "player_123",
 payload: %{action: "move"},
 capability: :game
})

Query cluster topology
Mesh.nodes_for(:game)
#=> [:node1@host, :node2@host]

Mesh.all_capabilities()
#=> [:game, :chat, :payment]
Examples
Game server node
Mesh.register_capabilities([:game])

Chat server node
Mesh.register_capabilities([:chat])

Multi-purpose node
Mesh.register_capabilities([:game, :chat, :payment])

Call processes on different capabilities
{:ok, _pid, _response} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor, id: "player_123",
 payload: %{hp: 100}, capability: :game
})
{:ok, _pid, _response} = Mesh.call(%Mesh.Request{
 module: MyApp.ChatActor, id: "room_456",
 payload: %{msg: "Hello"}, capability: :chat
})

 Summary

 Types

 actor_id()

 Unique identifier for an actor (typically a string)

 capabilities()

 List of capability atoms

 capability()

 Capability atom identifying actor type

 payload()

 Arbitrary data payload sent to an actor

 shard()

 Shard number (0..4095)

 Functions

 all_capabilities()

 Returns all capabilities registered across the entire cluster.

 call(request)

 Synchronously calls a virtual process with the given request.

 cast(request)

 Asynchronously casts a message to a virtual process.

 nodes_for(capability)

 Returns the list of nodes that support a given capability.

 owner_node(shard, capability)

 Determines which node owns a given shard for a specific capability.

 register_capabilities(capabilities)

 Registers capabilities that this node supports.

 shard_for(actor_id)

 Computes the shard number for a given actor ID.

 Types

 actor_id()

 @type actor_id() :: String.t()

Unique identifier for an actor (typically a string)

 capabilities()

 @type capabilities() :: [capability()]

List of capability atoms

 capability()

 @type capability() :: atom()

Capability atom identifying actor type

 payload()

 @type payload() :: map() | term()

Arbitrary data payload sent to an actor

 shard()

 @type shard() :: non_neg_integer()

Shard number (0..4095)

 Functions

 all_capabilities()

 @spec all_capabilities() :: capabilities()

Returns all capabilities registered across the entire cluster.
This aggregates capabilities from all connected nodes and returns a unique list.
Returns
	List of unique capability atoms registered in the cluster

Examples
Node 1 registered [:game]
Node 2 registered [:chat]
Node 3 registered [:game, :payment]
Mesh.all_capabilities()
#=> [:game, :chat, :payment]

No nodes registered any capabilities
Mesh.all_capabilities()
#=> []
Notes
	Results include capabilities from all connected nodes
	Duplicates are automatically removed
	Updates when nodes join/leave or register new capabilities

 call(request)

 @spec call(Mesh.Request.t()) :: {:ok, pid(), term()} | {:error, term()}

Synchronously calls a virtual process with the given request.
This is the primary API for making synchronous calls to processes in the mesh.
The function:
	Computes the shard from the actor ID
	Determines which node owns that shard for the given capability
	Makes an RPC call to that node's ActorOwner
	Lazily creates the process if it doesn't exist (using init_arg if provided)
	Forwards the payload to the process via GenServer.call and returns the response

Parameters
	request - A %Mesh.Request{} struct containing:	:module - The GenServer module (required)
	:id - Unique identifier for the process (required)
	:payload - Data to send (required)
	:capability - The capability type (required)
	:init_arg - Optional argument passed to start_link/2 on first creation

Returns
	{:ok, pid, response} - Success with process PID and response
	{:error, reason} - Failure (e.g., no nodes support the capability)

Examples
Simple call
{:ok, pid, score} = Mesh.call(%Mesh.Request{
 module: MyApp.Counter,
 id: "counter_1",
 payload: %{action: :increment},
 capability: :counter
})

With custom initialization
{:ok, pid, _} = Mesh.call(%Mesh.Request{
 module: MyApp.GameActor,
 id: "player_123",
 payload: %{action: :spawn},
 capability: :game,
 init_arg: %{starting_level: 5}
})

 cast(request)

 @spec cast(Mesh.Request.t()) :: :ok | {:error, term()}

Asynchronously casts a message to a virtual process.
Similar to call/1 but uses GenServer.cast instead of GenServer.call,
returning immediately without waiting for a response.
Parameters
	request - A %Mesh.Request{} struct (same as call/1)

Returns
	:ok - Message was sent successfully
	{:error, reason} - Failure (e.g., no nodes support the capability)

Examples
Fire and forget
:ok = Mesh.cast(%Mesh.Request{
 module: MyApp.Logger,
 id: "system_logger",
 payload: %{event: "user_login", user_id: 123},
 capability: :logging
})

 nodes_for(capability)

 @spec nodes_for(capability()) :: [node()]

Returns the list of nodes that support a given capability.
This is useful for understanding cluster topology and debugging routing issues.
Parameters
	capability - The capability atom to query

Returns
	List of node atoms that support the capability
	Empty list if no nodes support the capability

Examples
Mesh.nodes_for(:game)
#=> [:node1@host, :node2@host, :node3@host]

Mesh.nodes_for(:chat)
#=> [:node2@host]

Mesh.nodes_for(:unknown)
#=> []
Notes
	Only returns nodes currently connected to the cluster
	Updates automatically when nodes join/leave
	Results are eventually consistent across the cluster

 owner_node(shard, capability)

 @spec owner_node(shard(), capability()) :: {:ok, node()} | {:error, :no_nodes}

Determines which node owns a given shard for a specific capability.
This combines the hash ring with capability information to determine the
owner node. Shards are distributed in round-robin fashion across nodes
that support the capability.
Parameters
	shard - Shard number (0..4095)
	capability - Capability atom

Returns
	{:ok, node} - Success with the owner node atom
	{:error, :no_nodes} - No nodes support the capability

Examples
Mesh.owner_node(2451, :game)
#=> {:ok, :node1@host}

Mesh.owner_node(2451, :game)
#=> {:ok, :node1@host} # Always the same owner

Error if no nodes support capability
Mesh.owner_node(2451, :unknown)
#=> {:error, :no_nodes}
Notes
	Owner may change when nodes join/leave the cluster
	Uses modulo operation: rem(shard, length(nodes))
	Ensures even distribution across available nodes

 register_capabilities(capabilities)

 @spec register_capabilities(capabilities()) :: :ok

Registers capabilities that this node supports.
Capabilities determine which types of actors this node can host. Once registered,
the node will participate in the hash ring for those capabilities and may be
assigned shards to manage.
This should typically be called during application startup or node initialization.
Parameters
	capabilities - List of capability atoms (e.g., [:game, :chat])

Examples
Single capability
Mesh.register_capabilities([:game])

Multiple capabilities
Mesh.register_capabilities([:game, :chat, :payment])

Register all capabilities
Mesh.register_capabilities([:game, :chat, :payment, :analytics])
Notes
	Capabilities are propagated to all nodes in the cluster
	Registering capabilities triggers shard synchronization
	You can register capabilities at any time (not just at startup)
	Capabilities are stored in memory and lost on node restart

 shard_for(actor_id)

 @spec shard_for(actor_id()) :: shard()

Computes the shard number for a given actor ID.
Uses :erlang.phash2/2 to hash the actor ID into a shard number (0..4095).
The same actor ID always produces the same shard number, ensuring deterministic
actor placement.
Parameters
	actor_id - The actor identifier (string)

Returns
	Integer from 0 to 4095 representing the shard number

Examples
Mesh.shard_for("player_123")
#=> 2451

Mesh.shard_for("player_123")
#=> 2451 # Always the same shard

Mesh.shard_for("player_456")
#=> 891 # Different actor, different shard
Notes
	Shard count is configurable (default: 4096)
	Hash function is deterministic and uniform
	Used internally by invoke/3 for routing

Mesh.Supervisor

Main supervisor for the Mesh actor system.
This supervisor manages all core components of the distributed actor system:
	Capability registry for node routing
	Actor registry and lifecycle management
	Shard ownership distribution
	Cluster membership tracking

Usage
To start Mesh in your application, add it to your supervision tree:
children = [
 Mesh.Supervisor
]

Supervisor.start_link(children, strategy: :one_for_one)
Cluster Setup
Mesh does not include cluster discovery. For multi-node setups, configure
libcluster in your application:
children = [
 {Cluster.Supervisor, [topologies, [name: MyApp.ClusterSupervisor]]},
 Mesh.Supervisor
]
Example topology configuration:
topologies = [
 gossip: [
 strategy: Cluster.Strategy.Gossip,
 config: [
 port: 45892,
 if_addr: "0.0.0.0",
 multicast_addr: "230.1.1.251",
 multicast_ttl: 1
]
]
]
Configuration
Configure the number of shards (default: 4096) in your config.exs:
config :mesh, shards: 4096

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts \\ [])

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts \\ [])

Mesh.Actors.ActorOwner

 Summary

 Functions

 call(actor_id, payload, actor_module, capability, init_arg \\ nil)

 cast(actor_id, payload, actor_module, capability, init_arg \\ nil)

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(shard_id)

 Functions

 call(actor_id, payload, actor_module, capability, init_arg \\ nil)

 cast(actor_id, payload, actor_module, capability, init_arg \\ nil)

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(shard_id)

Mesh.Actors.ActorOwnerSupervisor

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 sync_shards()

 Synchronizes local shards based on registered capabilities.

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(opts)

 sync_shards()

Synchronizes local shards based on registered capabilities.

Mesh.Actors.ActorSupervisor

DynamicSupervisor for user-defined actors.
Multiple instances run under PartitionSupervisor (one per scheduler)
to reduce contention during concurrent actor creation.

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_child(actor_module, actor_id, capability, init_arg)

 Starts an actor under the partitioned supervisor.
Routes to appropriate partition based on actor_id hash.

 start_link(init_arg)

 Functions

 child_spec(arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_child(actor_module, actor_id, capability, init_arg)

Starts an actor under the partitioned supervisor.
Routes to appropriate partition based on actor_id hash.

 start_link(init_arg)

Mesh.Actors.ActorSystem

Core actor invocation system.

 Summary

 Functions

 call(request)

 Makes a synchronous call to a virtual process.

 cast(request)

 Makes an asynchronous cast to a virtual process.

 Functions

 call(request)

 @spec call(Mesh.Request.t()) :: {:ok, pid(), term()} | {:error, term()}

Makes a synchronous call to a virtual process.
Returns {:ok, pid, response} on success, or {:error, reason} on failure.

 cast(request)

 @spec cast(Mesh.Request.t()) :: :ok | {:error, term()}

Makes an asynchronous cast to a virtual process.
Returns :ok on success, or {:error, reason} on failure.

Mesh.Actors.ActorTable

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 delete(actor_name)

 entries()

 get(actor_name)

 key(capability, actor_module, actor_id)

 put(actor_name, pid, node)

 start_link(opts)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 delete(actor_name)

 entries()

 get(actor_name)

 key(capability, actor_module, actor_id)

 put(actor_name, pid, node)

 start_link(opts)

Mesh.Shards.ShardConfig

 Summary

 Functions

 shard_count()

 Functions

 shard_count()

Mesh.Shards.ShardRouter

Routes processes to nodes based on hashing (hash ring).
The hashing strategy is configurable via application config:
config :mesh, :hash_strategy, Mesh.Shards.HashStrategy.EventualConsistency
The default strategy uses modulo-based distribution for deterministic routing.

 Summary

 Functions

 owner_node(shard, capability)

 Determines which node owns a given shard for a specific capability.

 shard_for(actor_id)

 Computes the shard number for a given actor ID.

 Functions

 owner_node(shard, capability)

 @spec owner_node(non_neg_integer(), atom()) :: {:ok, node()} | {:error, :no_nodes}

Determines which node owns a given shard for a specific capability.
Returns {:ok, node} if nodes are available for the capability,
or {:error, :no_nodes} if no nodes support the capability.
The specific distribution algorithm is determined by the configured hash strategy.

 shard_for(actor_id)

 @spec shard_for(String.t()) :: non_neg_integer()

Computes the shard number for a given actor ID.

Mesh.Cluster.Capabilities

 Summary

 Functions

 all_capabilities()

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 nodes_for(actor_type)

 register_capabilities(node \\ node(), capabilities)

 reset_state()

 start_link(_)

 update_capabilities_from_remote(node, capabilities)

 Functions

 all_capabilities()

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 nodes_for(actor_type)

 register_capabilities(node \\ node(), capabilities)

 reset_state()

 start_link(_)

 update_capabilities_from_remote(node, capabilities)

Mesh.Cluster.Membership

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(_)

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 start_link(_)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

