

 Midiex

 v0.6.1

 [image: Logo]

 Table of contents

 	README

 	BUILDING

 	MIDIex notebook

 	License (MIT)

 	Modules

 	Midiex

 	Midiex.Listener

 	Midiex.Message

 	Midiex.Notifier

 	Midiex.MidiMessage

 	Midiex.MidiNotification

 	Midiex.MidiPort

 	Midiex.OutConn

 	Midiex.VirtualMidiPort

README

[image: Midiex]
[image: Documentation]
[image: Package]
Midiex overview
Midiex is a cross-platform, real-time MIDI processing library in Elixir.
midir Rust library
Using Rustler, Midiex wraps the excellent midir Rust library.
Midir support a range of platforms and backends, such as:
	ALSA (Linux)
	WinMM (Windows)
	CoreMIDI (MacOS, iOS)
	WinRT (Windows 8+),
	Jack (Linux, macOS)

Using WinRT or Jack requires special feature flags enabled. See the midir GitHub and create docs for more details.
The hot-plug support of MIDI devices on MacOS is made possible with with the Rust coremidi library.
Status
This library is currently under active development and it’s API is likely to change. It's been tested on MacOS only although it is currently building on Mac (M-series and x86), Linux (64-bit ARM, RISC-V and x86) and Windows (x86_64) with precompiled binary packages available (see the Getting started section below).
API
At it's most basic level, the core functions of Midiex are for:
	listing or counting MIDI ports availble (for example, a keyboard or synth)
	opening or closing connections to MIDI ports
	sending or receiving messages to and from connections
	creating virtual output connections so your Elixir application appears as a MIDI input port on the host OS.
	creating virtual input connections so your Elixir application appears as a MIDI output port on the host OS.

Feature support
Not all midir features have been wrapped and some features are backend specific:
	Virtual output connection: currently on every platform but Windows
	Virtual input connection: currently on every platform but Windows
	Notification messages and hot-plug support: currently implemented on MacOS (e.g. to receive notifications when a device has been plugged in or removed).

MIDI messages
MIDI messages are in binary format. They're usually in the format of one status byte followed by one or two data bytes.
For example, the status byte for 'Note On' is 0x90 in HEX format. The data byte representing the note Middle C is 60. The data byte representing velocity (i.e. how hard the key was struck when the note was played) is an integer in the range 0 - 127 where 127 is the loudest.
Putting that together, the message to play Middle C at a velocity of 127 is: <<0x90, 60, 127>>
You can stop the same note from playing by sending the 'Note Off' status byte 0x80, which would make the message: <<0x80, 60, 127>>.
For more information on MIDI messages, see the offical MIDI Assocations Specifications, Expanded MIDI 1.0 message list or the various articles online such as this one.
Example
List MIDI ports
Midiex.ports()

Create a virtual output connection
piano = Midiex.create_virtual_output("piano")

Returns an output connection:
%Midiex.OutConn{
conn_ref: #Reference<0.1633267383.3718381569.210768>,
name: "piano",
port_num: 0
}

Send to MIDI messages to a connection
note_on = <<0x90, 60, 127>>
note_off = <<0x80, 60, 127>>

Midiex.send_msg(piano, note_on)
:timer.sleep(3000) # wait three seconds
Midiex.send_msg(piano, note_off)
Getting started
Platforms with precompiled binaries
Since v0.6, Midiex uses Rustler Precompiled to provide precompiled binaries on the following platforms:
	Apple Mac:	M-series: aarch64-apple-darwin
	x86-series: x86_64-apple-darwin

	Linux x86 based:	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl

	Linux ARM based:	aarch64-unknown-linux-gnu
	aarch64-unknown-linux-musl

	Linux RISC-V based:	riscv64gc-unknown-linux-gnu

	Windows x86 based:	x86_64-pc-windows-msvc
	x86_64-pc-windows-gnu

This means you shouldn't need the Rust build tools for the above plaforms. Just add midiex as a dependency to your Elixir project and Rustler will download and install the correct binary.
Rust build tools
If you want to use Midiex on a different platform than those listed above, or want to force complication, you'll need to have Rust's build tools installed. See BUILDING.md for more information.
Adding it to your Elixir project
The package can be installed by adding midiex to your list of dependencies in mix.exs:
def deps do
 [
 {:midiex, "~> 0.6.1"}
]
End
Using within LiveBook and IEx
Mix.install([{:midiex, "~> 0.6.1"}])
LiveBook tour
Also see the introductory tour in LiveBook at /livebook/midiex_notebook.livemd.
[image: Run in Livebook]
Documentation
The docs can be found at https://hexdocs.pm/midiex.

BUILDING

[image: Midiex]
[image: Documentation]
[image: Package]
Precompiled binaries
Since v0.6, Midiex uses Rustler Precompiled to provide precompiled binaries on the following platforms:
	Apple Mac:	M-series: aarch64-apple-darwin
	x86-series: x86_64-apple-darwin

	Linux x86 based:	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl

	Linux ARM based:	aarch64-unknown-linux-gnu
	aarch64-unknown-linux-musl

	Linux RISC-V based:	riscv64gc-unknown-linux-gnu

	Windows x86 based:	x86_64-pc-windows-msvc
	x86_64-pc-windows-gnu

For the above platforms you should not need Rust's build tools as Rustler will download Midiex's precompiled NIF for the correct platform.
Forcing compilation
Should you wish to build your own binary of Midiex's Rust-based NIF on the above platforms, you can force that by setting the environmental MIDIEX_BUILD to true or 1, e.g.:
export MIDIEX_BUILD=true
You'll need to have the Rust build toolchain installed (see below).
Building Midiex
In most cases, the standard Rust build toolchain is all you need. That being said there may be additional packages that need to be installed on Linux distributions related to ALSA (Advanced Linux Sound Architecture) as well as compilation in general (pkg-config).
Rust build tools
Currently you will need to have Rust's build tools installed on the device you're compiling on. If you're new to Rust, using the Rust up tool from the offical Rust website or at rustup.rs will be your quickest and simplest way to get it installed.
Linux
Additionally on Linux (currently tested on Ubuntu 22.04), you may need some additional packages installed such as libasound2-dev and pkg-config.
If using the apt package manager, you can install those via the terminal prompt with:
sudo apt install libasound2-dev pkg-config.

MIDIex notebook

Mix.install([{:midiex, "~> 0.6.1"}])
* Getting midiex (https://github.com/haubie/midiex.git)
remote: Enumerating objects: 717, done.
remote: Counting objects: 100% (174/174), done.
remote: Compressing objects: 100% (87/87), done.
remote: Total 717 (delta 79), reused 139 (delta 52), pack-reused 543
origin/HEAD set to main
Resolving Hex dependencies...
Resolution completed in 0.257s
New:
 jason 1.4.1
 rustler 0.26.0
 toml 0.7.0
* Getting rustler (Hex package)
* Getting jason (Hex package)
* Getting toml (Hex package)
==> toml
Compiling 10 files (.ex)
Generated toml app
==> jason
Compiling 10 files (.ex)
Generated jason app
==> rustler
Compiling 7 files (.ex)
Generated rustler app
==> midiex
Compiling 10 files (.ex)
Compiling crate midiex in release mode (native/midiex)
 Compiling memchr v2.5.0
 Compiling core-foundation-sys v0.8.3
 Compiling libc v0.2.138
 Compiling proc-macro2 v1.0.63
 Compiling unicode-ident v1.0.5
 Compiling coremidi-sys v3.1.0
 Compiling quote v1.0.28
 Compiling regex-syntax v0.6.28
 Compiling void v1.0.2
 Compiling heck v0.4.0
 Compiling rustler v0.29.0
 Compiling lazy_static v1.4.0
 Compiling unreachable v1.0.0
 Compiling block v0.1.6
 Compiling bitflags v1.3.2
 Compiling aho-corasick v0.7.20
 Compiling regex v1.7.0
 Compiling rustler_sys v2.3.0
 Compiling core-foundation v0.9.3
 Compiling coremidi v0.6.0
 Compiling coremidi v0.7.0
 Compiling midir v0.9.1
 Compiling syn v2.0.22
 Compiling rustler_codegen v0.29.0
 Compiling midiex v0.1.0 (/Users/haubie/Library/Caches/mix/installs/elixir-1.15.2-erts-14.0.2/56c7aef4f3fb67cf9f7eb75d4a18b401/deps/midiex/native/midiex)
 Finished release [optimized] target(s) in 6.13s
Generated midiex app
:ok
Introduction
Learning objectives
This will get you started with Midiex. By the end of this Livebook you'll be able to:
	Find and connect to MIDI ports on your system
	Create virtual ports (on supported systems, like MacOS and Linux)
	Send and recieve messages.

Setup
Just to make our code a bit more compact when experimenting with live-music coding, we'll alias the Midiex.Message module as M.
Midiex function names have been kept compact as possible with live-music coding in mind.
alias Midiex.Listener
alias Midiex.Message, as: M
Midiex.Message
MIDI concepts
Skip this section you're familiar with MIDI concepts and want to start playing with the library.
At it's most basic, MIDI consists of:
	Ports, which represent input or output connections to MIDI hardware or software. You can recieve MIDI messages from a MIDI input, or send MIDI messages to a MIDI output.
	Connections, just like with all IO operations, you'll need to make a connection with a MIDI port to send or recieve messages to it.
	Messages, which are usually music related, such switching a note on or off.

[image:]
Finding devices (ports)
Note that on Apple Mac, you may wish to call Midiex.hotplug() first so that Midiex will be able to see devices plugged in or removed.
Midiex.hotplug()
:ok
How many ports are there?
Midiex.port_count()
%{input: 4, output: 3}
List devices (ports)
ports = Midiex.ports()
[
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1170>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 2",
 num: 1,
 port_ref: #Reference<0.34604515.3318349847.1171>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 3",
 num: 2,
 port_ref: #Reference<0.34604515.3318349847.1172>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "My Out",
 num: 3,
 port_ref: #Reference<0.34604515.3318349847.1173>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1174>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 2",
 num: 1,
 port_ref: #Reference<0.34604515.3318349847.1175>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 3",
 num: 2,
 port_ref: #Reference<0.34604515.3318349847.1176>
 }
]
Filter to show input or output ports
Midiex.ports(:input)
[
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1177>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 2",
 num: 1,
 port_ref: #Reference<0.34604515.3318349847.1178>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 3",
 num: 2,
 port_ref: #Reference<0.34604515.3318349847.1179>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "My Out",
 num: 3,
 port_ref: #Reference<0.34604515.3318349847.1180>
 }
]
Midiex.ports(:output)
[
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1188>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 2",
 num: 1,
 port_ref: #Reference<0.34604515.3318349847.1189>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 3",
 num: 2,
 port_ref: #Reference<0.34604515.3318349847.1190>
 }
]
Filtering ports by name
You can include a regular expression as the first parameter to search for matching ports.
For example, to get the output ports from any Arturia device plugged into your system, you could do the following:
Midiex.ports(~r/Arturia/, :output)
[]
If you know the name of the port, you can pass it as a string as the first parameter:
Midiex.ports("IAC Driver Bus 1", :input)
[
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1198>
 }
]
Connecting to output devices
If you wanted to connect to the first Arturia output port on your system you could:
Get the port
out_port = Midiex.ports(~r/Arturia/, :output) |> List.first()
nil
Make a connection
out_conn = Midiex.open(out_port)
You can now send a message to the device via the output connection, for example:
Midiex.send_msg(out_conn, <<0x90, 60, 127>>)
error: undefined variable "out_conn"
 livebook/midiex_notebook.livemd#cell:752gysgdtdthfmkq2ehlkt5iw5bnzkyw:1

Virtual devices
A virtual output creates an output connection you can send messages to, but to other devices on your system, it wll appear as a MIDI input connection they can consume.
For example, you might have a software synth installed on your PC that can consume these MIDI messages.
virtual_conn = Midiex.create_virtual_output("My Virtual Connection")
%Midiex.OutConn{
 conn_ref: #Reference<0.34604515.3318349831.2664>,
 name: "My Virtual Connection",
 port_num: 4
}
Note that although you've created this virtual output, on your system it will appear as an import port to be discoverable by other MIDI software or devices.
If you call Midiex.ports/1 you'll see it as an input:
ports = Midiex.ports(:input)
[
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.34604515.3318349847.1212>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 2",
 num: 1,
 port_ref: #Reference<0.34604515.3318349847.1213>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 3",
 num: 2,
 port_ref: #Reference<0.34604515.3318349847.1214>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "My Out",
 num: 3,
 port_ref: #Reference<0.34604515.3318349847.1215>
 },
 %Midiex.MidiPort{
 direction: :input,
 name: "My Virtual Connection",
 num: 4,
 port_ref: #Reference<0.34604515.3318349847.1216>
 }
]

License (MIT)

MIT License

Copyright (c) 2023 David Haubenschild.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Midiex

This is the main Midiex module.
It's built around three basic concepts:
	Ports:

	list or count MIDI ports availble (for example, a keyboard or synth)

	Connections:

	open or close connections to MIDI ports
	create a virtual input or output connections so your Elixir application appears as a MIDI device

	Messages:

	send or receive messages to and from connections.

[image: Grokking MIDI]
Examples
List MIDI ports
Midiex.ports()

Lists MIDI ports discoverable on your system
[
%Midiex.MidiPort{
direction: :input,
name: "IAC Driver Bus 1",
num: 0,
port_ref: #Reference<0.2239960018.1937899544.176288>
},
%Midiex.MidiPort{
direction: :output,
name: "IAC Driver Bus 1",
num: 0,
port_ref: #Reference<0.2239960018.1937899544.176289>
}
]

Create a virtual output connection
piano = Midiex.create_virtual_output("piano")

Returns an output connection:
%Midiex.OutConn{
conn_ref: #Reference<0.1633267383.3718381569.210768>,
name: "piano",
port_num: 0
}

Send MIDI messages to a connection
In the message below, the note 60 is equivalent to Middle C and 127 means maximum velocity
note_on = <<0x90, 60, 127>>
note_off = <<0x80, 60, 127>>

Midiex.send_msg(piano, note_on)
:timer.sleep(3000) # wait three seconds
Midiex.send_msg(piano, note_off)
Livebook tour
Also see the introductory tour in LiveBook at /livebook/midiex_notebook.livemd.
[image: Run in Livebook]

 Anchor for this section

 Summary

 Port discovery

 port_count()

 Returns the count of the number of input and output MIDI ports in as a map.

 ports()

 Lists MIDI ports availabile on the system.

 ports(direction)

 List MIDI ports matching the specified direction (e.g. input or output)

 ports(name_or_pattern, direction \\ nil)

 Lists MIDI ports matching the name. This can be either a string match or a regex pattern.

 Output connections

 close(out_conn)

 Closes a MIDI output connection.

 open(midi_output_port)

 Creates a connection to the MIDI port.

 Virtual ports

 Midiex.Listener - Midiex v0.6.1

Midiex.Listener

GenServer for subscribing to MIDI input ports and responding to the MIDI messages (Midiex.MidiMessage) received.
How this works
This GenServer works by:
	Subscribing to one or more MIDI input ports (using Midiex.subscribe/1). For each MIDI input port, Midiex.subscribe/1 will create a new OS thread (in Rust) which establishes a connection to the port and listens to messages. Incoming messages are then forwarded to the calling Elixir process (in this case, the Midiex.Listener process.)
A subscription can be established on the start_link/1 or subscribe/2 functions, e.g.:
Get the first MIDI input port
input_port = Midiex.ports(:input) |> List.first()

Start a lister for this MIDI input port
{:ok, listener} = Midiex.Listener.start_link(port: input_port)

	Receieves MIDI messages in the form of a Midiex.MidiMessage struct, and passes it onto one or more Elixir handler functions. The handler takes one parameter representing the MIDI message, e.g.:
 # Add a simple message handler which inspects each message received:
 Midiex.Listener.add_handler(listener, fn (midi_msg) -> IO.inspect(midi_msg) end)

[image: Midiex]
Example
alias Midiex.Listener

Get the first MIDI input port
input_port = Midiex.ports(:input) |> List.first()

Start a lister for this MIDI input port
{:ok, listner} = Listener.start_link(port: input_port)

Create a handler than inspects the MIDI messages received:
my_msg_hander = fn (midi_msg) -> IO.inspect(midi_msg, label: "MIDI message") end
Listener.add_handler(listener, &my_msg_hander/1)

Stop listening to the input port
Listener.unsubscribe(listner, input_port)

 Anchor for this section

 Summary

 Functions

 add_handler(pid, handler_fn)

 Add one or more callback function(s) which will recieve and handle MIDI messages.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get_state(pid)

 Gets the servers state, returns %Midiex.Listener{} struct.

 new(opts \\ [])

 Creates a new %Midiex.Server{} struct.

 start_link(opts \\ [])

 Start the Midiex.Server GenServer.

 subscribe(pid, midi_input_port)

 Subscribe to one or more MIDI input ports.

 unsubscribe(pid, midi_input_ports)

 Stops listening to the MIDI input port by unsubscribing to it.

 Anchor for this section

Functions

 Link to this function

 add_handler(pid, handler_fn)

 View Source

 @spec add_handler(pid(), function() | [function()]) :: :ok

Add one or more callback function(s) which will recieve and handle MIDI messages.
A single callback function or multiple callback functions can be provided in a list.

 example

 Example

Start your Listener process
{:ok, listener} = Listener.start_link(port: input_port)

Add a single handler
Listener.add_handler(listener, fn msg -> IO.inspect msg, label: "Inspecting msg" end)

Add multiple handlers in a list
Listener.add_handler(
 listener,
 [
 fn msg -> IO.inspect msg, label: "Msg handler 1" end,
 fn msg -> IO.inspect msg, label: "Msg handler 1" end,
]
)

If you've defined your hander function in a module function, pass it the usual way:
Listener.add_handler(listener, &MyModule.function_name/1)

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get_state(pid)

 View Source

 @spec get_state(pid()) :: %Midiex.Listener{callback: term(), port: term()}

Gets the servers state, returns %Midiex.Listener{} struct.

 Link to this function

 new(opts \\ [])

 View Source

Creates a new %Midiex.Server{} struct.
Takes an optional keyword list as the first parameter which can be used to populate individual struct keys.
The struct holds the following key-values:
	:port which holds a list of MIDI input ports to listen to. These can be device ports %Midiex.MidiPort{direction: :input} or virtual ports %Midiex.VirtualMidiPort{}
	:callback which holds a list of functions called when a message is received for an input port. The callback must be of single arity and take it's first parameter a message. See add_handler/2 for an example.

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link(keyword()) :: :ignore | {:error, any()} | {:ok, pid()}

Start the Midiex.Server GenServer.
Takes an optional keyword list as the first parameter which can be used to populate individual %Midiex.Listener{} struct keys. See new/1 for informaton.

 examples

 Examples

Start with no options
{:ok, listener} = Midiex.Listener.start_link()

Start, already passing the first available input port to listen to
first_port = Midiex.ports(:input) |> List.first()
{:ok, listener} = Midiex.Listener.start_link(ports: first_port)

Start, already passing a list of all input ports available to listen to
{:ok, listener} = Midiex.Listener.start_link(ports: Midiex.ports(:input))

 Link to this function

 subscribe(pid, midi_input_port)

 View Source

 @spec subscribe(
 pid(),
 %Midiex.MidiPort{
 direction: :input,
 name: term(),
 num: term(),
 port_ref: term()
 }
 | %Midiex.VirtualMidiPort{direction: term(), name: term(), num: term()}
 | [
 %Midiex.MidiPort{
 direction: :input,
 name: term(),
 num: term(),
 port_ref: term()
 }
 | %Midiex.VirtualMidiPort{direction: term(), name: term(), num: term()}
]
) :: :ok

Subscribe to one or more MIDI input ports.
This accepts both ports listed on your device %Midiex.MidiPort{direction: :input} and virtual ports %Midiex.VirtualMidiPort{} you've created.
It accepts as it's second parameter either:
	a single MIDI input port
	a list of MIDI input ports
	:all atom which will stop all MIDI input ports subscribed to.

 example

 Example

Subscribe to the input port of the Arturia KeyStep Pro keyboard
keystep_in_port = Midiex.port("KeyStep Pro", :input)

Returns a list with matching port names, in this case:
[
 %Midiex.MidiPort{
 direction: :input,
 name: "KeyStep Pro",
 num: 2,
 port_ref: #Reference<0.3139841870.4103995416.58432>
 }
]

Create and start a listener process
{:ok, keyboard} = Midiex.Listener.start_link()

Listen to MIDI messages from the keyboard
Midiex.Listener.subscribe(keyboard, keystep_in_port)

Any keys you push on the keyboard will be listened to. Add one or more handlers with Midiex.Listener.add_handler/2 to process messages.

 Link to this function

 unsubscribe(pid, midi_input_ports)

 View Source

 @spec unsubscribe(
 pid(),
 %Midiex.MidiPort{
 direction: :input,
 name: term(),
 num: term(),
 port_ref: term()
 }
 | %Midiex.VirtualMidiPort{direction: term(), name: term(), num: term()}
 | [
 %Midiex.MidiPort{
 direction: :input,
 name: term(),
 num: term(),
 port_ref: term()
 }
 | %Midiex.VirtualMidiPort{direction: term(), name: term(), num: term()}
]
 | :all
) :: :ok

Stops listening to the MIDI input port by unsubscribing to it.
This accepts both ports listed on your device %Midiex.MidiPort{direction: :input} and virtual ports %Midiex.VirtualMidiPort{} you've created.
It accepts as it's second parameter either:
	a single MIDI input port
	a list of MIDI input ports
	:all atom which will stop all MIDI input ports subscribed to.

Important
This stops the Rust OS thread from sending messages from that MIDI input port. If other Elixir processes have also subscribed to that port, they will also stop recieving messages.

 Midiex.Message - Midiex v0.6.1

Midiex.Message

Convenience functions for creating binary MIDI messages.
MIDI message functions
So that you don't have to remember all the MIDI message codes, this library has a large range of message generating functions. Some common types are below:
	note_on/3
	note_off/3
	all_notes_off/1
	sound_off/1
	polyphonic_aftertouch/3
	channel_aftertouch/3
	control_change/3
	program_change/2
	pitch_bend/2
	pan/2
	volume/2

Various system messages are supported too, such as sysex/1.
Some functions have an optional high-resolution (14-bit) version. This is activated by providing the high_res: true option, e.g.: Midiex.Message.volume(16383, high_res: true). You can learn more about the resolution of MIDI messages below.
Notes
Functions that take notes as a parameter can accept a number, string or atom note representation. For example, middle-C can be represented as 60, "C4" or :C4.
Taking the note_on/1 function as an example, generating a "note on" MIDI message for middle-C <<144, 60, 127>> can be achieved in any of these ways:
	Message.note_on(60)
	Message.note_on("C4")
	Message.note_on(:C4)

To get the MIDI number for a string or atom note representation, see note/1.
Example
alias Midiex.Message, as: M
Connect to the synth, in this case the Arturia MicroFreak synth
synth = Midiex.ports("Arturia MicroFreak", :output) |> Midiex.open()

Send the note on message, for D3
Midiex.send_msg(synth, M.note_on(:D3))

Wait 1 second
:timer.sleep(1000)

Send the note off message, for D3
Midiex.send_msg(synth, M.note_off(:D3))
About MIDI messages
MIDI messages are in the format of:
 status_byte + note_number (0-127) + velocity (0-127)
For example, taking the status byte for Note On which in HEX is 0x90, and the note Middle C which is 60 and a maximum key velocity of 127, the MIDI message in binary format is:
 <<0x90, 60, 127>>
Resolution (bits)
Coarse resolution
This type of message format is sometimes called 'coarse' or 7-bit MIDI, as it takes a maximum of 128 values only (from 0 to 127).
High resolution
However, 'high resolution' or 14-bit MIDI messages are possible, giving a maximum of 16,384 values (from 0 to 16,383). When working with controllers such as mod wheels, it allows for finer and smoother changes.
To achieve this higher 14-bit resolution, the MIDI message combines two 7-bit values called:
	MSB (Most Significant Byte), which is used for 'coarser' values. This is the bit which has the greatest effect.
	LSB (Least Significant Byte), which is used for 'finer' values.

In Elixir, We can unpack a 14-bit value into it's MSB and LSB bits using binary pattern matching, e.g.:
<<msb::7, lsb::7>> = <<value::14>>
The MSB and LSB values are sent as two different messages. Below is what it would look like for a Mod wheel which uses two control change command messages (0x01 and 0x21) to send the MSB and LSB respectively
<<msb::7, lsb::7>> = <<mod_wheel_value::14>>
msb_binary = control_change(1, msb)
lsb_binary = control_change(0x21, lsb)
<<msb_binary::binary, lsb_binary::binary>>
More information
https://www.midi.org/midi-articles/about-midi-part-3-midi-messages

 Anchor for this section

 Summary

 Channel voice messages

 channel_aftertouch(note, pressure, opts \\ [])

 Creates a channel aftertouch (also known as channel pressure) message.

 control_change(control_number, value \\ 0, opts \\ [])

 Creates a MIDI CC or 'control change' message.

 note_off(note, velocity \\ 123, opts \\ [])

 Creates a MIDI note-off message.

 note_on(note, velocity \\ 127, opts \\ [])

 Creates a MIDI note-on message.

 pitch_bend(bend, opts \\ [])

 Creates a pitch bend message, representing a change in pitch.

 polyphonic_aftertouch(note, pressure, opts \\ [])

 Creates a polyphonic aftertouch message.

 program_change(prog_num, opts \\ [])

 Creates a program change message, used select the instrument type to play sounds with or a different 'patch'.

 Channel change messages

 balance(value, opts \\ [])

 Controls the left and right balance, generally for stereo patches.

 bank_select(bank, opts \\ [])

 Creates a bank select (also known as bank switch) message.

 breath_controller(value, opts \\ [])

 Creates a breath controller messsage.

 data_entry_msb(value, opts \\ [])

 Creates an data entry message for MSB.

 foot_controller(value, opts \\ [])

 Creates a foot or pedal controller messsage.

 mod_wheel(bank, opts \\ [])

 Creates a modulation (mod) wheel message.

 pan(pan, opts \\ [])

 Change the panoramic (pan) of a channel.

 portamento(value, opts \\ [])

 Creates a portamento (slide or glide) time messsage.

 volume(volume_num, opts \\ [])

 Creates a volume messsage. This was formally called 'Main Volume' in the MIDI 1.0 spec.

 Channel mode messages

 all_notes_off(opts \\ [])

 Creates an all notes off message. This mutes all sounding notes.

 local_control(true_or_false \\ true, opts \\ [])

 Switches local control on or off by creating a local control message.

 mono_mode(true_or_false \\ true, number_of_channels \\ 0, opts \\ [])

 Creates a message which will set the device to monophonic mode.

 omni_mode(true_or_false \\ true, opts \\ [])

 Sets Omni mode on or off.

 poly_mode(true_or_false \\ true, opts \\ [])

 Creates a message which will set the device to polyphonic mode.

 reset_controllers(opts \\ [])

 Creates a message that will reset all controllers to their default.

 sound_off(opts \\ [])

 Creates an all sound off message. This mutes all sound regardless of release time or sustain.

 System messages

 active_sense()

 Creates a MIDI active sense message.

 clock()

 Creates a MIDI clock message, used for clock synchronization.

 quarter_frame(data)

 Creates a MIDI quarter frame message, used to send timing information.

 reset()

 Creates a MIDI reset message.

 resume()

 Creates a MIDI continue message.

 start()

 Creates a MIDI start message.

 stop()

 Creates a MIDI stop message.

 sysex(id_number, data)

 Creates a system exclusive message, also known as a SysEx message.

 timecode(timecode_string)

 Creates a eight MIDI quarter frame messages to represent a single hours:minutes:seconds:frames timecode string.

 Functions

 note(num_note)

 Returns the MIDI numerical code for a note.

 Anchor for this section

Channel voice messages

 Link to this function

 channel_aftertouch(note, pressure, opts \\ [])

 View Source

Creates a channel aftertouch (also known as channel pressure) message.
On a keyboard, an aftertouch message is sent by pressing down further on keys after it has already reached the bottom. Not all keyboards have aftertouch.
With channel aftertouch, one of the following is used; Either the:
	average amount of pressure of all the keys held down; or the
	single greatest pressure value of all the current depressed keys.
Therefore channel aftertouch is independent of which key or how many keys are held. polyphonic_aftertouch is specific to each key however.

This function takes as it's parameters:
	note: a note as a string (e.g. "C4"), atom (e.g. :C4) or number (e.g. 60) as the first parameter
	pressure: a number between 0 and 127 representing the pressure on the key. By defaut 127 is used.

The following option can also be passed:
	channel: the MIDI channel to which the message will be sent (there are 16 channels per MIDI device, in the range 0 to 15). By default channel 0 is used.

 example

 Example

alias Midiex.Message

Create a series of aftertouch messages from 0 to 127 for the note middle-C (C4)
0..127//1
|> Enum.map(fn pressure -> Message.channel_aftertouch(:C4, pressure: pressure) end)

 Link to this function

 control_change(control_number, value \\ 0, opts \\ [])

 View Source

Creates a MIDI CC or 'control change' message.
MIDI Control Change messages are used to control functions in a synthesiser. Controllers include devices such as pedals, levers/sliders, wheels, switches and other control-oriented devices.
This function takes as its parameters:
	contoller number: a number between 0-119. Controller numbers between 120-127 are reserved as "Channel Mode Messages".
	value: depends on the control function, but usually is a a number between 0 and 127. See the MIDI 1.0 Control Change Messages Spec or consult the MIDI device manual for specific codes an values.

The following option can be passed:
	channel: the MIDI channel to which the message will be sent (there are 16 channels per MIDI device, in the range 0 to 15). By default channel 0 is used.

 example

 Example

The MIDI CC message of 123 equates to "All Notes Off" (a Channel Mode Message), thus stopping all notes being played.
Create a 'all notes off' CC message.
Midiex.control_change(127)

 reference

 Reference

See the official MIDI 1.0 Control Change Messages Spec.

 Link to this function

 note_off(note, velocity \\ 123, opts \\ [])

 View Source

Creates a MIDI note-off message.
Takes as it's parameters:
	note: a note as a string (e.g. "C4"), atom (e.g. :C4) or number (e.g. 60) as the first parameter
	velocity: a number between 0 and 127 representing how hard (or loud) a key was pressed. By defaut 127 is used.

The following options can be passed:
	channel: the MIDI channel to which the message will be sent (there are 16 channels per MIDI device, in the range 0 to 15). By default channel 0 is used.

All notes can be switched off with Message.all_notes_off/1.

 example

 Example

Note-off for middle-C
Message.note_off(:C4)

Returns: <<128, 60, 127>>

 Link to this function

 note_on(note, velocity \\ 127, opts \\ [])

 View Source

Creates a MIDI note-on message.
Takes as it's parameters:
	note: a note as a string (e.g. "C4"), atom (e.g. :C4) or number (e.g. 60) as the first parameter
	velocity: a number between 0 and 127 representing how hard (or loud) a key was pressed. By defaut 127 is used.

The following options can be passed:
	channel: the MIDI channel to which the message will be sent (there are 16 channels per MIDI device, in the range 0 to 15). By default channel 0 is used.

Note that MIDI channels are in the range 0 - 15. But in MIDI software and hardware it may be offset by +1, so MIDI channel 0 might be called MIDI channel 1 and so on to channel 16.

 examples

 Examples

Note-on message for middle-C
Midiex.Message.note_on(:C4)

Returns: <<144, 60, 127>>

Note-on message for middle-C on channel 2 with a velocity of 40
Midiex.Message.note_on(:C4, 40, channel: 2)

Returns: <<146, 60, 40>>
These can be sent to a connection using Midiex.send_msg/2, for example:
alias Midiex.Message
Midiex.send_msg(out_conn, Message.note_on(:C4, 40, channel: 2))

 Link to this function

 pitch_bend(bend, opts \\ [])

 View Source

Creates a pitch bend message, representing a change in pitch.
Pitch bend change messages a usually sent from a keyboard with a pitch bend wheel or lever.
Takes as it's first parameter, the pitch bend amount. The channel cane be passed as an option.
The range of a pitch bend is as follows:
	0-8191 represent negative bends,
	8192 (Hex: 0x2000) is no bend and
	8193-16383 are positive bends

 example

 Example

alias Midiex.Message, as: M

Play a note
Midiex.send_msg(piano, M.note_on(:D3))

Bend up, then down, then back to center (8192)
(Enum.to_list(8193..16383//1) ++ Enum.to_list(8191..0//-1) ++ [8192])
|> Enum.each(fn pitch -> Midiex.send_msg(piano, M.pitch_bend(pitch)) end)

 Link to this function

 polyphonic_aftertouch(note, pressure, opts \\ [])

 View Source

Creates a polyphonic aftertouch message.
On a keyboard, polyphonic aftertouch (or key pressure) is message sent by pressing down further on a key after it has already reached the bottom. Not all keyboards have aftertouch.
Note: polyphonic_aftertouch is specific to each key, where as channel_aftertouch is average amount of pressure applied to whichever keys are held down.
The function takes as it's parameters:
	note: a note as a string (e.g. "C4"), atom (e.g. :C4) or number (e.g. 60) as the first parameter
	pressure: a number between 0 and 127 representing the pressure on the key. By defaut 127 is used.

The following options can be passed:
	channel: the MIDI channel to which the message will be sent (there are 16 channels per MIDI device, in the range 0 to 15). By default channel 0 is used.

 example

 Example

alias Midiex.Message

Create a series of aftertouch messages from 0 to 127 for the note middle-C (C4)
0..127//1
|> Enum.map(fn pressure -> Message.polyphonic_aftertouch(:C4, pressure) end)

 Link to this function

 program_change(prog_num, opts \\ [])

 View Source

Creates a program change message, used select the instrument type to play sounds with or a different 'patch'.
This function takes one data byte which specifies the new program number.
To apply this to a particular channel, use the channel option, e.g.:
Message.program_change(1, channel: 3)

 Anchor for this section

Channel change messages

 Link to this function

 balance(value, opts \\ [])

 View Source

Controls the left and right balance, generally for stereo patches.
A value of 64 equals the center.
Values below 64 moves the sound to the left, and above to the right.

 example

 Example

Midiex.Message.balance(64)

 14-bit-version

 14-bit version

If you want a high-resolution balance message (e.g. in the range of 0-16383), you can pass the option high_res: true, e.g.:
Center channel (high res)
Midiex.Message.balance(8191, high_res: true)

Returns:
<<176, 8, 63, 176, 40, 127>>

 Link to this function

 bank_select(bank, opts \\ [])

 View Source

Creates a bank select (also known as bank switch) message.
Takes a bank number as it's first parameter, in the range of 0-16383. The number of banks is dependent on the device.
A channel number can be provided as an option.

 Link to this function

 breath_controller(value, opts \\ [])

 View Source

Creates a breath controller messsage.
Breath controller messages were originally intended for use with a breath MIDI controller. Blowing harder into the breath controller would produce higher MIDI control values.
Outside of breath control, is can be associated with aftertouch messages or used for modulation.
Takes a number as it's first parameter, in the range of 0-16383.
A channel number can be provided as an option.

 Link to this function

 data_entry_msb(value, opts \\ [])

 View Source

Creates an data entry message for MSB.
Used to control the value for NRPN (Non-Registered Parameter Number) or RPN (Registered Parameter Number) parameters.
Takes a number as it's first parameter, in the range of 0-16383.
A channel number can be provided as an option.

 Link to this function

 foot_controller(value, opts \\ [])

 View Source

Creates a foot or pedal controller messsage.
Takes a number as it's first parameter, in the range of 0-16383.
A channel number can be provided as an option.

 Link to this function

 mod_wheel(bank, opts \\ [])

 View Source

Creates a modulation (mod) wheel message.
Modulation wheels are often used for vibrato effects (pitch, loudness, brighness), however what is modulated is based on the patch.
Takes a number as it's first parameter, in the range of 0-16383.
A channel number can be provided as an option.

 Link to this function

 pan(pan, opts \\ [])

 View Source

Change the panoramic (pan) of a channel.
This shifts the sound from the left or right ear in when playing stereo.
Values below 64 moves the sound to the left, and above to the right.

 example

 Example

Pan to middle
Midiex.Message.pan(64)

 14-bit-version

 14-bit version

If you want a high-resolution pan message (e.g. in the range of 0-16383), you can pass the option high_res: true.
Pan to middle (high res version)
Midiex.Message.pan(8191, high_res: true)

 Link to this function

 portamento(value, opts \\ [])

 View Source

Creates a portamento (slide or glide) time messsage.
Portamento is the rate to slide between 2 notes played in sequence, sliding the pitch up or down from one note to the next.
Takes a number as it's first parameter, in the range of 0-16383.
A channel number can be provided as an option.

 Link to this function

 volume(volume_num, opts \\ [])

 View Source

Creates a volume messsage. This was formally called 'Main Volume' in the MIDI 1.0 spec.
Takes a number as it's first parameter, in the range of 0-127.
For example, to set to maximum volume:
Midiex.Message.volume(127)

Returns:
<<176, 7, 127>>

 14-bit-version

 14-bit version

If you want a high-resolution volume message (e.g. in the range of 0-16383), you can pass the option high_res: true, e.g.:
Midiex.Message.volume(16383, high_res: true)

Returns:
<<176, 7, 127, 176, 39, 127>>
A channel number can be provided as an option.

 Anchor for this section

Channel mode messages

 Link to this function

 all_notes_off(opts \\ [])

 View Source

Creates an all notes off message. This mutes all sounding notes.
The release time will still be maintained.
Notes held by sustain will not turn off until sustain pedal is depressed.

 Link to this function

 local_control(true_or_false \\ true, opts \\ [])

 View Source

Switches local control on or off by creating a local control message.
An example of local control is that you may want the synthesizer to be played by means of its own keyboard, therefore setting Midiex.Message.local_control(true).
If you were controlling it from a PC only, and didn't want it to have local control, you could send the Midiex.Message.local_control(false) message.
More information at: https://electronicmusic.fandom.com/wiki/Local_control

 Link to this function

 mono_mode(true_or_false \\ true, number_of_channels \\ 0, opts \\ [])

 View Source

 @spec mono_mode(boolean(), any(), keyword()) :: <<_::24>>

Creates a message which will set the device to monophonic mode.
Takes as it's parameters:
	true to set mono mode on, or false to switch on poly mode
	the number of channels, or 0 if the number of channels equals the number of voices in the receiver.

 example

 Example

Set device to monophonic mode
Midiex.Message.mono_mode()

Returns:
<<176, 126, 0>>

 Link to this function

 omni_mode(true_or_false \\ true, opts \\ [])

 View Source

Sets Omni mode on or off.
The first parameter takes one of the following booleans:
	true to switch Omni mode on
	false to swithc Omni mode off

 Link to this function

 poly_mode(true_or_false \\ true, opts \\ [])

 View Source

Creates a message which will set the device to polyphonic mode.
Takes as it's parameters:
	true to set poly mode on, or false to switch on mono mode (or use mono_mode)

 example

 Example

Midiex.Message.poly_mode()

Returns
<<176, 127, 0>>

 Link to this function

 reset_controllers(opts \\ [])

 View Source

Creates a message that will reset all controllers to their default.

 Link to this function

 sound_off(opts \\ [])

 View Source

Creates an all sound off message. This mutes all sound regardless of release time or sustain.

 Anchor for this section

System messages

 Link to this function

 active_sense()

 View Source

Creates a MIDI active sense message.
Used to tell listening devices that the MIDI connection is still active.

 Link to this function

 clock()

 View Source

Creates a MIDI clock message, used for clock synchronization.
The MIDI clock message is a timing message that is sent at regular intervals to tell the listening devices where it is in terms of time.

 Link to this function

 quarter_frame(data)

 View Source

Creates a MIDI quarter frame message, used to send timing information.
Takes a single byte as the first parameter.
Timing information is in the MIDI time code format, which is hours:minutes:seconds:frames. This follows the same timing information as standard SMPTE timecode.
As MIDI send values in the range of 0-127, a single byte cannot carry the full time. For this reason, 8 quarter frame messages must be sent to piece together the current MIDI time.
The timecode/1 function will automatically convert a hours:minutes:seconds:frames timecode string create the individual quarter frames.

 Link to this function

 reset()

 View Source

Creates a MIDI reset message.
Various MIDI devices will interpret this message differently. Often it will cause a device to stop playing and set the song position to the beginning.
The MIDI 1.0 specification says the following should occur when a reset message is sent:
	The modulation wheel, hold pedal, portamento pedal, sostenuto pedal and soft pedal are set to 0
	The pitch wheel is set to center which is usually 64, but could be set to 0
	The channel pressure and the key pressure are set to 0
	Registered and nonregistered parameter numbers (98 to 101) are set to 127
	Expression is set to 127.

 Link to this function

 resume()

 View Source

Creates a MIDI continue message.
Used to tell listening devices to resume playback of the current MIDI sequence.

 Link to this function

 start()

 View Source

Creates a MIDI start message.
Used to tell listening devices to commence playback of the current MIDI sequence.

 Link to this function

 stop()

 View Source

Creates a MIDI stop message.
Used to tell listening devices to stop playing the current MIDI sequence.

 Link to this function

 sysex(id_number, data)

 View Source

Creates a system exclusive message, also known as a SysEx message.
This function takes the following parameters:
	SysEx ID number: A code representing the device manufacturer, see the offical list of manurfacturer IDs
	Data: series of hex data bytes representing the message body. The hex data bytes values are between 0x00 and 0x7F (0 and 127).

 about-sysex

 About SysEx

SysEx messages can contain any number of hexadecimal bytes. They the message data is specific to each manufacturers device and include the manufacturer's identification code.
SysEx messages are wrapped in a start (0xF0) and end (0xF7) byte, e.g.:
<<0xF0, id_number, data, 0xF7>>

 example

 Example

Send data to a Roland device
Roland uses the ID of 0x41 (or you can pass the integer of 65)
Midiex.Message.sysex(0x41, <<0x01, 0x34>>)

Returns <<240, 65, 1, 52, 247>>

You can pass integer values instead
Midiex.Message.sysex(65, <<1, 52>>)

Returns <<240, 65, 1, 52, 247>>

 Link to this function

 timecode(timecode_string)

 View Source

Creates a eight MIDI quarter frame messages to represent a single hours:minutes:seconds:frames timecode string.

 example

 Example

Midiex.Message.timecode("01:00:00:00")

Returns
<<241, 0, 241, 16, 241, 32, 241, 48, 241, 64, 241, 80, 241, 97, 241, 112>>

 Anchor for this section

Functions

 Link to this function

 note(num_note)

 View Source

Returns the MIDI numerical code for a note.
Takes either a string or atom representation of a note as the first parameter.

 example

 Example

Return the code for middle-C (also known as C4)
Message.note(:C4)
Message.note("C4")
Message.note(:MiddleC)
Message.note("MiddleC")

These all return: 60

Return the code for A-sharp 3
Message.note(:As3)
Message.note("A#3")

These both return: 58

 Midiex.Notifier - Midiex v0.6.1

Midiex.Notifier

GenServer for subscribing and responding to MIDI notifications on supported systems.
This is currently implemented for Mac only.
How this works
On Mac, a callback function needs to be created to specially handle MIDI notification messages, such as when a device has been physically plugged (:added) or unplugged (:removed). This callback is implemented in the Rust side of this library using coremidi.
The notifications will be delivered on MacOS to a Rust thread with the specific 'run loop' (using CFRunLoop from the core_foundation Rust library) that was created when the Midiex.notifications/0 function was first called. This function is called automatically when this GenServer is started.
Any (:added) or (:removed) notifications will be sent to this GenServer from the Rust thread.
The Midiex.Notifier GenServer then forwards these notifications to any handler functions added in with the add_handler/2 function or passed to it through the start/1 function.
Example
Start the Notifier GenServer
{:ok, pid} = Midiex.Notifier.start_link()

Add a simple handler callback function. This will just inspect the notification.
Midiex.Notifier.add_handler(pid, fn msg -> IO.inspect(msg) end)

KeyStep Pro keyboard has been hot-plugged into the Mac:
%Midiex.MidiNotification{
 notification_type: :added,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 493507367,
 direction: :input
}
%Midiex.MidiNotification{
 notification_type: :added,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 2688501783,
 direction: :output
}

KeyStep Pro keyboard has been unplugged from the Mac:
%Midiex.MidiNotification{
 notification_type: :removed,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 493507367,
 direction: :input
}
%Midiex.MidiNotification{
 notification_type: :removed,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 2688501783,
 direction: :output
}

 Anchor for this section

 Summary

 Functions

 add_handler(pid, handler_fn)

 Add one or more callback function(s) which will recieve and handle MIDI notifications.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_handlers(pid)

 Clears all handlers.

 get_state(pid)

 Gets the servers state, returns %Midiex.Listener{} struct.

 new(opts \\ [])

 Creates a new %Midiex.Notifier{} struct.

 start_link(opts \\ [])

 Start the Midiex.Notifier GenServer.

 Anchor for this section

Functions

 Link to this function

 add_handler(pid, handler_fn)

 View Source

 @spec add_handler(pid(), function() | [function()]) :: :ok

Add one or more callback function(s) which will recieve and handle MIDI notifications.
The first parameter of the callback function will be used to recieve notification messages.

 example

 Example

Start the Notifier GenServer
{:ok, pid} = Midiex.Notifier.start_link()

Add a simple handler callback function. This will just inspect the notification.
Midiex.Notifier.add_handler(pid, fn msg -> IO.inspect(msg) end)

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 clear_handlers(pid)

 View Source

Clears all handlers.

 Link to this function

 get_state(pid)

 View Source

 @spec get_state(pid()) :: %Midiex.Listener{callback: term(), port: term()}

Gets the servers state, returns %Midiex.Listener{} struct.

 Link to this function

 new(opts \\ [])

 View Source

Creates a new %Midiex.Notifier{} struct.
Takes an optional keyword list as the first parameter which can be used to populate individual struct keys.
The struct holds the following key-values:
	:callback which holds a list of functions called when a message is received for an input port. The callback must be of single arity and take it's first parameter a message. See add_handler/2 for an example.

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link(keyword()) :: :ignore | {:error, any()} | {:ok, pid()}

Start the Midiex.Notifier GenServer.
Takes an optional keyword list as the first parameter which can be used to populate individual %Midiex.Notifier{} struct keys. See new/1 for informaton.

 Midiex.MidiMessage - Midiex v0.6.1

Midiex.MidiMessage

A struct representing MIDI messages recieved from MIDI inputs.
These are recieved via the Midiex.subscribe() function or from the Midiex.Listener GenServer.
The keys are as follows:
	port: which is the input port (%Midiex.MidiPort{}) that sent the message
	data: the MIDI message data, usually in the form of a three item list, e.g. [153, 60, 70]
	timestamp: from the midir docs: "a timestamp (in microseconds) designating the time since some unspecified point in the past (which will not change during the lifetime of an input connection)".

Example messages
%Midiex.MidiMessage{
 port: %Midiex.MidiPort{
 direction: :input,
 name: "KeyStep Pro",
 num: 2,
 port_ref: #Reference<0.2327272197.1194197016.109029>
 },
 data: [153, 60, 70],
 timestamp: 283146647865
}

%Midiex.MidiMessage{
 port: %Midiex.MidiPort{
 direction: :input,
 name: "Arturia MicroFreak",
 num: 1,
 port_ref: #Reference<0.2327272197.1194197016.109028>
 },
 data: [128, 53, 33],
 timestamp: 283145644340
}

%Midiex.MidiMessage{
 port: %Midiex.MidiPort{
 direction: :input,
 name: "Arturia DrumBrute Impact",
 num: 0,
 port_ref: #Reference<0.2327272197.1194197016.109027>
 },
 data: [153, 36, 4],
 timestamp: 283147540161
}
Other examples
See Midiex.Listener for examples of subscribing to MIDI messages and adding your own callback functions to process them.

 Midiex.MidiNotification - Midiex v0.6.1

Midiex.MidiNotification

A struct representing notifications of MIDI changes.
This is currently only implemented on MacOS and is capturing added or removed messages only (e.g. a device or port has been added or removed).
An example use of this is for hot swapping of devices, responding to if a device has been added or removed.
The main fields are:
	notification_type: which is of type :added or :removed
	name: which is the same as the port name used in %Midiex.MidiPort{}
	direction: which is the same as the port direction used in %Midiex.MidiPort{}.

Additionally, the following fields have been included from coreaudio (MacOS):
	parent_name: which may or may not be the same as the name: field above
	parent_type: the 'parent type' reported by coreaudio, often :entity
	parent_id: the unique numerical ID reported by coreaudio for the parent
	native_id: the unique numerical ID reported by coreaudio for the port

Example
KeyStep Pro keyboard has been hot-plugged into the Mac:
%Midiex.MidiNotification{
 notification_type: :added,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 493507367,
 direction: :input
}
%Midiex.MidiNotification{
 notification_type: :added,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 2688501783,
 direction: :output
}

KeyStep Pro keyboard has been unplugged into the Mac:
%Midiex.MidiNotification{
 notification_type: :removed,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 493507367,
 direction: :input
}
%Midiex.MidiNotification{
 notification_type: :removed,
 parent_name: "KeyStep Pro",
 parent_id: 1384647386,
 parent_type: :entity,
 name: "KeyStep Pro",
 native_id: 2688501783,
 direction: :output
}

 Midiex.MidiPort - Midiex v0.6.1

Midiex.MidiPort

A struct representing a MIDI port.
The keys are as follows:
	direction which is an atom of value :input or :output (for input or output port)
	name which is a string the backend reported as the name of the port. With MIDI hardware, this is often the name of the device.
	num an integer index representing the port starting at 0. Both input and output ports will start with 0.
	port_ref a reference (e.g. #Reference<0.2239960018.1937899544.176288>) to the port object in midir (Rust).

Notes from midir
How a port is identified internally is backend-dependent. If the backend allows it, port objects remain valid when other ports in the system change (i.e. it is not just an index).
	 MidiInputPort: https://docs.rs/midir/latest/midir/struct.MidiInputPort.html
	 MidiOutputPort: https://docs.rs/midir/latest/midir/struct.MidiInputPort.html

Example
Midiex.ports()

This will return MIDI ports available on your system, for example:
[
 %Midiex.MidiPort{
 direction: :input,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.2239960018.1937899544.176288>
 },
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.2239960018.1937899544.176289>
 }
]

 Midiex.OutConn - Midiex v0.6.1

Midiex.OutConn

A struct representing an open connection to a MIDI output port.
The keys are as follows:
	conn_ref the reference (e.g. #Reference<0.2239960018.1937899544.176288>) to the connection object in midir (Rust).
	name a string containing the name of the port this connection is to
	port_num a integer representing the index of the output port.

Documentation from midir
See MidiOutputConnection at: https://docs.rs/midir/latest/midir/struct.MidiOutputConnection.html
Example
Pass a port from taken from Midiex.ports(:output)
e.g. port = Midiex.ports(:output) |> List.first()
port =
 %Midiex.MidiPort{
 direction: :output,
 name: "IAC Driver Bus 1",
 num: 0,
 port_ref: #Reference<0.3876911033.1674706968.249863>
 }

output_conn = Midiex.open(port)
output_conn will look something like this:
 %Midiex.OutConn{
 conn_ref: #Reference<0.3876911033.1674706945.249916>,
 name: "IAC Driver Bus 1",
 port_num: 0
 }
An output port can be closed as follows:
Midiex.close(output_conn)
:ok is returned if successful

 Midiex.VirtualMidiPort - Midiex v0.6.1

Midiex.VirtualMidiPort

A struct representing a virtual MIDI port.
Currently this is only used for :input ports. When a viritual output port is created a Midiex.OutConn struct is returned instead.
Note that viritual ports are only available on platforms that them (currently every platform but Windows).
The keys of the struct are as follows:
	direction which is an atom currently of value :input
	name which is a string containing the name of the port
	num the port number

Example
Virtual input port
Create a virtual MIDI input by giving it a name. MIDIex will also assign it an input port number (`num`).
my_virtual_in = Midiex.create_virtual_input("My Virtual Input")

This will return a VirtualMidiPort struct in the following format
%Midiex.VirtualMidiPort{direction: :input, name: "My Virtual Input", num: 1}
More information
To create a virtual input port see Midiex.create_virtual_input/1

OEBPS/assets/midiex_logo_wide.png
@ll MIDIEX |

OEBPS/assets/grokking_midi.png
GROKKING MIDI

MIDI PORTS

CONNECTIONS

MIDI MESSAGES

OUTPUT PORTS

Represents a device than can you
can send MIDI messages to.

An example of this is an external
MIDI instrument like a synthesiser.

OUTPUT CONNECTIONS

To send a message to a MIDI output port,
a connection needs to be made to it with
Midiex.open/1.

You can close the output connection with
Midiex.close/1.

INPUT PORTS

Represents a device than you can
receive MIDI messages from.

An example of this is an external
MIDI keyboard.

INPUT CONNECTIONS

A connection is automatically made to a
MIDI input port when it's subscribed to. It's
automatically closed when it's been
unsubscribed from.

Midiex comes with the Midiex.subscribe/1
function which will send messages to the
calling Elixir process.

However, in practice you'll likely use the
Midiex.Listener GenServer, which allows you
to subscribe to one or more input ports and
register handlers to act on those messages.

VIRTUAL PORTS

Virtual ports allow your Elixir-based
software to be discoverable as a
virtual MIDI device with input or

output ports.
Il

VIRTUAL CONNECTIONS

Your Elixir software can be seen as an input
port to other MIDI software by creating a
virtual output connection with Midiex.create_
virtual_output/1. You send messages to this
virtual output connection which can be
listened to by software subscribed to the input
port registered on your host operating system

Likewise, your Elixir software can be seen as an
output port for other MIDI software though
Midiex.create_virtual_input/1 and Midiex.
subscribe/1. This will allow your Elixir software
to listen to messages sent to it through an
output port registered on your host operating
system.

MIDI 1.0

MIDI can be thought of as a language that
describes music in a digital (binary) format.

As it was initially designed for keyboard-
based instruments, the MIDI message is
based on what you can do with an
electronic keyboard.

An example of this is a "note on" message,
which includes the note to play, as well as
the "velocity". The velocity sets how loud it
plays relative to other notes.

MESSAGE FORMAT

A MIDI message is made up of an eight-bit
status byte which is generally followed by
one or two data bytes. For example:

<<0x90, 60, 127>>

MESSAGE TYPES

Types of messages include:

e note on or off

* polyphonic or channel aftertouch

* control change of synthesiser functions
e program (instrument) change

e pitch wheel bending

* sysex.

MIDI CHANNELS

Each MIDI device has 16 channels and each
message can be encoded for one of these
channels.

MIDI devices or software may listen to one
or more of these channels, and can assign
different instruments to different channels.

OEBPS/assets/how_listener_works.png
HOW LISTENER WORKS

ELIXIR RUST

a START LISTENER PROCESS

With Midiex.Listener.start_link/1, a GenServer process will start to:

* listen to messages from subscribed MIDI inputs
» forward those messages to handler functions you create

a SUBSCRIBE TO MIDI INPUTS —} RUST THREAD CREATED

With Midiex.Listener.subscribe/2 you can