

 Mix

 v1.16.3

 Table of contents

 	

 	Modules

 	Mix

 	Mix.Generator

 	Mix.Project

 	Mix.Release

 	Mix.SCM

 	Mix.Shell

 	Mix.Shell.IO

 	Mix.Shell.Process

 	Mix.Shell.Quiet

 	Mix.Task

 	Mix.Task.Compiler

 	Mix.Task.Compiler.Diagnostic

 	Exceptions

 	Mix.ElixirVersionError

 	Mix.Error

 	Mix.InvalidTaskError

 	Mix.NoProjectError

 	Mix.NoTaskError

 	Mix Tasks

 	mix app.config

 	mix app.start

 	mix app.tree

 	mix archive

 	mix archive.build

 	mix archive.check

 	mix archive.install

 	mix archive.uninstall

 	mix clean

 	mix cmd

 	mix compile

 	mix compile.app

 	mix compile.elixir

 	mix compile.erlang

 	mix compile.leex

 	mix compile.protocols

 	mix compile.yecc

 	mix deps

 	mix deps.clean

 	mix deps.compile

 	mix deps.get

 	mix deps.loadpaths

 	mix deps.precompile

 	mix deps.tree

 	mix deps.unlock

 	mix deps.update

 	mix do

 	mix escript

 	mix escript.build

 	mix escript.install

 	mix escript.uninstall

 	mix eval

 	mix format

 	mix help

 	mix iex

 	mix loadconfig

 	mix loadpaths

 	mix local

 	mix local.hex

 	mix local.public_keys

 	mix local.rebar

 	mix new

 	mix profile.cprof

 	mix profile.eprof

 	mix profile.fprof

 	mix release

 	mix release.init

 	mix run

 	mix test

 	mix test.coverage

 	mix xref

Mix

Mix is a build tool that provides tasks for creating, compiling,
and testing Elixir projects, managing its dependencies, and more.

 Mix.Project

The foundation of Mix is a project. A project can be defined by using
Mix.Project in a module, usually placed in a file named mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0"
]
 end
end
See the Mix.Project module for detailed documentation on Mix projects.
Once the project is defined, a number of default Mix tasks can be run
directly from the command line:
	mix compile - compiles the current project
	mix test - runs tests for the given project
	mix run - runs a particular command inside the project

Each task has its own options and sometimes specific configuration
to be defined in the project/0 function. You can use mix help
to list all available tasks and mix help NAME to show help for
a particular task.
The best way to get started with your first project is by calling
mix new my_project from the command line.

 Mix.Task

Tasks are what make Mix extensible.
Projects can extend Mix behaviour by adding their own tasks. For
example, adding the task below inside your project will
make it available to everyone that uses your project:
defmodule Mix.Tasks.Hello do
 use Mix.Task

 def run(_) do
 Mix.shell().info("Hello world")
 end
end
The task can now be invoked with mix hello.
See the Mix.Task behaviour for detailed documentation on Mix tasks.

 Dependencies

Mix also manages your dependencies and integrates nicely with the Hex package
manager.
In order to use dependencies, you need to add a :deps key
to your project configuration. We often extract the list of dependencies
into its own function:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0",
 deps: deps()
]
 end

 defp deps do
 [
 {:ecto, "~> 2.0"},
 {:plug, github: "elixir-lang/plug"}
]
 end
end
You can run mix help deps to learn more about dependencies in Mix.

 Environments

Mix supports different environments. Environments allow developers
to prepare and organize their project specifically for different
scenarios. By default, Mix provides three environments:
	:dev - the default environment
	:test - the environment mix test runs on
	:prod - the environment your dependencies run on

The environment can be changed via the command line by setting
the MIX_ENV environment variable, for example:
$ MIX_ENV=prod mix run server.exs

You can also specify that certain dependencies are available only for
certain environments:
{:some_test_dependency, "~> 1.0", only: :test}
When running Mix via the command line, you can configure the default
environment or the preferred environment per task via the def cli
function in your mix.exs. For example:
def cli do
 [
 default_env: :local,
 preferred_envs: [docs: :docs]
]
end
The environment can be read via Mix.env/0.

 Targets

Besides environments, Mix supports targets. Targets are useful when a
project needs to compile to different architectures and some of the
dependencies are only available to some of them. By default, the target
is :host but it can be set via the MIX_TARGET environment variable.
When running Mix via the command line, you can configure the default
target or the preferred target per task via the def cli function
in your mix.exs. For example:
def cli do
 [
 default_target: :local,
 preferred_targets: [docs: :docs]
]
end
The target can be read via Mix.target/0.

 Configuration

Mix allows you configure the application environment of your application
and of your dependencies. See the Application module to learn more about
the application environment. On this section, we will focus on how to configure
it at two distinct moments: build-time and runtime.
Avoiding the application environment
The application environment is discouraged for libraries. See Elixir's
Library Guidelines for
more information.

 Build-time configuration

Whenever you invoke a mix command, Mix loads the configuration
in config/config.exs, if said file exists. It is common for the
config/config.exs file itself to import other configuration based
on the current MIX_ENV, such as config/dev.exs, config/test.exs,
and config/prod.exs, by calling Config.import_config/1:
import Config
import_config "#{config_env()}.exs"
We say config/config.exs and all imported files are build-time
configuration as they are evaluated whenever you compile your code.
In other words, if your configuration does something like:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
The :secret_key key under :my_app will be computed on the host
machine before your code compiles. This can be an issue if the machine
compiling your code does not have access to all environment variables
used to run your code, as loading the config above will fail due to the
missing environment variable. Furthermore, even if the environment variable
is set, changing the environment variable will require a full recompilation
of your application by calling mix compile --force (otherwise your project
won't start). Luckily, Mix also provides runtime configuration, which is
preferred in such cases and we will see next.

 Runtime configuration

To enable runtime configuration in your release, all you need to do is
to create a file named config/runtime.exs:
import Config
config :my_app, :secret_key, System.fetch_env!("MY_APP_SECRET_KEY")
This file is executed whenever your project runs. If you assemble
a release with mix release, it also executes every time your release
starts.

 Aliases

Aliases are shortcuts or tasks specific to the current project.
In the Mix.Task section, we have defined a task that would be
available to everyone using our project as a dependency. What if
we wanted the task to only be available for our project? Just
define an alias:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0",
 aliases: aliases()
]
 end

 defp aliases do
 [
 c: "compile",
 hello: &hello/1,
 paid_task: &paid_task/1
]
 end

 defp hello(_) do
 Mix.shell().info("Hello world")
 end

 defp paid_task(_) do
 Mix.Task.run("paid.task", [
 "first_arg",
 "second_arg",
 "--license-key",
 System.fetch_env!("SOME_LICENSE_KEY")
])
 end
end
In the example above, we have defined three aliases. One is mix c
which is a shortcut for mix compile. Another is named
mix hello and the third is named mix paid_task, which executes
the code inside a custom function to invoke the paid.task task
with several arguments, including one pulled from an environment
variable.
Aliases may also be lists, specifying multiple tasks to be run
consecutively:
[all: [&hello/1, "deps.get --only #{Mix.env()}", "compile"]]
In the example above, we have defined an alias named mix all,
that prints "Hello world", then fetches dependencies specific
to the current environment, and compiles the project.
Aliases can also be used to augment existing tasks. Let's suppose
you want to augment mix clean to clean another directory Mix does
not know about:
[clean: ["clean", &clean_extra/1]]
Where &clean_extra/1 would be a function in your mix.exs
with extra cleanup logic.
If the alias is overriding an existing task, the arguments given
to the alias will be forwarded to the original task in order to
preserve semantics. Otherwise arguments given to the alias are
appended to the arguments of the last task in the list.
Another use case of aliases is to run Elixir scripts and shell
commands, for example:
priv/hello1.exs
IO.puts("Hello One")

priv/hello2.exs
IO.puts("Hello Two")

priv/world.sh
#!/bin/sh
echo "world!"

mix.exs
defp aliases do
 [
 some_alias: ["hex.info", "run priv/hello1.exs", "cmd priv/world.sh"]
]
end
In the example above we have created the alias some_alias that will
run the task mix hex.info, then mix run to run an Elixir script,
then mix cmd to execute a command line shell script. This shows how
powerful aliases mixed with Mix tasks can be.
One commit pitfall of aliases comes when trying to invoke the same task
multiple times. Mix tasks are designed to run only once. This prevents
the same task from being executed multiple times. For example, if there
are several tasks depending on mix compile, the code will be compiled
only once.
Similary, mix format can only be invoked once. So if you have an alias
that attempts to invoke mix format multiple times, it won't work unless
it is explicitly reenabled using Mix.Task.reenable/1:
another_alias: [
 "format --check-formatted priv/hello1.exs",
 "cmd priv/world.sh",
 fn _ -> Mix.Task.reenable("format") end,
 "format --check-formatted priv/hello2.exs"
]
Some tasks are automatically reenabled though, as they are expected to
be invoked multiple times, such as: mix cmd, mix do, mix xref, etc.
Finally, aliases defined in the current project do not affect its
dependencies and aliases defined in dependencies are not accessible
from the current project, with the exception of umbrella projects.
Umbrella projects will run the aliases of its children when the
umbrella project itself does not define said alias and there is no
task with said name.

 Environment variables

Several environment variables can be used to modify Mix's behaviour.
Mix responds to the following variables:
	MIX_ARCHIVES - specifies the directory into which the archives should be installed
(default: ~/.mix/archives)

	MIX_BUILD_PATH - sets the project Mix.Project.build_path/0 config.
This option must always point to a subdirectory inside a temporary directory.
For instance, never "/tmp" or "_build" but "_build/PROD" or "/tmp/PROD", as
required by Mix. This environment variable is used mostly by external build
tools. For your CI servers, you likely want to use MIX_BUILD_ROOT below.

	MIX_BUILD_ROOT - sets the root directory where build artifacts should be
written to. For example, "_build". If MIX_BUILD_PATH is set, this option
is ignored.

	MIX_DEBUG - outputs debug information about each task before running it

	MIX_DEPS_PATH - sets the project Mix.Project.deps_path/0 config for the
current project (default: deps)

	MIX_ENV - specifies which environment should be used. See Environments

	MIX_EXS - changes the full path to the mix.exs file

	MIX_HOME - path to Mix's home directory, stores configuration files and scripts used by Mix
(default: ~/.mix)

	MIX_INSTALL_DIR - (since v1.12.0) specifies directory where Mix.install/2 keeps
 install cache

	MIX_PATH - appends extra code paths

	MIX_PROFILE - a list of comma-separated Mix tasks to profile the time spent on
functions by the process running the task

	MIX_QUIET - does not print information messages to the terminal

	MIX_REBAR3 - path to rebar3 command that overrides the one Mix installs
(default: ~/.mix/rebar3)

	MIX_TARGET - specifies which target should be used. See Targets

	MIX_XDG - asks Mix to follow the XDG Directory Specification
for its home directory and configuration files. This behaviour needs to
be opt-in due to backwards compatibility. MIX_HOME has higher preference
than MIX_XDG. If none of the variables are set, the default directory
~/.mix will be used

Environment variables that are not meant to hold a value (and act basically as
flags) should be set to either 1 or true, for example:
$ MIX_DEBUG=1 mix compile

 Summary

 Functions

 Mix.Generator - Mix v1.16.3

Mix.Generator

Conveniences for working with paths and generating content.

 Summary

 Functions

 Mix.Project - Mix v1.16.3

Mix.Project

Defines and manipulates Mix projects.
A Mix project is defined by calling use Mix.Project in a module, usually
placed in mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "1.0.0"
]
 end
end
use Mix.Project
When you use Mix.Project, it notifies Mix that a new project
has been defined, so all Mix tasks use your module as a starting
point.

 Configuration

In order to configure Mix, the module that uses Mix.Project should export
a project/0 function that returns a keyword list representing configuration
for the project.
This configuration can be read using Mix.Project.config/0. Note that
config/0 won't fail if a project is not defined; this allows many Mix tasks
to work without a project.
If a task requires a project to be defined or needs to access a
special function within the project, the task can call Mix.Project.get!/0
which fails with Mix.NoProjectError in the case a project is not
defined.
There isn't a comprehensive list of all the options that can be returned by
project/0 since many Mix tasks define their own options that they read from
this configuration. For example, look at the "Configuration" section in the
documentation for the Mix.Tasks.Compile task.
These are a few options that are not used by just one Mix task (and will thus
be documented here):
	:build_per_environment - if true, builds will be per-environment. If
false, builds will go in _build/shared regardless of the Mix
environment. Defaults to true.

	:aliases - a list of task aliases. For more information, check out the
"Aliases" section in the documentation for the Mix module. Defaults to
[].

	:config_path - a string representing the path of the main config
file. See config_files/0 for more information. Defaults to
"config/config.exs".

	:deps - a list of dependencies of this project. Refer to the
documentation for the Mix.Tasks.Deps task for more information. Defaults
to [].

	:deps_path - directory where dependencies are stored. Also see
deps_path/1. Defaults to "deps".

	:lockfile - the name of the lockfile used by the mix deps.* family of
tasks. Defaults to "mix.lock".

Mix tasks may require their own configuration inside def project. For example,
check the Mix.Tasks.Compile task and all the specific compiler tasks
(such as Mix.Tasks.Compile.Elixir or Mix.Tasks.Compile.Erlang).
Note that different tasks may share the same configuration option. For example,
the :erlc_paths configuration is used by mix compile.erlang, mix compile.yecc,
and other tasks.

 CLI configuration

Mix is most often invoked from the command line. For this purpose, you may define
a specific cli/0 function which customizes default values when executed from
the CLI. For example:
def cli do
 [
 default_task: "phx.server",
 preferred_envs: [docs: :docs]
]
end
The example above sets the default task (used by iex -S mix and mix) to
phx.server. It also sets the default environment for the "mix docs" task to
be "docs".
The following CLI configuration are available:
	:default_env - the default environment to use when none is given
and MIX_ENV is not set

	:default_target - the default target to use when none is given
and MIX_TARGET is not set

	:default_task - the default task to invoke when none is given

	:preferred_envs - a keyword list of {task, env} tuples where task
is the task name as an atom (for example, :"deps.get") and env is the
preferred environment (for example, :test)

	:preferred_targets - a keyword list of {task, target} tuples where
task is the task name as an atom (for example, :test) and target
is the preferred target (for example, :host)

 Erlang projects

Mix can be used to manage Erlang projects that don't have any Elixir code. To
ensure Mix tasks work correctly for an Erlang project, language: :erlang has
to be part of the configuration returned by project/0. This setting also
makes sure Elixir is not added as a dependency to the generated .app file or
to the escript generated with mix escript.build, and so on.

 Invoking this module

This module contains many functions that return project information and
metadata. However, since Mix is not included nor configured during releases,
we recommend using the functions in this module only inside Mix tasks.
If you need to configure your own app, consider using the application
environment instead. For example, don't do this:
def some_config do
 Mix.Project.config()[:some_config]
end
Nor this:
@some_config Mix.Project.config()[:some_config]
Instead, do this:
def some_config do
 Application.get_env(:my_app, :some_config)
end
Or this:
@some_config Application.compile_env(:my_app, :some_config)

 Summary

 Functions

 Mix.Release - Mix v1.16.3

Mix.Release

Defines the release structure and convenience for assembling releases.

 Summary

 Types

 Mix.SCM - Mix v1.16.3

Mix.SCM behaviour

This module provides helper functions and defines the
behaviour required by any source code manager (SCM) used by Mix.

 Summary

 Types

 Mix.Shell - Mix v1.16.3

Mix.Shell behaviour

Defines Mix.Shell contract.

 Summary

 Callbacks

 Mix.Shell.IO - Mix v1.16.3

Mix.Shell.IO

This is Mix's default shell.
It simply prints messages to stdio and stderr.

 Summary

 Functions

 Mix.Shell.Process - Mix v1.16.3

Mix.Shell.Process

Mix shell that uses the current process mailbox for communication.
This module provides a Mix shell implementation that uses
the current process mailbox for communication instead of IO.
As an example, when Mix.shell().info("hello") is called,
the following message will be sent to the calling process:
{:mix_shell, :info, ["hello"]}
This is mainly useful in tests, allowing us to assert
if given messages were received or not instead of performing
checks on some captured IO. There is also a flush/1 function
responsible for flushing all :mix_shell related messages
from the process inbox.

 Examples

The first step is to set the Mix shell to this module:
Mix.shell(Mix.Shell.Process)
Then if your Mix task calls:
Mix.shell().info("hello")
You should be able to receive it in your tests as long as
they run in the same process:
assert_receive {:mix_shell, :info, [msg]}
assert msg == "hello"
You can respond to prompts in tests as well:
send(self(), {:mix_shell_input, :prompt, "Pretty cool"})
Mix.shell().prompt("How cool was that?!")
#=> "Pretty cool"

 Summary

 Functions

 Mix.Shell.Quiet - Mix v1.16.3

Mix.Shell.Quiet

This is Mix's default shell when the MIX_QUIET environment
variable is set.
It's just like Mix.Shell.IO, but prints far less.

 Summary

 Functions

 Mix.Task - Mix v1.16.3

Mix.Task behaviour

Provides conveniences for creating, loading, and manipulating Mix tasks.
A Mix task can be defined by use Mix.Task in a module whose name
begins with Mix.Tasks. and which defines the run/1 function.
Typically, task modules live inside the lib/mix/tasks/ directory,
and their file names use dot separators instead of underscores
(e.g. deps.clean.ex) - although ultimately the file name is not
relevant.
For example:
lib/mix/tasks/echo.ex
defmodule Mix.Tasks.Echo do
 @moduledoc "Printed when the user requests `mix help echo`"
 @shortdoc "Echoes arguments"

 use Mix.Task

 @impl Mix.Task
 def run(args) do
 Mix.shell().info(Enum.join(args, " "))
 end
end
The command name will correspond to the portion of the module
name following Mix.Tasks.. For example, a module name of
Mix.Tasks.Deps.Clean corresponds to a task name of deps.clean.
The run/1 function will receive a list of all command line
arguments passed, according to the user's terminal.
For example, if the args in the above echo task were
inspected, you might see something like this:
$ mix echo 'A and B' C --test
["A and B", "C", "--test"]

use Mix.Task
When you use Mix.Task, the Mix.Task module will
set @behaviour Mix.Task and define default values
for the module attributes documented in the section
below.

 Module attributes

You can control some behavior of your Mix task by setting module
attributes. This section documents the available attributes.

 @shortdoc

Define the @shortdoc attribute if you wish to make the task
publicly visible on mix help. Omit this attribute if you do
not want your task to be listed via mix help.

 @moduledoc

The @moduledoc attribute may override @shortdoc. The task
will not appear in mix help if documentation for the entire
module is hidden with @moduledoc false.

 @requirements

If a task has requirements, they can be listed using the
@requirements attribute. Requirements are other Mix
tasks that this task requires to have run. For example:
@requirements ["app.config"]
A task will typically depend on one of the following tasks:
	"loadpaths" - this ensures dependencies are available
and compiled. If you are publishing a task as part of
a library to be used by others, and your task does not
need to interact with the user code in any way, this is
the recommended requirement

	"app.config" - additionally compiles and loads the runtime
configuration for the current project. If you are creating
a task to be used within your application or as part of a
library, which must invoke or interact with the user code,
this is the minimum recommended requirement

	"app.start" - additionally starts the supervision tree of
the current project and its dependencies

 @recursive

Set @recursive true if you want the task to run
on each umbrella child in an umbrella project.

 @preferred_cli_env

Sets the preferred Mix environment for this task. For example,
if your task is meant to be used for testing, you could set
@preferred_cli_env :test

 Documentation

Users can read the documentation for public Mix tasks by
running mix help my_task. The documentation that will be
shown is the @moduledoc of the task's module.

 Summary

 Types

 Mix.Task.Compiler - Mix v1.16.3

Mix.Task.Compiler behaviour

This module defines the behaviour for a Mix task that does compilation.
A Mix compiler task can be defined by simply using Mix.Task.Compiler
in a module whose name starts with Mix.Tasks.Compile. and defining
the run/1 function:
defmodule Mix.Tasks.Compile.MyLanguage do
 use Mix.Task.Compiler

 def run(_args) do
 :ok
 end
end
The run/1 function returns an atom indicating the status of the
compilation, and optionally can also return a list of "diagnostics"
such as warnings or compilation errors. Doing this enables code
editors to display issues inline without having to analyze the
command-line output.
If the compiler uses manifest files to track stale sources, it should
define manifests/0, and if it writes any output to disk it should
also define clean/0.
A compiler supports the same attributes for configuration and
documentation as a regular Mix task. See Mix.Task for more information.

 Summary

 Types

 Mix.Task.Compiler.Diagnostic - Mix v1.16.3

Mix.Task.Compiler.Diagnostic

Diagnostic information such as a warning or compilation error.
The file and position relate to where the diagnostic should be shown.
If there is a file and position, then the diagnostic is precise
and you can use the given file and position for generating snippets,
IDEs annotations, and so on. An optional span is available with
the line and column the diagnostic ends.
Otherwise, a stacktrace may be given, which you can place your own
heuristics to provide better reporting.
The source field points to the source file the compiler tracked
the error to. For example, a file lib/foo.ex may embed .eex
templates from lib/foo/bar.eex. A syntax error on the EEx template
will point to file lib/foo/bar.eex but the source is lib/foo.ex.

 Summary

 Types

 Mix.ElixirVersionError - Mix v1.16.3

Mix.ElixirVersionError exception

 Mix.Error - Mix v1.16.3

Mix.Error exception

 Mix.InvalidTaskError - Mix v1.16.3

Mix.InvalidTaskError exception

 Mix.NoProjectError - Mix v1.16.3

Mix.NoProjectError exception

 Mix.NoTaskError - Mix v1.16.3

Mix.NoTaskError exception

 mix app.config - Mix v1.16.3

mix app.config

Loads and configures all registered apps.
This is done by loading config/runtime.exs if one exists.
The application will be compiled if it was not compiled before.

 Command line options

	--force - forces compilation regardless of compilation times
	--preload-modules - preloads all modules defined in applications
	--no-archives-check - does not check archives
	--no-app-loading - does not load .app resource file after compilation
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-validate-compile-env - does not validate the application compile environment

 mix app.start - Mix v1.16.3

mix app.start

Starts all registered apps.
First, this task guarantees that all dependencies are in place
and that the current project has been compiled. Then, the current
application is started as a temporary application, unless
:start_permanent is set to true in your project configuration
or the --permanent option is given. Setting it to permanent
guarantees the node will shut down if the application terminates
(typically because its root supervisor has terminated).

 Configuration

	:start_permanent - the application and all of its children
applications are started in permanent mode. Defaults to false.

	:start_concurrently - applications are started concurrently
whenever possible. This option only has an effect on Erlang/OTP 26+.
Defaults to false.

 Command line options

	--force - forces compilation regardless of compilation times
	--temporary - starts the application as temporary
	--permanent - starts the application as permanent
	--preload-modules - preloads all modules defined in applications
	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-start - does not actually start applications, only compiles and loads code

 mix app.tree - Mix v1.16.3

mix app.tree

Prints the application tree.
$ mix app.tree --exclude logger --exclude elixir

If no application is given, it uses the current application defined
in the mix.exs file.

 Command line options

	--exclude - exclude applications which you do not want to see printed.
kernel, stdlib and compiler are always excluded from the tree.

	--format - Can be set to one of either:
	pretty - uses Unicode code points for formatting the tree.
This is the default except on Windows.

	plain - does not use Unicode code points for formatting the tree.
This is the default on Windows.

	dot - produces a DOT graph description of the application tree
in app_tree.dot in the current directory.
Warning: this will overwrite any previously generated file.

 mix archive - Mix v1.16.3

mix archive

Lists all installed archives.
Archives are typically installed at ~/.mix/archives
although the installation path can be customized by
setting the MIX_ARCHIVES environment variable.
Since archives are specific to Elixir versions, it is
expected from build tools to swap the MIX_ARCHIVES
variable to different locations based on a particular
Elixir installation.

 mix archive.build - Mix v1.16.3

mix archive.build

Builds an archive according to the specification of the
Erlang archive format.
Archives are meant to contain small projects, usually installed
locally. Archives may be installed into a Mix environment by
running mix archive.install. Once installed, the archive is
available to all Mix projects. For this reason, the functionality
behind archives is limited. For instance, archives do not include
dependencies, as those would conflict with any dependency in a
Mix project after the archive is installed. In general, we recommend
the usage of archives to be limited for extensions of Mix, such
as custom SCMs, package managers, and the like. For general scripts to be
distributed to developers, please see mix escript.build.
The archive will be created in the current directory (which is
expected to be the project root), unless an argument -o is
provided with the file name.
By default, this command archives the current project but the -i
option can be used to archive any directory. For example,
mix archive.build with no options translates to:
$ mix archive.build -i _build/ENV/lib/APP -o APP-VERSION.ez

 Command line options

	-o - specifies output file name.
If there is a mix.exs, defaults to "APP-VERSION.ez".

	-i - specifies the input directory to archive.
If there is a mix.exs, defaults to the current application build.

	--no-compile - skips compilation.
Only applies when mix.exs is available.

	--include-dot-files - adds dot files from priv directory to the archive.

 mix archive.check - Mix v1.16.3

mix archive.check

Checks all archives are available.
Mix projects can specify required archives using
the :archives option:
archives: [{:foo, "~> 1.0.0"}]
This task guarantees this option is respected.

 mix archive.install - Mix v1.16.3

mix archive.install

Installs an archive locally.
If no argument is supplied but there is an archive in the project's
root directory (created with mix archive.build), then the archive
will be installed locally. For example:
$ mix do archive.build + archive.install

If an argument is provided, it should be a local path to a
prebuilt archive, a Git repository, a GitHub repository, or a Hex
package.
$ mix archive.install archive.ez
$ mix archive.install path/to/archive.ez
$ mix archive.install git https://path/to/git/repo
$ mix archive.install git https://path/to/git/repo branch git_branch
$ mix archive.install git https://path/to/git/repo tag git_tag
$ mix archive.install git https://path/to/git/repo ref git_ref
$ mix archive.install github user/project
$ mix archive.install github user/project branch git_branch
$ mix archive.install github user/project tag git_tag
$ mix archive.install github user/project ref git_ref
$ mix archive.install hex hex_package
$ mix archive.install hex hex_package 1.2.3

After installation, the tasks in the archive are available locally:
$ mix some_task

Note that installing via Git, GitHub, or Hex fetches the source
of the archive and builds it, while using local path uses a pre-built archive.

 Command line options

	--sha512 - checks the archive matches the given SHA-512 checksum. Only
applies to installations via a local path

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like Make

	--submodules - fetches repository submodules before building archive from
Git or GitHub

	--sparse - checkout a single directory inside the Git repository and use
it as the archive root directory

	--app - specifies a custom app name to be used for building the archive
from Git, GitHub, or Hex

	--organization - set this for Hex private packages belonging to an
organization

	--repo - set this for self-hosted Hex instances, defaults to hexpm

 mix archive.uninstall - Mix v1.16.3

mix archive.uninstall

Uninstalls local archives.
$ mix archive.uninstall archive.ez

 Command line options

	--force - forces uninstallation without a shell prompt; primarily
intended for automation

 mix clean - Mix v1.16.3

mix clean

Deletes generated application files.
This command deletes all build artifacts for the current project.
Dependencies' sources and build files are cleaned only if the
--deps option is given.
By default this task works across all environments, unless --only
is given.

 Command line options

	--deps - clean dependencies as well as the current project's files
	--only - only clean the given environment

 mix cmd - Mix v1.16.3

mix cmd

Executes the given command.
For example, you can invoke an external command such as make:
$ mix cmd make

By passing the --cd flag before the command, you can also force
the command to run in a specific directory:
$ mix cmd --cd "third-party" make

This task is also useful in umbrella applications to execute a command
on each child app:
$ mix cmd pwd

You can limit which apps the cmd runs in by using mix do with the --app
option:
$ mix do --app app1 --app app2 cmd pwd

The tasks aborts whenever a command exits with a non-zero status.
This task is automatically re-enabled, so it can be called multiple times
with different arguments.

 Command line options

	--app - limit running the command to the given app.
This option is currently deprecated in favor of mix do --app

	--cd - (since v1.10.4) the directory to run the command in

 Zombie operating system processes

Beware that the Erlang VM does not terminate child processes
when it shuts down. Therefore, if you use mix cmd to start
long running processes and then shut down the VM, it is likely
that those child processes won't be terminated with the VM.
A solution is to make sure the child processes listen to the
standard input and terminate when standard input is closed.
We discuss this topic at length in the "Zombie operating system processes"
of the Port module documentation.

 mix compile - Mix v1.16.3

mix compile

The main entry point to compile source files.
It simply runs the compilers registered in your project and returns
a tuple with the compilation status and a list of diagnostics.
Before compiling code, it performs a series of checks to ensure all
dependencies are compiled and the project is up to date. Then the
code path of your Elixir system is pruned to only contain the dependencies
and applications that you have explicitly listed in your mix.exs.

 Configuration

	:build_embedded - this option was used to copy all code and
priv content to the _build directory. However, this option no
longer has an effect as Elixir will now copy those at release time

	:compilers - compilers to run, defaults to Mix.compilers/0,
which are [:erlang, :elixir, :app].

	:consolidate_protocols - when true, runs protocol
consolidation via the mix compile.protocols task. The default
value is true.

	:build_path - the directory where build artifacts
should be written to. This option is intended only for
child apps within a larger umbrella application so that
each child app can use the common _build directory of
the parent umbrella. In a non-umbrella context, configuring
this has undesirable side-effects (such as skipping some
compiler checks) and should be avoided.

	:prune_code_paths - prune code paths before compilation. When true
(default), this prunes code paths of applications that are not listed
in the project file with dependencies. When false, this keeps the
entirety of Erlang/OTP available when the project starts, including
the paths set by the code loader from the ERL_LIBS environment as
well as explicitely listed by providing -pa and -pz options
to Erlang.

 Compilers

To see documentation for each specific compiler, you must
invoke help directly for the compiler command:
$ mix help compile.elixir
$ mix help compile.erlang

You can get a list of all compilers by running:
$ mix compile --list

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--erl-config - path to an Erlang term file that will be loaded as Mix config
	--force - forces compilation
	--list - lists all enabled compilers
	--no-app-loading - does not load .app resource file after compilation
	--no-archives-check - skips checking of archives
	--no-compile - does not actually compile, only loads code and perform checks
	--no-deps-check - skips checking of dependencies
	--no-elixir-version-check - does not check Elixir version
	--no-optional-deps - does not compile or load optional deps. Useful for testing
if a library still successfully compiles without optional dependencies (which is the
default case with dependencies)
	--no-prune-code-paths - do not prune code paths before compilation, this keeps
the entirety of Erlang/OTP available when the project starts
	--no-protocol-consolidation - skips protocol consolidation
	--no-validate-compile-env - does not validate the application compile environment
	--return-errors - returns error status and diagnostics instead of exiting on error
	--warnings-as-errors - exit with non-zero status if compilation has one or more warnings

 Summary

 Functions

 mix compile.app - Mix v1.16.3

mix compile.app

Writes an .app file.
An .app file is a file containing Erlang terms that defines
your application. Mix automatically generates this file based on
your mix.exs configuration.
In order to generate the .app file, Mix expects your project
to have both :app and :version keys. Furthermore, you can
configure the generated application by defining an application/0
function in your mix.exs that returns a keyword list.
The most commonly used keys are:
	:extra_applications - a list of OTP applications
your application depends on which are not included in :deps
(usually defined in deps/0 in your mix.exs). For example,
here you can declare a dependency on applications that ship
with Erlang/OTP or Elixir, like :crypto or :logger.
Optional extra applications can be declared as a tuple, such
as {:ex_unit, :optional}. Mix guarantees all non-optional
applications are started before your application starts.

	:registered - the name of all registered processes in the
application. If your application defines a local GenServer
with name MyServer, it is recommended to add MyServer
to this list. It is most useful in detecting conflicts
between applications that register the same names.

	:env - the default values for the application environment.
The application environment is one of the most common ways
to configure applications. See the Application module for
mechanisms to read and write to the application environment.

For example:
def application do
 [
 extra_applications: [:logger, :crypto, ex_unit: :optional],
 env: [key: :value],
 registered: [MyServer]
]
end
Other options include:
	:applications - all applications your application depends
on at runtime. By default, this list is automatically inferred
from your dependencies. Mix and other tools use the application
list in order to start your dependencies before starting the
application itself.

	:mod - specifies a module to invoke when the application
is started. It must be in the format {Mod, args} where
args is often an empty list. The module specified must
implement the callbacks defined by the Application
module.

	:start_phases - specifies a list of phases and their arguments
to be called after the application is started. See the "Phases"
section below.

	:included_applications - specifies a list of applications
that will be included in the application. It is the responsibility of
the primary application to start the supervision tree of all included
applications, as only the primary application will be started. A process
in an included application considers itself belonging to the
primary application.

	:maxT - specifies the maximum time the application is allowed to run, in
milliseconds. Applications are stopped if :maxT is reached, and their
top-level supervisor terminated with reason :normal. This threshold is
technically valid in any resource file, but it is only effective for
applications with a callback module. Defaults to :infinity.

Besides the options above, .app files also expect other options
like :modules and :vsn, but these are automatically added by Mix.
The complete list can be found on Erlang's application
specification.

 Command line options

	--force - forces compilation regardless of modification times
	--compile-path - where to find .beam files and write the
resulting .app file, defaults to Mix.Project.compile_path/0

 Phases

Applications provide a start phases mechanism which will be called,
in order, for the application and all included applications. If a phase
is not defined for an included application, that application is skipped.
Let's see an example MyApp.application/0 function:
def application do
 [
 start_phases: [init: [], go: [], finish: []],
 included_applications: [:my_included_app]
]
end
And an example :my_included_app defines on its mix.exs the function:
def application do
 [
 mod: {MyIncludedApp, []},
 start_phases: [go: []]
]
end
In this example, the order that the application callbacks are called in is:
Application.start(MyApp)
MyApp.start(:normal, [])
MyApp.start_phase(:init, :normal, [])
MyApp.start_phase(:go, :normal, [])
MyIncludedApp.start_phase(:go, :normal, [])
MyApp.start_phase(:finish, :normal, [])

 mix compile.elixir - Mix v1.16.3

mix compile.elixir

Compiles Elixir source files.
Elixir is smart enough to recompile only files that have changed
and their dependencies. This means if lib/a.ex is invoking
a function defined over lib/b.ex at compile time, whenever
lib/b.ex changes, lib/a.ex is also recompiled.
Note Elixir considers a file as changed if its source file has
changed on disk since the last compilation AND its contents are
no longer the same.

 @external_resource

If a module depends on external files, those can be annotated
with the @external_resource module attribute. If these files
change, the Elixir module is automatically recompiled.

 __mix_recompile__?/0

A module may export a __mix_recompile__?/0 function that can
cause the module to be recompiled using custom rules. For example,
to recompile whenever a file is changed in a given directory, you
can use a combination of @external_resource for existing files
and a __mix_recompile__?/0 check to verify when new entries are
added to the directory itself:
defmodule MyModule do
 paths = Path.wildcard("*.txt")
 @paths_hash :erlang.md5(paths)

 for path <- paths do
 @external_resource path
 end

 def __mix_recompile__?() do
 Path.wildcard("*.txt") |> :erlang.md5() != @paths_hash
 end
end
Compiler calls __mix_recompile__?/0 for every module being
compiled (or previously compiled) and thus it is very important
to do there as little work as possible to not slow down the
compilation.
If module has @compile {:autoload, false}, __mix_recompile__?/0 will
not be used.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--docs (--no-docs) - attaches (or not) documentation to compiled modules
	--debug-info (--no-debug-info) - attaches (or not) debug info to compiled modules
	--force - forces compilation regardless of modification times
	--ignore-module-conflict - does not emit warnings if a module was previously defined
	--long-compilation-threshold N - sets the "long compilation" threshold
(in seconds) to N (see the docs for Kernel.ParallelCompiler.compile/2)
	--purge-consolidation-path-if-stale PATH - deletes and purges modules in the
given protocol consolidation path if compilation is required
	--profile - if set to time, outputs timing information of compilation steps
	--tracer - adds a compiler tracer in addition to any specified in the mix.exs file
	--verbose - prints each file being compiled
	--warnings-as-errors - treats warnings in the current project as errors and
return a non-zero exit status

 Configuration

	:elixirc_paths - directories to find source files.
Defaults to ["lib"].

	:elixirc_options - compilation options that apply to Elixir's compiler.
See Code.put_compiler_option/2 for a complete list of options. These
options are often overridable from the command line using the switches
above.

	[xref: [exclude: ...]] - a list of module or {module, function, arity}
that should not be warned on in case on undefined modules or undefined
application warnings.

 mix compile.erlang - Mix v1.16.3

mix compile.erlang

Compiles Erlang source files.
When this task runs, it will first check the modification times of
all files to be compiled and if they haven't been changed since the
last compilation, it will not compile them. If any of them have changed,
it compiles everything.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	ERL_COMPILER_OPTIONS - can be used to give default compile options.
The value must be a valid Erlang term. If the value is a list, it will
be used as is. If it is not a list, it will be put into a list.

	:erlc_paths - directories to find source files.
Defaults to ["src"].

	:erlc_include_path - directory for adding include files.
Defaults to "include".

	:erlc_options - compilation options that apply to Erlang's
compiler. Defaults to [].
For a complete list of options, see :compile.file/2.
The option :debug_info is always added to the end of it.
You can disable that using:
erlc_options: [debug_info: false]

 mix compile.leex - Mix v1.16.3

mix compile.leex

Compiles Leex source files.
When this task runs, it will check the modification time of every file, and
if it has changed, the file will be compiled. Files will be
compiled in the same source directory with a .erl extension.
You can force compilation regardless of modification times by passing
the --force option.
You must add compilers: [:leex] ++ Mix.compilers() to the def project
section of your mix.exs to run this compiler.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	:erlc_paths - directories to find source files. Defaults to ["src"].

	:leex_options - compilation options that apply to Leex's compiler.
For a complete list of options, see :leex.file/2.
Note that the :report, :return_errors, and :return_warnings options
are overridden by this compiler, thus setting them has no effect.

 mix compile.protocols - Mix v1.16.3

mix compile.protocols

Consolidates all protocols in all paths.
This task is automatically invoked unless the project
disables the :consolidate_protocols option in their
configuration.

 Consolidation

Protocol consolidation is useful in production when no
dynamic code loading will happen, effectively optimizing
protocol dispatches by not accounting for code loading.
This task consolidates all protocols in the code path
and outputs the new binary files to the given directory.
Defaults to "_build/MIX_ENV/lib/YOUR_APP/consolidated"
for regular apps and "_build/MIX_ENV/consolidated" in
umbrella projects.
In case you are manually compiling protocols or building
releases, you need to take the generated protocols into
account. This can be done with:
$ elixir -pa _build/MIX_ENV/lib/YOUR_APP/consolidated -S mix run

Or in umbrellas:
$ elixir -pa _build/MIX_ENV/consolidated -S mix run

You can verify a protocol is consolidated by checking
its attributes:
iex> Protocol.consolidated?(Enumerable)
true

 Summary

 Functions

 mix compile.yecc - Mix v1.16.3

mix compile.yecc

Compiles Yecc source files.
When this task runs, it will check the modification time of every file, and
if it has changed, the file will be compiled. Files will be
compiled in the same source directory with a .erl extension.
You can force compilation regardless of modification times by passing
the --force option.
You must add compilers: [:yecc] ++ Mix.compilers() in the
def project section of your mix.exs to run this compiler.

 Command line options

	--all-warnings (--no-all-warnings) - prints all warnings, including previous compilations
(default is true except on errors)
	--force - forces compilation regardless of modification times

 Configuration

	:erlc_paths - directories to find source files. Defaults to ["src"].

	:yecc_options - compilation options that apply
to Yecc's compiler.
For a complete list of options, see :yecc.file/1.
Note that the :report, :return_errors, and :return_warnings options
are overridden by this compiler, thus setting them has no effect.

 mix deps - Mix v1.16.3

mix deps

Lists all dependencies and their status.
Dependencies must be specified in the mix.exs file in one of
the following formats:
{app, requirement}
{app, opts}
{app, requirement, opts}
Where:
	app is an atom
	requirement is a Version requirement or a regular expression
	opts is a keyword list of options

For example:
{:plug, ">= 0.4.0"}
{:gettext, git: "https://github.com/elixir-lang/gettext.git", tag: "0.1"}
{:local_dependency, path: "path/to/local_dependency"}
By default, dependencies are fetched using the Hex package manager:
{:plug, ">= 0.4.0"}
By specifying such dependencies, Mix will automatically install
Hex (if it wasn't previously installed) and download a package
suitable to your project. Note Hex expects the dependency
requirement to always be given and it will warn otherwise.
Mix also supports Git and path dependencies:
{:foobar, git: "https://github.com/elixir-lang/foobar.git", tag: "0.1"}
{:foobar, path: "path/to/foobar"}
And also in umbrella dependencies:
{:my_app, in_umbrella: true}
Path and in umbrella dependencies are automatically recompiled by
the parent project whenever they change. While fetchable dependencies,
like the ones using :git, are recompiled only when fetched/updated.
The dependencies' versions are expected to be formatted according to
Semantic Versioning and the requirements must be specified as defined
in the Version module.

 Options

Below we provide a more detailed look into the available options.

 Dependency definition options

	:app - when set to false, does not read the app file for this
dependency. By default, the app file is read

	:env - the environment (as an atom) to run the dependency on; defaults to :prod

	:compile - a command (string) to compile the dependency; defaults to a mix,
rebar or make command

	:optional - marks the dependency as optional. In such cases, the
current project will always include the optional dependency but any
other project that depends on the current project won't be forced to
use the optional dependency. However, if the other project includes
the optional dependency on its own, the requirements and options
specified here will also be applied. Optional dependencies will not
be started by the application.

	:only - the dependency is made available only in the given environments,
useful when declaring dev- or test-only dependencies; by default the
dependency will be available in all environments. The value of this option
can either be a single environment (like :dev) or a list of environments
(like [:dev, :test])

	:targets - the dependency is made available only for the given targets.
By default the dependency will be available in all environments. The value
of this option can either be a single target (like :host) or a list of
environments (like [:host, :rpi3])

	:override - if set to true the dependency will override any other
definitions of itself by other dependencies

	:manager - Mix can also compile Rebar3 and makefile projects
and can fetch sub dependencies of Rebar3 projects. Mix will
try to infer the type of project but it can be overridden with this
option by setting it to :mix, :rebar3, or :make. In case
there are conflicting definitions, the first manager in the list above
will be picked up. For example, if a dependency is found with :rebar3
as a manager in different part of the trees, :rebar3 will be automatically
picked. You can find the manager by running mix deps and override it by
setting the :override option in a top-level project.

	:runtime - whether the dependency is part of runtime applications.
If the :applications key is not provided in def application in your
mix.exs file, Mix will automatically include all dependencies as a runtime
application, except if runtime: false is given. Defaults to true.

	:system_env - an enumerable of key-value tuples of binaries to be set
as environment variables when loading or compiling the dependency

 Git options (:git)

	:git - the Git repository URI
	:github - a shortcut for specifying Git repos from GitHub, uses :git
	:ref - the reference to checkout (may be a branch, a commit SHA or a tag)
	:branch - the Git branch to checkout
	:tag - the Git tag to checkout
	:submodules - when true, initialize submodules for the repo
	:sparse - checkout a single directory inside the Git repository and use it
as your Mix dependency. Search "sparse Git checkouts" for more information.
	:subdir - (since v1.13.0) search for the project in the given directory
relative to the git checkout. This is similar to :sparse option but instead
of a doing a sparse checkout it does a full checkout.

If your Git repository requires authentication, such as basic username:password
HTTP authentication via URLs, it can be achieved via Git configuration, keeping
the access rules outside of source control.
$ git config --global url."https://YOUR_USER:YOUR_PASS@example.com/".insteadOf "https://example.com/"

For more information, see the git config documentation:
https://git-scm.com/docs/git-config#git-config-urlltbasegtinsteadOf

 Path options (:path)

	:path - the path for the dependency
	:in_umbrella - when true, sets a path dependency pointing to
"../#{app}", sharing the same environment as the current application

 Hex options (:hex)

See the Hex usage documentation for Hex options.

 Deps task

mix deps task lists all dependencies in the following format:
APP VERSION (SCM) (MANAGER)
[locked at REF]
STATUS
For dependencies satisfied by Hex, REF is the package checksum.
For dependencies satisfied by git, REF is the commit object name,
and may include branch or tag information.
It supports the following options:
	--all - lists all dependencies, regardless of specified environment

 mix deps.clean - Mix v1.16.3

mix deps.clean

Deletes the given dependencies' files, including build artifacts and fetched
sources.
Since this is a destructive action, cleaning of dependencies
only occurs when passing arguments/options:
	dep1 dep2 - the names of dependencies to be deleted separated by a space
	--unlock - also unlocks the deleted dependencies
	--build - deletes only compiled files (keeps source files)
	--all - deletes all dependencies
	--unused - deletes only unused dependencies
(i.e. dependencies no longer mentioned in mix.exs)

By default this task works across all environments,
unless --only is given which will clean all dependencies
for the chosen environment.

 mix deps.compile - Mix v1.16.3

mix deps.compile

Compiles dependencies.
By default, this task attempts to compile all dependencies.
A list of dependencies can be given to compile multiple
dependencies in order.
This task attempts to detect if the project contains one of
the following files and act accordingly:
	mix.exs - invokes mix compile
	rebar.config - invokes rebar compile
	Makefile.win- invokes nmake /F Makefile.win (only on Windows)
	Makefile - invokes gmake on DragonFlyBSD, FreeBSD, NetBSD, and OpenBSD,
invokes make on any other operating system (except on Windows)

The compilation can be customized by passing a compile option
in the dependency:
{:some_dependency, "0.1.0", compile: "command to compile"}
If a list of dependencies is given, Mix will attempt to compile
them as is. For example, if project a depends on b, calling
mix deps.compile a will compile a even if b is out of
date. This is to allow parts of the dependency tree to be
recompiled without propagating those changes upstream. To ensure
b is included in the compilation step, pass --include-children.

 Command line options

	--force - force compilation of deps
	--skip-umbrella-children - skips umbrella applications from compiling
	--skip-local-deps - skips non-remote dependencies, such as path deps, from compiling

 mix deps.get - Mix v1.16.3

mix deps.get

Gets all out of date dependencies, i.e. dependencies
that are not available or have an invalid lock.

 Command line options

	--check-locked - raises if there are pending changes to the lockfile
	--no-archives-check - does not check archives before fetching deps
	--only - only fetches dependencies for given environment

 mix deps.loadpaths - Mix v1.16.3

mix deps.loadpaths

Checks, compiles, and loads all dependencies along the way.
If there is an invalid dependency, its status is printed
before aborting.
Although this task does not show up in mix help, it is
part of Mix public API and can be depended on.

 Command line options

	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check or compile deps, only load available ones
	--no-elixir-version-check - does not check Elixir version
	--no-optional-deps - does not compile or load optional deps
	--no-path-loading - does not add entries to the code path

 mix deps.precompile - Mix v1.16.3

mix deps.precompile

Extension point for precompiling dependencies.
This is a task that can be aliased by projects
that need to execute certain tasks before
compiling dependencies:
aliases: ["deps.precompile": ["nerves.precompile", "deps.precompile"]]

 mix deps.tree - Mix v1.16.3

mix deps.tree

Prints the dependency tree.
$ mix deps.tree

If no dependency is given, it uses the tree defined in the mix.exs file.

 Command line options

	--only - the environment to show dependencies for

	--target - the target to show dependencies for

	--exclude - exclude dependencies which you do not want to see printed.

	--format - Can be set to one of either:
	pretty - uses Unicode code points for formatting the tree.
This is the default except on Windows.

	plain - does not use Unicode code points for formatting the tree.
This is the default on Windows.

	dot - produces a DOT graph description of the dependency tree
in deps_tree.dot in the current directory.
Warning: this will override any previously generated file.

 mix deps.unlock - Mix v1.16.3

mix deps.unlock

Unlocks the given dependencies.
Since this is a destructive action, unlocking dependencies
only occurs when passing arguments/options:
	dep1 dep2 - the name of dependencies to be unlocked
	--all - unlocks all dependencies
	--filter - unlocks only deps matching the given name
	--unused - unlocks only unused dependencies (no longer mentioned
in the mix.exs file)
	--check-unused - checks that the mix.lock file has no unused
dependencies. This is useful in pre-commit hooks and CI scripts
if you want to reject contributions with extra dependencies

 mix deps.update - Mix v1.16.3

mix deps.update

Updates the given dependencies.
The given dependencies and the projects they depend on will
be unlocked and updated to the latest version according to their
version requirements.
Since this is a destructive action, updating all dependencies
only occurs when the --all command line option is passed.
All dependencies are automatically recompiled after update.

 mix deps.unlock + mix deps.get

Upgrading a dependency often requires the projects it depends on
to upgrade too. If you would rather update a single dependency and
not touch its children, you can explicitly unlock the single dependency
and run mix deps.get:
$ mix deps.unlock some_dep
$ mix deps.get

 Command line options

	--all - updates all dependencies
	--only - only fetches dependencies for given environment
	--target - only fetches dependencies for given target
	--no-archives-check - does not check archives before fetching deps

 mix do - Mix v1.16.3

mix do

Executes the tasks separated by +:
$ mix do compile --list + deps

The plus should be followed by at least one space before and after.

 Examples

The example below prints the available compilers and
then the list of dependencies.
$ mix do compile --list + deps

Note that the majority of Mix tasks are only executed once
per invocation. So for example, the following command will
only compile once:
$ mix do compile + some_other_command + compile

When compile is executed again, Mix will notice the task
has already ran, and skip it.
Inside umbrella projects, you can limit recursive tasks
(the ones that run inside every app) by selecting the
desired application via the --app flag after do and
before the first task:
$ mix do --app app1 --app app2 compile --list + deps

Elixir versions prior to v1.14 used the comma exclusively
to separate commands:
$ mix do compile --list, deps

Since then, the + operator has been introduced as a
separator for better support on Windows terminals.

 Command line options

	--app - limit recursive tasks to the given apps.
This option may be given multiple times and must come
before any of the tasks.

 mix escript - Mix v1.16.3

mix escript

Lists all installed escripts.
Escripts are installed at ~/.mix/escripts. Add that path to your $PATH environment variable
to be able to run installed escripts from any directory.

 mix escript.build - Mix v1.16.3

mix escript.build

Builds an escript for the project.
An escript is an executable that can be invoked from the
command line. An escript can run on any machine that has
Erlang/OTP installed and by default does not require Elixir to
be installed, as Elixir is embedded as part of the escript.
This task guarantees the project and its dependencies are
compiled and packages them inside an escript. Before invoking
mix escript.build, it is only necessary to define a :escript
key with a :main_module option in your mix.exs file:
escript: [main_module: MyApp.CLI]
Escripts should be used as a mechanism to share scripts between
developers and not as a deployment mechanism. For running live
systems, consider using mix run or building releases. See
the Application module for more information on systems
life-cycles.
All of the configuration defined in config/config.exs will
be included as part of the escript. config/runtime.exs is also
included for Elixir escripts. Once the configuration is loaded,
this task starts the current application. If this is not desired,
set the :app configuration to nil.
This task also removes documentation and debugging chunks from
the compiled .beam files to reduce the size of the escript.
If this is not desired, check the :strip_beams option.
priv directory support
escripts do not support projects and dependencies
that need to store or read artifacts from the priv directory.

 Command line options

Expects the same command line options as mix compile.

 Configuration

The following option must be specified in your mix.exs
under the :escript key:
	:main_module - the module to be invoked once the escript starts.
The module must contain a function named main/1 that will receive the
command line arguments. By default the arguments are given as a list of
binaries, but if project is configured with language: :erlang it will
be a list of charlists.

The remaining options can be specified to further customize the escript:
	:name - the name of the generated escript.
Defaults to app name.

	:path - the path to write the escript to.
Defaults to app name.

	:app - the app that starts with the escript.
Defaults to app name. Set it to nil if no application should
be started.

	:strip_beams - if true strips BEAM code in the escript to remove chunks
unnecessary at runtime, such as debug information and documentation.
Can be set to [keep: ["Docs", "Dbgi"]] to strip while keeping some chunks
that would otherwise be stripped, like docs, and debug info, for instance.
Defaults to true.

	:embed_elixir - if true embeds Elixir and its children apps
(ex_unit, mix, and the like) mentioned in the :applications list inside the
application/0 function in mix.exs.
Defaults to true for Elixir projects, false for Erlang projects.
Note: if you set this to false for an Elixir project, you will have to add paths to Elixir's
ebin directories to ERL_LIBS environment variable when running the resulting escript, in
order for the code loader to be able to find :elixir application and its children
applications (if they are used).

	:shebang - shebang interpreter directive used to execute the escript.
Defaults to "#! /usr/bin/env escript\n".

	:comment - comment line to follow shebang directive in the escript.
Defaults to "".

	:emu_args - emulator arguments to embed in the escript file.
Defaults to "".

There is one project-level option that affects how the escript is generated:
	language: :elixir | :erlang - set it to :erlang for Erlang projects
managed by Mix. Doing so will ensure Elixir is not embedded by default.
Your app will still be started as part of escript loading, with the
config used during build.

 Example

In your mix.exs:
defmodule MyApp.MixProject do
 use Mix.Project

 def project do
 [
 app: :my_app,
 version: "0.0.1",
 escript: escript()
]
 end

 def escript do
 [main_module: MyApp.CLI]
 end
end
Then define the entrypoint, such as the following in lib/cli.ex:
defmodule MyApp.CLI do
 def main(_args) do
 IO.puts("Hello from MyApp!")
 end
end

 mix escript.install - Mix v1.16.3

mix escript.install

Installs an escript locally.
If no argument is supplied but there is an escript in the project's root directory
(created with mix escript.build), then the escript will be installed
locally. For example:
$ mix do escript.build + escript.install

If an argument is provided, it should be a local path to a prebuilt escript,
a Git repository, a GitHub repository, or a Hex package.
$ mix escript.install escript
$ mix escript.install path/to/escript
$ mix escript.install git https://path/to/git/repo
$ mix escript.install git https://path/to/git/repo branch git_branch
$ mix escript.install git https://path/to/git/repo tag git_tag
$ mix escript.install git https://path/to/git/repo ref git_ref
$ mix escript.install github user/project
$ mix escript.install github user/project branch git_branch
$ mix escript.install github user/project tag git_tag
$ mix escript.install github user/project ref git_ref
$ mix escript.install hex hex_package
$ mix escript.install hex hex_package 1.2.3

After installation, the escript can be invoked as
$ ~/.mix/escripts/foo

For convenience, consider adding ~/.mix/escripts directory to your
$PATH environment variable. For more information, check the wikipedia
article on PATH: https://en.wikipedia.org/wiki/PATH_(variable)

 Command line options

	--sha512 - checks the escript matches the given SHA-512 checksum. Only
applies to installations via a local path

	--force - forces installation without a shell prompt; primarily
intended for automation in build systems like Make

	--submodules - fetches repository submodules before building escript from
Git or GitHub

	--sparse - checkout a single directory inside the Git repository and use
it as the escript project directory

	--app - specifies a custom app name to be used for building the escript
from Git, GitHub, or Hex

	--organization - set this for Hex private packages belonging to an
organization

	--repo - set this for self-hosted Hex instances, defaults to hexpm

 mix escript.uninstall - Mix v1.16.3

mix escript.uninstall

Uninstalls local escripts:
$ mix escript.uninstall escript_name

 Command line options

	--force - forces uninstallation without a shell prompt; primarily
intended for automation

 mix eval - Mix v1.16.3

mix eval

Evaluates the given code within a configured application.
$ mix eval "IO.puts(1 + 2)"

The given code is evaluated after the current application
has been configured but without loading or starting them
(some applications may be loaded as part of booting but
that's not guaranteed). See mix run for running your
application and scripts within a started application.
This task is designed to mirror the bin/my_app eval command
in releases. It is typically used to invoke functions already
defined within your application. For example, you may have a
module such as:
defmodule MyApp.ReleaseTasks do
 def migrate_database do
 Application.load(:my_app)
 ...
 end
end
Once defined, you can invoke this function either via mix eval or
via bin/my_app eval inside a release as follows:
$ mix eval MyApp.ReleaseTasks.migrate_database
$ bin/my_app eval MyApp.ReleaseTasks.migrate_database

As you can see, the current application has to be either explicitly
loaded or started in your tasks, either by calling Application.load/1
or Application.ensure_all_started/1. This gives you full control over
the application booting life-cycle. For more information, see the
Application module.
This task is automatically re-enabled, so it can be called multiple
times with different arguments.

 Command-line options

	--no-archives-check - does not check archives
	--no-compile - does not compile even if files require compilation
	--no-deps-check - does not check dependencies
	--no-elixir-version-check - does not check the Elixir version from mix.exs
	--no-mix-exs - allows the command to run even if there is no mix.exs

 mix format - Mix v1.16.3

mix format

Formats the given files and patterns.
$ mix format mix.exs "lib/**/*.{ex,exs}" "test/**/*.{ex,exs}"

If any of the files is -, then the input is read from stdin and the output
is written to stdout.

 Formatting options

The formatter will read a .formatter.exs file in the current directory for
formatter configuration. Evaluating this file should return a keyword list.
Here is an example of a .formatter.exs file that works as a starting point:
[
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]
Besides the options listed in Code.format_string!/2, the .formatter.exs
file supports the following options:
	:inputs (a list of paths and patterns) - specifies the default inputs
to be used by this task. For example, ["mix.exs", "{config,lib,test}/**/*.{ex,exs}"].
Patterns are expanded with Path.wildcard/2.

	:plugins (a list of modules) (since v1.13.0) - specifies a list of
modules to customize how the formatter works. See the "Plugins" section
below for more information.

	:subdirectories (a list of paths and patterns) - specifies subdirectories
that have their own formatting rules. Each subdirectory should have a
.formatter.exs that configures how entries in that subdirectory should be
formatted as. Configuration between .formatter.exs are not shared nor
inherited. If a .formatter.exs lists "lib/app" as a subdirectory, the rules
in .formatter.exs won't be available in lib/app/.formatter.exs.
Note that the parent .formatter.exs must not specify files inside the "lib/app"
subdirectory in its :inputs configuration. If this happens, the behaviour of
which formatter configuration will be picked is unspecified.

	:import_deps (a list of dependencies as atoms) - specifies a list
 of dependencies whose formatter configuration will be imported.
 See the "Importing dependencies configuration" section below for more
 information.

	:export (a keyword list) - specifies formatter configuration to be exported.
See the "Importing dependencies configuration" section below.

 Task-specific options

	--check-formatted - checks that the file is already formatted.
This is useful in pre-commit hooks and CI scripts if you want to
reject contributions with unformatted code. If the check fails,
the formatted contents are not written to disk. Keep in mind
that the formatted output may differ between Elixir versions as
improvements and fixes are applied to the formatter.

	--no-exit - only valid when used with --check-formatted.
Pass this if you don't want this Mix task to fail (and return a non-zero exit code),
but still want to check for format errors and print them to the console.

	--dry-run - does not save files after formatting.

	--dot-formatter - path to the file with formatter configuration.
Defaults to .formatter.exs if one is available. See the
"Formatting options" section above for more information.

	--stdin-filename - path to the file being formatted on stdin.
This is useful if you are using plugins to support custom filetypes such
as .heex. Without passing this flag, it is assumed that the code being
passed via stdin is valid Elixir code. Defaults to "stdin.exs".

 When to format code

We recommend developers to format code directly in their editors, either
automatically when saving a file or via an explicit command or key binding. If
such option is not available in your editor of choice, adding the required
integration is usually a matter of invoking:
$ cd $project && mix format $file

where $file refers to the current file and $project is the root of your
project.
It is also possible to format code across the whole project by passing a list
of patterns and files to mix format, as shown at the top of this task
documentation. This list can also be set in the .formatter.exs file under the
:inputs key.

 Plugins

It is possible to customize how the formatter behaves. Plugins must implement
the Mix.Tasks.Format behaviour. For example, imagine that your project uses
Markdown in two distinct ways: via a custom ~M sigil and via files with the
.md and .markdown extensions. A custom plugin would look like this:
defmodule MixMarkdownFormatter do
 @behaviour Mix.Tasks.Format

 def features(_opts) do
 [sigils: [:M], extensions: [".md", ".markdown"]]
 end

 def format(contents, opts) do
 # logic that formats markdown
 end
end
The opts passed to format/2 contains all the formatting options and either:
	:sigil (atom) - the sigil being formatted, e.g. :M.

	:modifiers (charlist) - list of sigil modifiers.

	:extension (string) - the extension of the file being formatted, e.g. ".md".

Now any application can use your formatter as follows:
.formatter.exs
[
 # Define the desired plugins
 plugins: [MixMarkdownFormatter, AnotherMarkdownFormatter],
 # Remember to update the inputs list to include the new extensions
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}", "posts/*.{md,markdown}"]
]
Notice that, when running the formatter with plugins, your code will be
compiled first.
In addition, the order by which you input your plugins is the format order.
So, in the above .formatter.exs, the MixMarkdownFormatter will format
the markdown files and sigils before AnotherMarkdownFormatter.

 Importing dependencies configuration

This task supports importing formatter configuration from dependencies.
A dependency that wants to export formatter configuration needs to have a
.formatter.exs file at the root of the project. In this file, the dependency
can list an :export option with configuration to export. For now, only one
option is supported under :export: :locals_without_parens (whose value has
the same shape as the value of the :locals_without_parens in Code.format_string!/2).
The functions listed under :locals_without_parens in the :export option of
a dependency can be imported in a project by listing that dependency in the
:import_deps option of the formatter configuration file of the project.
For example, consider you have a project called my_app that depends on another one called my_dep.
my_dep wants to export some configuration, so my_dep/.formatter.exs
would look like this:
my_dep/.formatter.exs
[
 # Regular formatter configuration for my_dep
 # ...

 export: [
 locals_without_parens: [some_dsl_call: 2, some_dsl_call: 3]
]
]
In order to import configuration, my_app's .formatter.exs would look like
this:
my_app/.formatter.exs
[
 import_deps: [:my_dep]
]

 Summary

 Functions

 mix help - Mix v1.16.3

mix help

Lists all tasks and aliases or prints the documentation for a given task or alias.

 Arguments

$ mix help - prints all aliases, tasks and their short descriptio