

 mix_deploy

 v0.7.10

 Table of contents

 	README

 	Changelog

 	License (Apache-2.0)

 	Contributing

 	Code of Conduct

 	Mix Tasks

 	mix deploy.generate

 	mix deploy.init

 	mix deploy.local

 	mix deploy.local.rollback

README

[image: test workflow]
[image: Contributor Covenant]
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
mix_deploy
This module generates scripts which help deploy an Erlang release, handling
tasks such as creating initial directory structure, unpacking release files,
managing configuration, and starting/stopping. It supports deployment to the
local machine, bare-metal servers, or cloud servers using e.g.,
AWS CodeDeploy.
It supports releases created with Elixir 1.9+
mix release
or Distillery.
It assumes that mix_systemd is used to generate a
systemd unit file for the application, and shares conventions with it about naming files.
See mix_systemd for examples.
Here is a complete example app.

 Installation

Add mix_deploy to the list of dependencies in mix.exs:
def deps do
 [
 {:mix_deploy, "~> 0.7"},
]
end

 Example

A straightforward way to deploy an app is on a virtual private server at, e.g.,
Digital Ocean, building and deploying on the
same machine. Check out the code on the server, run mix compile to build, run
mix test, then run mix release to generate a release. You then use the
scripts generated by mix_release to set up the runtime environment, deploy
the release to the target dir, and run it supervised by systemd.

 Configure the app

Follow the Phoenix config process for
deployment and
releases.
The app should read runtime configuration such as the database connection from
environment variables in config/runtime.exs. Generate a production secret
with mix phx.gen.secret.
Create a file with these environment vars and put it in config/environment, e.g.:
DATABASE_URL="ecto://foo:Sekr!t@localhost/foo"
SECRET_KEY_BASE="VXR6/fViPssuoAyqmr0SvAYBIaMrtiZLaQCn1TfB5NXaOzssHxtegfF+yM+/Senv"

Add the config/environment file to .gitignore so that any secrets do not
get checked into git.

 Configure mix_deploy and mix_systemd

Configure mix_deploy and mix_systemd in config/prod.exs.
mix_systemd generates a systemd unit file which loads the configuration
for the app. On startup, it creates the specified directories for the app in
the standard locations.
config :mix_systemd,
 env_files: [
 # Read environment vars from file /srv/foo/etc/environment if it exists
 ["-", :deploy_dir, "/etc/environment"],
 # Read environment vars from file /etc/foo/environment if it exists
 ["-", :configuration_dir, "/environment"]
],
 # Set individual env vars
 env_vars: [
 "PHX_SERVER=true"
 "PORT=8080",
],
 # Create standard config dirs
 dirs: [
 # /var/cache/foo
 :cache,
 # /etc/foo
 :configuration,
 # /var/log/foo
 :logs,
 # /run/foo
 :runtime,
 # /var/lib/foo
 :state,
 # /var/tmp/foo
 :tmp
],
 # Run app under this OS user, default is the app name
 app_user: "app",
 app_group: "app"
mix_deploy generates scripts to initialize the system and deploy it.
config :mix_deploy,
 app_user: "app",
 app_group: "app"
 # Copy config/environment to /etc/foo/environment
 copy_files: [
 %{
 src: "config/environment",
 dst: [:configuration_dir, "/environment"],
 user: "$DEPLOY_USER",
 group: "$APP_GROUP",
 mode: "640"
 },
],
 # Generate these scripts in bin
 templates: [
 "init-local",
 "create-users",
 "create-dirs",
 "copy-files",
 "enable",
 "release",
 "restart",
 "rollback",
 "start",
 "stop",
]

 Initialize mix_systemd and mix_deploy and generate files

mix_systemd and mix_deploy generate output files from templates.
Run the following to copy the templates into your project. The templating
process most common needs via configuration, but you can also check them into
your project and make local modifications to handle special needs.
mix systemd.init
mix deploy.init

Generate output files:
Create systemd unit file for app under _build/prod/systemd
MIX_ENV=prod mix systemd.generate

Create deploy scripts project `bin` dir
MIX_ENV=prod mix deploy.generate
chmod +x bin/*

 Set up the system

Run the scripts to set up the operating system for the deployment.
This creates the app OS user, directory structure under /srv/foo, and the
systemd unit file which supervises the app.
deploy-init-local is a convenience script which runs other scripts to set up
the system:
sudo bin/deploy-init-local

It does the following:
Create users to run the app
bin/deploy-create-users

Create deploy dirs under /srv/foo
bin/deploy-create-dirs

Copy scripts used at runtime by the systemd unit
cp bin/* /srv/foo/bin

Copy files and enable systemd unit
bin/deploy-copy-files
bin/deploy-enable

 Build the Elixir release

Create the Elixir (Erlang) release. This is a tar file containing the app, the
libraries it depends on, and the scripts to manage it.
MIX_ENV=prod mix release

 Deploy the release to the local machine:

Extract release to target directory and make it current
sudo bin/deploy-release

Restart the systemd unit
sudo bin/deploy-restart

You can roll back the release with the following:
bin/deploy-rollback
sudo bin/deploy-restart

Add an alias to mix.exs, and you can do the deploy by running mix deploy.
def project do
 [
 preferred_cli_env: [
 deploy: :prod
]
]
end

defp aliases do
 [
 deploy: [
 "release --overwrite",
 "cmd sudo bin/deploy-release",
 "cmd sudo bin/deploy-restart"
]
]
end

 Try it out

Your app should now be running:
curl -v http://localhost:8080/

If it is not, have a look at the logs.
systemctl status foo
journalctl -u foo

If you want it to run on port 80, you can redirect 80 to 8080
in the firewall.

 Usage

First, use the deploy.init task to template files from the library to the
rel/templates/deploy directory in your project.
mix deploy.init

Next, generate the scripts based on your project's config:
MIX_ENV=prod mix deploy.generate
chmod +x bin/*

By default, mix deploy.generate creates scripts under a bin directory at
the top level of your project. If you want to keep them separate, e.g. to
create different files based on the environment, set bin_dir to
[:output_dir, "bin"] and it will generate files under e.g. _build/prod/deploy.

 Configuration

The library tries to choose smart defaults. It reads the app name from
mix.exs and calculates default values for its configuration parameters.
If your app is named foo_bar, it will create a service named foo-bar,
deployed to /srv/foo-bar, running under the user foo-bar.
The library doesn't generate any output scripts by default, you need to enable
them with the templates parameter. It can create the following scripts:

 Systemd scripts

These are wrappers on e.g. /bin/systemctl restart foo. They are useful for
e.g. CodeDeploy hook scripts where we have to run a script without parameters.
	deploy-start: Start services
	deploy-stop: Stop services
	deploy-restart: Restart services
	deploy-enable: Enable systemd units

 System setup scripts

These scripts set up the target system for the application. They are useful for
local and automated deploy.
	deploy-create-users: Create OS accounts for app and deploy users
	deploy-create-dirs: Create dirs, including the release dir /srv/foo and
standard dirs like /etc/foo if needed.

 Local deploy scripts

These scripts deploy the app to the same server as it was built on:
	deploy-copy-files: Copy files from _build to target /srv/foo, or to a
staging directory for packaging
	deploy-release: Deploy release, extracting to a timestamped dir under
/srv/foo/releases, then making a symlink from /srv/foo/current
	deploy-rollback: Rollback release, resetting the symlink to point to the
previous release

The library also has mix tasks to deploy and roll back releases:
mix deploy.local
mix deploy.local.rollback

 CodeDeploy deploy scripts

These scripts run on the target machine as lifecycle hooks.
	deploy-clean-target: Delete files under target dir
 in preparation for deploying update
	deploy-extract-release: Extract release from tar
	deploy-set-perms: Set target file permissions so that they can be used by
the app user

 Build server scripts

These scripts run on the build server.
	deploy-stage-files: Copy output files to staging directory, default files

 Release command scripts

These scripts set up the environment and then run release commands.
They make the config match the environment vars set at runtime in the systemd
unit. With Elixir 1.9+ you can source /srv/foo/bin/set-env in rel/env.sh.eex.
The other scripts are mainly useful with Distillery.
	set-env: Set up environment
	deploy-migrate: Migrate database on target system by
running a custom command.
	deploy-remote-console: Launch remote console for the app

 Runtime environment scripts

These scripts are called by the systemd unit to set get the application config
at runtime prior to starting the app. They are more most useful with Distillery.
Elixir 1.9+ mix releases support
runtime configuration
via config/runtime.exs and rel/env.sh.eex. It is more secure, however, to
separate the process of getting configuration from the app itself using
ExecStartPre]).
See mix_systemd for examples.
	deploy-sync-config-s3: Sync config files from S3 bucket to app configuration_dir
	deploy-runtime-environment-file: Create #{runtime_dir}/environment
file on target from cloud-init metadata
	deploy-runtime-environment-wrap: Get runtime environment from cloud-init
metadata,
set environment vars, then launch main script.
	deploy-set-cookie-ssm: Get Erlang VM cookie from AWS SSM Parameter
Store
and write to file.

The most useful of these is deploy-sync-config-s3, the rest are code you might copy into
rel/env.sh.eex.

 Dependencies

The generated scripts are mostly straight bash, with minimal dependencies.
	deploy-sync-config-s3 uses the AWS CLI
to copy files from an S3 bucket.
	deploy-runtime-environment-file and deploy-runtime-environment-wrap use
 jq to parse the
 cloud-init JSON file.
	deploy-set-cookie-ssm uses the AWS CLI and jq to interact with
Systems Manager Parameter Store.

To install jq on Ubuntu:
apt-get install jq

To install the AWS CLI from the OS package manager on Ubuntu:
apt-get install awscli

 Scenarios

 CodeDeploy

The library can generate lifecycle hook scripts for use with a
deployment system such as AWS CodeDeploy.
config :mix_deploy,
 app_user: "app",
 app_group: "app",
 templates: [
 "stop",
 "create-users",
 "create-dirs",
 "clean-target",
 "extract-release",
 "set-perms",
 "migrate",
 "enable",
 "start",
 "restart",
],
 ...
Here is an example
appspec.yml
file:
version: 0.0
os: linux
files:
 - source: bin
 destination: /srv/foo/bin
 - source: systemd
 destination: /lib/systemd/system
 - source: etc
 destination: /srv/foo/etc
hooks:
 ApplicationStop:
 - location: bin/deploy-stop
 timeout: 300
 BeforeInstall:
 - location: bin/deploy-create-users
 - location: bin/deploy-create-dirs
 - location: bin/deploy-clean-target
 AfterInstall:
 - location: bin/deploy-extract-release
 - location: bin/deploy-set-perms
 - location: bin/deploy-enable
 ApplicationStart:
 - location: bin/deploy-migrate
 runas: app
 timeout: 300
 - location: bin/deploy-start
 timeout: 3600
 # ValidateService:
 - location: bin/validate-service
 timeout: 300

 Staging

By default, the scripts deploy the scripts as the same OS user that runs the
mix deploy.generate command, and run the app under an OS user with the same
name as the app.
Many scripts allow you to override environment variables at execution time. For
example, you can override the user accounts which own the files by setting the
environment vars APP_USER, APP_GROUP, and DEPLOY_USER.
Similarly, set DESTDIR and the copy script will add a prefix when copying
files. This lets you copy files to a staging directory, tar it up, then extract
it on a target machine, e.g.:
mkdir -p ~/tmp/deploy
DESTDIR=~/tmp/deploy bin/deploy-create-dirs
DESTDIR=~/tmp/deploy bin/deploy-copy-files

 Configuration options

The following sections describe common configuration options.
See lib/mix/tasks/deploy.ex for details of more obscure options.
If you need to make changes not supported by the config options,
then you can check the templates in rel/templates/deploy
into source control and make your own changes. Contributions are welcome!
The list of templates to generate is in the templates config var.
You can modify this list to remove scripts, and they won't be generated.
You can also add your own scripts and they will be run as templates with the
config vars defined.

 Basics

app_name: Elixir application name, an atom, from the app field in the mix.exs project.
version: version field in mix.exs project.
module_name: Elixir camel case module name version of app_name, e.g. FooBar.
release_name: Name of release, default app_name.
ext_name: External name, used for files and directories,
default app_name with underscores converted to "-", e.g. foo-bar.
service_name: Name of the systemd service, default ext_name.
release_system: :mix | :distillery, default :mix
Identifies the system used to generate the releases,
Mix or
Distillery.

 Users

deploy_user: OS user account that is used to deploy the app, e.g. own the
files and restart it. For security, this is separate from app_user, keeping
the runtime user from being able to modify the source files. Defaults to the
user running the script, supporting local deploy. For remote deploy, set this
to a user like deploy or same as the app user.
deploy_group: OS group account, default deploy_user.
app_user: OS user account that the app should run under. Default deploy_user.
app_group: OS group account, default deploy_group.

 Directories

base_dir: Base directory for app files on target, default /srv.
deploy_dir: Directory for app files on target, default #{base_dir}/#{ext_name}.
We use the
standard app directories,
for modern Linux systems. App files are under /srv, configuration under
/etc, transient files under /run, data under /var/lib.
Directories are named based on the app name, e.g. /etc/#{ext_name}.
The dirs variable specifies which directories the app uses.
By default, it doesn't set up anything. To enable them, configure dirs, e.g.:
dirs: [
 # :runtime, # App runtime files which may be deleted between runs, /run/#{ext_name}
 # :configuration, # App configuration, e.g. db passwords, /etc/#{ext_name}
 # :state, # App data or state persisted between runs, /var/lib/#{ext_name}
 # :cache, # App cache files which can be deleted, /var/cache/#{ext_name}
 # :logs, # App external log files, not via journald, /var/log/#{ext_name}
 # :tmp, # App temp files, /var/tmp/#{ext_name}
],
Recent versions of systemd (since 235) will create these directories at
start time based on the settings in the unit file. For earlier systemd
versions, deploy-create-dirs will create them.
For security, we set permissions to 750, more restrictive than the systemd
defaults of 755. You can configure them with variables like
configuration_directory_mode. See the defaults in
lib/mix/tasks/deploy.ex.
systemd_version: Sets the systemd version on the target system, default 235.
This determines which systemd features the library will enable. If you are
targeting an older OS release, you may need to change it. Here are the systemd
versions in common OS releases:
	CentOS 7: 219
	Ubuntu 16.04: 229
	Ubuntu 18.04: 237

 Additional directories

The library uses a directory structure under deploy_dir which supports
multiple releases, similar to Capistrano.
	scripts_dir: deployment scripts which e.g. start and stop the unit, default bin.
	current_dir: where the current Erlang release is unpacked or referenced by symlink, default current.
	releases_dir: where versioned releases are unpacked, default releases.
	flags_dir: dir for flag files to trigger restart, e.g. when restart_method is :systemd_flag, default flags.

When using multiple releases and symlinks, the deployment process works as follows:
	Create a new directory for the release with a timestamp like
/srv/foo/releases/20181114T072116.

	Upload the new release tarball to the server and unpack it to the releases dir

	Make a symlink from /srv/#{ext_name}/current to the new release dir.

	Restart the app.

If you are only keeping a single version, then deploy it to the directory
/srv/#{ext_name}/current.

 Variable expansion

The following variables support variable expansion:
expand_keys: [
 :env_files,
 :env_vars,
 :runtime_environment_service_script,
 :conform_conf_path,
 :pid_file,
 :root_directory,
 :bin_dir,
]
You can specify values as a list of terms, and it will look up atoms as keys in
the config. This lets you reference e.g. the deploy dir or configuration dir without
having to specify the full path, e.g. ["!", :deploy_dir, "/bin/myscript"] gets
converted to "!/srv/foo/bin/myscript".

 Environment vars

Config vars set a few common env vars:
	mix_env: default Mix.env(), sets MIX_ENV
	env_lang: default en_US.utf8, used to set LANG

In addition, you can set env_vars and env_files the same way
as for mix_systemd. The set-env script will then set these
variables the same way as they are in the systemd unit,
allowing you to run release commands with the same config, e.g. database
migrations or console. It also sets:
	RUNTIME_DIR: runtime_dir, if :runtime in dirs
	CONFIGURATION_DIR: configuration_dir, if :configuration in dirs
	LOGS_DIR: logs_dir, if :logs in dirs
	CACHE_DIR: cache_dir, if :cache in dirs
	STATE_DIR: state_dir, if :state in dirs
	TMP_DIR: tmp_dir, if :tmp in dirs

You can set additional vars using env_vars, e.g.:
env_vars: [
 "PORT=8080",
]
You can also reference the value of other parameters by name, e.g.:
env_vars: [
 ["RELEASE_TMP=", :runtime_dir],
]
You can read environment vars from files with env_files, e.g.:
env_files: [
 ["-", :deploy_dir, "/etc/environment"],
 ["-", :configuration_dir, "environment"],
 ["-", :runtime_dir, "environment"],
],
The "-" at the beginning makes the file optional, the system will start without them.
Later values override earlier values, so you can set defaults in the release which get
overridden in the deployment or runtime environment.
With Distillery, you can generate a file under the release with an overlay in
rel/config.exs, e.g.:
environment :prod do
 set overlays: [
 {:mkdir, "etc"},
 {:copy, "rel/etc/environment", "etc/environment"},
 # {:template, "rel/etc/environment", "etc/environment"}
]
end
That results in a file that would be read by:
env_files: [
 ["-", :current_dir, "/etc/environment"],
],

 Starting and restarting

The following variables set systemd variables:
service_type: :simple | :exec | :notify | :forking. systemd
Type, default :simple.
Modern applications don't fork, they run in the foreground and
rely on the supervisor to manage them as a daemon. This is done by setting
service_type to :simple or :exec. Note that in simple mode, systemd
doesn't actually check if the app started successfully, it just continues
starting other units. If something depends on your app being up, :exec may be
better.
Set service_type to :forking, and the library sets pid_file to
#{runtime_directory}/#{app_name}.pid and sets the PIDFILE env var to tell
the boot scripts where it is.
The Erlang VM runs pretty well in foreground mode, but traditionally runs as
as a standard Unix-style daemon, so forking might be better. Systemd
expects foregrounded apps to die when their pipe closes. See
https://elixirforum.com/t/systemd-cant-shutdown-my-foreground-app-cleanly/14581/2
restart_method: :systemctl | :systemd_flag | :touch, default :systemctl
The normal situation is that the app will be restarted using e.g.
systemctl restart foo.
With :systemd_flag, an additional systemd unit file watches for
changes to a flag file and restarts the main unit. This allows updates to be
pushed to the target machine by an unprivileged user account which does not
have permissions to restart processes. Touch the file #{flags_dir}/restart.flag
and systemd will restart the unit. See mix_systemd for details.
With :touch, the app itself watches the file #{flags_dir}/restart.flag.
If it changes, the app shuts itself down, relying on systemd to notice and restart it.
sudo_deploy: Creates /etc/sudoers.d/#{ext_name} file which allows the deploy
user to start/stop/restart the app using sudo. Default false. Note that
when you must call systemctl with the full path, e.g. sudo /bin/systemctl restart foo
for this to work.
sudo_app: Creates /etc/sudoers.d/#{ext_name} file allowing the app user
user to start/stop/restart the app using sudo. Default false.

 Configuration examples

Here is a complete example of configuring an app from a config file which
it pulls from S3 on startup.
We set up an ExecStartPre command in the systemd unit file which runs
deploy-sync-config-s3 before starting the app. It runs the AWS cli command:
aws s3 sync "s3://${CONFIG_S3_BUCKET}/${CONFIG_S3_PREFIX}" "${CONFIG_DIR}/"

CONFIG_S3_BUCKET is the source bucket, and CONFIG_S3_PREFIX is an optional
path in the bucket. CONFIG_DIR is the app configuration dir on the target
system, /etc/foo.
We need to bootstrap the config process, so we use a different environment file
from the main config.
mkdir -p rel/etc
echo "CONFIG_S3_BUCKET=cogini-foo-dev-app-config" >> rel/etc/environment

Set exec_start_pre in the mix_systemd config:
config :mix_systemd,
 app_user: "app",
 app_group: "app",
 # systemd runs this before starting the app as root
 exec_start_pre: [
 ["!", :deploy_dir, "/bin/deploy-sync-config-s3"]
],
 dirs: [
 # Create /etc/foo
 :configuration,
 # Create /run/foo
 :runtime,
],
 # systemd should not clean up /run/foo
 runtime_directory_preserve: "yes",
 # Load env from /srv/foo/etc/environment and /etc/foo/environment
 env_files: [
 ["-", :deploy_dir, "/etc/environment"],
 ["-", :configuration_dir, "/environment"],
],
 # deploy-copy-files will copy the env file to /srv/foo/etc
 # more likely it is done by e.g. appspec.yml
 copy_files: [
 %{
 src: "rel/etc/environment",
 dst: [:deploy_dir, "/etc"],
 user: "$DEPLOY_USER",
 group: "$APP_GROUP",
 mode: "640"
 },
],
 env_vars: [
 # Temp files are in /run/foo
 ["RELEASE_TMP=", :runtime_dir],
]

config :mix_deploy,
 app_user: "app",
 app_group: "app"
 templates: [
 "init-local",
 "create-users",
 "create-dirs",
 "copy-files",
 "enable",
 "release",
 "restart",
 "rollback",
 "start",
 "stop",

 "sync-config-s3",
],
 dirs: [
 :configuration,
 :runtime,
],
 # Set env config in e.g. deploy-set-env to match above.
 env_files: [
 ["-", :deploy_dir, "/etc/environment"],
 ["-", :configuration_dir, "/environment"],
]
 env_vars: [
 ["RELEASE_TMP=", :runtime_dir],
]
For security, the app only has read-only access to its config files, and
/etc/foo has ownership deploy:foo and mode 750. We prefix the command
with "!" so it runs with elevated permissions, not as the foo user.
We need to set the CONFIG_S3_BUCKET variable in the environment so that
deploy-sync-config-s3 can use it. We can set it in env_vars
or put it in the file /etc/foo/environment.
	/srv/foo/etc/environment settings are configured at deploy time.
	/etc/foo/environment settings might come from an S3
bucket.
	/run/foo/environment settings might be generated dynamically, e.g. getting
the IP address.

For example, post_build commands in the CodeBuild CI buildspec.yml file
can generate a config file files/etc/environment:
post_build:
 commands:
 - mkdir -p files/etc
 - echo "CONFIG_S3_BUCKET=$BUCKET_CONFIG" >> files/etc/environment
Then the CodeDeploy appspec.yml copies it to the target system under /srv/foo/etc:
files:
 - source: bin
 destination: /srv/foo/bin
 - source: systemd
 destination: /lib/systemd/system
 - source: etc
 destination: /srv/foo/etc
See mix_systemd for more examples.
I am jakemorrison on on the Elixir Slack and Discord, reachfh on
Freenode #elixir-lang IRC channel. Happy to chat or help with
your projects.

 Copyright and License

Copyright (c) 2019 Jake Morrison
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.

 [0.7.10] - 2024-07-07

 Changed

	Update libs

 [0.7.9] - 2021-07-26

 Added

	Ability to run custom function before starting, thanks @mitjok https://github.com/cogini/mix_deploy/pull/14

 [0.7.8] - 2021-07-25

 Fixed

	Make Cmnd_Alias in /etc/sudoers.d file globally unique

 [0.7.7] - 2020-12-08

 Fixed

	Fix incorrect file path copying /etc/sudoers.d file

 [0.7.6] - 2020-10-07

 Changed

	Export vars to be visible in other scripts, thanks mitjok
	Add ability to seed db, thanks mitjok
	Update deps for Elixir 1.11
	Update dialyxir version

 Fixed

	Avoid duplicate keys in the bindings passed to EEx.eval_file, thanks vimalearnest
	Pass dir as charlist to :erl_tar.extract

 [0.7.5] - 2020-02-25

 Fixed

	Fix directory creation, closes https://github.com/cogini/mix_deploy/pull/7

 Changed

	Make ex_doc dev only dependency again
	Update docs

 [0.7.4] - 2020-02-12

 Changed

	Update mix_systemd and ex_doc

 [0.7.3] - 2020-01-24

 Fixed

	Fix problem with newlines in set-env

 Changed

	Use default LANG of en_US.utf8 for better compatibility between Linux versions

 [0.7.2] - 2020-01-21

 Changed

	Updated migrate and console scripts for mix releases

 [0.7.1] - 2020-01-01

 Fixed

	Updated path to tar file, closes https://github.com/cogini/mix_deploy/pull/2

 [0.7.0] - 2020-01-01

 Added

	Support Elixir 1.9 mix release
	Support variable references in paths

 Removed

	Removed obsolete option flags

Apache License

Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all other entities
that control, are controlled by, or are under common control with that entity.
For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity exercising
permissions granted by this License.
"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.
"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included
in or attached to the work (an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object form, that
is based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an
original work of authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit
on behalf of the copyright owner. For the purposes of this definition,
"submitted" means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and
issue tracking systems that are managed by, or on behalf of, the Licensor for
the purpose of discussing and improving the Work, but excluding communication
that is conspicuously marked or otherwise designated in writing by the copyright
owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity on behalf
of whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

 2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such
Derivative Works in Source or Object form.

 3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where
such license applies only to those patent claims licensable by such Contributor
that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License
for that Work shall terminate as of the date such litigation is filed.

 4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:
	You must give any other recipients of the Work or Derivative Works a copy of
this License; and

	You must cause any modified files to carry prominent notices stating that
You changed the files; and

	You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from
the Source form of the Work, excluding those notices that do not pertain to
any part of the Derivative Works; and

	If the Work includes a "NOTICE" text file as part of its distribution, then
any Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those
notices that do not pertain to any part of the Derivative Works, in at least
one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by
the Derivative Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational purposes only
and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to
the NOTICE text from the Work, provided that such additional attribution
notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or
distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

 5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of
any separate license agreement you may have executed with Licensor regarding
such Contributions.

 6. Trademarks.

This License does not grant permission to use the trade names, trademarks,
service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-
INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of
permissions under this License.

 8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or
out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to
offer, and charge a fee for, acceptance of support, warranty, indemnity, or
other liability obligations and/or rights consistent with this License. However,
in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
Copyright 2021-2023, Jake Morrison jake@cogini.com.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Contributing to Uinta

Please take a moment to review this document in order to make the contribution
process easy and effective for everyone involved!
Also make sure you read our Code of Conduct that outlines our commitment towards an open and welcoming environment.

 Using the issue tracker

Use the issues tracker for:
	Bug reports
	Submitting pull requests

We do our best to keep the issue tracker tidy and organized, making it useful
for everyone. For example, we classify open issues per perceived difficulty,
making it easier for developers to contribute to Uinta.

 Bug reports

A bug is either a demonstrable problem that is caused by the code in the repository,
or indicate missing, unclear, or misleading documentation. Good bug reports are extremely
helpful - thank you!
Guidelines for bug reports:
	Use the GitHub issue search — check if the issue has already been
reported.

	Check if the issue has been fixed — try to reproduce it using the
master branch in the repository.

	Isolate and report the problem — ideally create a reduced test
case.

Please try to be as detailed as possible in your report. Include information about
your Operating System, as well as your Erlang, Elixir and Uinta versions. Please provide steps to
reproduce the issue as well as the outcome you were expecting! All these details
will help developers to fix any potential bugs.
Example:
Short and descriptive example bug report title
A summary of the issue and the environment in which it occurs. If suitable,
include the steps required to reproduce the bug.
	This is the first step
	This is the second step
	Further steps, etc.

<url> - a link to the reduced test case (e.g. a GitHub Gist)
Any other information you want to share that is relevant to the issue being
reported. This might include the lines of code that you have identified as
causing the bug, and potential solutions (and your opinions on their
merits).

 Contributing Documentation

Code documentation (@doc, @moduledoc, @typedoc) has a special convention:
the first paragraph is considered to be a short summary.
For functions, macros and callbacks say what it will do. For example write
something like:
@doc """
Marks the given value as HTML safe.
"""
def safe({:safe, value}), do: {:safe, value}
For modules, protocols and types say what it is. For example write
something like:
defmodule MyModule do
 @moduledoc """
 Conveniences for working HTML strings and templates.
 ...
 """
Keep in mind that the first paragraph might show up in a summary somewhere, long
texts in the first paragraph create very ugly summaries. As a rule of thumb
anything longer than 80 characters is too long.
Try to keep unnecessary details out of the first paragraph, it's only there to
give a user a quick idea of what the documented "thing" does/is. The rest of the
documentation string can contain the details, for example when a value and when
nil is returned.
If possible include examples, preferably in a form that works with doctests.
This makes it easy to test the examples so that they don't go stale and examples
are often a great help in explaining what a function does.

 Pull requests

Good pull requests - patches, improvements, new features - are a fantastic
help. They should remain focused in scope and avoid containing unrelated
commits.
IMPORTANT: By submitting a patch, you agree that your work will be
licensed under the license used by the project.
If you have any large pull request in mind (e.g. implementing features,
refactoring code, etc), please ask first otherwise you risk spending
a lot of time working on something that the project's developers might
not want to merge into the project.
Please adhere to the coding conventions in the project (indentation,
accurate comments, etc.) and don't forget to add your own tests and
documentation. When working with git, we recommend the following process
in order to craft an excellent pull request:
	Fork the project, clone your fork,
and configure the remotes:
Clone your fork of the repo into the current directory
git clone https://github.com/<your-username>/uinta

Navigate to the newly cloned directory
cd uinta

Assign the original repo to a remote called "upstream"
git remote add upstream https://github.com/podium/uinta

	If you cloned a while ago, get the latest changes from upstream, and update your fork:
git checkout master
git pull upstream master
git push

	Create a new topic branch (off of master) to contain your feature, change,
or fix.
IMPORTANT: Making changes in master is discouraged. You should always
keep your local master in sync with upstream master and make your
changes in topic branches.
git checkout -b <topic-branch-name>

	Commit your changes in logical chunks. Keep your commit messages organized,
with a short description in the first line and more detailed information on
the following lines. Feel free to use Git's
interactive rebase
feature to tidy up your commits before making them public.

	Make sure all the tests are still passing.
mix test

	Push your topic branch up to your fork:
git push origin <topic-branch-name>

	Open a Pull Request
 with a clear title and description.

	If you haven't updated your pull request for a while, you should consider
rebasing on master and resolving any conflicts.
IMPORTANT: Never ever merge upstream master into your branches. You
should always git rebase on master to bring your changes up to date when
necessary.
git checkout master
git pull upstream master
git checkout <your-topic-branch>
git rebase master

Thank you for your contributions!

 Guides

These Guides aim to be inclusive. We use "we" and "our" instead of "you" and
"your" to foster this sense of inclusion.
Ideally there is something for everybody in each guide, from beginner to expert.
This is hard, maybe impossible. When we need to compromise, we do so on behalf
of beginning users because expert users have more tools at their disposal to
help themselves.
The general pattern we use for presenting information is to first introduce a
small, discrete topic, then write a small amount of code to demonstrate the
concept, then verify that the code worked.
In this way, we build from small, easily digestible concepts into more complex
ones. The shorter this cycle is, as long as the information is still clear and
complete, the better.
For formatting the guides:
	We use the elixir code fence for all module code.
	We use the iex for IEx sessions.
	We use the console code fence for shell commands.
	We use the html code fence for html templates, even if there is elixir code
in the template.
	We use backticks for filenames and directory paths.
	We use backticks for module names, function names, and variable names.
	Documentation line length should hard wrapped at around 100 characters if possible.

Contributor Covenant Code of Conduct

 Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

 Our Standards

Examples of behavior that contributes to a positive environment for our
community include:
	Demonstrating empathy and kindness toward other people
	Being respectful of differing opinions, viewpoints, and experiences
	Giving and gracefully accepting constructive feedback
	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
	Focusing on what is best not just for us as individuals, but for the overall
community

Examples of unacceptable behavior include:
	The use of sexualized language or imagery, and sexual attention or advances of
any kind
	Trolling, insulting or derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or email address,
without their explicit permission
	Other conduct which could reasonably be considered inappropriate in a
professional setting

 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

 Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
engineering@therealreal.com. All complaints will be reviewed and investigated
promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

 1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

 2. Warning

Community Impact: A violation through a single incident or series of
actions.
Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.

 3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.
Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
Consequence: A permanent ban from any sort of public interaction within the
community.

 Attribution

This Code of Conduct is adapted from the Contributor Covenant,
version 2.1, available at
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html.
Community Impact Guidelines were inspired by
Mozilla's code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

mix deploy.generate

Create deploy scripts and files for project.

 Usage

Create scripts and files
MIX_ENV=prod mix deploy.generate

mix deploy.init

Initialize template files.

 Command line options

	--template_dir - target directory

 Usage

Copy default templates into your project
mix deploy.init

mix deploy.local

This task deploys a Distillery release to the local machine.
It extracts the release tar to a timestamped directory like
/srv/:app/releases/20170619175601, then makes a symlink
from /srv/:app/current to it.
This module looks for configuration in the mix project, to get the app and version,
and under the application environment under mix_deploy.

mix deploy.local.rollback

Update current symlink to point to the previous release directory.

 OEBPS/dist/epub-N2MDDSYJ.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},h=new s;function a(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}var m="hll";function u(){f()}function f(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{c(e,!0)}),t.addEventListener("mouseleave",n=>{c(e,!1)})})}function c(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{u(),a()});})();

