

 MqttX

 v0.2.0

 Table of contents

 	MqttX

 	Changelog

 	
 Modules

 	MqttX

 	MqttX.Client

 	MqttX.Client.Backoff

 	MqttX.Client.Connection

 	MqttX.Packet.Codec

 	MqttX.Packet.Properties

 	MqttX.Packet.Types

 	MqttX.Packet.Varint

 	MqttX.Payload

 	MqttX.Payload.JSON

 	MqttX.Payload.Protobuf

 	MqttX.Payload.Raw

 	MqttX.Server

 	MqttX.Server.Router

 	MqttX.Topic

 	MqttX.Transport

 	MqttX.Transport.Ranch

 	MqttX.Transport.ThousandIsland

 MqttX

[image: Hex.pm]
[image: Docs]
[image: CI]
A pure Elixir MQTT 3.1.1/5.0 library featuring:
	🚀 High-performance packet codec
	🖥️ Transport-agnostic server/broker
	📡 Modern client with automatic reconnection
	🔌 Pluggable transports (ThousandIsland, Ranch)
	📦 Optional payload codecs (JSON, Protobuf)

MQTT for Cellular IoT
For IoT devices on cellular networks (LTE-M, NB-IoT), every byte matters. Data transmission costs money, drains batteries, and increases latency. MQTT combined with Protobuf dramatically outperforms WebSocket with JSON:
Protocol Overhead Comparison
	Metric	WebSocket + JSON	MQTT + Protobuf	Savings
	Connection handshake	~300-500 bytes	~30-50 bytes	90%
	Per-message overhead	6-14 bytes	2-4 bytes	70%
	Keep-alive (ping)	~6 bytes	2 bytes	67%

Real-World Payload Example
Sending a sensor reading {temperature: 25.5, humidity: 60, battery: 85}:
	Format	Size	Notes
	JSON	52 bytes	{"temperature":25.5,"humidity":60,"battery":85}
	Protobuf	9 bytes	Binary: 0x08 0xCC 0x01 0x10 0x3C 0x18 0x55
	Reduction	83%	5.8x smaller

Monthly Data Usage (1 device, 1 msg/min)
	Protocol	Payload	Monthly Data
	WebSocket + JSON	52 bytes	~2.2 MB
	MQTT + Protobuf	9 bytes	~0.4 MB
	Savings		1.8 MB/device

For fleets of thousands of devices, this translates to significant cost savings on cellular data plans and extended battery life from reduced radio-on time.
Why MqttX?
Existing Elixir/Erlang MQTT libraries have limitations:
	mqtt_packet_map: Erlang-only codec, no server/client, slower encoding
	Tortoise/Tortoise311: Client-only, complex supervision, dated architecture
	emqtt: Erlang-focused, heavy dependencies

MqttX provides a unified, pure Elixir solution with:
	2.9-4.2x faster encoding than mqtt_packet_map for common packets
	Modern GenServer-based client with exponential backoff reconnection
	Transport-agnostic server that works with ThousandIsland or Ranch
	Clean, composable API designed for IoT and real-time applications
	Zero external dependencies for the core codec

The codec has been tested for interoperability with:
	Zephyr RTOS MQTT client (Nordic nRF9160, nRF52)
	Eclipse Paho clients (C, Python, JavaScript)
	Mosquitto broker
	Standard MQTT test suites

Installation
Add mqttx to your dependencies:
def deps do
 [
 {:mqttx, "~> 0.1.0"},
 # Optional: Pick a transport
 {:thousand_island, "~> 1.0"}, # or {:ranch, "~> 2.1"}
 # Optional: Payload codecs
 {:protox, "~> 1.7"}
]
end
Quick Start
MQTT Server
Create a handler module:
defmodule MyApp.MqttHandler do
 use MqttX.Server

 @impl true
 def init(_opts) do
 %{subscriptions: %{}}
 end

 @impl true
 def handle_connect(client_id, credentials, state) do
 IO.puts("Client connected: #{client_id}")
 {:ok, state}
 end

 @impl true
 def handle_publish(topic, payload, opts, state) do
 IO.puts("Received on #{inspect(topic)}: #{payload}")
 {:ok, state}
 end

 @impl true
 def handle_subscribe(topics, state) do
 qos_list = Enum.map(topics, fn t -> t.qos end)
 {:ok, qos_list, state}
 end

 @impl true
 def handle_disconnect(reason, _state) do
 IO.puts("Client disconnected: #{inspect(reason)}")
 :ok
 end
end
Start the server:
{:ok, _pid} = MqttX.Server.start_link(
 MyApp.MqttHandler,
 [],
 transport: MqttX.Transport.ThousandIsland,
 port: 1883
)
MQTT Client
Connect
{:ok, client} = MqttX.Client.connect(
 host: "localhost",
 port: 1883,
 client_id: "my_client",
 username: "user", # optional
 password: "secret" # optional
)

Subscribe
:ok = MqttX.Client.subscribe(client, "sensors/#", qos: 1)

Publish
:ok = MqttX.Client.publish(client, "sensors/temp", "25.5")

Disconnect
:ok = MqttX.Client.disconnect(client)
Packet Codec (Standalone)
Encode a packet
packet = %{
 type: :publish,
 topic: "test/topic",
 payload: "hello",
 qos: 0,
 retain: false
}
{:ok, binary} = MqttX.Packet.Codec.encode(4, packet)

Decode a packet
{:ok, {decoded, rest}} = MqttX.Packet.Codec.decode(4, binary)
Transport Adapters
MqttX supports pluggable transports:
ThousandIsland (Recommended)
MqttX.Server.start_link(
 MyHandler,
 [],
 transport: MqttX.Transport.ThousandIsland,
 port: 1883
)
Ranch
MqttX.Server.start_link(
 MyHandler,
 [],
 transport: MqttX.Transport.Ranch,
 port: 1883
)
Payload Codecs
Built-in payload codecs for message encoding/decoding:
JSON (Erlang/OTP 27+)
Uses the built-in Erlang JSON module:
{:ok, json} = MqttX.Payload.JSON.encode(%{temp: 25.5})
{:ok, data} = MqttX.Payload.JSON.decode(json)
Protobuf
{:ok, binary} = MqttX.Payload.Protobuf.encode(my_proto_struct)
{:ok, struct} = MqttX.Payload.Protobuf.decode(binary, MyProto.Message)
Raw (Pass-through)
{:ok, binary} = MqttX.Payload.Raw.encode(<<1, 2, 3>>)
{:ok, binary} = MqttX.Payload.Raw.decode(<<1, 2, 3>>)
Topic Routing
The server includes a topic router with wildcard support:
alias MqttX.Server.Router

router = Router.new()
router = Router.subscribe(router, "sensors/+/temp", client_ref, qos: 1)
router = Router.subscribe(router, "alerts/#", client_ref, qos: 0)

Find matching subscriptions
matches = Router.match(router, "sensors/room1/temp")
=> [{client_ref, %{qos: 1}}]
Protocol Support
	MQTT 3.1 (protocol version 3)
	MQTT 3.1.1 (protocol version 4)
	MQTT 5.0 (protocol version 5)

All 15 packet types are supported:
	CONNECT, CONNACK
	PUBLISH, PUBACK, PUBREC, PUBREL, PUBCOMP
	SUBSCRIBE, SUBACK
	UNSUBSCRIBE, UNSUBACK
	PINGREQ, PINGRESP
	DISCONNECT
	AUTH (MQTT 5.0)

Performance
The packet codec is optimized for:
	Zero-copy binary references (sub-binaries)
	Unrolled remaining length decode for common cases
	Returns iodata for encoding (avoids concatenation)
	Inline functions for hot paths

Benchmarks vs mqtt_packet_map (Apple M4 Pro):
	Operation	MqttX	mqtt_packet_map	Result
	PUBLISH encode	5.05M ips	1.72M ips	2.9x faster
	SUBSCRIBE encode	3.42M ips	0.82M ips	4.2x faster
	PUBLISH decode	2.36M ips	2.25M ips	~same

Roadmap
v0.3.0 - Core Functionality
	Feature	Description	Priority
	TLS/SSL Client Support	Client only supports TCP, no :ssl option	High
	QoS 2 Complete Flow	Client doesn't implement PUBREC/PUBREL/PUBCOMP exchange	High
	Message Inflight Tracking	No retry mechanism for unacknowledged QoS 1/2 messages	High
	Session Persistence	clean_session=false sessions aren't stored/restored	Medium
	Retained Messages	Server doesn't store or deliver retained messages	Medium
	Will Message Delivery	Server receives will but doesn't publish on ungraceful disconnect	Medium

v0.4.0 - MQTT 5.0 Advanced Features
	Feature	Description
	Shared Subscriptions	$share/group/topic pattern for load balancing
	Topic Alias	Reduce bandwidth with topic aliases
	Message Expiry	Respect message_expiry_interval property
	Flow Control	Enforce receive_maximum for backpressure
	Enhanced Auth	Complete AUTH packet exchange flow
	Request/Response	Response topic and correlation data handling

v0.5.0 - Production Readiness
	Feature	Description
	Telemetry	:telemetry events for metrics/observability
	WebSocket Transport	For browser-based MQTT clients
	Clustering	Distributed router across Erlang nodes
	Connection Supervision	DynamicSupervisor for client connections
	Rate Limiting	Connection and message rate limits

Future Improvements
	Item	Description
	Trie-based Router	O(topic_depth) matching instead of O(n) list scan
	Property-based Tests	StreamData for fuzzing packet codec
	Integration Tests	Test against Mosquitto, EMQX, HiveMQ

License
Apache-2.0

 Changelog

All notable changes to this project will be documented in this file.
[0.2.0] - 2026-01-15
Added
	handle_info/2 callback for MqttX.Server to handle custom messages (e.g., PubSub)
	Support for outgoing PUBLISH via {:publish, topic, payload, state} return value
	Enables bidirectional communication (server can push messages to connected clients)

[0.1.6] - 2026-01-15
Changed
	Broadened protox dependency to support both 1.x and 2.x (>= 1.7.0)

[0.1.5] - 2026-01-15
Added
	GitHub Actions CI workflow (tests on Elixir 1.17-1.19, OTP 27-28, dialyzer)
	Roadmap section in README
	Username/password example in client documentation
	Changelog link on hex.pm package page
	Hex.pm, Docs, and CI badges to README

Changed
	Documentation landing page now shows README instead of module docs

Fixed
	JSON payload codec now conditionally compiles only on OTP 27+
	Code formatting issues
	Version test no longer hardcodes version string
	Dialyzer false positives for defensive pattern matching

[0.1.1] - 2026-01-15
Added
	GitHub Actions CI workflow (tests, formatting, dialyzer)
	Roadmap section in README
	Username/password example in client documentation
	Changelog link on hex.pm package page

Fixed
	JSON codec description now correctly references built-in Erlang/OTP 27+ module

[0.1.0] - 2026-01-14
Added
	Initial release
	MQTT packet codec supporting MQTT 3.1, 3.1.1, and 5.0
	All 15 MQTT packet types
	MQTT 5.0 properties support
	ThousandIsland transport adapter
	Ranch transport adapter
	MQTT Server behaviour with handler callbacks
	Topic router with wildcard support (+, #)
	MQTT Client with automatic reconnection
	JSON payload codec (via built-in Erlang/OTP 27+ JSON module)
	Protobuf payload codec (via Protox)
	Raw binary payload codec
	Comprehensive test suite

MqttX

MqttX - Pure Elixir MQTT 3.1.1/5.0 Library
A comprehensive MQTT library featuring:
	High-performance packet codec
	Transport-agnostic server/broker
	Modern client with automatic reconnection

See full documentation, installation guide, and examples →
Quick Start
Server
defmodule MyApp.MqttHandler do
 use MqttX.Server

 @impl true
 def handle_connect(client_id, credentials, state) do
 {:ok, Map.put(state, :client_id, client_id)}
 end

 @impl true
 def handle_publish(topic, payload, opts, state) do
 IO.inspect({topic, payload}, label: "Received")
 {:ok, state}
 end
end

Start server
MqttX.Server.start_link(MyApp.MqttHandler, [],
 transport: :thousand_island,
 port: 1883
)
Client
{:ok, client} = MqttX.Client.connect(
 host: "localhost",
 port: 1883,
 client_id: "my_client"
)

:ok = MqttX.Client.subscribe(client, "sensors/#", qos: 1)
:ok = MqttX.Client.publish(client, "sensors/temp", "25.5", qos: 0)
Packet Codec
Encode
packet = %{type: :publish, topic: "test", payload: "hello", qos: 0, retain: false}
{:ok, binary} = MqttX.Packet.encode(4, packet)

Decode
{:ok, {decoded, rest}} = MqttX.Packet.decode(4, binary)
Protocol Versions
	MQTT 3.1 (version 3)
	MQTT 3.1.1 (version 4)
	MQTT 5.0 (version 5)

 Summary

 Types

 mqtt_version()

 packet_type()

 qos()

 topic()

 Functions

 version()

 Returns the library version.

 Types

 mqtt_version()

 @type mqtt_version() :: 3 | 4 | 5

 packet_type()

 @type packet_type() ::
 :connect
 | :connack
 | :publish
 | :puback
 | :pubrec
 | :pubrel
 | :pubcomp
 | :subscribe
 | :suback
 | :unsubscribe
 | :unsuback
 | :pingreq
 | :pingresp
 | :disconnect
 | :auth

 qos()

 @type qos() :: 0 | 1 | 2

 topic()

 @type topic() :: binary() | [binary() | :single_level | :multi_level]

 Functions

 version()

 @spec version() :: String.t()

Returns the library version.

MqttX.Client

MQTT Client API.
Provides a simple interface for connecting to MQTT brokers.
Example
Connect
{:ok, client} = MqttX.Client.connect(
 host: "localhost",
 port: 1883,
 client_id: "my_app"
)

Subscribe
:ok = MqttX.Client.subscribe(client, "sensors/#", qos: 1)

Publish
:ok = MqttX.Client.publish(client, "sensors/temp", "25.5")

Disconnect
:ok = MqttX.Client.disconnect(client)
Receiving Messages
To receive messages, provide a handler module:
defmodule MyHandler do
 def handle_mqtt_event(:message, {topic, payload, _opts}, state) do
 IO.puts("Received: " <> inspect({topic, payload}))
 state
 end

 def handle_mqtt_event(:connected, _data, state) do
 IO.puts("Connected!")
 state
 end

 def handle_mqtt_event(:disconnected, reason, state) do
 IO.puts("Disconnected: " <> inspect(reason))
 state
 end
end

{:ok, client} = MqttX.Client.connect(
 host: "localhost",
 client_id: "my_app",
 handler: MyHandler,
 handler_state: %{}
)

 Summary

 Functions

 connect(opts)

 Connect to an MQTT broker.

 connected?(client)

 Check if the client is connected.

 disconnect(client)

 Disconnect from the broker.

 publish(client, topic, payload, opts \\ [])

 Publish a message to a topic.

 subscribe(client, topics, opts \\ [])

 Subscribe to one or more topics.

 unsubscribe(client, topics)

 Unsubscribe from one or more topics.

 Functions

 connect(opts)

 @spec connect(keyword()) :: {:ok, pid()} | {:error, term()}

Connect to an MQTT broker.
Options
	:host - Broker hostname (required)
	:port - Broker port (default: 1883)
	:client_id - Client identifier (required)
	:username - Optional username
	:password - Optional password
	:clean_session - Clean session flag (default: true)
	:keepalive - Keepalive interval in seconds (default: 60)
	:handler - Module to receive callbacks
	:handler_state - Initial state for handler
	:name - Optional name for the client process

Returns
{:ok, pid} on success, {:error, reason} on failure.

 connected?(client)

 @spec connected?(pid()) :: boolean()

Check if the client is connected.

 disconnect(client)

 @spec disconnect(pid()) :: :ok

Disconnect from the broker.

 publish(client, topic, payload, opts \\ [])

 @spec publish(pid(), binary(), binary(), keyword()) :: :ok | {:error, term()}

Publish a message to a topic.
Options
	:qos - QoS level 0, 1, or 2 (default: 0)
	:retain - Retain flag (default: false)

 subscribe(client, topics, opts \\ [])

 @spec subscribe(pid(), binary() | [binary()], keyword()) :: :ok | {:error, term()}

Subscribe to one or more topics.
Options
	:qos - QoS level 0, 1, or 2 (default: 0)

 unsubscribe(client, topics)

 @spec unsubscribe(pid(), binary() | [binary()]) :: :ok | {:error, term()}

Unsubscribe from one or more topics.

MqttX.Client.Backoff

Exponential backoff calculator for reconnection delays.
Usage
backoff = MqttX.Client.Backoff.new(initial: 1000, max: 30_000)
{delay, backoff} = MqttX.Client.Backoff.next(backoff)
delay = 1000

{delay, backoff} = MqttX.Client.Backoff.next(backoff)
delay = 2000

backoff = MqttX.Client.Backoff.reset(backoff)

 Summary

 Types

 t()

 Functions

 current(backoff)

 Get current delay without advancing.

 new(opts \\ [])

 Create a new backoff calculator.

 next(backoff)

 Get the next delay and update the backoff state.

 reset(backoff)

 Reset the backoff to initial state.

 Types

 t()

 @type t() :: %MqttX.Client.Backoff{
 current: pos_integer(),
 initial: pos_integer(),
 jitter: float(),
 max: pos_integer(),
 multiplier: float()
}

 Functions

 current(backoff)

 @spec current(t()) :: pos_integer()

Get current delay without advancing.

 new(opts \\ [])

 @spec new(keyword()) :: t()

Create a new backoff calculator.
Options
	:initial - Initial delay in milliseconds (default: 1000)
	:max - Maximum delay in milliseconds (default: 30000)
	:multiplier - Multiplier for each retry (default: 2.0)
	:jitter - Random jitter factor 0-1 (default: 0.1)

 next(backoff)

 @spec next(t()) :: {pos_integer(), t()}

Get the next delay and update the backoff state.
Returns {delay_ms, new_backoff}.

 reset(backoff)

 @spec reset(t()) :: t()

Reset the backoff to initial state.

MqttX.Client.Connection

MQTT client connection GenServer.
Manages a connection to an MQTT broker with automatic reconnection.
Usage
{:ok, pid} = MqttX.Client.Connection.start_link(
 host: "localhost",
 port: 1883,
 client_id: "my_client",
 handler: MyHandler,
 handler_state: %{}
)

:ok = MqttX.Client.Connection.subscribe(pid, "test/#", qos: 1)
:ok = MqttX.Client.Connection.publish(pid, "test/topic", "hello", qos: 0)

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 connected?(pid)

 Check if connected.

 disconnect(pid)

 Disconnect from the broker.

 publish(pid, topic, payload, opts \\ [])

 Publish a message.

 start_link(opts)

 Start a client connection.

 subscribe(pid, topics, opts \\ [])

 Subscribe to topics.

 unsubscribe(pid, topics)

 Unsubscribe from topics.

 Types

 t()

 @type t() :: %MqttX.Client.Connection{
 backoff: term(),
 buffer: term(),
 clean_session: term(),
 client_id: term(),
 connected: term(),
 handler: term(),
 handler_state: term(),
 host: term(),
 keepalive: term(),
 keepalive_timer: term(),
 packet_id: term(),
 password: term(),
 pending_acks: term(),
 port: term(),
 protocol_version: term(),
 socket: term(),
 username: term()
}

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 connected?(pid)

 @spec connected?(GenServer.server()) :: boolean()

Check if connected.

 disconnect(pid)

 @spec disconnect(GenServer.server()) :: :ok

Disconnect from the broker.

 publish(pid, topic, payload, opts \\ [])

 @spec publish(GenServer.server(), binary(), binary(), keyword()) ::
 :ok | {:error, term()}

Publish a message.
Options
	:qos - QoS level 0, 1, or 2 (default: 0)
	:retain - Retain flag (default: false)

 start_link(opts)

 @spec start_link(keyword()) :: GenServer.on_start()

Start a client connection.
Options
	:host - Broker hostname (required)
	:port - Broker port (default: 1883)
	:client_id - Client identifier (required)
	:username - Optional username
	:password - Optional password
	:clean_session - Clean session flag (default: true)
	:keepalive - Keepalive interval in seconds (default: 60)
	:handler - Module to receive callbacks
	:handler_state - Initial state for handler

 subscribe(pid, topics, opts \\ [])

 @spec subscribe(GenServer.server(), binary() | [binary()], keyword()) ::
 :ok | {:error, term()}

Subscribe to topics.
Options
	:qos - QoS level 0, 1, or 2 (default: 0)

 unsubscribe(pid, topics)

 @spec unsubscribe(GenServer.server(), binary() | [binary()]) :: :ok | {:error, term()}

Unsubscribe from topics.

MqttX.Packet.Codec

High-performance MQTT packet encoder and decoder.
Supports MQTT 3.1, 3.1.1, and 5.0 protocols with all 15 packet types.
Encoding
packet = %{type: :publish, topic: "test", payload: "hello", qos: 0, retain: false}
{:ok, binary} = MqttX.Packet.Codec.encode(4, packet)
Decoding
{:ok, {packet, rest}} = MqttX.Packet.Codec.decode(4, binary)

 Summary

 Functions

 decode(version, arg2)

 Decode an MQTT packet from binary data.

 encode(version, packet)

 Encode an MQTT packet to binary.

 encode_iodata(version, packet)

 Encode an MQTT packet to iodata (more efficient, avoids binary copy).

 Functions

 decode(version, arg2)

 @spec decode(integer(), binary()) :: {:ok, {map(), binary()}} | {:error, atom()}

Decode an MQTT packet from binary data.
Returns {:ok, {packet, rest}} on success, {:error, reason} on failure,
or {:error, :incomplete} if more data is needed.

 encode(version, packet)

 @spec encode(integer(), map()) :: {:ok, binary()} | {:error, atom()}

Encode an MQTT packet to binary.
Returns {:ok, binary} on success or {:error, reason} on failure.

 encode_iodata(version, packet)

 @spec encode_iodata(integer(), map()) :: {:ok, iodata()} | {:error, atom()}

Encode an MQTT packet to iodata (more efficient, avoids binary copy).

MqttX.Packet.Properties

MQTT 5.0 Properties encoding and decoding.
Supports all 28 MQTT 5.0 property types.

 Summary

 Functions

 decode(arg1, data)

 Decode properties from binary.

 encode(arg1, properties)

 Encode properties map to binary with length prefix.

 Functions

 decode(arg1, data)

 @spec decode(integer(), binary()) :: {:ok, map(), binary()} | {:error, atom()}

Decode properties from binary.
Returns {:ok, properties_map, rest} or {:error, reason}.

 encode(arg1, properties)

 @spec encode(integer(), map()) :: iodata()

Encode properties map to binary with length prefix.
Only encodes properties for MQTT 5.0. Returns empty varint (0) for other versions.

MqttX.Packet.Types

MQTT packet type constants, reason codes, and property identifiers.
Supports MQTT 3.1, 3.1.1, and 5.0 protocols.

 Summary

 Functions

 atom_to_type(atom)

 Convert packet type atom to code.

 auth()

 connack()

 connect()

 disconnect()

 max_packet_size()

 max_varint()

 mqtt_v3()

 mqtt_v5()

 mqtt_v311()

 pingreq()

 pingresp()

 prop_assigned_client_identifier()

 prop_authentication_data()

 prop_authentication_method()

 prop_content_type()

 prop_correlation_data()

 prop_maximum_packet_size()

 prop_maximum_qos()

 prop_message_expiry_interval()

 prop_payload_format_indicator()

 prop_reason_string()

 prop_receive_maximum()

 prop_request_problem_information()

 prop_request_response_information()

 prop_response_information()

 prop_response_topic()

 prop_retain_available()

 prop_server_keep_alive()

 prop_server_reference()

 prop_session_expiry_interval()

 prop_shared_subscription_available()

 prop_subscription_identifier()

 prop_subscription_identifier_available()

 prop_topic_alias()

 prop_topic_alias_maximum()

 prop_user_property()

 prop_wildcard_subscription_available()

 prop_will_delay_interval()

 protocol_name()

 protocol_name_3()

 protocol_name_for_version(arg1)

 Get protocol name for version.

 puback()

 pubcomp()

 publish()

 pubrec()

 pubrel()

 rc_bad_username_password()

 rc_client_id_not_valid()

 rc_not_authorized()

 rc_success()

 rc_unsupported_protocol()

 reason_code(name)

 Get reason code by name.

 reason_codes()

 Get all MQTT 5.0 reason codes as a map.

 suback()

 subscribe()

 type_to_atom(arg1)

 Convert packet type code to atom.

 unsuback()

 unsubscribe()

 valid_version?(arg1)

 Check if protocol version is valid.

 Functions

 atom_to_type(atom)

 @spec atom_to_type(atom()) :: integer()

Convert packet type atom to code.

 auth()

 connack()

 connect()

 disconnect()

 max_packet_size()

 max_varint()

 mqtt_v3()

 mqtt_v5()

 mqtt_v311()

 pingreq()

 pingresp()

 prop_assigned_client_identifier()

 prop_authentication_data()

 prop_authentication_method()

 prop_content_type()

 prop_correlation_data()

 prop_maximum_packet_size()

 prop_maximum_qos()

 prop_message_expiry_interval()

 prop_payload_format_indicator()

 prop_reason_string()

 prop_receive_maximum()

 prop_request_problem_information()

 prop_request_response_information()

 prop_response_information()

 prop_response_topic()

 prop_retain_available()

 prop_server_keep_alive()

 prop_server_reference()

 prop_session_expiry_interval()

 prop_shared_subscription_available()

 prop_subscription_identifier()

 prop_subscription_identifier_available()

 prop_topic_alias()

 prop_topic_alias_maximum()

 prop_user_property()

 prop_wildcard_subscription_available()

 prop_will_delay_interval()

 protocol_name()

 protocol_name_3()

 protocol_name_for_version(arg1)

 @spec protocol_name_for_version(integer()) :: binary()

Get protocol name for version.

 puback()

 pubcomp()

 publish()

 pubrec()

 pubrel()

 rc_bad_username_password()

 rc_client_id_not_valid()

 rc_not_authorized()

 rc_success()

 rc_unsupported_protocol()

 reason_code(name)

Get reason code by name.

 reason_codes()

Get all MQTT 5.0 reason codes as a map.

 suback()

 subscribe()

 type_to_atom(arg1)

 @spec type_to_atom(integer()) :: atom()

Convert packet type code to atom.

 unsuback()

 unsubscribe()

 valid_version?(arg1)

 @spec valid_version?(integer()) :: boolean()

Check if protocol version is valid.

MqttX.Packet.Varint

MQTT Variable Byte Integer encoding and decoding.
Variable byte integers use 1-4 bytes to encode values from 0 to 268,435,455.
Each byte uses 7 bits for data and 1 continuation bit.
Encoding
iex> MqttX.Packet.Varint.encode(127)
<<127>>

iex> MqttX.Packet.Varint.encode(128)
<<128, 1>>

iex> MqttX.Packet.Varint.encode(16383)
<<255, 127>>
Decoding
iex> MqttX.Packet.Varint.decode(<<128, 1, "rest">>)
{:ok, 128, "rest"}

 Summary

 Functions

 byte_length(i)

 Calculate the byte length needed to encode a value.

 decode(arg)

 Decode a variable byte integer from binary data.

 encode(i)

 Encode an integer as a variable byte integer.

 encode_iodata(i)

 Encode an integer as iodata (more efficient for building packets).

 max_value()

 Maximum value that can be encoded.

 Functions

 byte_length(i)

 @spec byte_length(non_neg_integer()) :: 1 | 2 | 3 | 4

Calculate the byte length needed to encode a value.

 decode(arg)

 @spec decode(binary()) ::
 {:ok, non_neg_integer(), binary()} | :incomplete | {:error, atom()}

Decode a variable byte integer from binary data.
Returns {:ok, value, rest} on success, :incomplete if more data needed,
or {:error, reason} on failure.

 encode(i)

 @spec encode(non_neg_integer()) :: binary()

Encode an integer as a variable byte integer.
Returns a binary of 1-4 bytes.

 encode_iodata(i)

 @spec encode_iodata(non_neg_integer()) :: iodata()

Encode an integer as iodata (more efficient for building packets).

 max_value()

 @spec max_value() :: non_neg_integer()

Maximum value that can be encoded.

MqttX.Payload behaviour

Behaviour for payload codecs.
Payload codecs handle encoding and decoding of MQTT message payloads.
Built-in Codecs
	MqttX.Payload.Raw - Pass-through, no encoding
	MqttX.Payload.JSON - JSON encoding via Jason
	MqttX.Payload.Protobuf - Protocol Buffers via Protox

Custom Codec Example
defmodule MyCodec do
 @behaviour MqttX.Payload

 @impl true
 def encode(term) do
 {:ok, :erlang.term_to_binary(term)}
 end

 @impl true
 def decode(binary) do
 {:ok, :erlang.binary_to_term(binary)}
 end
end

 Summary

 Callbacks

 decode(binary)

 Decode a binary to a term.

 encode(term)

 Encode a term to binary.

 Functions

 decode(codec, binary)

 Decode using the specified codec.

 encode(codec, term)

 Encode using the specified codec.

 Callbacks

 decode(binary)

 @callback decode(binary()) :: {:ok, term()} | {:error, term()}

Decode a binary to a term.

 encode(term)

 @callback encode(term()) :: {:ok, binary()} | {:error, term()}

Encode a term to binary.

 Functions

 decode(codec, binary)

 @spec decode(module(), binary()) :: {:ok, term()} | {:error, term()}

Decode using the specified codec.

 encode(codec, term)

 @spec encode(module(), term()) :: {:ok, binary()} | {:error, term()}

Encode using the specified codec.

MqttX.Payload.JSON

JSON payload codec using the built-in Erlang/BEAM JSON encoder.
Uses the native JSON module available in OTP 27+ / Elixir 1.18+.
Usage
{:ok, json} = MqttX.Payload.JSON.encode(%{temp: 25.5})
{:ok, data} = MqttX.Payload.JSON.decode(json)
Note: This module is only available on OTP 27+ where the native JSON module exists.

MqttX.Payload.Protobuf

Protocol Buffers payload codec using Protox.
Requires the protox optional dependency.
Unlike JSON, Protobuf requires knowing the message type for decoding.
This codec provides both a generic interface and message-specific functions.
Usage
Encoding (returns iodata by default)
{:ok, binary} = MqttX.Payload.Protobuf.encode(my_proto_struct)

Decoding (requires message module)
{:ok, struct} = MqttX.Payload.Protobuf.decode(binary, MyMessage)

For the behaviour interface, use with a message type in the term
{:ok, binary} = MqttX.Payload.Protobuf.encode({MyMessage, data})

 Summary

 Functions

 decode(binary, message_module)

 Decode a Protobuf message with the specified message module.

 encode_iodata(struct)

 Encode to iodata (more efficient, avoids binary copy).

 Functions

 decode(binary, message_module)

 @spec decode(binary(), module()) :: {:ok, struct()} | {:error, term()}

Decode a Protobuf message with the specified message module.
Example
{:ok, message} = MqttX.Payload.Protobuf.decode(binary, MyProto.Message)

 encode_iodata(struct)

 @spec encode_iodata(struct()) :: {:ok, iodata()} | {:error, term()}

Encode to iodata (more efficient, avoids binary copy).

MqttX.Payload.Raw

Raw binary pass-through codec.
No encoding or decoding is performed.

MqttX.Server behaviour

MQTT Server behaviour.
Implement this behaviour to create a custom MQTT server/broker.
Example
defmodule MyApp.MqttHandler do
 use MqttX.Server

 @impl true
 def init(_opts) do
 %{subscriptions: %{}}
 end

 @impl true
 def handle_connect(client_id, credentials, state) do
 IO.puts("Client connected: " <> client_id)
 {:ok, state}
 end

 @impl true
 def handle_publish(topic, payload, opts, state) do
 IO.puts("Received: " <> inspect({topic, payload}))
 {:ok, state}
 end

 @impl true
 def handle_subscribe(topics, state) do
 qos_list = Enum.map(topics, fn t -> t.qos end)
 {:ok, qos_list, state}
 end

 @impl true
 def handle_disconnect(reason, state) do
 IO.puts("Client disconnected: " <> inspect(reason))
 :ok
 end
end

Start the server
MqttX.Server.start_link(MyApp.MqttHandler, [],
 transport: MqttX.Transport.ThousandIsland,
 port: 1883
)
Callbacks
The following callbacks are required:
	init/1 - Initialize handler state
	handle_connect/3 - Handle client connection
	handle_publish/4 - Handle incoming PUBLISH messages
	handle_subscribe/2 - Handle SUBSCRIBE requests
	handle_disconnect/2 - Handle client disconnection

Optional callbacks:
	handle_unsubscribe/2 - Handle UNSUBSCRIBE requests
	handle_puback/2 - Handle PUBACK for QoS 1 messages

 Summary

 Types

 client_id()

 credentials()

 payload()

 publish_opts()

 reason_code()

 state()

 subscribe_topic()

 topic()

 Callbacks

 handle_connect(client_id, credentials, state)

 Handle a client connection.

 handle_disconnect(reason, state)

 Handle client disconnection.

 handle_info(message, state)

 Handle custom messages (e.g., from PubSub for outgoing MQTT publishes).

 handle_puback(packet_id, state)

 Handle a PUBACK for QoS 1 messages.

 handle_publish(topic, payload, publish_opts, state)

 Handle an incoming PUBLISH message.

 handle_subscribe(list, state)

 Handle a SUBSCRIBE request.

 handle_unsubscribe(list, state)

 Handle an UNSUBSCRIBE request.

 init(opts)

 Initialize the handler state.

 Functions

 __using__(opts)

 Use MqttX.Server to define default implementations.

 start_link(handler, handler_opts, opts \\ [])

 Start an MQTT server.

 Types

 client_id()

 @type client_id() :: binary()

 credentials()

 @type credentials() :: %{username: binary() | nil, password: binary() | nil}

 payload()

 @type payload() :: binary()

 publish_opts()

 @type publish_opts() :: %{
 qos: 0 | 1 | 2,
 retain: boolean(),
 dup: boolean(),
 packet_id: non_neg_integer() | nil,
 properties: map()
}

 reason_code()

 @type reason_code() :: non_neg_integer()

 state()

 @type state() :: term()

 subscribe_topic()

 @type subscribe_topic() :: %{
 topic: topic(),
 qos: 0 | 1 | 2,
 no_local: boolean(),
 retain_as_published: boolean(),
 retain_handling: 0 | 1 | 2
}

 topic()

 @type topic() :: MqttX.Topic.normalized_topic()

 Callbacks

 handle_connect(client_id, credentials, state)

 @callback handle_connect(client_id(), credentials(), state()) ::
 {:ok, state()} | {:error, reason_code(), state()}

Handle a client connection.
Called when a client sends a CONNECT packet.
Return {:ok, new_state} to accept the connection,
or {:error, reason_code, new_state} to reject.

 handle_disconnect(reason, state)

 @callback handle_disconnect(reason :: term(), state()) :: :ok

Handle client disconnection.
Called when the client disconnects or the connection is closed.

 handle_info(message, state)

 (optional)

 @callback handle_info(message :: term(), state()) ::
 {:ok, state()}
 | {:publish, binary(), binary(), state()}
 | {:publish, binary(), binary(), map(), state()}
 | {:stop, term(), state()}

Handle custom messages (e.g., from PubSub for outgoing MQTT publishes).
Return values:
	{:ok, state} - Continue with updated state
	{:publish, topic, payload, state} - Send PUBLISH to client, then continue
	{:publish, topic, payload, opts, state} - Send PUBLISH with QoS/retain options
	{:stop, reason, state} - Close the connection

 handle_puback(packet_id, state)

 (optional)

 @callback handle_puback(packet_id :: non_neg_integer(), state()) :: {:ok, state()}

Handle a PUBACK for QoS 1 messages.

 handle_publish(topic, payload, publish_opts, state)

 @callback handle_publish(topic(), payload(), publish_opts(), state()) ::
 {:ok, state()} | {:error, term(), state()}

Handle an incoming PUBLISH message.
Called when a client publishes a message.

 handle_subscribe(list, state)

 @callback handle_subscribe([subscribe_topic()], state()) :: {:ok, [0 | 1 | 2], state()}

Handle a SUBSCRIBE request.
Returns the list of granted QoS values for each topic.

 handle_unsubscribe(list, state)

 (optional)

 @callback handle_unsubscribe([topic()], state()) :: {:ok, state()}

Handle an UNSUBSCRIBE request.

 init(opts)

 @callback init(opts :: term()) :: state()

Initialize the handler state.
Called when starting the server.

 Functions

 __using__(opts)

 (macro)

Use MqttX.Server to define default implementations.

 start_link(handler, handler_opts, opts \\ [])

 @spec start_link(module(), term(), keyword()) :: {:ok, pid()} | {:error, term()}

Start an MQTT server.
Options
	:transport - Transport module (default: MqttX.Transport.ThousandIsland)
	:port - Port to listen on (default: 1883)
	:name - Optional name for the server process

All other options are passed to the transport adapter.

MqttX.Server.Router

Topic router for MQTT servers.
The router maintains a subscription table and provides efficient
topic matching for message routing.
Usage
router = MqttX.Server.Router.new()
router = MqttX.Server.Router.subscribe(router, "sensors/+/temp", client_ref, qos: 1)
router = MqttX.Server.Router.subscribe(router, "alerts/#", client_ref, qos: 0)

matches = MqttX.Server.Router.match(router, "sensors/room1/temp")
=> [{client_ref, %{qos: 1}}]

 Summary

 Types

 subscription()

 t()

 Functions

 client_count(router)

 Get the number of unique clients with subscriptions.

 count(router)

 Get the total number of subscriptions.

 match(router, topic)

 Find all matching subscriptions for a topic.

 new()

 Create a new empty router.

 subscribe(router, filter, client, opts \\ [])

 Add a subscription to the router.

 subscriptions_for(router, client)

 Get all subscriptions for a client.

 unsubscribe(router, filter, client)

 Remove a subscription from the router.

 unsubscribe_all(router, client)

 Remove all subscriptions for a client.

 Types

 subscription()

 @type subscription() :: %{
 filter: MqttX.Topic.normalized_topic(),
 client: term(),
 qos: 0 | 1 | 2,
 opts: map()
}

 t()

 @type t() :: %MqttX.Server.Router{
 by_client: %{required(term()) => [subscription()]},
 subscriptions: [subscription()]
}

 Functions

 client_count(router)

 @spec client_count(t()) :: non_neg_integer()

Get the number of unique clients with subscriptions.

 count(router)

 @spec count(t()) :: non_neg_integer()

Get the total number of subscriptions.

 match(router, topic)

 @spec match(t(), binary() | MqttX.Topic.normalized_topic()) :: [{term(), map()}]

Find all matching subscriptions for a topic.
Returns a list of {client, opts} tuples for each matching subscription.

 new()

 @spec new() :: t()

Create a new empty router.

 subscribe(router, filter, client, opts \\ [])

 @spec subscribe(t(), binary() | MqttX.Topic.normalized_topic(), term(), keyword()) ::
 t()

Add a subscription to the router.
Options
	:qos - Maximum QoS level (default: 0)
	Any additional options are stored with the subscription

 subscriptions_for(router, client)

 @spec subscriptions_for(t(), term()) :: [subscription()]

Get all subscriptions for a client.

 unsubscribe(router, filter, client)

 @spec unsubscribe(t(), binary() | MqttX.Topic.normalized_topic(), term()) :: t()

Remove a subscription from the router.

 unsubscribe_all(router, client)

 @spec unsubscribe_all(t(), term()) :: t()

Remove all subscriptions for a client.

MqttX.Topic

MQTT Topic validation, normalization, and wildcard matching.
Topic Format
Topics are /-separated strings. Wildcards are:
	+ - Single-level wildcard (matches exactly one level)
	# - Multi-level wildcard (matches zero or more levels, must be last)

Examples
Validation
iex> MqttX.Topic.validate("sensors/temperature")
{:ok, ["sensors", "temperature"]}

iex> MqttX.Topic.validate("sensors/+/humidity")
{:ok, ["sensors", :single_level, "humidity"]}

iex> MqttX.Topic.validate("sensors/#")
{:ok, ["sensors", :multi_level]}

Matching
iex> MqttX.Topic.matches?(["sensors", :single_level, "temp"], ["sensors", "room1", "temp"])
true

iex> MqttX.Topic.matches?(["sensors", :multi_level], ["sensors", "room1", "temp"])
true

 Summary

 Types

 normalized_topic()

 wildcard()

 Functions

 flatten(topic)

 Flatten a normalized topic back to a binary string.

 matches?(filter, topic)

 Match a topic filter against a concrete topic.

 normalize(topic)

 Normalize a topic to a list.

 valid?(topic)

 Check if a topic is valid.

 validate(topic)

 Validate and normalize a topic.

 validate_publish(topic)

 Validate a topic for publishing (no wildcards allowed).

 wildcard?(topic)

 Check if a topic contains wildcards.

 Types

 normalized_topic()

 @type normalized_topic() :: [binary() | wildcard()]

 wildcard()

 @type wildcard() :: :single_level | :multi_level

 Functions

 flatten(topic)

 @spec flatten(normalized_topic()) :: binary()

Flatten a normalized topic back to a binary string.

 matches?(filter, topic)

 @spec matches?(normalized_topic(), normalized_topic()) :: boolean()

Match a topic filter against a concrete topic.
The filter can contain wildcards, the topic should not.
Examples
iex> MqttX.Topic.matches?(["sensors", :single_level, "temp"], ["sensors", "room1", "temp"])
true

iex> MqttX.Topic.matches?(["sensors", :multi_level], ["sensors", "room1", "temp"])
true

iex> MqttX.Topic.matches?(["sensors", "room1"], ["sensors", "room2"])
false

 normalize(topic)

 @spec normalize(binary() | list()) :: normalized_topic()

Normalize a topic to a list.
Wildcards are converted to atoms :single_level (+) and :multi_level (#).

 valid?(topic)

 @spec valid?(binary() | list()) :: boolean()

Check if a topic is valid.

 validate(topic)

 @spec validate(binary() | list()) ::
 {:ok, normalized_topic()} | {:error, :invalid_topic}

Validate and normalize a topic.
Returns {:ok, normalized_topic} or {:error, :invalid_topic}.

 validate_publish(topic)

 @spec validate_publish(binary() | list()) ::
 {:ok, normalized_topic()} | {:error, :invalid_topic}

Validate a topic for publishing (no wildcards allowed).
Returns {:ok, normalized_topic} or {:error, :invalid_topic}.

 wildcard?(topic)

 @spec wildcard?(normalized_topic()) :: boolean()

Check if a topic contains wildcards.

MqttX.Transport behaviour

Behaviour for MQTT transport adapters.
Transport adapters handle the underlying network connections
(TCP, TLS, WebSocket, etc.) and forward data to the MQTT protocol handler.
Implementing a Transport
defmodule MyTransport do
 @behaviour MqttX.Transport

 @impl true
 def start_link(handler, handler_opts, transport_opts) do
 # Start the transport server
 end

 @impl true
 def send(socket, data) do
 # Send data over the connection
 end

 @impl true
 def close(socket) do
 # Close the connection
 end

 @impl true
 def peername(socket) do
 # Get the peer address
 end
end

 Summary

 Types

 handler()

 handler_opts()

 socket()

 transport_opts()

 Callbacks

 close(socket)

 Close the connection.

 getopts(socket, list)

 Get socket options.

 peername(socket)

 Get the remote address of the connection.

 send(socket, iodata)

 Send data over the connection.

 setopts(socket, list)

 Set socket options.

 start_link(handler, handler_opts, transport_opts)

 Start the transport server.

 Types

 handler()

 @type handler() :: module()

 handler_opts()

 @type handler_opts() :: term()

 socket()

 @type socket() :: term()

 transport_opts()

 @type transport_opts() :: keyword()

 Callbacks

 close(socket)

 @callback close(socket()) :: :ok

Close the connection.

 getopts(socket, list)

 (optional)

 @callback getopts(socket(), [:inet.socket_getopt()]) ::
 {:ok, [:inet.socket_setopt()]} | {:error, term()}

Get socket options.

 peername(socket)

 @callback peername(socket()) ::
 {:ok, {:inet.ip_address(), :inet.port_number()}} | {:error, term()}

Get the remote address of the connection.

 send(socket, iodata)

 @callback send(socket(), iodata()) :: :ok | {:error, term()}

Send data over the connection.

 setopts(socket, list)

 (optional)

 @callback setopts(socket(), [:inet.socket_setopt()]) :: :ok | {:error, term()}

Set socket options.

 start_link(handler, handler_opts, transport_opts)

 @callback start_link(handler(), handler_opts(), transport_opts()) ::
 {:ok, pid()} | {:error, term()}

Start the transport server.
The handler module will receive callbacks for connection events.

MqttX.Transport.Ranch

Ranch transport adapter for MqttX.
This adapter uses Ranch as the underlying TCP/TLS server.
Usage
MqttX.Server.start_link(MyHandler, handler_opts,
 transport: MqttX.Transport.Ranch,
 port: 1883
)
Options
	:port - Port to listen on (default: 1883)
	:num_acceptors - Number of acceptor processes (default: 100)
	:transport - Ranch transport (:ranch_tcp or :ranch_ssl)
	:transport_options - SSL/TLS options when using :ranch_ssl

MqttX.Transport.ThousandIsland

ThousandIsland transport adapter for MqttX.
This adapter uses ThousandIsland as the underlying TCP/TLS server.
Usage
MqttX.Server.start_link(MyHandler, handler_opts,
 transport: MqttX.Transport.ThousandIsland,
 port: 1883
)
Options
	:port - Port to listen on (default: 1883)
	:ip - IP address to bind to (default: {0, 0, 0, 0})
	:transport_module - ThousandIsland transport (:tcp or :ssl)
	:transport_options - SSL/TLS options when using :ssl
	:num_acceptors - Number of acceptor processes (default: 100)

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

