

 msgpack_elixir

 v1.0.2

 Table of contents

 	msgpack_elixir

 	Changelog

 	Telemetry

 	
 Modules

 	Msgpack

 	Msgpack.Decoder

 	Msgpack.Encoder

 	Msgpack.Ext

 	Exceptions

 	Msgpack.DecodeError

 	Msgpack.EncodeError

 	Msgpack.UnsupportedAtomError

 msgpack_elixir

[image: Hex.pm]
An implementation of the MessagePack serialization
format for Elixir.
It provides functions for encoding and decoding Elixir terms and supports the
full MessagePack specification, including the Timestamp and custom Extension
types.
Features
	Specification Compliance: Implements the complete MessagePack type system.
	Elixir Struct Support: Encodes and decodes DateTime and NaiveDateTime
structs via the Timestamp extension type.
	Configurable Validation: Provides an option to bypass UTF-8 validation on
strings for performance-critical paths.
	Resource Limiting: Includes configurable :max_depth and :max_byte_size
limits to mitigate resource exhaustion from malformed or malicious payloads.
	Telemetry Integration: Emits standard :telemetry events for integration
with monitoring tools.

Installation
Add msgpack_elixir to your list of dependencies in mix.exs:
def deps do
 [{:msgpack_elixir, "~> 1.0.0"}]
end
Then, run mix deps.get.
Quick Start
Encode a map. Atom keys are converted to strings by default.
iex> data = %{id: 1, name: "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
<<130, 162, 105, 100, 1, 164, 110, 97, 109, 101, 166, 69, 108, 105, 120, 105, 114>>

Decode a binary.
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}

Use the exception-raising variants for exceptional failure cases.
iex> Msgpack.decode!(<<0xC1>>)
** (Msgpack.DecodeError) Unknown type prefix: 193. The byte `0xC1` is not a valid MessagePack type marker.
Full Documentation
For detailed information on all features, options, and functions, see the full
documentation on HexDocs, which
contains a complete API reference for all public modules and functions.
Development
This section explains how to setup the project locally for development.
Dependencies
	Elixir ~> 1.7 (OTP 21+)

Get the Source
Clone the project locally:
via HTTPS
git clone https://github.com/nrednav/msgpack_elixir.git

via SSH
git clone git@github.com:nrednav/msgpack_elixir.git

Install
Install the project's dependencies:
cd msgpack_elixir/
mix deps.get

Test
Run the test suite:
mix test

Benchmark
Run the benchmarks:
mix run bench/run.exs

Versioning
This project uses Semantic Versioning.
For a list of available versions, see the repository tag list.
Issues & Requests
If you encounter a bug or have a feature request, please open an
issue on the GitHub
repository.
Contributing
Public contributions are welcome! If you would like to contribute, please fork
the repository and create a pull request.
License
This project is licensed under the MIT License - see the LICENSE
file for details.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[v1.0.2] - 2025-08-06
Fixed
	Add missing guides/ directory to list of published docs in package config

[v1.0.1] - 2025-08-06
Added
	Added a dedicated how-to guide for using telemetry

Changed
	Exception messages were expanded to include specific details about the cause
of the error and, where applicable, configuration options for resolution.
	Updated all documentation (@moduledoc, @doc, readme, etc.)

[v1.0.0] - 2025-08-02
Added
	Initial release
	Support for all MessagePack types, including Integer, Float, String,
Binary, Array, Map, Ext, and the Timestamp extension	Encoding for the full 64-bit unsigned integer range

	Native encoding and decoding for Elixir's DateTime and NaiveDateTime
structs
	Protection against maliciously crafted decoding inputs via :max_depth and
:max_byte_size options
	Added a :string_validation option to encode/2 to bypass UTF-8 validation
for performance gains
	Emits :telemetry events for all encode and decode operations
	Includes encode!/2 and decode!/2 for raising exceptions on errors

 Telemetry

This library emits :telemetry events for all encode/2 and decode/2
operations. This allows you to integrate Msgpack into your application's
monitoring and observability stack.
This guide will show you how to attach a simple logger to these events.
1. Define a Telemetry Handler
First, define a module that will receive and handle the events. This handler can
log the event, increment a metric, or record a trace span.
defmodule MyTelemetryHandler do
 require Logger

 def attach do
 :telemetry.attach_many(
 "msgpack-logger",
 [
 [:msgpack, :encode, :start],
 [:msgpack, :encode, :stop],
 [:msgpack, :encode, :exception],
 [:msgpack, :decode, :start],
 [:msgpack, :decode, :stop],
 [:msgpack, :decode, :exception]
],
 &__MODULE__.handle_event/4,
 nil
)
 end

 def handle_event(event_name, measurements, metadata, _config) do
 Logger.info("Telemetry Event: #{inspect(event_name)}",
 measurements: measurements,
 metadata: metadata
)
 end
end
2. Attach the Handler
Attach the handler when your application starts, for example, in your
Application.start/2 callback.
In your application.ex
def start(_type, _args) do
 # ... other startup code
 MyTelemetryHandler.attach()
 # ...
end
Understanding Events
The library emits standard :start, :stop, and :exception events for each operation.
Encoding Events
[:msgpack, :encode, :start]
	Dispatched Before: The encoding process begins.
	measurements: %{system_time: ...}
	metadata: %{opts: keyword(), term: term()}

[:msgpack, :encode, :stop]
	Dispatched After: The encoding process finishes (either successfully or with a logical error).
	measurements: %{duration: native_time}
	metadata:	On success: %{outcome: :ok, byte_size: non_neg_integer()}
	On logical failure: %{outcome: :error}

[:msgpack, :encode, :exception]
	Dispatched If: An error occurs during encoding.
	measurements: %{duration: native_time}
	metadata: %{kind: :error | :throw | :exit, reason: term(), stacktrace: list()}

Decoding Events
[:msgpack, :decode, :start]
	Dispatched Before: The decoding process begins.
	measurements: %{system_time: ...}
	metadata: %{opts: keyword(), byte_size: non_neg_integer()}

[:msgpack, :decode, :stop]
	Dispatched After: The decoding process finishes (either successfully or with a logical error).
	measurements: %{duration: native_time}
	metadata:	On success: %{outcome: :ok}
	On logical failure: %{outcome: :error}

[:msgpack, :decode, :exception]
	Dispatched If: An error occurs during decoding.
	measurements: %{duration: native_time}
	metadata: %{kind: :error | :throw | :exit, reason: term(), stacktrace: list()}

Msgpack

An implementation of the MessagePack serialization format.
This module is the main entry point for the library, providing functions for
encoding and decoding Elixir terms.
Quick Start
For the common case, you can encode an Elixir map or keyword list and decode
it back. Note that by default, atoms used as map keys are encoded as strings.
iex> data = %{"id" => 1, "name" => "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}
Capabilities
	Type Support: Encodes and decodes common Elixir types, including
integers, floats, binaries, lists, and maps.
	Timestamp Extension: Automatically handles Elixir's NaiveDateTime and
DateTime structs using the MessagePack Timestamp extension.
	Custom Extensions: Provides MessagePack.Ext for working with custom
MessagePack extension types.
	Resource Limits: Includes options like :max_depth and :max_byte_size
to limit resource allocation when decoding.
	Telemetry Integration: Emits :telemetry events for monitoring and
observability.

Options
The behaviour of encode/2 and decode/2 can be customized by passing a
keyword list of options. See the documentation for each function for a full
description.
Common Encoding Options
	:atoms - Controls how atoms are encoded (:string or :error).
	:string_validation - Toggles UTF-8 validation for performance.

Common Decoding Options
	:max_depth - Limits the nesting level for decoding collections.
	:max_byte_size - Limits the memory allocation for large objects.

 Summary

 Types

 error_reason()

 Functions

 decode(binary, opts \\ [])

 Decodes a MessagePack binary into an Elixir term.

 decode!(binary, opts \\ [])

 Decodes a MessagePack binary, raising a Msgpack.DecodeError on failure.

 encode(term, opts \\ [])

 Encodes an Elixir term into a MessagePack binary.

 encode!(term, opts \\ [])

 Encodes an Elixir term into a MessagePack binary, raising an error on failure.

 Types

 error_reason()

 @type error_reason() ::
 {:unsupported_type, term()}
 | {:unsupported_atom, atom()}
 | :unexpected_eof
 | {:unknown_prefix, byte()}
 | {:trailing_bytes, binary()}
 | {:max_depth_reached, non_neg_integer()}
 | {:max_byte_size_exceeded, non_neg_integer()}
 | :invalid_timestamp

 Functions

 decode(binary, opts \\ [])

 @spec decode(
 binary(),
 keyword()
) :: {:ok, term()} | {:error, error_reason()}

Decodes a MessagePack binary into an Elixir term.
Returns {:ok, term} on success, or {:error, reason} on failure.
Options
	:max_depth - Sets a limit on the nesting level of arrays and maps to
prevent stack exhaustion from maliciously crafted inputs.
Defaults to 100.

	:max_byte_size - Sets a limit on the declared byte size of any single
string, binary, array, or map to prevent memory exhaustion attacks.
Defaults to 10_000_000 (10MB).

Examples
Standard Decoding
For trusted inputs, you can decode directly without custom options.
iex> encoded = <<0x81, 0xA5, "hello", 0xA5, "world">>
iex> Msgpack.decode(encoded)
{:ok, %{"hello" => "world"}}
Securely Handling Untrusted Input
When decoding data from an external source, set limits to prevent
denial-of-service attacks.
A deeply nested payload may exhaust the process stack:
iex> payload = <<0x91, 0x91, 0x91, 1>> # [[[1]]]
iex> Msgpack.decode(payload, max_depth: 2)
{:error, {:max_depth_reached, 2}}
A payload declaring a huge string can cause excessive memory allocation:
iex> payload = <<0xDB, 0xFFFFFFFF::32>> # A string of 4GB
iex> Msgpack.decode(payload, max_byte_size: 1_000_000)
{:error, {:max_byte_size_exceeded, 1_000_000}}
Detecting Malformed Data
The decoder will return an error tuple for malformed data, such as incomplete
data or trailing bytes left over after a successful decode.
A valid term followed by extra bytes
iex> Msgpack.decode(<<192, 42>>)
{:error, {:trailing_bytes, <<42>>}}

Incomplete map data
iex> Msgpack.decode(<<0x81, 0xA3, "foo">>)
{:error, :unexpected_eof}

 decode!(binary, opts \\ [])

 @spec decode!(
 binary(),
 keyword()
) :: term()

Decodes a MessagePack binary, raising a Msgpack.DecodeError on failure.
This variant raises an exception on failure. It is intended for use when a
decoding failure is considered an exceptional state, for example, when
decoding data from a trusted internal service that is assumed to be
well-formed.
For decoding data from external or untrusted sources where failure is a
possible outcome, use decode/2 to handle the returned {:error, reason}
tuple.
Options
Accepts the same options as decode/2.
Raises
	Msgpack.DecodeError - If the binary is malformed, contains an unknown prefix, or has trailing bytes.

Examples
Basic success case:
iex> encoded = <<0x81, 0xA5, "hello", 0xA5, "world">>
iex> Msgpack.decode!(encoded)
%{"hello" => "world"}
Failure case:
iex> Msgpack.decode!(<<192, 42>>)
** (Msgpack.DecodeError) Failed to decode MessagePack binary. Reason = {:trailing_bytes, "*"}

 encode(term, opts \\ [])

 @spec encode(
 term(),
 keyword()
) :: {:ok, binary()} | {:error, error_reason()}

Encodes an Elixir term into a MessagePack binary.
Returns {:ok, binary} on success, or {:error, reason} on failure.
Options
	:atoms - Controls how atoms are encoded.
	:string (default) - Encodes atoms as MessagePack strings.
	:error - Returns an {:error, {:unsupported_atom, atom}} tuple if an atom is encountered.

	:string_validation - Controls whether to perform UTF-8 validation on binaries.
	true (default) - Validates binaries and encodes them as the str type
if they are valid UTF-8, otherwise encodes them as the bin type. This
ensures the output is compliant with the MessagePack specification's
distinction between string and binary data, but has a performance cost.
	false - Skips validation and encodes all binaries as the str type.
This avoids the performance cost of validation but risks creating a
payload with non-UTF-8 strings, which may be incompatible with other
MessagePack decoders.

Examples
Standard Encoding
The default options encode atoms as strings, a common requirement when sending
data between Elixir services.
iex> data = %{id: 1, name: "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}
Strict Atom Handling
If you are interoperating with systems that do not have a concept of atoms, it
is safer to disallow them completely during encoding.
iex> Msgpack.encode(%{name: "Elixir"}, atoms: :error)
{:error, {:unsupported_atom, :name}}
Encoding without String Validation (Unsafe)
For performance-critical paths where you can guarantee all binaries are valid
UTF-8 strings, you can disable string validation.
iex> data = "What did the fish say when it swam into a wall? Dam!"
iex> {:ok, _} = Msgpack.encode(data, string_validation: false)
Encoding Raw Binary Data
If your data contains non-UTF-8 binary content (e.g., an image thumbnail), the
default validator will encode it with the bin family type.
iex> Msgpack.encode(<<255, 128, 0>>)
{:ok, <<0xC4, 3, 255, 128, 0>>}

 encode!(term, opts \\ [])

 @spec encode!(
 term(),
 keyword()
) :: binary()

Encodes an Elixir term into a MessagePack binary, raising an error on failure.
This variant raises an exception on failure instead of returning an error
tuple. It is intended for use in pipelines (|>) or in functions where an
encoding failure is considered an exceptional event to be handled by
try/rescue.
Options
Accepts the same options as encode/2.
Raises
	Msgpack.EncodeError - If an unsupported Elixir term is encountered.
	Msgpack.UnsupportedAtomError - If an atom is encountered and the :atoms option is set to :error.

Examples
iex> Msgpack.encode!(%{hello: "world"})
<<129, 165, 104, 101, 108, 108, 111, 165, 119, 111, 114, 108, 100>>

Msgpack.Decoder

Handles the logic of decoding a MessagePack binary into an Elixir term.

 Summary

 Functions

 decode(binary, opts \\ [])

 Functions

 decode(binary, opts \\ [])

 @spec decode(
 binary(),
 keyword()
) :: {:ok, term()} | {:error, term()}

Msgpack.Encoder

Handles the logic of encoding Elixir terms into iodata.

 Summary

 Functions

 encode(term, opts)

 Functions

 encode(term, opts)

 @spec encode(
 term(),
 keyword()
) :: {:ok, iodata()} | {:error, term()}

Msgpack.Ext

Represents a MessagePack custom extension type.
The MessagePack specification allows for custom, application-specific types
to be encoded. This struct is the Elixir representation for such types.
It consists of an integer type tag (from -128 to 127) and a binary data
payload.
The type of -1 is reserved for the MessagePack Timestamp extension and is
handled automatically by this library for DateTime and NaiveDateTime
structs.
Example
Encoding and decoding a custom type for a complex number.
Let's say an application uses type `74` for complex numbers.
The payload is the real part followed by the imaginary part, as floats.
iex> complex_number = %Msgpack.Ext{type: 74, data: <<3.14::float, 1.59::float>>}
iex> {:ok, encoded} = Msgpack.encode(complex_number)
iex> Msgpack.decode(encoded)
{:ok, %Msgpack.Ext{type: 74, data: <<3.14::float, 1.59::float>>}}

 Summary

 Types

 t()

 A MessagePack extension type, with an integer type and a binary payload.

 Types

 t()

 @type t() :: %Msgpack.Ext{data: binary(), type: integer()}

A MessagePack extension type, with an integer type and a binary payload.

Msgpack.DecodeError exception

Msgpack.EncodeError exception

Error raised when an unsupported Elixir term is passed to Msgpack.encode!/2.
This error is raised for terms that have no corresponding representation in
the MessagePack specification, such as PIDs, references, or functions.

Msgpack.UnsupportedAtomError exception

Error raised by Msgpack.encode!/2 when an atom is encountered and the
:atoms option is set to :error.
This provides a strategy for ensuring that atoms, an Elixir-specific type,
are not unintentionally leaked into a serialization format intended for
cross-language interoperability.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

