

 msgpack_elixir

 v2.0.0

 Table of contents

 	msgpack_elixir

 	Changelog

 	LICENSE

 	Telemetry

 	
 Modules

 	Msgpack

 	Msgpack.Decoder

 	Msgpack.Encodable

 	Msgpack.Encoder

 	Msgpack.Ext

 	Msgpack.StreamDecoder

 	Msgpack.StreamEncoder

 	Exceptions

 	Msgpack.DecodeError

 	Msgpack.EncodeError

 	Msgpack.UnsupportedAtomError

 msgpack_elixir

[image: Hex.pm]
An implementation of the MessagePack serialization
format for Elixir.
It provides functions for encoding and decoding Elixir terms and supports the
full MessagePack specification, including the Timestamp and custom Extension
types.
Features
	Specification Compliance: Implements the complete MessagePack type system.
	Extensible Struct Support:	Natively encodes and decodes DateTime and NaiveDateTime structs via the
Timestamp extension type.
	Allows any custom struct to be encoded via the Msgpack.Encodable protocol.

	Configurable Validation: Provides an option to bypass UTF-8 validation on
strings for performance-critical paths.
	Resource Limiting: Includes configurable :max_depth and :max_byte_size
limits to mitigate resource exhaustion from malformed or malicious payloads.
	Telemetry Integration: Emits standard :telemetry events for integration
with monitoring tools.
	Streaming API: Process large collections or continuous data streams with
low memory overhead using Msgpack.encode_stream/2 and
Msgpack.decode_stream/2.

Installation
Add msgpack_elixir to your list of dependencies in mix.exs:
def deps do
 [{:msgpack_elixir, "~> 2.0.0"}]
end
Then, run mix deps.get.
Quick Start
Encode a map. Atom keys are converted to strings by default.
iex> data = %{id: 1, name: "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
<<130, 162, 105, 100, 1, 164, 110, 97, 109, 101, 166, 69, 108, 105, 120, 105, 114>>

Decode a binary.
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}

Use the exception-raising variants for exceptional failure cases.
iex> Msgpack.decode!(<<0xC1>>)
** (Msgpack.DecodeError) Unknown type prefix: 193. The byte `0xC1` is not a valid MessagePack type marker.
Streaming Large Collections
For datasets that may not fit in memory, you can use the streaming API, which
processes one term at a time.
Create a lazy stream of terms to be encoded.
iex> terms = Stream.cycle([1, "elixir", true])

The output is a lazy stream of encoded binaries.
iex> encoded_stream = Msgpack.encode_stream(terms)

The stream is only consumed when you enumerate it.
iex> encoded_stream |> Stream.take(3) |> Enum.to_list()
[
 {:ok, <<1>>},
 {:ok, <<166, 101, 108, 105, 120, 105, 114>>},
 {:ok, <<195>>}
]
Map Encoding
By default, Msgpack.encode/2 serializes Elixir maps in a deterministic
manner.
It achieves this by sorting the map keys according to Elixir's standard term
ordering before encoding. This ensures that encoding the same map will always
produce the exact same binary output, which is critical for tasks like
generating signatures or comparing hashes.
iex> map1 = %{a: 1, b: 2}
iex> map2 = %{b: 2, a: 1}

Both produce the same output because their keys are sorted [:a, :b]
iex> Msgpack.encode!(map1) == Msgpack.encode!(map2)
true
Performance Opt-Out
Sorting keys has a performance cost (O(N log N)).
If you are working in a performance-critical context where byte-for-byte
determinism is not required, you can disable it:
Msgpack.encode(map, deterministic: false)
Custom Struct Serialization
You can add custom encoding logic for your own Elixir structs by implementing
the Msgpack.Encodable protocol. This allows Msgpack.encode/2 to accept your
structs directly, centralizing conversion logic within the protocol
implementation.
1. Define your application's struct
defmodule Product do
 defstruct [:id, :name]
end

2. Implement the `Msgpack.Encodable` protocol for that struct
defimpl Msgpack.Encodable, for: Product do

 # 3. Inside the protocol's `encode/1` function, transform your struct into a basic
 # Elixir term that MessagePack can encode (e.g., a map or a list).
 def encode(%Product{id: id, name: name}) do
 {:ok, %{"id" => id, "name" => name}}
 end
end

iex> product = %Product{id: 1, name: "Elixir"}
iex> {:ok, binary} = Msgpack.encode(product)
<<130, 162, 105, 100, 1, 164, 110, 97, 109, 101, 166, 69, 108, 105, 120, 105, 114>>

iex> Msgpack.decode(binary)
{:ok, %{"id" => 1, "name" => "Elixir"}}
Full Documentation
For detailed information on all features, options, and functions, see the full
documentation on HexDocs, which
contains a complete API reference for all public modules and functions.
Development
This section explains how to setup the project locally for development.
Dependencies
	Elixir ~> 1.12 (OTP 24+)	See Compatibility and
deprecations
for more information

Get the Source
Clone the project locally:
via HTTPS
git clone https://github.com/nrednav/msgpack_elixir.git

via SSH
git clone git@github.com:nrednav/msgpack_elixir.git

Install
Install the project's dependencies:
cd msgpack_elixir/
mix deps.get

Test
Run the test suite:
mix test

Benchmark
Run the benchmarks:
mix run bench/run.exs

Versioning
This project uses Semantic Versioning.
For a list of available versions, see the repository tag list.
Issues & Requests
If you encounter a bug or have a feature request, please open an
issue on the GitHub
repository.
Contributing
Public contributions are welcome! If you would like to contribute, please fork
the repository and create a pull request.
License
This project is licensed under the MIT License - see the LICENSE
file for details.

 Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[v2.0.0] - 2025-08-10
Changed
	BREAKING: Map encoding is now deterministic by default	Msgpack.encode/2 sorts map keys according to Elixir's standard term
ordering before serialization
	This guarantees that identical maps produce identical binary output, but it
alters the output compared to previous versions of this library

Added
	Added a :deterministic option to Msgpack.encode/2	You can set this to false to disable key sorting for higher performance in
contexts where deterministic output is not required.

	Added the Msgpack.Encodable protocol to allow for custom serialization logic
for any Elixir struct	This allows users to encode their own data types, such as %Product{} or
%User{}, directly

[v1.1.1] - 2025-08-09
Fixed
	Fixed broken links in documentation

[v1.1.0] - 2025-08-09
Added
	Added a new Streaming API that processes data in chunks, reducing peak memory
usage when handling large datasets or network streams	Introduced Msgpack.encode_stream/2 to lazily encode a stream of Elixir
terms one by one
	Introduced Msgpack.decode_stream/2 to lazily decode a stream of
MessagePack objects, capable of handling data that arrives in multiple
chunks

	Added CI workflow to run tests against supported Elixir versions

Changed
	Updated minimum supported Elixir version to v1.12	While the library may work with older versions, StreamData supports a
minimum of v1.12, so it would be missing the property tests

Fixed
	Updated timestamp decoding to be backwards-compatible with Elixir v1.12

[v1.0.2] - 2025-08-06
Fixed
	Add missing guides/ directory to list of published docs in package config

[v1.0.1] - 2025-08-06
Added
	Added a dedicated how-to guide for using telemetry

Changed
	Exception messages were expanded to include specific details about the cause
of the error and, where applicable, configuration options for resolution.
	Updated all documentation (@moduledoc, @doc, readme, etc.)

[v1.0.0] - 2025-08-02
Added
	Initial release
	Support for all MessagePack types, including Integer, Float, String,
Binary, Array, Map, Ext, and the Timestamp extension	Encoding for the full 64-bit unsigned integer range

	Native encoding and decoding for Elixir's DateTime and NaiveDateTime
structs
	Protection against maliciously crafted decoding inputs via :max_depth and
:max_byte_size options
	Added a :string_validation option to encode/2 to bypass UTF-8 validation
for performance gains
	Emits :telemetry events for all encode and decode operations
	Includes encode!/2 and decode!/2 for raising exceptions on errors

 LICENSE

MIT License

Copyright (c) 2025 Vandern Rodrigues

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Telemetry

This library emits :telemetry events for all encode/2 and decode/2
operations. This allows you to integrate Msgpack into your application's
monitoring and observability stack.
This guide will show you how to attach a simple logger to these events.
1. Define a Telemetry Handler
First, define a module that will receive and handle the events. This handler can
log the event, increment a metric, or record a trace span.
defmodule MyTelemetryHandler do
 require Logger

 def attach do
 :telemetry.attach_many(
 "msgpack-logger",
 [
 [:msgpack, :encode, :start],
 [:msgpack, :encode, :stop],
 [:msgpack, :encode, :exception],
 [:msgpack, :decode, :start],
 [:msgpack, :decode, :stop],
 [:msgpack, :decode, :exception]
],
 &__MODULE__.handle_event/4,
 nil
)
 end

 def handle_event(event_name, measurements, metadata, _config) do
 Logger.info("Telemetry Event: #{inspect(event_name)}",
 measurements: measurements,
 metadata: metadata
)
 end
end
2. Attach the Handler
Attach the handler when your application starts, for example, in your
Application.start/2 callback.
In your application.ex
def start(_type, _args) do
 # ... other startup code
 MyTelemetryHandler.attach()
 # ...
end
Understanding Events
The library emits standard :start, :stop, and :exception events for each operation.
Encoding Events
[:msgpack, :encode, :start]
	Dispatched Before: The encoding process begins.
	measurements: %{system_time: ...}
	metadata: %{opts: keyword(), term: term()}

[:msgpack, :encode, :stop]
	Dispatched After: The encoding process finishes (either successfully or with a logical error).
	measurements: %{duration: native_time}
	metadata:	On success: %{outcome: :ok, byte_size: non_neg_integer()}
	On logical failure: %{outcome: :error}

[:msgpack, :encode, :exception]
	Dispatched If: An error occurs during encoding.
	measurements: %{duration: native_time}
	metadata: %{kind: :error | :throw | :exit, reason: term(), stacktrace: list()}

Decoding Events
[:msgpack, :decode, :start]
	Dispatched Before: The decoding process begins.
	measurements: %{system_time: ...}
	metadata: %{opts: keyword(), byte_size: non_neg_integer()}

[:msgpack, :decode, :stop]
	Dispatched After: The decoding process finishes (either successfully or with a logical error).
	measurements: %{duration: native_time}
	metadata:	On success: %{outcome: :ok}
	On logical failure: %{outcome: :error}

[:msgpack, :decode, :exception]
	Dispatched If: An error occurs during decoding.
	measurements: %{duration: native_time}
	metadata: %{kind: :error | :throw | :exit, reason: term(), stacktrace: list()}

Msgpack

An implementation of the MessagePack serialization format.
This module is the main entry point for the library, providing functions for
encoding and decoding Elixir terms.
Quick Start
For the common case, you can encode an Elixir map or keyword list and decode
it back. Note that by default, atoms used as map keys are encoded as strings.
iex> data = %{"id" => 1, "name" => "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}
Capabilities
	Type Support: Encodes and decodes common Elixir types, including
integers, floats, binaries, lists, and maps.
	Timestamp Extension: Automatically handles Elixir's NaiveDateTime and
DateTime structs using the MessagePack Timestamp extension.
	Custom Extensions: Provides MessagePack.Ext for working with custom
MessagePack extension types.
	Resource Limits: Includes options like :max_depth and :max_byte_size
to limit resource allocation when decoding.
	Telemetry Integration: Emits :telemetry events for monitoring and
observability.
	Extensible Structs: Allows any custom Elixir struct to be encoded by
implementing the Msgpack.Encodable protocol.

Options
The behaviour of encode/2 and decode/2 can be customized by passing a
keyword list of options. See the documentation for each function for a full
description.
Common Encoding Options
	:atoms - Controls how atoms are encoded (:string or :error).
	:string_validation - Toggles UTF-8 validation for performance.

Common Decoding Options
	:max_depth - Limits the nesting level for decoding collections.
	:max_byte_size - Limits the memory allocation for large objects.

 Summary

 Types

 error_reason()

 Functions

 decode(binary, opts \\ [])

 Decodes a MessagePack binary into an Elixir term.

 decode!(binary, opts \\ [])

 Decodes a MessagePack binary, raising a Msgpack.DecodeError on failure.

 decode_stream(enumerable, opts \\ [])

 Decodes a stream of MessagePack binaries into a stream of Elixir terms.

 encode(term, opts \\ [])

 Encodes an Elixir term into a MessagePack binary.

 encode!(term, opts \\ [])

 Encodes an Elixir term into a MessagePack binary, raising an error on failure.

 encode_stream(enumerable, opts \\ [])

 Encodes a stream of Elixir terms into a stream of MessagePack binaries.

 Types

 error_reason()

 @type error_reason() ::
 {:unsupported_type, term()}
 | {:unsupported_atom, atom()}
 | :unexpected_eof
 | {:unknown_prefix, byte()}
 | {:trailing_bytes, binary()}
 | {:max_depth_reached, non_neg_integer()}
 | {:max_byte_size_exceeded, non_neg_integer()}
 | :invalid_timestamp

 Functions

 decode(binary, opts \\ [])

 @spec decode(
 binary(),
 keyword()
) :: {:ok, term()} | {:error, error_reason()}

Decodes a MessagePack binary into an Elixir term.
Returns {:ok, term} on success, or {:error, reason} on failure.
Options
	:max_depth - Sets a limit on the nesting level of arrays and maps to
prevent stack exhaustion from maliciously crafted inputs.
Defaults to 100.

	:max_byte_size - Sets a limit on the declared byte size of any single
string, binary, array, or map to prevent memory exhaustion attacks.
Defaults to 10_000_000 (10MB).

Examples
Standard Decoding
For trusted inputs, you can decode directly without custom options.
iex> encoded = <<0x81, 0xA5, "hello", 0xA5, "world">>
iex> Msgpack.decode(encoded)
{:ok, %{"hello" => "world"}}
Securely Handling Untrusted Input
When decoding data from an external source, set limits to prevent
denial-of-service attacks.
A deeply nested payload may exhaust the process stack:
iex> payload = <<0x91, 0x91, 0x91, 1>> # [[[1]]]
iex> Msgpack.decode(payload, max_depth: 2)
{:error, {:max_depth_reached, 2}}
A payload declaring a huge string can cause excessive memory allocation:
iex> payload = <<0xDB, 0xFFFFFFFF::32>> # A string of 4GB
iex> Msgpack.decode(payload, max_byte_size: 1_000_000)
{:error, {:max_byte_size_exceeded, 1_000_000}}
Detecting Malformed Data
The decoder will return an error tuple for malformed data, such as incomplete
data or trailing bytes left over after a successful decode.
A valid term followed by extra bytes
iex> Msgpack.decode(<<192, 42>>)
{:error, {:trailing_bytes, <<42>>}}

Incomplete map data
iex> Msgpack.decode(<<0x81, 0xA3, "foo">>)
{:error, :unexpected_eof}

 decode!(binary, opts \\ [])

 @spec decode!(
 binary(),
 keyword()
) :: term()

Decodes a MessagePack binary, raising a Msgpack.DecodeError on failure.
This variant raises an exception on failure. It is intended for use when a
decoding failure is considered an exceptional state, for example, when
decoding data from a trusted internal service that is assumed to be
well-formed.
For decoding data from external or untrusted sources where failure is a
possible outcome, use decode/2 to handle the returned {:error, reason}
tuple.
Options
Accepts the same options as decode/2.
Raises
	Msgpack.DecodeError - If the binary is malformed, contains an unknown prefix, or has trailing bytes.

Examples
Basic success case:
iex> encoded = <<0x81, 0xA5, "hello", 0xA5, "world">>
iex> Msgpack.decode!(encoded)
%{"hello" => "world"}
Failure case:
iex> Msgpack.decode!(<<192, 42>>)
** (Msgpack.DecodeError) Failed to decode MessagePack binary. Reason = {:trailing_bytes, "*"}

 decode_stream(enumerable, opts \\ [])

 @spec decode_stream(Enumerable.t(binary()), Msgpack.StreamDecoder.opts_t()) ::
 Msgpack.StreamDecoder.t()

Decodes a stream of MessagePack binaries into a stream of Elixir terms.
This function provides a streaming, lazy interface for decoding, making it
suitable for handling large datasets that do not fit into memory.
It delegates to Msgpack.StreamDecoder.decode/2.
For more detailed information on behavior, see the Msgpack.StreamDecoder
module documentation.
Options
Accepts the same options as Msgpack.decode/2.
Examples
iex> objects = [1, "elixir", true]
iex> stream = Enum.map(objects, &Msgpack.encode!/1)
iex> Msgpack.decode_stream(stream) |> Enum.to_list()
[1, "elixir", true]

 encode(term, opts \\ [])

 @spec encode(
 term(),
 keyword()
) :: {:ok, binary()} | {:error, error_reason()}

Encodes an Elixir term into a MessagePack binary.
Returns {:ok, binary} on success, or {:error, reason} on failure.
Options
	:atoms - Controls how atoms are encoded.
	:string (default) - Encodes atoms as MessagePack strings.
	:error - Returns an {:error, {:unsupported_atom, atom}} tuple if an atom is encountered.

	:string_validation - Controls whether to perform UTF-8 validation on binaries.
	true (default) - Validates binaries and encodes them as the str type
if they are valid UTF-8, otherwise encodes them as the bin type. This
ensures the output is compliant with the MessagePack specification's
distinction between string and binary data, but has a performance cost.
	false - Skips validation and encodes all binaries as the str type.
This avoids the performance cost of validation but risks creating a
payload with non-UTF-8 strings, which may be incompatible with other
MessagePack decoders.

	:deterministic - Controls whether map keys are sorted before encoding.
	true (default) - Enables key sorting, which ensures that encoding the
same map always produces the same binary.
	false - Disables key sorting, which can provide a performance gain in
cases where determinism is not required.

Custom Struct Support
This function can encode any custom Elixir struct that implements the
Msgpack.Encodable protocol. This allows you to define custom serialization
logic for your application structs.
For example, given a Product struct:
1. Define your struct
defmodule Product do
 defstruct [:id, :name]
end

2. Implement the protocol
defimpl Msgpack.Encodable, for: Product do
 def encode(%Product{id: id, name: name}) do
 # Transform the struct into an encodable term (e.g., a map)
 {:ok, %{"id" => id, "name" => name}}
 end
end

iex> product = %Product{id: 1, name: "Elixir"}
iex> {:ok, binary} = Msgpack.encode(product)
<<130, 162, 105, 100, 1, 164, 110, 97, 109, 101, 166, 69, 108, 105, 120, 105, 114>>
Examples
Standard Encoding
The default options encode atoms as strings, a common requirement when sending
data between Elixir services.
iex> data = %{id: 1, name: "Elixir"}
iex> {:ok, encoded} = Msgpack.encode(data)
iex> Msgpack.decode(encoded)
{:ok, %{"id" => 1, "name" => "Elixir"}}
Strict Atom Handling
If you are interoperating with systems that do not have a concept of atoms, it
is safer to disallow them completely during encoding.
iex> Msgpack.encode(%{name: "Elixir"}, atoms: :error)
{:error, {:unsupported_atom, :name}}
Encoding without String Validation (Unsafe)
For performance-critical paths where you can guarantee all binaries are valid
UTF-8 strings, you can disable string validation.
iex> data = "What did the fish say when it swam into a wall? Dam!"
iex> {:ok, _} = Msgpack.encode(data, string_validation: false)
Encoding Raw Binary Data
If your data contains non-UTF-8 binary content (e.g., an image thumbnail), the
default validator will encode it with the bin family type.
iex> Msgpack.encode(<<255, 128, 0>>)
{:ok, <<0xC4, 3, 255, 128, 0>>}

 encode!(term, opts \\ [])

 @spec encode!(
 term(),
 keyword()
) :: binary()

Encodes an Elixir term into a MessagePack binary, raising an error on failure.
This variant raises an exception on failure instead of returning an error
tuple. It is intended for use in pipelines (|>) or in functions where an
encoding failure is considered an exceptional event to be handled by
try/rescue.
Options
Accepts the same options as encode/2.
Raises
	Msgpack.EncodeError - If an unsupported Elixir term is encountered.
	Msgpack.UnsupportedAtomError - If an atom is encountered and the :atoms option is set to :error.

Examples
iex> Msgpack.encode!(%{hello: "world"})
<<129, 165, 104, 101, 108, 108, 111, 165, 119, 111, 114, 108, 100>>

 encode_stream(enumerable, opts \\ [])

 @spec encode_stream(Enumerable.t(), Msgpack.StreamEncoder.opts_t()) ::
 Msgpack.StreamEncoder.t()

Encodes a stream of Elixir terms into a stream of MessagePack binaries.
Each term in the input enumerable is encoded individually. The output stream
will contain {:ok, binary} tuples for successful encodings or {:error, reason} tuples for failures.
This function delegates to Msgpack.StreamEncoder.encode/2.
Options
Accepts the same options as Msgpack.encode/2.
Examples
iex> terms = [1, "elixir", :world]
iex> Msgpack.encode_stream(terms, atoms: :string) |> Enum.to_list()
[
 {:ok, <<1>>},
 {:ok, <<166, 101, 108, 105, 120, 105, 114>>},
 {:ok, <<165, 119, 111, 114, 108, 100>>}
]

Msgpack.Decoder

Handles the logic of decoding a MessagePack binary into an Elixir term.

 Summary

 Functions

 decode(binary, opts \\ [])

 default_opts()

 Returns a keyword list of the default options for the decoder.

 Functions

 decode(binary, opts \\ [])

 @spec decode(
 binary(),
 keyword()
) :: {:ok, term()} | {:error, term()}

 default_opts()

Returns a keyword list of the default options for the decoder.

Msgpack.Encodable protocol

A protocol for converting custom Elixir structs into a Msgpack-encodable
format.
This protocol provides a hook into the Msgpack.encode/2 function, allowing
developers to define custom serialization logic for their structs.
Contract
An implementation of encode/1 for a struct must return a basic Elixir term
that the Msgpack library can encode directly. This includes:
	Maps (with string, integer, or atom keys that will be converted to strings)
	Lists
	Strings or Binaries
	Integers
	Floats
	Booleans
	nil

It is important that the returned term must not contain other custom
structs that themselves require an Encodable implementation. The purpose of
this protocol is to perform a single-level transformation from a custom struct
into a directly encodable term. Returning a nested custom struct will result
in an {:error, {:unsupported_type, term}} during encoding.
Example
defimpl Msgpack.Encodable, for: User do
 def encode(%User{id: id, name: name}) do
 # Transform the User struct into a map, which is directly encodable.
 {:ok, %{"id" => id, "name" => name}}
 end
end

 Summary

 Types

 t()

 All the types that implement this protocol.

 Functions

 encode(struct)

 Receives a custom struct and must return {:ok, term} or {:error, reason}.

 Types

 t()

 @type t() :: term()

All the types that implement this protocol.

 Functions

 encode(struct)

 @spec encode(struct()) :: {:ok, term()} | {:error, any()}

Receives a custom struct and must return {:ok, term} or {:error, reason}.
The term in a successful result must be a directly encodable Elixir type.

Msgpack.Encoder

Handles the logic of encoding Elixir terms into iodata.

 Summary

 Functions

 default_opts()

 Returns a keyword list of the default options for the encoder.

 encode(term, opts \\ [])

 Functions

 default_opts()

Returns a keyword list of the default options for the encoder.

 encode(term, opts \\ [])

 @spec encode(
 term(),
 keyword()
) :: {:ok, iodata()} | {:error, term()}

Msgpack.Ext

Represents a MessagePack custom extension type.
The MessagePack specification allows for custom, application-specific types
to be encoded. This struct is the Elixir representation for such types.
It consists of an integer type tag (from -128 to 127) and a binary data
payload.
The type of -1 is reserved for the MessagePack Timestamp extension and is
handled automatically by this library for DateTime and NaiveDateTime
structs.
Example
Encoding and decoding a custom type for a complex number.
Let's say an application uses type `74` for complex numbers.
The payload is the real part followed by the imaginary part, as floats.
iex> complex_number = %Msgpack.Ext{type: 74, data: <<3.14::float, 1.59::float>>}
iex> {:ok, encoded} = Msgpack.encode(complex_number)
iex> Msgpack.decode(encoded)
{:ok, %Msgpack.Ext{type: 74, data: <<3.14::float, 1.59::float>>}}

 Summary

 Types

 t()

 A MessagePack extension type, with an integer type and a binary payload.

 Types

 t()

 @type t() :: %Msgpack.Ext{data: binary(), type: integer()}

A MessagePack extension type, with an integer type and a binary payload.

Msgpack.StreamDecoder

Decodes a stream of MessagePack binaries into a stream of Elixir terms.
This module is designed to handle large sequences of MessagePack objects that
arrive in chunks, such as from a network socket or a large file.
It incrementally parses the incoming binaries and emits complete Elixir terms
as they are decoded.
Capabilities
	Buffering: The module internally buffers data, allowing a single
MessagePack object to be split across multiple chunks in the input stream.
	Error Handling: If the stream finishes while an object is only
partially decoded, the last element emitted by the stream will be the tuple
{:error, :unexpected_eof}.

This module can be used together with Msgpack.StreamEncoder to create a lazy
serialization and deserialization pipeline.

 Summary

 Types

 opts_t()

 Options passed to the decoder for each object.

 t()

 A stream that yields decoded Elixir terms or a final error tuple.

 Functions

 decode(enumerable, opts \\ [])

 Lazily decodes an enumerable of MessagePack binaries into a stream of Elixir
terms.

 Types

 opts_t()

 @type opts_t() :: keyword()

Options passed to the decoder for each object.

 t()

 @type t() :: Stream.t(term() | {:error, :unexpected_eof})

A stream that yields decoded Elixir terms or a final error tuple.
The stream will produce any t:term/0 that can be decoded from the input.
If the input enumerable finishes while a term is only partially decoded, the
last element in the stream will be {:error, :unexpected_eof}.

 Functions

 decode(enumerable, opts \\ [])

 @spec decode(Enumerable.t(binary()), opts_t()) :: t()

Lazily decodes an enumerable of MessagePack binaries into a stream of Elixir
terms.
Parameters
	enumerable: An Enumerable that yields chunks of a MessagePack binary
stream (e.g., f:File.stream/3 or a list of binaries).
	opts: A keyword list of options passed to the underlying decoder.

Return Value
Returns a lazy Stream that emits Elixir terms as they are decoded.
If the input stream ends with incomplete data, the last item emitted will be
an error tuple {:error, :unexpected_eof}.
Options
This function accepts the same options as Msgpack.decode/2, which are
applied to the decoding of each object in the stream:
	:max_depth: Sets a limit on the nesting level of arrays and maps.
Defaults to 100.
	:max_byte_size: Sets a limit on the declared byte size of any single
string, binary, array, or map.
Defaults to 10_000_000 (10MB).

Examples
Standard Usage
iex> objects = [1, "elixir", true]
iex> stream = Enum.map(objects, &Msgpack.encode!/1)
iex> Msgpack.StreamDecoder.decode(stream) |> Enum.to_list()
[1, "elixir", true]
Handling Incomplete Streams
iex> incomplete_stream = [<<0x91>>] # Array header + no elements
iex> Msgpack.StreamDecoder.decode(incomplete_stream) |> Enum.to_list()
[{:error, :unexpected_eof}]

Msgpack.StreamEncoder

Lazily encodes a stream of Elixir terms into a stream of MessagePack binaries.
This module is the counterpart to Msgpack.StreamDecoder. It processes an
enumerable item by item, making it memory-efficient for encoding large
collections or infinite streams without loading the entire dataset into
memory.
Each item in the output stream is a result tuple, either {:ok, binary} for
a successful encoding or {:error, reason} if an individual term could
not be encoded.

 Summary

 Types

 opts_t()

 Options passed to the encoder for each term.

 result_t()

 The result of attempting to encode a single term.

 t()

 A stream that yields result tuples from an encoding operation.

 Functions

 encode(enumerable, opts \\ [])

 Lazily encodes an enumerable of Elixir terms into a stream of result tuples.

 Types

 opts_t()

 @type opts_t() :: keyword()

Options passed to the encoder for each term.

 result_t()

 @type result_t() :: {:ok, binary()} | {:error, any()}

The result of attempting to encode a single term.

 t()

 @type t() :: Stream.t(result_t())

A stream that yields result tuples from an encoding operation.
Each element is either {:ok, binary} or {:error, reason}.

 Functions

 encode(enumerable, opts \\ [])

 @spec encode(Enumerable.t(any()), opts_t()) :: t()

Lazily encodes an enumerable of Elixir terms into a stream of result tuples.
Parameters
	enumerable: An Enumerable that yields Elixir terms to be encoded.
	opts: A keyword list of options passed to the underlying encoder for each term.

Return Value
Returns a lazy Stream that emits result tuples. For each term in the
input enumerable, the stream will contain either:
	{:ok, binary} - On successful encoding.
	{:error, reason} - If the term cannot be encoded.

Options
This function accepts the same options as Msgpack.encode/2. See the
documentation for Msgpack.encode/2 for a full list.
Examples
Standard Usage
iex> terms = [1, "elixir"]
iex> Msgpack.StreamEncoder.encode(terms) |> Enum.to_list()
[
 {:ok, <<1>>},
 {:ok, <<166, 101, 108, 105, 120, 105, 114>>}
]
Handling Unencodable Terms
iex> terms = [1, :elixir, 4]
iex> Msgpack.StreamEncoder.encode(terms, atoms: :error) |> Enum.to_list()
[
 {:ok, <<1>>},
 {:error, {:unsupported_atom, :elixir}},
 {:ok, <<4>>}
]

Msgpack.DecodeError exception

Msgpack.EncodeError exception

Error raised when an unsupported Elixir term is passed to Msgpack.encode!/2.
This error is raised for terms that have no corresponding representation in
the MessagePack specification, such as PIDs, references, or functions.

Msgpack.UnsupportedAtomError exception

Error raised by Msgpack.encode!/2 when an atom is encountered and the
:atoms option is set to :error.
This provides a strategy for ensuring that atoms, an Elixir-specific type,
are not unintentionally leaked into a serialization format intended for
cross-language interoperability.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

