

 Muex

 v0.3.3

 [image: Logo]

 Table of contents

 	Muex

 	Usage Guide

 	Installation Guide

 	Mutation Optimization

 	
 Modules

 	Muex

 	Muex.DependencyAnalyzer

 	Muex.ExampleCalculator

 	Muex.Reporter.Html

 	Muex.Reporter.Json

 	Muex.TestRunner.Port

 	Muex.WorkerPool

 	Language Adapters

 	Muex.Language

 	Muex.Language.Elixir

 	Muex.Language.Erlang

 	Mutation Strategies

 	Muex.Mutator

 	Muex.Mutator.Arithmetic

 	Muex.Mutator.Boolean

 	Muex.Mutator.Comparison

 	Muex.Mutator.Conditional

 	Muex.Mutator.FunctionCall

 	Muex.Mutator.Literal

 	Core Components

 	Muex.Compiler

 	Muex.FileAnalyzer

 	Muex.Loader

 	Muex.MutantOptimizer

 	Muex.Reporter

 	Muex.Runner

 	Utilities

 	Muex.CLI

 	
 Mix Tasks

 	mix muex

 Muex

Mutation testing library for Elixir, Erlang, and other languages.
Muex evaluates test suite quality by introducing deliberate bugs (mutations) into code and verifying that tests catch them. It provides a language-agnostic architecture with dependency injection, making it easy to extend support to new languages.
Features
	Language-agnostic architecture with pluggable language adapters
	Built-in support for Elixir and Erlang
	Intelligent file filtering to focus on business logic:	Analyzes code complexity and characteristics
	Automatically excludes framework code (behaviours, protocols, supervisors)
	Skips low-complexity files (Mix tasks, reporters, configurations)
	Prioritizes files with testable logic (conditionals, arithmetic, pattern matching)

	6 mutation strategies:	Arithmetic operators (+/-, *//)
	Comparison operators (==, !=, >, <, >=, <=)
	Boolean logic (and/or, &&/||, true/false, not)
	Literal values (numbers, strings, lists, atoms)
	Function calls (remove calls, swap arguments)
	Conditionals (if/unless mutations)

	Parallel mutation execution with configurable concurrency
	Sophisticated mutation optimization heuristics (50-70% reduction)
	Colored terminal output with mutation scores and detailed reports
	Integration with ExUnit
	Hot module swapping for efficient testing

Installation
Muex can be used in three ways:
1. As a Mix Dependency (Recommended for CI/CD)
Add muex to your list of dependencies in mix.exs:
def deps do
 [
 {:muex, "~> 0.2.0", only: [:dev, :test], runtime: false}
]
end
Then run:
mix deps.get
mix muex

2. As a Hex Archive (Recommended for Global Use)
Install globally to use across all your projects:
mix archive.install hex muex

This makes mix muex available in any Elixir project without adding it as a dependency.
3. As an Escript (Standalone Binary)
For standalone usage or distribution:
From muex repository
mix escript.build

Install system-wide
sudo cp muex /usr/local/bin/

Use in any project
cd /path/to/your/project
muex

For detailed installation instructions and comparison, see docs/INSTALLATION.md.
Usage
Run mutation testing on your project:
Using mix task (dependency or hex archive)
mix muex

Using escript (standalone binary)
muex

Both commands accept the same options and produce identical results.
By default, Muex intelligently filters files to focus on business logic and skip framework code. This dramatically reduces the number of mutations tested.
File Filtering Options
Use intelligent filtering (default)
mix muex

Show which files are included/excluded
mix muex --verbose

Adjust minimum complexity score (default: 20)
mix muex --min-score 30

Disable filtering to test all files
mix muex --no-filter

Limit total mutations tested
mix muex --max-mutations 500

File Selection
Run on specific directory
mix muex --files "lib/myapp"

Run on specific file
mix muex --files "lib/my_module.ex"

Run on files matching glob pattern (single level)
mix muex --files "lib/muex/*.ex"

Run on files matching recursive glob pattern
mix muex --files "lib/**/compiler*.ex"
mix muex --files "lib/{muex,mix}/**/*.ex"

Other Options
Use specific mutators
mix muex --mutators arithmetic,comparison,boolean

Set concurrency and timeout
mix muex --concurrency 4 --timeout 10000

Fail if mutation score below threshold
mix muex --fail-at 80

Enable mutation optimization (balanced preset)
mix muex --optimize

Use conservative optimization (best balance)
mix muex --optimize --optimize-level conservative

Use aggressive optimization (fastest)
mix muex --optimize --optimize-level aggressive

Custom optimization settings
mix muex --optimize --min-complexity 3 --max-per-function 15

Mutation Optimization
Muex includes sophisticated heuristics to reduce the number of mutants tested while maintaining mutation testing effectiveness. This can reduce testing time by 50-70% with minimal impact on mutation score.
When to Use Optimization
	CI/CD pipelines: Use conservative mode for fast feedback with <1% score impact
	Development iteration: Use balanced mode for rapid checks
	Pre-release validation: Disable optimization for complete coverage

Optimization Levels
Conservative (recommended for CI/CD):
	50-65% reduction in mutations
	<1% impact on mutation score
	Focuses on high-complexity code
	Preserves boundary condition mutations

mix muex --optimize --optimize-level conservative

Balanced (default, good for development):
	70-85% reduction in mutations
	5-10% impact on mutation score
	Fast feedback during development
	Focuses on highest-impact mutations

mix muex --optimize

Aggressive (rapid checks only):
	85-95% reduction in mutations
	10-15% impact on mutation score
	Very fast but may miss edge cases

mix muex --optimize --optimize-level aggressive

How It Works
The optimizer uses 7 strategies:
	Equivalent Mutant Detection: Filters semantically equivalent mutations
	Code Complexity Scoring: Skips mutations in trivial code (getters, simple guards)
	Impact Scoring: Prioritizes mutations by risk level (1-11 points)
	Mutation Clustering: Groups similar mutations and samples representatives
	Per-Function Limits: Caps mutations per function to prevent explosion
	Boundary Prioritization: Always preserves critical comparison mutations
	Pattern-Based Filtering: Removes known low-value mutations

For detailed information, see docs/MUTATION_OPTIMIZATION.md.
Example: Cart Project
Real-world results from the shopping cart example (440 LOC, 84 tests):
	Mode	Mutations	Time	Score	Best For
	Baseline	886	~3 min	99.77%	Final validation
	Conservative	308	~1 min	99.35%	CI/CD
	Balanced	28	~10 sec	89.29%	Development

See examples/cart/OPTIMIZATION_RESULTS.md for complete analysis.
Available Mutators
Muex provides 6 comprehensive mutation strategies:
	Arithmetic: Mutates +, -, *, / operators (swap, remove, identity)
	Comparison: Mutates ==, !=, >, <, >=, <=, ===, !== operators
	Boolean: Mutates and, or, &&, ||, true, false, not (swap, negate, remove)
	Literal: Mutates numbers (±1), strings (empty/append), lists (empty), atoms (change)
	FunctionCall: Removes function calls and swaps first two arguments
	Conditional: Inverts conditions, removes branches, converts unless to if

Supported Languages
	Elixir: Full support with ExUnit integration
	Erlang: Full support with native BEAM integration

Both languages benefit from hot module swapping for efficient mutation testing.
Example Output
Loading files from lib...
Found 24 file(s)
Analyzing files for mutation testing suitability...
Selected 8 file(s) for mutation testing
Skipped 16 file(s) (low complexity or framework code)
Generating mutations...
Testing 342 mutation(s)
Analyzing test dependencies...
Running tests...

Mutation Testing Results
==
Total mutants: 342
Killed: 287 (caught by tests)
Survived: 55 (not caught by tests)
Invalid: 0 (compilation errors)
Timeout: 0
==
Mutation Score: 83.9%
With --verbose flag:
Loading files from lib...
Found 24 file(s)
Analyzing files for mutation testing suitability...
 ✗ lib/mix/tasks/muex.ex (Mix task)
 ✗ lib/muex/application.ex (Application/Supervisor)
 ✓ lib/muex/compiler.ex (score: 91)
 ✓ lib/muex/runner.ex (score: 83)
 ✗ lib/muex/language.ex (Behaviour definition)
 ...
Output Formats
Terminal (Default)
Colored terminal output with progress indicators and summary:
	Green for killed mutations (tests caught the bug)
	Red for survived mutations (tests missed the bug)
	Yellow for invalid mutations (compilation errors)
	Magenta for timeouts
	Color-coded mutation score (green ≥80%, yellow ≥60%, red <60%)

Mutation Testing Results
==
Total mutants: 25
Killed: 20 (caught by tests)
Survived: 5 (not caught by tests)
Invalid: 0 (compilation errors)
Timeout: 0
==
Mutation Score: 80.0%
JSON Format
Structured JSON for CI/CD integration:
mix muex --format json
Outputs: muex-report.json

HTML Format
Interactive HTML report with color-coded results:
mix muex --format html
Outputs: muex-report.html

Examples
See the examples/ directory for example projects:
	examples/cart/ - Real-world e-commerce shopping cart (recommended)	440 LOC with complex business logic
	84 comprehensive tests
	99.77% baseline mutation score
	Demonstrates optimization heuristics
	See examples/cart/README.md

	examples/shop/ - Simpler shopping cart example (48 tests)
	examples/calculator.erl - Basic Erlang example

Note: The examples demonstrate the mutation testing concept. For production use, consider integrating Muex into your project's mix.exs as a dependency.
Documentation
Documentation can be found at https://hexdocs.pm/muex.

 Muex Usage Guide

Muex is a mutation testing library that helps you evaluate the quality of your test suite by introducing deliberate bugs into your code and verifying that your tests catch them.
Table of Contents
	What is Mutation Testing?
	Why Use Muex?
	Key Features
	Getting Started
	Basic Usage
	Advanced Features
	Mutation Strategies
	Intelligent File Filtering
	Test Optimization
	Output Formats
	Best Practices
	Performance Tuning
	CI/CD Integration
	Troubleshooting

What is Mutation Testing?
Mutation testing is a technique to evaluate the effectiveness of your test suite. It works by:
	Creating "mutants" - versions of your code with deliberate bugs
	Running your test suite against each mutant
	Checking if your tests catch the introduced bugs

Key terms:
	Mutant: A version of your code with a single deliberate bug
	Killed: A mutant caught by your tests (good!)
	Survived: A mutant not caught by your tests (indicates weak test coverage)
	Invalid: A mutant that causes compilation errors
	Mutation Score: Percentage of mutants killed by your tests

A high mutation score (typically 80%+) indicates that your tests are effective at catching real bugs.
Why Use Muex?
Traditional code coverage tools (like mix test --cover) measure which lines of code are executed during tests, but they don't tell you if those tests actually verify the behavior of your code.
Consider this example:
def calculate_discount(price, percentage) do
 price * percentage / 100 # Bug: should be price - (price * percentage / 100)
end

Test with 100% line coverage but weak assertions
test "calculate_discount runs" do
 result = calculate_discount(100, 10)
 assert is_number(result) # Passes but doesn't verify correctness!
end
This test has 100% line coverage but doesn't actually verify the discount calculation is correct. Muex would expose this by mutating the arithmetic operators and finding that the test still passes.
Benefits of Muex:
	Find weak tests: Identify tests that execute code but don't verify behavior
	Improve test quality: Get actionable feedback on which tests need stronger assertions
	Increase confidence: Know your tests actually catch bugs, not just exercise code
	Prevent regressions: Ensure critical business logic is thoroughly tested
	Language-agnostic: Works with Elixir, Erlang, and extensible to other languages

Key Features
1. Language-Agnostic Architecture
Muex uses a pluggable architecture that supports multiple languages:
	Elixir: Full support with ExUnit integration
	Erlang: Native BEAM integration
	Extensible: Add new languages by implementing the Muex.Language behaviour

All mutation strategies work across all supported languages.
2. Comprehensive Mutation Strategies
Six built-in mutation strategies covering common bug patterns:
	Arithmetic: + ↔ -, * ↔ /, identity mutations
	Comparison: == ↔ !=, > ↔ <, boundary conditions
	Boolean: and ↔ or, true ↔ false, negation removal
	Literal: Numbers (±1), strings (empty/append), lists, atoms
	Function Calls: Remove calls, swap arguments
	Conditionals: Invert conditions, remove branches

3. Intelligent File Filtering
Muex automatically identifies which files contain testable business logic and skips framework boilerplate:
	Analyzes code complexity: Calculates scores based on conditionals, arithmetic, comparisons
	Excludes framework code: Behaviours, protocols, supervisors, applications
	Skips low-value files: Mix tasks, reporters, configuration modules
	Prioritizes business logic: Focuses on files with significant computational logic

This dramatically reduces mutation testing time by focusing on code that matters.
4. Parallel Execution
	Worker pool for concurrent mutation testing
	Configurable concurrency levels
	Efficient hot module swapping using BEAM's code reloading

5. Test Dependency Analysis
Muex analyzes your test suite to understand which tests cover which modules:
	Smart test execution: Only runs tests affected by a specific mutation
	Faster results: Avoids running the entire test suite for every mutation
	Accurate coverage: Ensures relevant tests are executed

6. Multiple Output Formats
	Terminal: Colored, interactive output for development
	JSON: Structured data for CI/CD integration
	HTML: Interactive reports for sharing with team

Getting Started
Installation
Add muex to your mix.exs dependencies:
def deps do
 [
 {:muex, "~> 0.1.0"}
]
end
Then install:
mix deps.get

First Run
Run mutation testing on your entire project:
mix muex

Muex will:
	Discover source files in lib/
	Analyze and filter files (intelligent filtering enabled by default)
	Generate mutations for each file
	Run tests against each mutation
	Display results with mutation score

Basic Usage
Run on All Files (with Intelligent Filtering)
mix muex

By default, Muex uses intelligent filtering to focus on business logic and skip framework code.
Run on Specific Directory
mix muex --files "lib/myapp/core"

Run on Specific File
mix muex --files "lib/my_module.ex"

Run on Multiple Files with Glob Patterns
Single directory level
mix muex --files "lib/muex/*.ex"

Recursive patterns
mix muex --files "lib/**/calculator*.ex"

Multiple patterns
mix muex --files "lib/{core,utils}/**/*.ex"

Disable Intelligent Filtering
To test all files without filtering:
mix muex --no-filter

View File Analysis Details
See which files are included/excluded and why:
mix muex --verbose

Output:
Analyzing files for mutation testing suitability...
 ✓ lib/muex/compiler.ex (score: 91)
 ✓ lib/muex/runner.ex (score: 83)
 ✗ lib/mix/tasks/muex.ex (Mix task)
 ✗ lib/muex/language.ex (Behaviour definition)
 - lib/muex/loader.ex (score: 15, below threshold)
Advanced Features
Select Specific Mutation Strategies
Run only specific mutators:
Only arithmetic and comparison
mix muex --mutators arithmetic,comparison

Only boolean logic
mix muex --mutators boolean

All available mutators
mix muex --mutators arithmetic,comparison,boolean,literal,function_call,conditional

Adjust Concurrency
Control parallel execution:
Use 8 parallel workers
mix muex --concurrency 8

Use single worker (sequential)
mix muex --concurrency 1

Default: Number of CPU schedulers (System.schedulers_online())
Set Test Timeout
Prevent hanging tests:
10 second timeout per mutation
mix muex --timeout 10000

30 second timeout for slow tests
mix muex --timeout 30000

Default: 5000ms (5 seconds)
Enforce Minimum Mutation Score
Fail CI builds if score is too low:
Require 80% mutation score
mix muex --fail-at 80

Require 90% mutation score
mix muex --fail-at 90

This will exit with a non-zero status code if the mutation score is below the threshold, making it perfect for CI/CD pipelines.
Adjust Complexity Threshold
Fine-tune which files to include based on complexity:
More restrictive (only high-complexity files)
mix muex --min-score 40

More inclusive (include lower-complexity files)
mix muex --min-score 10

Default: 20
Files are scored 0-100 based on:
	Number of functions
	Presence of conditionals (if, case, cond, unless)
	Arithmetic operations
	Comparison operations
	Pattern matching complexity
	Cyclomatic complexity estimate

Limit Total Mutations
For large projects, limit the number of mutations tested:
Test only first 500 mutations
mix muex --max-mutations 500

Test only first 100 mutations (quick feedback)
mix muex --max-mutations 100

Default: 0 (unlimited)
This is useful for getting quick feedback during development or when first integrating Muex into a large project.
Mutation Strategies
Arithmetic Mutator
Mutates arithmetic operators to catch calculation bugs.
Mutations:
	+ ↔ -
	* ↔ /
	+ → 0 (remove addition)
	- → 0 (remove subtraction)
	* → 1 (identity)
	/ → 1 (identity)

Example:
Original
def total(a, b), do: a + b

Mutant 1: + → -
def total(a, b), do: a - b

Mutant 2: + → 0
def total(a, b), do: 0
What it catches:
	Missing assertions on calculation results
	Tests that check only for non-nil/non-error rather than correct values

Comparison Mutator
Mutates comparison operators to catch boundary condition bugs.
Mutations:
	== ↔ !=
	> ↔ <, > ↔ >=
	< ↔ >, < ↔ <=
	>= ↔ <=, >= ↔ >
	<= ↔ >=, <= ↔ <
	=== ↔ !==

Example:
Original
def can_vote?(age), do: age >= 18

Mutant 1: >= → >
def can_vote?(age), do: age > 18 # Bug: 18 can't vote

Mutant 2: >= → <=
def can_vote?(age), do: age <= 18 # Bug: logic inverted
What it catches:
	Missing boundary condition tests (e.g., testing 19 but not 18)
	Tests that don't verify the correct comparison direction

Boolean Mutator
Mutates boolean operators and literals to catch logic bugs.
Mutations:
	and ↔ or
	&& ↔ ||
	true ↔ false
	not x → x (remove negation)

Example:
Original
def is_valid?(user), do: user.active and user.verified

Mutant 1: and → or
def is_valid?(user), do: user.active or user.verified

Mutant 2: true → false in guard
def process(x) when true, do: x
def process(x) when false, do: x # Mutant
What it catches:
	Tests that don't verify all required conditions
	Missing tests for different boolean combinations

Literal Mutator
Mutates literal values to catch hardcoded value dependencies.
Mutations:
	Numbers: increment/decrement by 1
	Strings: empty string, append character
	Lists: mutate empty list
	Atoms: change to different atom (except :nil, :ok, :error)

Example:
Original
def max_retries, do: 3

Mutant 1: 3 → 4
def max_retries, do: 4

Mutant 2: 3 → 2
def max_retries, do: 2

Original string
def greeting, do: "Hello"

Mutant: → empty
def greeting, do: ""
What it catches:
	Tests that don't verify specific values
	Magic number dependencies
	Missing edge case tests for special values

FunctionCall Mutator
Mutates function calls to catch missing side-effect verification.
Mutations:
	Remove function call (replace with nil)
	Swap first two arguments

Example:
Original
def save_user(user) do
 validate_user(user)
 Repo.insert(user)
end

Mutant 1: remove validation call
def save_user(user) do
 nil # validation removed!
 Repo.insert(user)
end

Original with multiple args
def send_email(to, subject, body)

Mutant 2: swap arguments
def send_email(subject, to, body) # to and subject swapped
What it catches:
	Tests that don't verify all necessary functions are called
	Missing argument order verification
	Side effects that aren't tested

Conditional Mutator
Mutates conditional expressions to catch branching logic bugs.
Mutations:
	Invert if conditions: if x → if not x
	Remove branches: always take true branch or false branch
	Convert unless to if
	Remove entire if statement

Example:
Original
def process(user) do
 if user.admin? do
 :admin_action
 else
 :user_action
 end
end

Mutant 1: invert condition
if not user.admin? do

Mutant 2: always take true branch
def process(user) do
 :admin_action
end

Mutant 3: always take false branch
def process(user) do
 :user_action
end
What it catches:
	Tests that don't verify both branches
	Missing tests for condition negation
	Tests that always pass regardless of control flow

Intelligent File Filtering
Muex includes sophisticated file analysis to focus mutation testing on valuable code.
Why File Filtering?
Mutation testing can be time-consuming on large codebases. Not all files benefit equally from mutation testing:
	Framework code: Behaviours, protocols, supervisors contain little testable logic
	Boilerplate: Mix tasks, reporters, configuration files
	Low complexity: Simple data structures, getters/setters

Muex automatically identifies and skips these files, dramatically reducing testing time.
How It Works
Muex scores each file 0-100 based on:
Automatic exclusions:
	Mix tasks (CLI layer)
	Application/Supervisor modules
	Behaviour definitions
	Protocol definitions
	Reporter/Formatter modules
	Dependency code (/deps/)

Complexity scoring:
	Function count (up to 30 points)
	Conditional statements (20 points)
	Arithmetic operations (15 points)
	Comparison operations (15 points)
	Pattern matching (10 points)
	Cyclomatic complexity (up to 20 points)

Files scoring below the threshold (default: 20) are skipped.
File Filtering Options
Use default filtering (min score: 20)
mix muex

More restrictive (only files with score >= 40)
mix muex --min-score 40

More inclusive (files with score >= 10)
mix muex --min-score 10

Disable filtering entirely
mix muex --no-filter

See which files are included/excluded
mix muex --verbose

Example Verbose Output
$ mix muex --verbose

Loading files from lib...
Found 24 file(s)
Analyzing files for mutation testing suitability...
 ✓ lib/muex/compiler.ex (score: 91)
 ✓ lib/muex/runner.ex (score: 83)
 ✓ lib/muex/mutator/arithmetic.ex (score: 67)
 ✓ lib/muex/file_analyzer.ex (score: 73)
 ✗ lib/mix/tasks/muex.ex (Mix task)
 ✗ lib/muex/application.ex (Application/Supervisor)
 ✗ lib/muex/language.ex (Behaviour definition)
 ✗ lib/muex/mutator.ex (Behaviour definition)
 - lib/muex/loader.ex (score: 15, below threshold)
 - lib/muex/reporter.ex (score: 12, below threshold)

Selected 4 file(s) for mutation testing
Skipped 20 file(s) (low complexity or framework code)

Test Optimization
Dependency-Aware Test Execution
Muex analyzes your test suite to understand dependencies between tests and source modules. This enables intelligent test execution:
How it works:
	Muex scans test files for module references (imports, aliases, direct calls)
	Builds a dependency map: module → [test_files]
	For each mutation, runs only tests that depend on the mutated module

Benefits:
	Faster execution: Skip tests unrelated to the mutation
	Accurate results: Ensures relevant tests are executed
	Better scalability: Enables mutation testing on larger projects

Example:
lib/calculator.ex mutated
Muex runs: test/calculator_test.exs
Muex skips: test/user_test.exs, test/cart_test.exs
Performance Characteristics
Typical mutation testing speed on modern hardware:
	Small project (< 1000 LOC): 30-60 seconds
	Medium project (1000-5000 LOC): 2-5 minutes with filtering
	Large project (> 5000 LOC): 5-20 minutes with filtering, 20+ without

Factors affecting speed:
	Number of mutations generated
	Test suite execution time
	Concurrency level
	File filtering effectiveness

Output Formats
Terminal Output (Default)
Interactive, colored output for development:
mix muex

Features:
	Green: Killed mutants (tests caught the bug)
	Red: Survived mutants (tests missed the bug)
	Yellow: Invalid mutants (compilation errors)
	Magenta: Timeouts
	Color-coded mutation score (green ≥80%, yellow ≥60%, red <60%)
	Summary statistics

Example:
Loading files from lib...
Found 24 file(s)
Analyzing files for mutation testing suitability...
Selected 8 file(s) for mutation testing
Generating mutations...
Testing 342 mutation(s)
Running tests...

Mutation Testing Results
==
Total mutants: 342
Killed: 287 (caught by tests)
Survived: 55 (not caught by tests)
Invalid: 0 (compilation errors)
Timeout: 0
==
Mutation Score: 83.9%

Survived Mutations:
 lib/calculator.ex:15 - Arithmetic: + → - in calculate_total/2
 lib/validator.ex:42 - Comparison: >= → > in validate_age/1
 ...
JSON Output
Machine-readable format for CI/CD integration:
mix muex --format json

Generates muex-report.json:
{
 "summary": {
 "total": 342,
 "killed": 287,
 "survived": 55,
 "invalid": 0,
 "timeout": 0,
 "mutation_score": 83.9
 },
 "mutations": [
 {
 "file": "lib/calculator.ex",
 "line": 15,
 "mutator": "Arithmetic",
 "description": "+ → -",
 "result": "survived",
 "duration_ms": 234
 }
]
}
HTML Output
Interactive HTML report for sharing:
mix muex --format html

Generates muex-report.html with:
	Color-coded results
	Sortable/filterable mutation list
	Per-file breakdown
	Clickable source locations
	Summary charts

Best Practices
1. Start with Intelligent Filtering
When first introducing Muex to a project:
Start with defaults
mix muex

Review which files are tested
mix muex --verbose

Adjust threshold if needed
mix muex --min-score 30

2. Focus on Critical Business Logic
Target mutation testing on high-value modules:
Test core business logic
mix muex --files "lib/myapp/core"

Test critical calculation modules
mix muex --files "lib/myapp/billing"

3. Use in Development Workflow
Integrate into your development cycle:
After writing tests for a module
mix muex --files "lib/my_new_feature.ex"

Check if your tests are effective
Iterate on tests until mutation score is high

4. Set Reasonable Thresholds
For CI/CD, set achievable mutation score thresholds:
Start conservative
mix muex --fail-at 70

Gradually increase as test quality improves
mix muex --fail-at 80

Don't aim for 100% mutation score - some mutations may be:
	Equivalent mutants (semantically identical to original)
	Testing implementation details rather than behavior
	Not worth the test complexity

Target 80-90% for critical code, 70-80% for general code.
5. Focus on Survived Mutations
Review survived mutations to identify weak tests:
Run with terminal output
mix muex

Review "Survived Mutations" section
Strengthen tests for those specific cases

6. Use Specific Mutators
For targeted test improvements:
Testing arithmetic logic? Focus on arithmetic mutations
mix muex --files "lib/calculator.ex" --mutators arithmetic

Testing validation logic? Focus on comparisons
mix muex --files "lib/validator.ex" --mutators comparison,boolean

7. Limit Mutations During Development
For quick feedback loops:
Test only first 100 mutations during development
mix muex --max-mutations 100 --files "lib/my_feature.ex"

Run full mutation testing before committing
mix muex --files "lib/my_feature.ex"

8. Document Mutation Score Goals
Add mutation score goals to your README:
Quality Metrics

- Code Coverage: > 90%
- Mutation Score: > 80% (core modules), > 70% (overall)
Performance Tuning
Concurrency Optimization
Find the optimal concurrency level for your system:
Start with default (CPU schedulers)
mix muex

Try higher concurrency
mix muex --concurrency 16

For CPU-bound tests, use schedulers count
mix muex --concurrency $(elixir -e "IO.puts System.schedulers_online()")

For I/O-bound tests, use higher concurrency
mix muex --concurrency 32

Timeout Tuning
Adjust timeouts based on test suite speed:
For fast test suites (< 1 second)
mix muex --timeout 2000

For medium test suites (1-3 seconds)
mix muex --timeout 5000

For slow test suites (> 3 seconds)
mix muex --timeout 10000

Progressive Mutation Testing
For large projects, use progressive testing:
Phase 1: Core modules only
mix muex --files "lib/myapp/core" --fail-at 80

Phase 2: All modules with high filtering
mix muex --min-score 40 --fail-at 75

Phase 3: All modules with default filtering
mix muex --min-score 20 --fail-at 70

Caching Strategy
To speed up repeated runs:
	Run with file filtering to reduce mutation count
	Focus on recently changed files
	Use --max-mutations to limit scope during development

CI/CD Integration
GitHub Actions
name: CI

on: [push, pull_request]

jobs:
 mutation-testing:
 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2

 - name: Set up Elixir
 uses: erlef/setup-beam@v1
 with:
 elixir-version: '1.16'
 otp-version: '26'

 - name: Install dependencies
 run: mix deps.get

 - name: Run tests
 run: mix test

 - name: Run mutation testing
 run: mix muex --fail-at 80 --format json

 - name: Upload mutation report
 uses: actions/upload-artifact@v2
 with:
 name: mutation-report
 path: muex-report.json
GitLab CI
mutation-test:
 stage: test
 script:
 - mix deps.get
 - mix test
 - mix muex --fail-at 80 --format json
 artifacts:
 paths:
 - muex-report.json
 expire_in: 1 week
CI Best Practices
	Set reasonable thresholds: Start with --fail-at 70, increase gradually
	Use intelligent filtering: Speeds up CI runs significantly
	Generate JSON reports: Enable trend analysis over time
	Run on pull requests: Catch test quality issues before merge
	Store HTML reports: Make results accessible to team

Incremental Mutation Testing
For faster CI feedback, test only changed files:
Get changed files
CHANGED_FILES=$(git diff --name-only origin/main...HEAD | grep '^lib/.*\.ex$' | tr '\n' ',')

Run mutation testing on changed files only
if [-n "$CHANGED_FILES"]; then
 mix muex --files "$CHANGED_FILES" --fail-at 80
fi

Troubleshooting
High Number of Survived Mutations
Problem: Mutation score is low (< 70%)
Solutions:
	Review survived mutations list in output
	Add assertions for specific values, not just types
	Test boundary conditions
	Verify both success and failure cases
	Test all branches of conditionals

Example improvement:
Weak test
test "calculate_discount works" do
 result = calculate_discount(100, 10)
 assert is_number(result) # Will survive arithmetic mutations
end

Strong test
test "calculate_discount applies 10% discount" do
 result = calculate_discount(100, 10)
 assert result == 90.0 # Will kill arithmetic mutations
end
Mutation Testing Takes Too Long
Problem: Mutation testing takes > 30 minutes
Solutions:
	Enable intelligent filtering: mix muex (default)
	Increase minimum score: --min-score 40
	Limit mutations: --max-mutations 500
	Test specific directories: --files "lib/core"
	Increase concurrency: --concurrency 16
	Optimize test suite performance (faster tests = faster mutation testing)

Timeouts
Problem: Many mutations result in timeout
Solutions:
	Increase timeout: --timeout 10000
	Check for infinite loops in code
	Optimize slow tests
	Review mutations that timeout - may indicate code issues

Invalid Mutations
Problem: High number of invalid mutations (compilation errors)
Causes:
	Mutations creating syntactically invalid code
	Type system constraints violated
	Usually not a problem (invalid mutations are excluded from score)

If invalid rate is > 20%:
	Disable specific mutators causing issues
	Report issue with code example

False Positives
Problem: Mutation survived but test should have caught it
Causes:
	Equivalent mutants: Mutation is semantically identical to original	Example: x + 0 → x (no change in behavior)

	Implementation detail: Test intentionally doesn't cover this behavior

Solutions:
	Accept some survived mutations (80-90% score is excellent)
	Add test only if behavior is important
	Document why mutation can be ignored

Memory Issues
Problem: Out of memory errors
Solutions:
	Reduce concurrency: --concurrency 2
	Limit mutations: --max-mutations 200
	Test smaller file sets: --files "lib/specific_module.ex"
	Increase system swap space

Examples
See the examples/ directory for complete working examples:
Calculator Example
Simple Elixir calculator demonstrating basic mutation testing:
cd examples/calculator
mix deps.get
mix muex

Demonstrates:
	Arithmetic mutation testing
	Test effectiveness evaluation
	Basic ExUnit integration

Real-World Usage
Check Muex's own mutation testing:
Run mutation testing on Muex itself
mix muex --files "lib/muex/compiler.ex"

See comprehensive usage
mix muex --verbose

Summary
Muex helps you build robust test suites by:
	Validating test quality: Ensures tests actually catch bugs
	Providing actionable feedback: Shows exactly which tests are weak
	Supporting multiple languages: Works with Elixir and Erlang
	Optimizing performance: Intelligent filtering and parallel execution
	Integrating with CI/CD: Multiple output formats and fail thresholds

Start with mix muex and let intelligent filtering guide you to better tests!

 Installation Guide

Muex can be used in three ways: as a Mix dependency, as an escript, or as a hex archive.
Option 1: Mix Dependency (Recommended for Project-Specific Use)
Add muex to your list of dependencies in mix.exs:
def deps do
 [
 {:muex, "~> 0.2.0", only: [:dev, :test], runtime: false}
]
end
Then run:
mix deps.get
mix muex

Option 2: Escript (Standalone Binary)
Build and install the escript to run muex as a standalone command-line tool:
Build the escript
From the muex repository:
mix escript.build

This creates a standalone executable muex in the current directory.
Install system-wide
Copy the executable to a directory in your PATH:
Linux/macOS
sudo cp muex /usr/local/bin/muex
sudo chmod +x /usr/local/bin/muex

Or to user bin (add to PATH if needed)
cp muex ~/.local/bin/muex
chmod +x ~/.local/bin/muex

Usage
Navigate to any Elixir project and run:
muex
muex --files "lib/my_module.ex"
muex --optimize --fail-at 80

Advantages
	Single binary, easy to distribute
	No need to add muex as a dependency
	Works in any Elixir project
	Fast startup

Limitations
	Requires the target project to have Mix and dependencies compiled
	Must be rebuilt to update to newer versions

Option 3: Hex Archive (Recommended for Global Installation)
Install muex as a hex archive to make it available globally via mix muex:
Install from Hex
mix archive.install hex muex

Install from local build
From the muex repository:
Build the archive
mix archive.build

Install it
mix archive.install muex-0.2.0.ez

Install from GitHub
mix archive.install github Oeditus/muex

Usage
Navigate to any Elixir project and run:
mix muex
mix muex --files "lib/**/*.ex" --optimize

The command will be available globally in all your Elixir projects.
Update
To update to a newer version:
Uninstall old version
mix archive.uninstall muex

Install new version
mix archive.install hex muex

List installed archives
mix archive

Advantages
	Available globally via mix muex
	Integrated with Mix tooling
	Easy to update via hex
	Automatic version management

Limitations
	Still requires Mix environment in target project
	Slightly slower startup than escript

Comparison
	Feature	Mix Dependency	Escript	Hex Archive
	Installation	Project-specific	Manual copy	One-time global
	Updates	mix deps.update	Rebuild manually	mix archive.install
	Availability	Per-project	System-wide	System-wide
	Command	mix muex	muex	mix muex
	Startup time	Fast	Fastest	Fast
	Disk usage	Per-project	Single binary	Shared archive

Recommended Approach
	For CI/CD pipelines: Use as a Mix dependency for reproducible builds
	For local development across multiple projects: Use hex archive for convenience
	For distribution to teams: Use escript for simplicity and portability

Verification
After installation, verify it works:
For mix dependency or hex archive
mix muex --version

For escript
muex --version

Troubleshooting
Escript: "No mix.exs found"
The escript must be run from the root of an Elixir project. Navigate to your project directory:
cd /path/to/your/elixir/project
muex

Hex archive: "The task muex could not be found"
Ensure the archive is installed:
mix archive

If not listed, reinstall:
mix archive.install hex muex

Permission denied (escript)
Make the escript executable:
chmod +x muex

Outdated version
For hex archive:
mix archive.uninstall muex
mix archive.install hex muex

For escript, rebuild from the latest source:
git pull
mix deps.get
mix escript.build

 Mutation Optimization Heuristics

This document describes the sophisticated heuristics implemented in Muex.MutantOptimizer to reduce the number of mutants while maintaining mutation testing effectiveness.
Overview
Mutation testing generates a large number of mutations, which can lead to long test execution times. The optimization heuristics intelligently filter and prioritize mutations to significantly reduce the number of mutants tested while preserving the ability to detect test suite weaknesses.
Motivation
In real-world projects, mutation testing can generate hundreds or thousands of mutations:
	The Cart example (2 modules, ~440 LOC) generates 886-1541 mutations depending on mutator configuration
	Testing all mutations can take minutes to hours
	Many mutations are redundant or low-value
	Some mutations are equivalent to the original code

Our goal: Reduce mutants by 50-70% while maintaining comparable mutation scores.
Heuristic Strategies
1. Equivalent Mutant Detection
Problem: Some mutations are semantically equivalent to the original code and will never be killed by tests.
Examples:
	x + 0 → x - 0 (arithmetic identity)
	x * 1 → x / 1 (multiplicative identity)
	true and x → true or x (short-circuit doesn't change behavior)
	Empty list mutations [] → []

Implementation: Pattern matching on AST to detect known equivalent patterns.
Impact: Usually filters <5% of mutations (most are not equivalent).
2. Code Complexity Scoring
Problem: Simple code (getters, trivial guards) generates many mutations but is typically well-tested. Complex code with branching logic is more likely to contain subtle bugs.
Approach: Calculate cyclomatic complexity approximation:
complexity = count_decision_points(ast) + 1

where decision_points include:
- if, case, cond, unless
- and, or, &&, ||
Configuration:
	min_complexity: 2 (default) - Skip mutations in trivially simple code

Impact: Can filter 30-60% of mutations in validation-heavy code.
3. Impact Scoring
Problem: Not all mutations are equally valuable. Some reveal critical bugs; others test redundant paths.
Scoring System:
Base Scores by Mutator Type:
	Conditional mutations: 4 points (highest risk)
	Comparison mutations: 3 points (boundary conditions)
	Boolean mutations: 3 points
	Arithmetic mutations: 2 points
	FunctionCall mutations: 2 points
	Literal mutations: 1 point

Complexity Bonuses:
	Nested conditionals: +5 points
	Recursion or loops: +4 points
	Complex pattern matching: +3 points
	Multiple operations: +2 points

Location Bonus:
	Lines < 100 (typically public API): +1 point

Example Impact Scores:
	Simple literal mutation in validation: 1-2 points
	Arithmetic in complex calculation: 4-6 points
	Comparison in nested conditional: 8-11 points

4. Mutation Clustering
Problem: If a function has 10 arithmetic operations, testing all + → - mutations is redundant.
Approach:
	Group mutations by function (50-line chunks)
	Within each function, cluster by mutator type
	Sample diverse representatives from each cluster
	Keep top 33% (at least 2) based on impact score

Configuration:
	cluster_similarity_threshold: 0.8 (default)

Example:
	Function with 12 arithmetic mutations → Keep 4 highest-impact
	Function with 3 comparison mutations → Keep all 3

Impact: 20-40% reduction in functions with many similar mutations.
5. Per-Function Limits
Problem: Some functions (especially validation or calculation-heavy code) can generate hundreds of mutations, dominating the test run.
Approach:
	Limit mutations per function to max_mutations_per_function
	Sort by impact score and keep highest-priority mutations

Configuration:
	max_mutations_per_function: 20 (default)

Rationale: If a function has >20 mutations and tests are weak, you'll discover this from the highest-impact 20. Testing all 100 provides diminishing returns.
Impact: Significant reduction in complex functions; no impact on simple functions.
6. Boundary Mutation Prioritization
Problem: Boundary condition bugs (off-by-one errors) are common and critical.
Approach: Always preserve comparison mutations involving:
	>=, <= (boundary inclusive)
	==, !=, ===, !== (equality)

These are kept regardless of complexity or clustering.
Configuration:
	keep_boundary_mutations: true (default)

Rationale: Boundary bugs are subtle and frequent. These mutations have high diagnostic value.
Configuration
The optimizer can be configured with various options:
MutantOptimizer.optimize(mutations,
 enabled: true, # Enable optimization
 min_complexity: 2, # Minimum complexity score
 max_mutations_per_function: 20, # Limit per function
 cluster_similarity_threshold: 0.8, # Clustering threshold
 keep_boundary_mutations: true # Preserve boundary mutations
)
Recommended Presets
Conservative (minimal reduction, ~30%):
enabled: true,
min_complexity: 1,
max_mutations_per_function: 50,
keep_boundary_mutations: true
Balanced (moderate reduction, ~50-60%):
enabled: true,
min_complexity: 2,
max_mutations_per_function: 20,
keep_boundary_mutations: true
Aggressive (maximum reduction, ~70-80%):
enabled: true,
min_complexity: 3,
max_mutations_per_function: 10,
keep_boundary_mutations: true
Results: Cart Example
Baseline (No Optimization)
	Total mutations: 886
	Mutation score: 99.77%
	Estimated runtime: ~3 minutes

With Balanced Optimization
	Total mutations: ~300-400 (50-55% reduction)
	Expected mutation score: 97-99% (±2%)
	Estimated runtime: ~1.5 minutes

Benefits
	Faster feedback: 50% reduction = 50% faster results
	Maintained quality: Mutation score typically within 2% of baseline
	Focus on high-value mutations: Average impact score increases from ~2 to ~5+
	Scalability: Enables mutation testing on larger codebases

When to Use Optimization
Use Optimization When:
	Running mutation testing in CI/CD pipelines (time-constrained)
	Testing large modules or entire applications
	Initial mutation testing exploration
	Limited compute resources
	Rapid iteration during development

Run Full Mutations When:
	Final validation before release
	Debugging specific test weaknesses
	Researching mutation testing effectiveness
	Unlimited compute/time available
	Very small codebases (<100 LOC)

Validation
To validate that optimization maintains effectiveness:
	Run baseline (no optimization):
mix muex --files "lib/my_module.ex"

	Run with optimization:
mix muex --files "lib/my_module.ex" --optimize

	Compare:
	Mutation score should be within 2-5%
	Runtime should be 40-70% faster
	Survived mutations should be similar (not duplicates)

If mutation score drops significantly (>5%), the test suite may be weak in complex code areas. This is valuable information!
Technical Implementation
The optimizer uses several Elixir AST analysis techniques:
	Pattern Matching: Detect equivalent patterns
	AST Traversal: Count decision points for complexity
	Metadata Analysis: Use line numbers, mutator types for grouping
	Statistical Sampling: Cluster and sample diverse representatives

Key implementation details:
	Handles both 3-tuple AST nodes and other node types
	Defensive coding for unknown AST patterns
	Preserves original mutation metadata (file, line, description)
	Maintains reproducibility (same input → same output)

Future Enhancements
Potential improvements for future versions:
	Test Coverage Integration: Prefer mutations in code covered by tests
	Historical Analysis: Learn from past mutation results
	Domain-Specific Rules: Custom heuristics per project type
	Machine Learning: Train models to predict mutation value
	Incremental Testing: Only test mutations in changed code
	Parallel Clustering: Optimize clustering for very large codebases

Conclusion
The mutation optimization heuristics significantly reduce testing time while maintaining the ability to detect test weaknesses. By focusing on high-impact, non-redundant mutations, developers get faster feedback without sacrificing quality.
The key insight: Not all mutations are equally valuable. Smart filtering preserves diagnostic power while eliminating redundancy.

For implementation details, see lib/muex/mutant_optimizer.ex.

Muex

Muex - Mutation testing library for Elixir, Erlang, and other languages.
Muex provides a language-agnostic mutation testing framework with dependency
injection for language adapters, making it easy to extend support to new languages.
Architecture
	Muex.Language - Behaviour for language adapters (parse, unparse, compile)
	Muex.Mutator - Behaviour for mutation strategies
	Muex.Loader - Discovers and loads source files
	Muex.Compiler - Compiles mutated code and manages hot-swapping
	Muex.Runner - Executes tests against mutants
	Muex.Reporter - Reports mutation testing results

Usage
Run mutation testing via Mix task:
mix muex
With options:
mix muex --files "lib/**/*.ex" --mutators arithmetic,comparison --fail-at 80
Creating a Language Adapter
To add support for a new language, implement the Muex.Language behaviour:
defmodule Muex.Language.MyLanguage do
 @behaviour Muex.Language

 @impl true
 def parse(source), do: {:ok, parse_to_ast(source)}

 @impl true
 def unparse(ast), do: {:ok, ast_to_string(ast)}

 @impl true
 def compile(source, module_name), do: {:ok, compiled_module}

 @impl true
 def file_extensions, do: [".mylang"]

 @impl true
 def test_file_pattern, do: ~r/_test\.mylang$/
end
Creating a Mutator
To add a new mutation strategy, implement the Muex.Mutator behaviour:
defmodule Muex.Mutator.MyMutator do
 @behaviour Muex.Mutator

 @impl true
 def mutate(ast, context) do
 # Return list of mutations
 []
 end

 @impl true
 def name, do: "MyMutator"

 @impl true
 def description, do: "Custom mutation strategy"
end

Muex.DependencyAnalyzer

Analyzes test files to determine which tests depend on which modules.
Builds a dependency graph by parsing test files and extracting module references.
This allows running only the tests that are affected by a specific mutation.

 Summary

 Types

 dependency_map()

 Functions

 analyze(test_dir \\ "test")

 Analyzes test files and builds a dependency map.

 get_dependent_tests(module_name, dependency_map)

 Gets test files that depend on a specific module.

 get_tests_for_mutation(mutation, dependency_map, file_to_module)

 Gets test files for a mutation based on the mutated module.

 Types

 dependency_map()

 @type dependency_map() :: %{required(module()) => [Path.t()]}

 Functions

 analyze(test_dir \\ "test")

 @spec analyze(Path.t()) :: dependency_map()

Analyzes test files and builds a dependency map.
Parameters
	test_dir - Directory containing test files (default: "test")

Returns
 Map of module atoms to list of test file paths that reference them.
Examples
iex> analyze("test")
%{MyModule => ["test/my_module_test.exs"], ...}

 get_dependent_tests(module_name, dependency_map)

 @spec get_dependent_tests(module(), dependency_map()) :: [Path.t()]

Gets test files that depend on a specific module.
Parameters
	module_name - The module to find tests for
	dependency_map - The dependency map from analyze/1

Returns
 List of test file paths that depend on the module.

 get_tests_for_mutation(mutation, dependency_map, file_to_module)

 @spec get_tests_for_mutation(map(), dependency_map(), %{
 required(Path.t()) => module()
}) :: [Path.t()]

Gets test files for a mutation based on the mutated module.
Parameters
	mutation - The mutation map containing location info
	dependency_map - The dependency map from analyze/1
	file_to_module - Map of file paths to module names

Returns
 List of test file paths to execute for this mutation.

Muex.ExampleCalculator

Example calculator for demonstrating mutation testing.

 Summary

 Functions

 add(a, b)

 compare_equal(a, b)

 compare_greater(a, b)

 divide(a, b)

 multiply(a, b)

 subtract(a, b)

 Functions

 add(a, b)

 compare_equal(a, b)

 compare_greater(a, b)

 divide(a, b)

 multiply(a, b)

 subtract(a, b)

Muex.Reporter.Html

HTML reporter for mutation testing results.
Generates an interactive HTML report with color-coded results.

 Summary

 Functions

 generate(results, opts \\ [])

 Generates HTML report from mutation results.

 Functions

 generate(results, opts \\ [])

 @spec generate(
 [map()],
 keyword()
) :: :ok | {:error, term()}

Generates HTML report from mutation results.
Parameters
	results - List of mutation results
	opts - Options:	:output_file - Path to output file (default: "muex-report.html")

Returns
 :ok after writing the HTML file

Muex.Reporter.Json

JSON reporter for mutation testing results.
Exports results in structured JSON format for CI/CD integration.

 Summary

 Functions

 generate(results, opts \\ [])

 Generates JSON report from mutation results.

 to_json(results)

 Returns JSON string from mutation results without writing to file.

 Functions

 generate(results, opts \\ [])

 @spec generate(
 [map()],
 keyword()
) :: :ok | {:error, term()}

Generates JSON report from mutation results.
Parameters
	results - List of mutation results
	opts - Options:	:output_file - Path to output file (default: "muex-report.json")

Returns
 :ok after writing the JSON file

 to_json(results)

 @spec to_json([map()]) :: String.t()

Returns JSON string from mutation results without writing to file.
Parameters
	results - List of mutation results

Returns
 JSON string

Muex.TestRunner.Port

Runs tests in isolated Erlang port processes.
Each test run executes in a separate BEAM VM via port, providing complete isolation
between mutations and preventing hot-swapping conflicts.

 Summary

 Types

 test_result()

 Functions

 run_tests(test_files, mutated_file \\ nil, opts \\ [])

 Runs tests in an isolated port process.

 Types

 test_result()

 @type test_result() :: %{
 failures: non_neg_integer(),
 output: String.t(),
 exit_code: non_neg_integer(),
 duration_ms: non_neg_integer()
}

 Functions

 run_tests(test_files, mutated_file \\ nil, opts \\ [])

 @spec run_tests([Path.t()], Path.t() | nil, keyword()) ::
 {:ok, test_result()} | {:error, term()}

Runs tests in an isolated port process.
Parameters
	test_files - List of test file paths to execute
	mutated_file - Path to the mutated source file (will be compiled in the test env)
	opts - Options:	:timeout_ms - Test timeout in milliseconds (default: 5000)
	:mix_env - Mix environment (default: "test")

Returns
 {:ok, test_result} or {:error, reason}

Muex.WorkerPool

Manages a pool of workers for parallel mutation testing.
Uses GenServer to coordinate mutation testing across a configurable number
of workers, preventing system overload while maximizing throughput.

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 run_mutations(pool, mutations, file_entry, language_adapter, dependency_map, file_to_module, opts \\ [])

 Runs mutations through the worker pool.

 start_link(opts \\ [])

 Starts the worker pool.

 Functions

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 run_mutations(pool, mutations, file_entry, language_adapter, dependency_map, file_to_module, opts \\ [])

 @spec run_mutations(
 pid(),
 [map()],
 map(),
 module(),
 map(),
 map(),
 keyword()
) :: [map()]

Runs mutations through the worker pool.
Parameters
	pool - The worker pool PID
	mutations - List of mutations to test
	file_entry - The file entry containing the original AST
	language_adapter - The language adapter module
	dependency_map - Map of modules to test files
	file_to_module - Map of file paths to module names
	opts - Options including :timeout_ms

Returns
 List of mutation results

 start_link(opts \\ [])

Starts the worker pool.
Parameters
	opts - Options:	:max_workers - Maximum concurrent workers (default: 4)

Muex.Language behaviour

Behaviour for language adapters that provide AST parsing, unparsing, and compilation.
This behaviour defines the interface for supporting different programming languages
in mutation testing. Each language adapter implements the callbacks to handle
language-specific AST operations.
Example
defmodule Muex.Language.MyLanguage do
 @behaviour Muex.Language

 @impl true
 def parse(source), do: {:ok, parse_to_ast(source)}

 @impl true
 def unparse(ast), do: {:ok, ast_to_string(ast)}

 @impl true
 def compile(source, module_name), do: {:ok, compiled_module}

 @impl true
 def file_extensions, do: [".my"]

 @impl true
 def test_file_pattern, do: ~r/_test.my$/
end

 Summary

 Callbacks

 compile(source, module_name)

 Compiles source code into a module that can be loaded into the BEAM.

 file_extensions()

 Returns the list of file extensions for this language.

 parse(source)

 Parses source code into an Abstract Syntax Tree (AST).

 test_file_pattern()

 Returns a regex pattern to identify test files.

 unparse(ast)

 Converts an AST back into source code string.

 Callbacks

 compile(source, module_name)

 @callback compile(source :: String.t(), module_name :: atom()) ::
 {:ok, module()} | {:error, term()}

Compiles source code into a module that can be loaded into the BEAM.
Parameters
	source - String containing the source code to compile
	module_name - Atom representing the module name

Returns
	{:ok, module} - Successfully compiled module
	{:error, reason} - Compilation failed with error details

 file_extensions()

 @callback file_extensions() :: [String.t()]

Returns the list of file extensions for this language.
Returns
 List of file extensions including the dot (e.g., [".ex", ".exs"])

 parse(source)

 @callback parse(source :: String.t()) :: {:ok, ast :: term()} | {:error, term()}

Parses source code into an Abstract Syntax Tree (AST).
Parameters
	source - String containing the source code to parse

Returns
	{:ok, ast} - Successfully parsed AST (term structure depends on language)
	{:error, reason} - Parsing failed with error details

 test_file_pattern()

 @callback test_file_pattern() :: Regex.t()

Returns a regex pattern to identify test files.
Returns
 Regex that matches test file paths

 unparse(ast)

 @callback unparse(ast :: term()) :: {:ok, String.t()} | {:error, term()}

Converts an AST back into source code string.
Parameters
	ast - The AST to convert back to source code

Returns
	{:ok, source} - Successfully generated source code
	{:error, reason} - Unparsing failed with error details

Muex.Language.Elixir

Language adapter for Elixir source code.
This adapter uses Elixir's built-in Code and Macro modules to parse,
unparse, and compile Elixir source code.

Muex.Language.Erlang

Language adapter for Erlang source code.
This adapter uses Erlang's built-in parsing modules (:erl_scan, :erl_parse, :erl_prettypr)
to parse, unparse, and compile Erlang source code.

Muex.Mutator behaviour

Behaviour for mutation operators that transform AST nodes.
Mutators implement specific mutation strategies (e.g., arithmetic operators,
boolean operators, literals) and return a list of possible mutations for a given AST.
Each mutator is language-agnostic and works with the raw AST structure provided
by the language adapter.
Example
defmodule Muex.Mutator.MyMutator do
 @behaviour Muex.Mutator

 @impl true
 def mutate(ast, _context) do
 # Return list of mutated AST variants
 [mutated_ast_1, mutated_ast_2]
 end

 @impl true
 def name, do: "My Mutator"

 @impl true
 def description, do: "Mutates specific AST patterns"
end

 Summary

 Types

 mutation()

 Represents a single mutation with its metadata.

 Callbacks

 description()

 Returns a description of what this mutator does.

 mutate(ast, context)

 Applies mutations to the given AST.

 name()

 Returns the name of the mutator.

 Functions

 walk(ast, mutators, context)

 Walks through an AST and applies all registered mutators.

 Types

 mutation()

 @type mutation() :: %{
 ast: term(),
 mutator: module(),
 description: String.t(),
 location: %{file: String.t(), line: non_neg_integer()}
}

Represents a single mutation with its metadata.

 Callbacks

 description()

 @callback description() :: String.t()

Returns a description of what this mutator does.
Returns
 String describing the mutation strategy

 mutate(ast, context)

 @callback mutate(ast :: term(), context :: map()) :: [mutation()]

Applies mutations to the given AST.
Parameters
	ast - The AST to mutate
	context - Map containing additional context (file path, line number, etc.)

Returns
 List of mutation maps, each representing a possible mutation

 name()

 @callback name() :: String.t()

Returns the name of the mutator.
Returns
 String name identifying this mutator

 Functions

 walk(ast, mutators, context)

 @spec walk(ast :: term(), mutators :: [module()], context :: map()) :: [mutation()]

Walks through an AST and applies all registered mutators.
Parameters
	ast - The AST to traverse
	mutators - List of mutator modules to apply
	context - Context map with file information

Returns
 List of all possible mutations found in the AST

Muex.Mutator.Arithmetic

Mutator for arithmetic operators.
Applies mutations to arithmetic operations:
	+ <-> -
	* <-> /
	+ -> 0 (remove addition)
	- -> 0 (remove subtraction)

Muex.Mutator.Boolean

Mutator for boolean operators and literals.
Applies mutations to boolean operations:
	and <-> or
	&& <-> ||
	true <-> false
	Remove negation: not x -> x

Muex.Mutator.Comparison

Mutator for comparison operators.
Applies mutations to comparison operations:
	== <-> !=
	> <-> <
	>= <-> <=
	=== <-> !==

Muex.Mutator.Conditional

Mutator for conditional expressions.
Applies mutations to conditionals:
	Invert if conditions: if x -> if not x
	Remove if/else branches
	Mutate unless to if

Muex.Mutator.FunctionCall

Mutator for function calls.
Applies mutations to function calls:
	Remove function calls (replace with nil)
	Swap function arguments (when there are 2+ args)

Muex.Mutator.Literal

Mutator for literal values.
Applies mutations to literals:
	Numeric literals: increment/decrement by 1
	String literals: empty string, change character
	List literals: empty list
	Atom literals: change to different atom (except special atoms)

Muex.Compiler

Compiles mutated ASTs and manages module hot-swapping.
Uses the language adapter for converting AST to source and compiling modules.

 Summary

 Functions

 compile(mutation, original_ast, module_name, language_adapter)

 Compiles a mutated AST and loads it into the BEAM.

 compile_to_file(mutation, file_entry, language_adapter)

 Compiles a mutated AST and writes it to a temporary file.

 restore(module_name, original_binary)

 Restores the original module from its binary.

 Functions

 compile(mutation, original_ast, module_name, language_adapter)

 @spec compile(map(), term(), atom(), module()) ::
 {:ok, {module(), binary()}} | {:error, term()}

Compiles a mutated AST and loads it into the BEAM.
Parameters
	mutation - The mutation map containing the mutated AST
	original_ast - The original (complete) AST with mutation applied
	module_name - The module name to compile
	language_adapter - The language adapter module

Returns
	{:ok, {module, original_binary}} - Successfully compiled and loaded module with original binary
	{:error, reason} - Compilation failed

 compile_to_file(mutation, file_entry, language_adapter)

 @spec compile_to_file(map(), map(), module()) :: {:ok, Path.t()} | {:error, term()}

Compiles a mutated AST and writes it to a temporary file.
This is used for port-based test execution where the mutated source
needs to be on disk for a separate BEAM VM to compile.
Parameters
	mutation - The mutation map containing the mutated AST
	file_entry - The file entry containing the original AST and path
	language_adapter - The language adapter module

Returns
	{:ok, temp_file_path} - Successfully wrote mutated source to temp file
	{:error, reason} - Failed to write mutated source

 restore(module_name, original_binary)

 @spec restore(atom(), binary()) :: :ok | {:error, term()}

Restores the original module from its binary.
Parameters
	module_name - The module to restore
	original_binary - The original module binary

Returns
	:ok - Successfully restored
	{:error, reason} - Restoration failed

Muex.FileAnalyzer

Analyzes source files to determine which ones should be included in mutation testing.
Filters out files that are unlikely to benefit from mutation testing:
	Framework/library internals (behaviours, protocols, supervisors)
	Generated code and configuration
	Pure data structures without logic
	Files without test coverage

 Summary

 Functions

 analyze_file(map)

 Analyzes a file entry and returns a priority score.

 filter_files(files, opts \\ [])

 Filters a list of file entries based on analysis results.

 Functions

 analyze_file(map)

 @spec analyze_file(map()) :: {:ok, non_neg_integer()} | {:skip, String.t()}

Analyzes a file entry and returns a priority score.
Returns {:ok, score} where score is:
	0: should skip (no business logic to test)
	1-10: low priority (mostly boilerplate)
	11-50: medium priority (some testable logic)
	51-100: high priority (significant business logic)

Returns {:skip, reason} if the file should be excluded.

 filter_files(files, opts \\ [])

 @spec filter_files(
 [map()],
 keyword()
) :: {[map()], [map()]}

Filters a list of file entries based on analysis results.
Options:
	:min_score - Minimum score to include (default: 20)
	:verbose - Show analysis details (default: false)

Muex.Loader

Loads and parses source files using a language adapter.
The loader discovers source files, filters out test files and other
unwanted patterns, and parses them into ASTs using the provided language adapter.

 Summary

 Types

 file_entry()

 Functions

 load(path_pattern, language_adapter, opts \\ [])

 Loads source files from the given path pattern using the language adapter.

 Types

 file_entry()

 @type file_entry() :: %{path: String.t(), ast: term(), module_name: atom() | nil}

 Functions

 load(path_pattern, language_adapter, opts \\ [])

 @spec load(String.t(), module(), keyword()) ::
 {:ok, [file_entry()]} | {:error, term()}

Loads source files from the given path pattern using the language adapter.
Parameters
	path_pattern - Directory, file, or glob pattern (e.g., "lib", "lib/*/.ex", "lib/myapp/*.ex")
	language_adapter - Module implementing Muex.Language behaviour
	opts - Options:	:include - List of glob patterns to include (default: all files with adapter's extensions)
	:exclude - List of patterns to exclude (default: test files)

Returns
 {:ok, files} where files is a list of file_entry maps

Muex.MutantOptimizer

Sophisticated heuristics to minimize the number of mutants while maintaining
mutation testing effectiveness.
This module implements several strategies:
	Equivalent Mutant Detection: Identifies mutations that are semantically
equivalent to the original code (e.g., x + 0 → x - 0)

	Impact Analysis: Prioritizes mutations in complex, frequently-tested code
over simple getters or trivial functions

	Mutation Clustering: Groups similar mutations and tests only representative
samples from each cluster

	Code Complexity Scoring: Focuses on mutations in code with higher cyclomatic
complexity, where bugs are more likely

	Pattern-Based Filtering: Removes mutations known to be low-value based on
AST patterns (e.g., mutating literal 0 in arithmetic identity operations)

	Boundary Value Focus: Prioritizes mutations at decision boundaries (>=, <=, ==)
over less critical operators

	Guard Clause Deprioritization: Reduces mutation testing on simple validation
guards that are typically well-covered by tests

 Summary

 Types

 filter_options()

 mutation()

 Functions

 cluster_and_sample(mutations, similarity_threshold)

 Groups similar mutations and samples representatives from each cluster.

 filter_by_complexity(mutations, min_complexity)

 Filters out mutations in trivially simple code.

 filter_equivalent_mutants(mutations)

 Filters out mutations that are likely to be equivalent to the original code.

 limit_per_function(mutations, max_per_function)

 Limits the number of mutations per function to prevent explosion.

 optimization_report(original_mutations, optimized_mutations)

 Generates a summary report of the optimization results.

 optimize(mutations, opts \\ [])

 Filters and prioritizes mutations based on sophisticated heuristics.

 prioritize_boundary_mutations(mutations, keep_boundary)

 Ensures boundary condition mutations are always included.

 score_by_impact(mutations)

 Assigns impact scores to mutations based on code characteristics.

 Types

 filter_options()

 @type filter_options() :: [
 enabled: boolean(),
 min_complexity: non_neg_integer(),
 max_mutations_per_function: non_neg_integer(),
 cluster_similarity_threshold: float(),
 keep_boundary_mutations: boolean()
]

 mutation()

 @type mutation() :: %{
 ast: tuple(),
 mutator: module(),
 description: String.t(),
 location: map()
}

 Functions

 cluster_and_sample(mutations, similarity_threshold)

Groups similar mutations and samples representatives from each cluster.
This reduces redundant mutations that test the same code path.
For example, if a function has 10 arithmetic operations, we don't
need to test all possible + → - mutations.

 filter_by_complexity(mutations, min_complexity)

Filters out mutations in trivially simple code.
Removes mutations from:
	Simple getters/setters
	Trivial boolean guards
	Single-operation functions

 filter_equivalent_mutants(mutations)

Filters out mutations that are likely to be equivalent to the original code.
Detects patterns like:
	x + 0 → x - 0 (arithmetic identity)
	x * 1 → x / 1 (multiplicative identity)
	true and x → true or x (boolean short-circuit)
	Empty list mutations [] → []

 limit_per_function(mutations, max_per_function)

Limits the number of mutations per function to prevent explosion.
Keeps the highest-impact mutations per function.

 optimization_report(original_mutations, optimized_mutations)

Generates a summary report of the optimization results.

 optimize(mutations, opts \\ [])

 @spec optimize([mutation()], filter_options()) :: [mutation()]

Filters and prioritizes mutations based on sophisticated heuristics.
Options
	:enabled - Enable optimization (default: false)
	:min_complexity - Minimum complexity score to mutate (default: 2)
	:max_mutations_per_function - Maximum mutations per function (default: 20)
	:cluster_similarity_threshold - Similarity threshold for clustering (default: 0.8)
	:keep_boundary_mutations - Always keep boundary condition mutations (default: true)

Returns
A filtered and prioritized list of mutations.

 prioritize_boundary_mutations(mutations, keep_boundary)

Ensures boundary condition mutations are always included.
Boundary mutations (>=, <=, ==, !=) are critical for finding off-by-one
errors and are always kept regardless of other filters.

 score_by_impact(mutations)

Assigns impact scores to mutations based on code characteristics.
Higher scores indicate mutations more likely to reveal test weaknesses:
	Complex conditional logic: +5
	Arithmetic in loops or recursion: +4
	Boundary conditions (>=, <=, ==): +3
	Function calls: +2
	Simple assignments: +1

Muex.Reporter

Reports mutation testing results to the terminal.
Provides progress updates and final summaries of mutation testing runs.

 Summary

 Functions

 print_progress(result, index, total)

 Prints progress for a single mutation result.

 print_summary(results)

 Prints a summary of mutation testing results.

 Functions

 print_progress(result, index, total)

 @spec print_progress(map(), non_neg_integer(), non_neg_integer()) :: :ok

Prints progress for a single mutation result.
Parameters
	result - A single mutation result
	index - Current mutation index
	total - Total number of mutations

 print_summary(results)

 @spec print_summary([map()]) :: :ok

Prints a summary of mutation testing results.
Parameters
	results - List of mutation results

Muex.Runner

Runs tests against mutated code.
Executes the test suite for each mutation and classifies the results.

 Summary

 Types

 mutation_result()

 result()

 Functions

 run_all(mutations, file_entry, language_adapter, dependency_map, file_to_module, opts \\ [])

 Runs tests for all mutations in parallel using worker pool.

 run_mutation(mutation, file_entry, language_adapter, opts \\ [])

 Runs tests for a single mutation.

 Types

 mutation_result()

 @type mutation_result() :: %{
 mutation: map(),
 result: result(),
 duration_ms: non_neg_integer(),
 error: term() | nil
}

 result()

 @type result() :: :killed | :survived | :invalid | :timeout

 Functions

 run_all(mutations, file_entry, language_adapter, dependency_map, file_to_module, opts \\ [])

 @spec run_all([map()], map(), module(), map(), map(), keyword()) :: [
 mutation_result()
]

Runs tests for all mutations in parallel using worker pool.
Parameters
	mutations - List of mutations to test
	file_entry - The file entry containing the original AST
	language_adapter - The language adapter module
	dependency_map - Map of modules to test files
	file_to_module - Map of file paths to module names
	opts - Options:	:max_workers - Maximum concurrent workers (default: 4)
	:timeout_ms - Test timeout in milliseconds (default: 5000)

Returns
 List of mutation_result maps

 run_mutation(mutation, file_entry, language_adapter, opts \\ [])

 @spec run_mutation(map(), map(), module(), keyword()) :: mutation_result()

Runs tests for a single mutation.
Parameters
	mutation - The mutation to test
	file_entry - The file entry containing the original AST
	language_adapter - The language adapter module
	opts - Options:	:timeout_ms - Test timeout in milliseconds (default: 5000)

Returns
 mutation_result map with test results

Muex.CLI

Command-line interface for Muex mutation testing.
This module provides the escript entry point that delegates to the Mix task.

 Summary

 Functions

 main(args)

 Main entry point for the escript.

 Functions

 main(args)

 @spec main([String.t()]) :: no_return()

Main entry point for the escript.
Parses command-line arguments and runs mutation testing.

mix muex

Run mutation testing on your project.
Usage
mix muex [options]
Options
	--files - Directory, file, or glob pattern (default: "lib")
	--path - Synonym for --files
	--language - Language adapter to use (default: "elixir")
	--mutators - Comma-separated list of mutators (default: all)
	--concurrency - Number of parallel mutations (default: number of schedulers)
	--timeout - Test timeout in milliseconds (default: 5000)
	--fail-at - Minimum mutation score to pass (default: 100)
	--format - Output format: terminal, json, html (default: terminal)
	--min-score - Minimum complexity score for files to include (default: 20)
	--max-mutations - Maximum number of mutations to test (0 = unlimited, default: 0)
	--no-filter - Disable intelligent file filtering
	--verbose - Show detailed progress information (file analysis, optimization, etc.)
	--optimize - Enable mutation optimization heuristics (default: enabled)
	--no-optimize - Disable mutation optimization heuristics
	--optimize-level - Optimization preset: conservative, balanced, aggressive (default: balanced)
	--min-complexity - Minimum complexity for mutations (default: 2, with --optimize)
	--max-per-function - Max mutations per function (default: 20, with --optimize)

Examples
Run on all lib files (with intelligent filtering)
mix muex

Run on all files without filtering
mix muex --no-filter

Run on specific directory
mix muex --files "lib/muex"

Run on specific file
mix muex --files "lib/my_module.ex"

Run with glob patterns
mix muex --files "lib/muex/*.ex"
mix muex --files "lib/**/compiler*.ex"

Use specific mutators
mix muex --mutators arithmetic,comparison,boolean,literal,function_call,conditional

Set minimum complexity score
mix muex --min-score 30

Limit total mutations to test
mix muex --max-mutations 500

Show detailed progress information
mix muex --verbose

Fail if mutation score below 80%
mix muex --fail-at 80

Output JSON to terminal
mix muex --format json

Output JSON with progress details
mix muex --format json --verbose

Generate HTML report (writes to muex-report.html)
mix muex --format html

Enable mutation optimization (balanced preset)
mix muex --optimize

Use aggressive optimization
mix muex --optimize --optimize-level aggressive

Custom optimization settings
mix muex --optimize --min-complexity 3 --max-per-function 15

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

OEBPS/assets/logo.png
MutEx

OEBPS/assets/logo-transparent-2.png
MutEXx

OEBPS/assets/logo.png
MutEx

OEBPS/assets/logo-48x48.png
MutEx

OEBPS/assets/logo-500x500.png
MutEXx

OEBPS/assets/logo-transparent.png

OEBPS/assets/logo-2x1.jpg

